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In an earlier session Marshall Rosenbliuth presented an outline of our
present theoretical knowledge of plasma instabilities. It is the pleasant
task of some of the other invited speakers to fill in some of the details.
Albert Simon has already done this for the two-stream~type instabilities.

I will now discuss a class of microinstabilities; namely, those which are
due to anisotropies of the veloclty distributions of the ions and electrons
of the plasma.

Let us assume that the space and time dependence of the electric and
magnetic fields is given by

o

— 1 -
7 2~ el(k-x wt)

Then, one can solve time linearized Vlasov equations for the perturbed
distribution functions, substitute into the charge and current density

terms in Maxwell's equations and finally obtain (Reference 1, Chapter 1)
2
> > > > -»>
<k2l-kk—w e(k,w))-E:O. (1)

Here all the properties of the plasmz are contained in the dielectric tensor
€y i a
€. It is a function of the wave vector k and frequency ® and is a func-
tional of the distribution functions fso(v) (s = electrons, ions) of the
unperturbed plasma.
—>

Eqs. (1) are three homogeneous equaticns for the components of E.

Setting the determinant of the coefficlents equal to zero gives a relation
-

between ® and k -- the plasma dispersion relation. What is of interest
here is the conditions under which the dispersion relaticn will have a

solution with & positive imaginary part of ®. Such a solution represents

a wave which grows exponentially in time.
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(1) is rather difficult to treat in general. We shall simplify

it by making the so-called quasi-electrostatic approximation; that is, we

assume
- -
E:—v¢:—ik¢- (2)
Then Eq. (1) gives
- ¥
€<k; CU) ¢(k; (D) =0 (5)
where
4 -3 & -
ek, ©) = =% . €K o) - % ()
k

is called the dielectric function of the plasma. Actually, it is not
possible to decouple longitudinal and transverse waves except in specilal
cases, so Eq. (2) is not a rigorously valid assumption. It is approxi-

mately valid if 8 = 81(P/B2 << 1.
_).

-
For an infinite uniform plasma in a magnetic field B = e, Bo’ the
dielectric function has the form (Reference 1, Chapter 7)
+ 2 /5L V)
— 2 J
N w 3 nAo
E(k}w):l‘{' "P““z \/‘dV(w“kv "“I!D )
k Z 7 cs
H,Dcs 0 fos 0 fos
(5)
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Here w s and wc% are plasma and cyclotron frequencies for species s, and

jols €

fos(vl’ vz) are the unperturbed velocity distribution functions. J is

a Bessel function or order n. In doing the veloclty space integral it



must first be assumed that ® has a positive imaginary vart (this is
essentially the Landau prescription for treating the singularity); then
G(EZ @) is analytically continued into the rest of the complex w-plane.
Finally, e(ii w) = 0 gives the dispersion relation.

A tremendous amount of work has been done in solving € = O when € is
given by Eq. (5) and various assumptions sre made about fos(vl’ VZ). We
shall not attempt to summarize the results but rather to distill from this
work some insights into the nature of the instabilities. We shall be
particularly interested in conditions near the threshold for instability;

that i1s, for small values of the imaginary part of @. Then, we may use

1 1 . .
W - kv - Imwmﬁgme,kv g —mﬁw-kgz—m%g(@
Z 2 cs 7 7 cs
to write
> > ->
E(k; (D) = 61(}{, (D) + i€2(k, ",‘D) (7)

where El and 62 are the real and imeginary perts of € when © is real. If
we write @ = Q + iy and assume that l71‘4< (o] and Iezl A 1611, then we
find as an approximation that the real part of the frequency is a solution

of

elﬁ?, 2,) =0 (8)

and the imaginary paert of the frequency is given by

> - ->
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The last part of FEq. (9) follows from J = oE where



a:%%)(l—e) (10)

is the plasma conductivity. We may interpret yi?as the ratio of the power
dissipated by the wave to twice the energy of the wave. The energy of the
wave 1s given by the electric field energy'|3?12/8ﬂ times the factor
dwel/am which corrects for the energy of the particles which move in
response to the wave (Reference 1, Chapter 1).

If the energy of the wave is positive, then instability occurs (i.e.,
7k_> 0) when the dissipation P is negative. From Eq. (6) it is seen that

the particles which contribute to €, are those for which the Doppler

2
shifted frequency @ - kaZ is just equal to a harmonic of the cyclotron
frequency Hbcs' These particles are in rescnance with the wave and hence
strongly absorb energy from and emit energy into the wave. If more
particles emit than absorb then the wave grows; if more absorb than emit
then the wave is damped.

The energy of a wave can be negative if ael/éw < 0. In this case a
positive dissipation removes energy from the wave making it more negative
and hence increasing its amplitude.

