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ABSTRACT 

This dissertation considers two disjoint topics in numerical 

analysis: Lehmer's method for solving algebraic equations and an 

acceleration procedure for the orthogonal iteration for the eigenvectors 

of a Hermitian matrix. 

Lehmer's method for finding a zero of a polynomial is a procedure 

for searching the complex plane in such a way that a zero is isolated in 

a sequence of disks of decreasing radii. In this dissertation modifi- 

cations of the method that improve its numerical stability are given. 

The asymptotic behavior of the method in the presence of rounding error 

is examined. 

The orthogonal iteration for finding invariant subspaces is a 

variant of Bauer's treppen-iteration. For a Hermitian matrix, it yields 

a set of dominant eigenvectors. However, the method converges slowly 

to eigenvectors corresponding to poorly separated eigenvalues. An 

acceleration procedure is proposed which yields a set of refined eigen- 

values and eigenvectors. Error bounds for the refined eigenvalues and 

eigenvectors are derived. 
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CHAPTER I 

LEHMER'S METHOD FOR FIKDING THE ZEROS OF A POLYNOMIAL 

I. INTRODUCTION 

Lehmer's method [ 3 ]  for finding the zeros of a polynomial 

n f(z) = a + a z + ... + a n z , boan # o), 0 1 

is based on a procedure for determining if f(z) has a zero in the 

closed disk 

This procedure is used to search the complex plane in such a way that 

a zero of f( z) is isolated in a sequence of disks of decreasing radii. 

When a sufficiently small disk containing a zero is found, the center 

of that disk is accepted as an approximate zero to be divided out of 

the polynomial. The process is then restarted using the reduced poly- 

nomial. Of course, at any point in the process an iterative method 

such as Newton's method may be applied in an attempt to find a zero 

contained in the current disk. 

Lehmer's method, as proposed by Lehmer, tends to be numerically 

unstable. 

described in which these difficulties are eliminated. 

In the next section a modified form of the method is 

In practice the method must be carried out in the presence of 

rounding errors, and the remaining sections of this chapter are devoted 

1 
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to assessing their effect on the method. 

of dividing out an approximate zero is not to distrub the remaining 

zeros unduly, the approximate zero must be accurate to a degree that 

depends on the amount of rounding error and the character of the zero. 

It w i l l  be shown that f o r  an isolated zero the modified Lehmer's method 

tends to break down only when this accuracy has been attained. 

In particular if the process 

11. LEHMER'S METHOD 

Lehmer's method uses the basic procedure for determining if 

f(z) has a zero in a disk to search the complex plane for a zero of 

f( z) . 
Starting with a disk D(s;p), 

One step of the search pattern goes roughly as follows. 

an annulus 

A ( s ' ; p ' )  = {z : p '  < lz - s'I 4 2 p ' ]  

containing a zero of f(z) i s  determined. 

by disks and one of them, D(s" ;p") ,  containing a zero of f(z) is found. 

The process is then restarted using the disk D(s";p")  . 
for the first step, each annulus A(s' ; p '  ) is contained in D(s;p). 

Moreover after the first step 

This annulus is then covered 

Except perhaps 

and 

P" = 7P'p 7 

so that the process must converge. 
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Spec i f i ca l ly ,  given t h e  d i sk  D ( s ; p ) ,  determine i f  it contains  a 

I f  it does, determine t h e  f i r s t  p o s i t i v e  in t ege r  i such zero of f ( z )  . 
t h a t  t h e  d i sk  D ( ~ ; 2 - ~ p )  does not  contain a zero of f ( z ) ,  and s e t  

-i p ' = 2  p .  

If D ( s , p )  does not  contain a zero of f ( z ) ,  determine t h e  f i r s t  pos i t i ve  

in t ege r  i such t h a t  D(s;2 p )  does contain a zero of f ( z ) ,  and se t  i 

i-1 
p '  = 2 P .  

I n  e i t h e r  case i f  s' = s, t h e  annulus A ( s ' ; p ' )  contains  a zero of f ( z ) .  

I f  s # 0 l e t  

u = - ; ( 2 . 2 )  

otherwise l e t  u be chosen so  t h a t  IuI = 1. I f  

13 
S '  = s + k p ' u  exp , ( k  = 1, 2, .. ., 8) 

and p" i s  def ined by (2 .1 ) ,  then t h e  d isks  

cover the  annulus A(s' ; p '  ) . 

t h e  order  D1, De, D2, D7, D,, D6, D4, D5. 

d i sks  containing a zero of f ( z )  and l e t  

Examine t h e  d isks  D k f o r  zeros of f ( z )  i n  

L e t  D .  be t h e  f i r s t  of  t hese  
J 

This completes one s t e p  of t h e  search.  
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The choice of a s t a r t i n g  d i s k  depends on whether a zero has 

a l ready  been found. I f  one has, l e t  s = 0 and p be equal t o  t h e  outer  

rad ius  of t h e  f i r s t  annulus obtained i n  the  search f o r  t h e  l a s t  zero .  