We shall now specialize to the case of the two-temperature Maxwell-

Boltzmann distribution given by

- %(vi/’f_l_ + vi‘/TH)

fos(vi’ VZ) ~ e

We shall also assume that T, and T are very small for the electrons.

|

Then, € is determined almost entirely by the electrons and
> wze KZ
~ 1 - -RE 2
el(k, w) ~ 1 S (12)



Solving el = 0 for the frequency gives
kz
> = =,
Gp=w 5 (13)

These are plasma osclllations in a magnetic field. The frequency depends
on the cosine of the angle between ;?and the field and ranges between zero
and wpe

Figure 1 ghows the contributions to 7R as a function of qu The terms
due to sto/évz in Eg. (5) are shown as solid lines. The electrons con-
tribute a large but narrow peak near the origin. The lon contributions
are centered on the harmonics of mci' The ion contribution from the
<5fso/8v_L terms are drawn as dotted lines; these contributions are always
negative. In order for yg to be positive the positive contributions must
exceed the negative. This can only happen near to (but slightly below)

the harmonics of ® .. Also Qg~must be in the range O < Qk.i ® s 8O

WP (14)
pe cl

is necessary for instability of the nth harmonic.2 In order for the
positive contributions from the lons to exceed the negative contributions,

it may be shown that

is necessary.

If the electron temperature is increased, the large negative con-
tribution of the electrons shown on Fig. 1 widens and its amplitude will
decrease. The first effect of increasing the electron temperature is to

stabilize the first few harmonics. If the electron temperature increases



until the kk - Qk plot lecoks like Fig. 2, then the cold electron assumption

which led to Eq. (12) is no longer valid. Instead ¢, becomes

2 kB

i
D <2 (16)
{ 1
w2 ]2

e (€ @) w1+
1 - szz
"D
where ID is the electron Debye length. The second term is the electron

contribution and the third term is the n = 0 ion contribution. Solving

for the frequency gives

These are ion sound waves. Their maximum frequency is wpi; so Bg. (14)

must be replaced by

wpi > @, (18)

as the necessary condition for instability in the region of high electron
temperatures. Eg. (15) is unchanged.

We can now see changes in the distribution function that would in-
crease the instability. For the distribution function of Eq. (11) the
afos/avl terms in Eq. (5) give the negative contributions (dotted curves)
in Figs. 1 and 2. These contributions can be made positive if afos/avl is
positive where Ji(klvlﬁbcs) is large. What we have in wind is a distri-
bution like that shown in Fig. 3. This is a loss cone distribution and
the instability it gives rise to is the loss cone iner,zanb:'Ll:U:y.)Jr The case

kz = 0 is rather interesting. For it Eq. (5) takes the form5



cs

o + 0
w” kv
> ] s 1 2,11
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k a
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For sufficilently narrow loss cone distributions e(iﬁ w) = 0 gives instabil-
ities with the real part of ® equal to zero. This would seem to contradict
the comment made in Rosenbluth's paper that low frequency veloclty space
instabilities were excluded by the conservation of U = vlz/B. Actually,
$ is not conserved here because the wavelengths of the unstable modes are
shorter than the particles radius of gyration.

I shall now leave the subject of quasi-electrostatic instabilities
and say a few brief words about electromagnetic instabllities. If E?is
parallel to the wnperturbed magnetic field E;, then longitudinal and trans-
verse waves are decoupled. One finds that Eg. (1) has circularly polarized

transverse wave solutions with

Ey =+ 1B (20)
and
Ke? = €. + ie uﬂe L/N 5 V."“/2
wz 11 - 1z m w w - kvz i<wcs
6f of
(w-v)é—————+kvl§--—. (21)

An analysis of this dispersion relation yields Alfven, whistlers and light

waves; these may be unstable for sufficiently anisotropic velocity
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distributions. I see in the program that some of these instabilities are
being discussed in the contributed papers, so I shall not discuss them
further.

Now I shall return to the subject of the guasi-electrostatic instabi-
lities. Theory predicts instabilities with freguencies near harmonics of
the ion cyclotron frequency when the ions have a loss cone distribution
or a sufficiently anisotropic distribution. Such distributions are ex-
pected in magnetic mirror confined plasmas. Indeed, large amplitude os
cillations at harmonics of wci are observed in such plasmas. Figure 4
shows spectra of oscillations observed in the DCX-Z experiment at the Oak
Ridge National Iaboratory.6 Harmonics up to the 100th are observed. In
fact, it is rather difficult to explain on the basis of linear stability
theory why such high harmonics are unstable. 1 believe that a more likely
explanation is that only the first few harmonics are linearly unstable and
that nonlinear processes feed energy into the higher harmonics. The non-
linear process involved here is the three-wave interaction in which two

“‘-} .
k ®,, combine to form

—_
waves with wave vectors and frequencies kl’ w, and 2 Po

-3
a third wave with k wz as shown in Fig. 5. For this to be possible it

5)

is necessary to have

- - -+

k) o+ Ky = ks (22)
and

@, e, = wB. (23)

This is possible if the frequencies are given by either Eq. (13) or (17).

it W, = nimci and wg = nzwci then m5 = (nl + nZ)Dci. In this way the

higher harmonics obtain their energy from lower harmonics. The exchange
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of energy between the waves by non-linear intereactions is a complicated
process and quantitative predictions are difficult. An attempt to explain
some experimental results in these terms has been published elsewhere.
Although not as successful as could be desired, 1t seems to be a step in
the right direction.
The linear theory of instabilities in Infinite homogeneous plasmas is
now rather well developed. In order for theory to be really useful in
interpreting experiments, we need to go beyond this and develop the theory

of (a) non-linear effects such as those mentioned in the preceeding para-

graph, and (b) finite-plasma effects.
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