I f  no previous zero has been found, take  s = 0 and 

This l a s t  choice insures  t h a t  t h e  s t a r t i n g  d i sk  D(0 ;p )  contains  a zero 

of f ( z ) .  

No d i s k  a f t e r  t h e  f i r s t  one can contain t h e  o r i g i n .  Hence t h e  

number u i s  wel l  defined by (2.2)  except i n  f i r s t  s t e p  of t h e  search.  

For t h e  f i r s t  s t e p  t h e  choice of u again depends on whether a zero has 

a l ready  been found. If none has, t ake  u = 1. I f  t h e  l a s t  zero found 

i s  r, take  

u = F/IrI . 

This choice of u i s  motivated by the expectat ion tha t  f ( z )  will usua l ly  

have r e a l  c o e f f i c i e n t s  and hence conjugate p a i r s  of zeros .  I f  u i s  

defined by ( 2 . 3 ) ,  then, having found t h e  zero r, t h e  search immediately 

attempts t o  f i n d  a conjugate zero.  

The procedure f o r  determining whether f ( z )  has a zero i n  D ( s p )  

F i r s t  note  t h a t  f ( z )  has a zero i n  D(s;p) i f  cons i s t s  of t h r e e  s t e p s .  

and only i f  
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has a zero in the unit disk D ( 0 ; l ) .  

up into the following three steps. 

Thus the procedures can be broken 

1. Calculate the coefficients of 

n 
g(z) = bo + b1z + ... + bnZ = f(z + S )  - 

2. Calculate the coefficients of 

(2.4) 
n 

h(z) = + C1z + . . . + Cnz = g( Pz) - 
3 .  Determine whether h(z) has a zero in the unit disk. 

The polynomial g( z) is obtained from f( z) by shifting, and h( z) from 

g( z) by scaling. 

The shifting step can be accomplished by iterated synthetic 

division 

(i=O,1,. . .,n) , 

(k) - - b(k-l) (k=O, 1, . . . , n) , bn n 

The coefficients of g(z) are given by 

(4 
i ’  b. = b 

1 
(i=O,1,. . .,n) . 

This straightforward scheme offers no special computational 

difficulties. 

More care must be taken with the scaling step. Mathematically 

the coefficients of h(z) are given by 
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i c =phi - i 

However, if n is large and p > 1, the absolute values of the e. may 
1 

exceed, or overflow, the largest number representable in the computer 

performing the calculations. Likewise if p < 1, then the absolute 

values of the e. may underflow the smallest positive number repre- 

sentable in the computer. Most computers have provisions for setting 
1 

the results of an underflow producing operation to zero. The following 

scaling algorithm uses this feature. 

Let R and w be the largest and smallest positive numbers that 

can be represented in the computer. Then a set of c different from i’ 

those of (2.6), are defined as follows: 

1. Determine the largest number 5 satisfying 

(i = 0,1, ..., n) . 
2. If p < 1, set 

where it is understood that c = 0 if underflow occurs in 

its computation. 
i 

3 .  If p > 1, set 

i-n (i = n,n-l,. . .,o) c = (OP )bi i 

with c = 0 if underflow occurs in its computation. i 
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The nonzero c defined by this algorithm stand 

portion to the c defined by (2.6). Overflows cannot 
i 

i 

in constant pro- 

occur in the 

course of the algorithm. The effect of setting underflows to zero is 

to produce a polynomial slightly perturbed from some constant multiple 

of h(z) as defined by (2.6). To these perturbations in the coefficients 

there correspond perturbations in the zeros of h(z). The perturbations 

in the zeros may be large; for if p < 1, the degree of the.polynomia1 

produced by the scaling algorithm may be less than n. However, the 

searching procedure only requires that the zeros of h(z) in and about 

the unit disk be well determined, and it is just these zeros that are 

least sensitive to the perturbations generated by the scaling algorithm. 

For the case of a well isolated zero, this point will be treated more 

precisely in Section VI. 

The algorithm for determining whether a polynomial has a zero in 

the unit disk is based on the following theorem due to Cohn [2]. 

Theorem 2.1. With the polynomial - 
n h,(z) = c0 + clz + . . .  + c z , (cnco f 01, n 

associate the polynomial 

- - - 
z +  . . . +  c z * o n  h*(z) = Znho(Z-’) = C + C 

0 n n- 1 
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Then if Im I 2 1, h (z) has a zero in the unit disk. 
- if [mol < 1, - the polynomial 

On the other hand ------- ---- 0 0 -- 

h (z) = h (z) - m h*(z) 
1 0 0 0  

is of degree less than n and has the same number of zeros in the unit 

-c disk as ho(z). 

-- -- ---- 
Moreover hl(0) # 0. 

The theorem may be applied repeatedly to generate a sequence of 

polynomials h. (z), all having the same number of zeros in the unit disk 

as ho(z), and a sequence of associated constants m . 
terminates either when some m 

the unit disk, or when some h.(z) is constant, in which case h (z) has 

no zeros in the unit disk. This is the basic algorithm for determining 

1 

The process i 

2 1, in which case ho(z) has a zero in i 

1 0 

if h (z) has a zero in the unit disk. 
0 

The foregoing algorithms and the searching procedure constitute 

a method by which a zero of f(z) may be localized in a sequence of 

disks whose radii tend toward zero. There still remains the question 

of deciding when the process has converged. 

The shifting algorithm and the Cohn algorithm are compu- 

tationally expensive, requi-ring O(n2) arithmetic operations as opposed 

to O(n) operations for evaluating f( z). Hence the most efficient use 

of Lehmer's method is as a device for producing a starting value and 

a region of applicability for a simpler iterative method. When this is 

done, the iterative method will carry its own convergence criterion. 

If it fails to converge, the search can be advanced another step to 

provide a better starting value. 
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However, t h e  i t e r a t i v e  method may never converge, so t h a t  t h e  

search i s  continued u n t i l  it breaks down because of rounding e r r o r .  

This f a i l u r e  occurs when a zero of  f ( z )  i s  loca t ed  i n  an annulus but  

fa i l s  t o  appear i n  any of t h e  covering d isks .  I n  t h i s  case t h e  center  

of t h e  annulus must be accepted as t h e  b e s t  approximate zero t h e  method 

can provide.  I n  the  next four  sec t ions  arguments w i l l  be given t o  ind i -  

ca t e  t h a t  for an i s o l a t e d  zero it i s  near t o  t h e  b e s t  approximate zero 

t h a t  any method can be expected t o  provide.  

Af te r  some value s has been accepted as an approximate zero, it 

must be divided out of  t h e  polynomial: 

f ( 2 )  = ( z  - s )  f , ( z )  + f(s) . 

The search i s  then r e s t a r t e d  with t h e  de f l a t ed  polynomial fl(z). 

given by 

It i s  

where t h e  bLk) a r e  def ined by (2 .5 ) .  

The method proposed i n  t h i s  sec t ion  d i f f e r s  from Lehmer's 

o r i g i n a l  method i n  a number of ways. 

t a t i o n  o f  t he  d isks  covering an annulus and t h e  order i n  which they  a r e  

examined have been changed t o  enhance the  tendency of t h e  method t o  f ind  

smaller zeros f i r s t .  This tends t o  increase  t h e  s t a b i l i t y  of t he  

de f l a t ion  process [ 7, pp. 56-59] . 
have been enlarged so  t h a t  i f  i n  t h e  course -- of  t h e  search --- a zero l i e s  

near  t h e  boundary of one d i sk  it l i e s  wel l  wi th in  another .  

I n  t h e  search p a t t e r n  t h e  or ien-  

More important t h e  covering d isks  

--- 
This i s  -- ------ 



10 

designed to prevent the premature breakdown 

rounding error. That this possibility must 

of the method due to 

be taken seriously may be 

seen by considering a search in which the covering disks have been so 

reduced that the boundaries of any two adjacent disks and the boundary 

of the annulus intersect at a point. Then any zero in the annulus, but 

very near such a point of intersection, is in danger of being lost. 

The scaling algorithm has been modified as described above to 

deal with the problem of overflows and underflows. 

The Cohn algorithm has been modified in two ways. First instead 

of forming the polynomial h,(z) of equation (2.7), Lehmer (and Cohn) 

work with the polynomial 

- - * 
c h (z) = c ho(z) - cn ho(z) - 
0 1  0 

While the resulting sequence of polynomials are constant multiples of 

those resulting from (2.7), their coefficients can increase or decrease 

so rapidly that overflow or underflow becomes a serious problem. On the 

other hand if (2.7) is used, the coefficients in the polynomials h 

at most double in size at each step. 

half as many multiplications as (2.8). 

can i 

Note also that (2.7) requires 

Secondly, Lehmer only asks to determine whether h(z) has zero 

interior to the unit disk. The Cohn algorithm fails to answer this 

question when some m 

all its zeros on the boundary of the unit disk. In this case Lehmer 

has absolute value unity; for then h.(z) may have i 1 

modifies the search by slightly enlarging the offending disk. The 
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method, as modified here, eliminates this indeterminacy by asking for 

zeros lying in closed disks. 

111. ROUNDING ERROR 

In the next four sections arguments will be developed which 

indicate that the deflation process can be safely used with the method 

presented in the last section, at least as far as simple zeros are 

concerned. 

rounding errors and his analysis of the deflation process [ 71. 

the development is informal; however, the results stated as theorems 

are rigorous. 

This development draws heavily on Wilkinson's theory of 

Most of 

Let a be a nonzero complex number and b be a number close to a. 

Then the relative error in the approximation b L to a is 

A 
E = (b - a)/. - 

h 
If E is small, the approximation b is said to have low relative error. 

Evidently 

where 

h 
E = 1 + €  

h If E is small then E is near unity. 

observed throughout the next four sections. 

The following convention will be 

A Greek letter, say 7, 
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will denote a complex number presumed to be near unity, and 

Most modern digital computers have the ability to perform real 

floating point computations. A floating point number consists of a 

characteristic c and a signed fraction f. The value of the floating 

point number is 

where b is a positive integer called the base. The fraction consists 

of a fixed number of digits in the base b representation of the real 

numbers. 

computers b is either ten or a power of two. 

It is usually normalized to lie between 1 and b-l. For most 

Let w and R be the smallest and largest positive floating point 

numbers. Then any real number a with 

has a floating point representation whose value will be denoted by 

fR(a). Because of the fixed length of the fraction, fR(a) corresponds 

to a rounded value of a and hence has a low relative error: 

fa(a) = a E , 

where 
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h 

Here q i s  a small p o s i t i v e  nmber  t h a t  depends on t h e  computer being 

used. When 

a = fR(a) , 

t h e  number a w i l l  be i d e n t i f i e d  with i t s  f l o a t i n g  po in t  representa t ion .  

There a r e  t h r e e  bas i c  f l o a t i n g  poin t  operat ions:  addi t ion  

( including subt rac t ion) ,  mu l t ip l i ca t ion ,  and d iv i s ion .  I f  0 denotes 

one of these  operat ions and a and b a r e  f l o a t i n g  po in t  numbers, then 

fR(a 0 b )  

w i l l  denote the  value of t h e  r e s u l t  of t h e  opera t ion .  I n  most com- 

pu te r s  these  operat ions a r e  ca r r i ed  out  with low r e l a t i v e  e r r o r ;  t h a t  

i s  

fR(a o b )  = (a  o b) E , 

h 
Again 7 i s  a s m a l l  p o s i t i v e  nwnber t h a t  v a r i e s  from computer t o  com- 

p u t e r .  It a l s o  v a r i e s  with t h e  operat ion 0 .  

A complex number i s  usua l ly  represented by two r e a l  f l o a t i n g  

po in t  numbers corresponding t o  i t s  r e a l  and imaginary p a r t s .  Again t h e  

value of t h i s  representa t ion  of t h e  complex number a w i l l  be denoted by 

fR(a) ,  and 

fR(a) = a E , (3 -1') 

A 
Here E i s  i n  general  complex, and 7 i s  a small p o s i t i v e  number. 
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The complex floating point operations consist of sequences of 

real floating point operations giving the desired result. Varah 

[6, p. 821 has shown that these calculations can be arranged in such a 

way that the result has low relative error: 

fR(a o b) = (a o b) E , 

h where a and b are complex and 7 is small. 

In (3.1) and (3.2) the symbol 7 has been used generically to 

denote any of a number of bounds that depend on the computer and the 

operation involved. 

these bounds. Then (3 .l) and (3.2) hold uniformly for all operations, 

This simplification will give slightly cruder results in the following 

error analyses, but it will not affect the nature of these results in 

any essential way. 

For a fixed computer let q denote the largest of 

Is is convenient to use the notation fR(e) to denote the result 

of evaluating the extended expression e in floating point- 

is done, some fixed way of calculating e must be specified, either 

implicitly or explicitly. 

When this 

For example the notation 

fR(ab + e) 

means 

fR(fR(ab) + e) - 

As an example of how these error bounds can be applied to 

extended calculations, consider the problem of evaluating the polynomial 
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n f ( z )  = a + a z + . . .  + a z 
0 1 n 

by synthetic division. Mathematically the algorithm is given 

b = a  

b . = z b  + a  (i = n-1, n-2, . . ., 0) , 
n n ’  

1 i+ 1 i ’  

and f ( z )  = bo. 

carrying out the calculation in floating point arithmetic, so that 

Now let bi represent the numbers obtained by actually 

b = a  n n 

b. = f R ( z  bi+l + ai) , (i = n-1, n-2, ..., 0) . 
1 

Then from ( 3 . 2 )  

where 

and 

Hence 

If (3.3) is applied repeatedly, the result is 
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Theorem 3.1. 

n z + .  . . + a  E z , n n  fl(f(z)) = a. c0 + a1 

where 

[€,I A l12n - 1 

A 2i+i 
ltil * 7 - 1 .  (i = n-1, n-2, . . ., 0 )  

Corollary 3.2. - Let 

n fa(z) = la,[ + [all z + ... + [an[ z . 

(3.4) 

(3.5) 

Then 

Theorem 3.1 may be interpreted as saying that the value fl(f(z)) 

is the exact value of a polynomial whose coefficients are relatively 

near those of f(z). 

of fl(f(z)), the same error could be attained by changing the coef- 

ficients of f(z) slightly. 

pessimistic. 

be about 7 - 1 in size. However, as Wilkinson [7] has pointed out, 

even this may be a severe overestimate. 

In other words, no matter how inaccurate the value 

The bounds (3.4) and (3.5) are rather 
A On statistical grounds alone one would expect the 1 c . l  to 
1 

i 

The theorem also indicates that any method depending on function 

evaluations to locate a zero of f( z) is limited by the sensitivity of 



the zero to small relative perturbations in the coefficients of f ( z ) .  

Let 

h A A n 
e(z) = E a + E a z + ... + En an z . 

0 0  1 1  

Then the theorem states that for each z, fR(z) = f(z) 3 e(.) for some 

set of A satisfying (3.4) and (3.5). I f  r is a zero of f(z), then 

there will be a nearest zero r' of f(z) + e(.). As z, and hence e, 

varies, the perturbed zero will vary in a region about r. The best 

that can be expected of any zero finding method that depends on the 

values of f(z) is that it produces an approximate zero lying in this 

region. 

Thus it is necessary to investigate the behavior of a zero r of 

f (2) under the influence of the perturbing polynomial e. 

tool for this investigation is Rouche/'s theorem, which is here stated 

in a simplified form. 

The chief 

Theorem 3.3. Let f(z) - and e(.) - be regular - -  in a region R, - and 

let the closed disk D be contained - in R. - If -- - -  

-- for all z 

same number of zeros in D. 

- the boundary of D, then f(z) - and f(z) 1- e(.) -- have the 

- --- 
Let r be a simple zero of f(z) and let e be defined by (3.7). 

For simplicity suppose that 
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The problem i s  t o  f i n d  t h e  radius of a d i s k  D about r such t h a t  

f ( z )  + e ( z )  has a s i n g l e  zero i n  D. 

f o r  I f (  z)I and an upper bound f o r  1 e (  .)I a r e  needed. 

obtained from (3.7) and (3.8): 

I n  order  t o  do t h i s  a lower boun-d 

The l a t t e r  may be 

To g e t  a lower bound on I f (  z )  I l e t  

n g(w) = f ( w  + r )  = b w + ... + b w . 
1 n 

Because r i s  a simple zero  of f ( z ) ,  b, 0. 

Theorem 3 .4 .  L e t  - 
1 b 

: i = 2, 3, ..., (3.9) 

then  



Hence 

n 

B u t  b l  = f '  (r), whence t h e  inequa l i ty  (3 .lo) follows. 

The number p defined by t h i s  theorem w i l l  be c a l l e d  t h e  rad ius  

- of s impl i c i ty  of t he  zero r. It defines  a region about r i n  which t h e  

l i n e a r  approximation 

f ( z )  f ' ( r )  ( z  - r) 

gives  a f a i r  es t imate  o f t h e  s i z e  of f ( z ) .  

only t h e  zero r i n  the  d isk  D ( r ; p ) .  

The polynomial f ( z )  has 

Theorem 3.5. Let r be a simple zero of f (  z) with rad ius  - of - -  -- 
s impl i c i ty  p .  I f  t he re  i s  a pos i t i ve  number 6 s a t i s f y i n g  ---- 

then f ( z )  -t e(.) has one and only one zero i n  t h e  d i sk  D ( r ; 6 ) .  - - - - - - - - - - 
Proof.  L e t  6 sat isfy (3.11). Then 

h 
E fa(lrl + S )  < I f ' ( r )  6/2 . 

I f  z l i e s  on t h e  boundary of D ( r ; p ) ,  then 

(3.12) 
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Moreover by Theorem 3.4 

Hence on the boundary of D(r;6) 

and by Rouehe/' s theorem f (z) and f (z) + e( z) have the same number of 

zeros in D(r;8). But f(z) has only the zero r in D(r;8). 

If fa(lrl + 8) does not vary too much when 6 < p, then the 

number 2 fa( I rI )/I f' (r)l is a condition number for the zero r with 

respect to relative perturbations in the coefficients. It estimates 

by how much perturbations in the coefficients may be magnified in the 

zero r. 

Informally, each simple zero r may be regarded as surrounded by 

a region of indeterminacy in which the rounding error made in evalu- 

ating f ( z )  exceeds the magnitude of  f ( z ) .  Then Theorem 3.5 provides 

an estimate of  the radius of this region of indeterminacy. 

Now for an ill-conditioned zero r the approximate zero produced 

by Lehmer's method, or for that matter by any other method, may be 

quite inaccurate. Since this approximates zero must be divided out of 

the polynomial, the question arises of to what extent the inaccuracy 

of the approximate zero generates inaccuracies in the zeros of the 

deflated polynomial. 

problem in detail with the following results. 

mate zero in the deflation process will not unduly affect the other 

Wilkinson [ 7, pp . 56-59] has analyzed this 
The use of an approxi- 
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well  conditioned zeros provided f i r s t  t h a t  t h e  zero divided out i s  

among the  smallest  i n  absolute  value and second t h a t  t he  approximate 

zero l i e s  i n  the  region of indeterminacy. 

The search p a t t e r n  i n  Lehmer's method tends t o  f i n d  smaller 

zeros f i r s t ,  so  t h a t  t h e  f i r s t  of t h e  above condi t ions i s  s a t i s f i e d  f o r  

an approximate zero loca ted  by Lehmer's method. 

a r e  devoted t o  showing t h a t  t h e  second condi t ion w i l l  t end  to be s a t i s -  

f i e d  provided t h a t  t he  search i s  pursued u n t i l  it breaks down. 

order  t o  do t h i s  it i s  necessary t o  give e r r o r  analyses of t he  s h i f t i n g  

algorithm and of t h e  Cohn algorithm. 

The next t h ree  sec t ions  

I n  

IV- ERROR fYNALYSIS OF THE SHIFTING ALGORITHM 

From t h e  equations (2 .5 )  which def ine t h e  s h i f t i n g  algorithm it 

follows t h a t  t h e  b(k)  sa t i s fy  the  matr ix  equation i 

s 1  0 

may be obtained by premultiplying t h e  vector  a(  k) = (an,anm1, . . .,an-k )T 
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by a unit lower triangular matrix L of order k+l .  The idea of the 

following error analysis is to show that in the presence of rounding 

error b(k) may be obtained by multiplying a(k) by a perturbed matrix 

k 

Lk + Gk, where the elements of Gk are small. 

Let the (i,j) element of Lk be R ( k ) .  When (i,j) falls outside ij 

the range 1 5  i, j 5 k+l  and (i,j) # (k+2,k+2), let Rij = 0, and 

finally let Rk+2, k + ~  = 1. Then from (4.1) it follows that 

(i,j = 1, 2, ..., k+2) . 

Since 

it follows by an easy induction that 

(i,j = 1, 2, ..., k+l)  . 

Here C(m,n) denotes the binomial coefficient m!/[ n! (m-n)  !] and is 

assumed to be zero for n > m. 

Suppose now that the b!n) represent computed values. Then 
1 

(k+l) - - 
n-i bn-i i n-it-i i 

(k )  E ( k )  + s b (k)  8( ’ ) ,  (i=1,2, . . .,k+l;k=O,l, . . .,n-l), (4.2) 

where 
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Let (k) 6 ( k )  = 1 when i and k f a l l  outs ide t h e  bounds i n  (4.2). 

It w i l l  now be shown t h a t  t h e  vec tor  b ( k )  may be obtained from 

t h e  vec tor  a ( k )  by premult iplying by a mat r ix  Lk + Gk, where t h e  (i, j )  

element of G i s  8(k) A ( k )  and k i j  'ij 

k+i - 2 j +2 (j=2,3, . . . , k + l ; i = j ,  j+l ,  . . . , k + l )  - - 1 ,  A ( k )  
l y i j  .I * fi 

The proof i s  by induct ion.  

w i l l  be used gene r i ca l ly  for t h e  E ( ~ )  and 6 

Throughout t h e  proof t h e  symbols E and 6 

( k )  . 
i j  i j  

For k = 1, define Gi by 

so  t h a t  

More over 
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Hence the y ( l )  satisfy (4.3). ij 

Assume that Gk is given and the y!k) satisfy (4.3). Consider the 
1 J  

quantity 

Then it is easily verified that the matrix L k+l  + Gk+l whose 

element is g ( k + l )  produces the vector bl (k+l) when it premultiplies the ij 

vector a (k+l) .  Moreover since 

where 

But for j = 1 

and 
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For j > 1 

and 

Hence t h e  y!k+’) s a t i s f y  (4 .3) .  I n  p a r t i c u l a r  
=J 

Now l e t  g ( z )  be the  computed s h i f t e d  polynomial. Then 

n+1 n+l  n+ 1 

i= 1 i=i j=i  

n - i+ i  (n) ( n )  a 
n- j+ i  l i j  Y i j  g ( z >  = c bn-i+l Z 

= f ( z  + s) + e(.) , 

where 

4.) , 
n4 1 n+ 1 

s c ( n - j + l 7 i - j )  y i j  c Zn-i+l i - j  
j= i  i= j  
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Hence 

= (qZn - 1) 
j=1 

This proves 

Theorem 4.1.  Let - 

g ( z )  = b + b z + ... + b z n 
0 1 n 

be t h e  polynomial ca lcu la ted  from (2.5)  with rounding e r r o r .  Then -- - -  

I f  Iz+s 

then t h e  bound 

i s  approximately equal to 1.1 + Is], say when IzI << Is/, 

(4.3) i s  approximately equal to t he  bound (3.6) f o r  

I f R (  f (  s+z) ) - f( s+z) I . 
a c t u a l  e r ro r s ,  t h e  s h i f t i n g  algorithm produces a polynomial g (  z) 

d i f f e r i n g  from f ( z + s )  by an amount comparable t o  t h e  e r r o r  made i n  

evaluat ing f ( z + s ) .  

i s  t h e  corresponding zero of g ( z ) ,  then r' + s should tend t o  l i e  i n  

t h e  region of indeterminacy of  t h e  zero r .  

To t h e  ex ten t  t h a t  t hese  bounds r e f l e c t  t h e  

I n  p a r t i c u l a r  i f  s i s  near a zero r of f ( z )  and r '  
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V- ERROR ANALYSIS OF THE C0H.N ALGORITHM 

Suppose t h a t ,  s t a r t i n g  with t h e  

ho(z)  = + c(O)z + 
0 1 

t h e  Cohn algorithm i s  ca r r i ed  out  w i t h  

polynomial 

rounding e r ro r ,  s o  t h a t  

a n d  

* 
h i+ l  ( z )  = fR(hi(z) - mi h i ( z ) )  . 

For t h e  e r r o r  ana lys i s  suppose t h a t  h ( z )  has been per turbed by 
it- 1 

e i + J Z ) :  

Then it w i l l  be shown t h a t  p ( z )  and m may be obtained by applying 
it-1 i 

one s t e p  of t h e  Cohn algorithm without rounding e r r o r  to .  a per turbed 

polynomi a1 

and bounds w i l l  be given f o r  t h e  coe f f i c i en t s  t ( i )  of e i ( z ) .  
j 

All but t h e  extreme c o e f f i c i e n t s  of h. ( z )  and h ( z )  may be 1 i+l 
- - 

grouped i n  pa i r s ,  (ai ,bi)  and (ai+l,bi+l) i n  such a way t h a t  each p a i r  

of coe f f i c i en t s  i n  h ( z )  i s  ca lcu la ted  from t h e  corresponding p a i r  i n  i+ 1 

h i b )  * 
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Then 

a i+l = fR(ai - mi bi) = a. 1 61 - m. 1 bi 62 , 

- - 
= fR(- mi ai + bi) = - mi ai 6, + b. 6* , bi+l 1 

where 

h h  A 
Let (ai, Pi) and 
in e. (z) and e 

B ) be the corresponding pairs of coefficients i+1 

(z) . Then the requirement that Pi+l( z) be the result 
1 i+l 

of applying the Cohn algorithm to p. (z) leads to the equations 
1 

h A A 
(ai + ai) - mi(bi + Pi) = a. 6 - mi bi 82 + ai+l , 1 1  

A A - h - 
- mi(ai + ai) + (bi + B.) = - m a 

1 i i  1 6, + b. 6, + Pi+, - 

If these equations are simplified and written in matrix notation, the 

result is 

A 
61 - m bi z2 [ ai k3 I bi 

or 

+ a  = M. ai bi+l i+ 1 1 

where 



Hence i f  / I  - / I  is t h e  usua l  i n f i n i t y  vec tor  and matr ix  norm [ 71, 
W 

But 

Thus 

The extreme coe f f i c i en t s  must be t r e a t e d  d i f f e r e n t l y .  Let a .  and 

b.  denote the  l o w  and high order  coe f f i c i en t s  of h . ( z )  a n d a  and B t h e  

corresponding per turba t ions .  

1 - 
h A - 

1 1 i i 

F i r s t  a .  and b.  a r e  used t o  ca l cu la t e  m i : 
1 1 

- 
m i = fR(b. 1 / x.) 1 = 64 bi/ai . 

Then m. is used t o  ca l cu la t e  a - 1 it-1 * 

= fR(ai - m b . )  = ai 61 + mi bi 62 . 
i+l i i  a 
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Of course b i+l is zero. 

p. leads to the equations 

The 6i satisfy (5.2). The requirement on the 

1 

h 
- m b. 6 + ai+l 

A A 

i i 1 i i 2  a + a - mi(bi + Pi) = ai 6 

- b i + b  i = -  b i 8 4 = m  . 
a + a  a A i 
i i i 

After some simplification these equations become 

h A 
But equation (5.4) is just equation (5 .l) with E 3  = = 0. 

A h 
Hence the a .  and B for the extreme coefficients also satisfy (5.3). 

1 i 

L e t  n. be the degree of h.(z), 
1 1 

and 

Then from (5.3) 

Starting with E = 0, this bound may be applied repeatedly to give 

Let k steps of the Cohn algorithm be applied to Theorem 5.1. - - --- - 
the polynomial ho(z) and suppose that - - - 
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Then h (z) and m , m . . . ?  m are the result - of applying k -- steps of k+l - 1 2' k-- 

the Cohn algorithm without rounding error to the perturbed polynomial. -- --- 

where the coefficients of eo(.) satisfy i -  -- 

with 

From (5 -1) it is apparent that 

For reasonable values of k and 7, 

q2k2 1.1 . 

Hence 

Corollary 5.2. -- Under the hypothesis - of Theorem 5.1, 

The bound (5.5) is an - a posteriori bound, depending on the com- 

puted quantities m and c(~). The bound (5.6) depends only on the m i i 
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It becomes l a r g e  when some 1 . 1 . 1  i s  near  u n i t y .  

pes s imis t i c  compared w i t h  (5.5), f o r  when Im.1 i s  near  u n i t y  it i s  

common t o  observe a compensating decrease i n  c 

I n  f a c t  it i s  r a t h e r  
1 

1 
(i+1) 

I n  order t o  u se  t h e  bound (5.6)  i n  an - a p r i o r i  ana lys i s  it i s  

necessary t o  obta in  upper bounds f o r  t h e  I m . 1 .  

permits t he  t a b l i n g  of such bounds i n  some cases .  

The following procedure 
1 

Assume t h a t  t h e  following bounds on t h e  c o e f f i c i e n t s  c of h ( z )  
i 0 

a r e  known: 

I f  an upper bound M < 1 i s  known f o r  Iml = [ m o l ,  then t h e  following 

q u a n t i t i e s  bound t h e  c o e f f i c i e n t s  c ’  of h ( z ) :  i 1 

DA = Do 

D! = D .  -I- M Dn-i 9 

dd = d (1 - M2) , 

d l  = dl - 

1 1 

0 

Dn-l * 

(i = 1,2, ..., n-1) , 
(5.7) 

If d i  < 0, then t h e  procedure fa i l s .  

Two upper bounds, M1, and M2, w i l l  be given for Iml . The f i r s t  

bound follows immediately from t h e  bounds on t h e  c o e f f i c i e n t s  of h (z). 

It i s  

0 
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M1 = Dn/do . 

For the second bound let 

k = D  n- ildi 

If k 2 1, take M, = 1. Otherwise assume that Iml > k. Then 

- I c ~ - ~ ~  = Im c 1 - c n-11 > - (Iml - k)dl . 

Hence if m' = e' n- 1 / 

lm'l 2 IC;-lI/Do 2 (14 - k)d1/Do - 

Thus if Im' I < 1, 

Iml < k + Do/dl = M, . 

There remains the case Im' I > 1, for which the Cohn algorithm 

terminates. 

be shown that if M, < 1 there is a small number e such that if 

In this case Iml may be very near unity. However, it will 

then 

This implies that for Iml 2 M 2 + e the Cohn algorithm terminates even 

with rounding error. Hence there is no need to consider values of Iml 

greater than M2 + e in computing the bound (5.6). 
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First for some E and E with 
1 2 

Hence 

Thus e is to be chosen so that 

This will always be satisfied if 

-- e 3 - 1 )  [ 2 + % ] .  
2 + e  - (7  

In computing the primed quantities in (5.7), M should be taken 

to be min {M1, M2]. If M 2 1 then the process fails. In computing the 
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bound of Corollary 5.2 the value min {M,, M, + e] should be used. 

process can be repeated until n = 2. At this point the process fails 

if M1 2 1; for if n = 2, then c 

breakdown in the bounding procedure corresponds to a possible numerical 

The 

= c k = 1, and M = 1. This n- 1 1' 2 

breakdown in the Cohn algorithm that may occur when it produces a 

quadratic polynomial with Iml very near unity. 

VI. ASYMPTOTIC BEHAVIOR 

In this section the behavior of Lehmer's method in the neighbor- 

hood of a simple zero will be considered. Suppose then that the method 

has proceeded so far that a simple zero r of f(z) has been isolated 

from its neighbors in a disk whose radius is small compared to Irl . 

The three points at which rounding error enters the computations are in 

the shifting algorithm, the scaling algorithm, and the Cohn algorithm. 

Since the method is well advanced toward finding the zero r, 

the center s of any disk inspected will be an approximation to r. This 

means that each value s used in the shifting algorithm has the property 

that 

Thus according to the analysis of Section IV, the shifting algorithm 

when carried out with rounding errors will produce a polynomial g(z) 

with a zero r' - s, where r' tends to lie in the domain of 

indeterminacy of the zero r. 
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The errors produced by the scaling algorithm and the Cohn 

algorithm may be treated together For the effect of setting underflows 

to zero in the scaling algorithm is to produce a polynomial h(z) whose 

coefficients differ from the true values by quantities that are small 

compared to the largest coefficient of h(z). But the backwards error 

analysis of Section V shows that the effect of rounding error in the 

Cohn algorithm corresponds to perturbing h(z) by a polynomial e(.) 

whose coefficients are also small compared to the largest coefficients 

of h(z). 

same, and the remaining problem is to assess their magnitude and their 

Thus the errors made in the two algorithms are one and the 

effect on the zeros of h(z). 

Since w << 7 - 1, the errors introduced by the Cohn algorithm 

are dominant. In order to bound them, the procedure described at the 

end of Section V will be applied to the kind of polynomials found at 

the end of the search. Let the zeros of 

n h(z) = c + c z + ... + c z 
0 1 n 

be r r ..., r with rl corresponding to the zero r of f(z). Then 
1’ 2’ n 

it may be assumed that 

and 

(i = 2,3 ,..., n) . 
Moreover if I r21, . . ., 1 r I are sufficiently greater than unity, the 
largest coefficient of h(z) will be either co or c1 and 

n 
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(i = 2,3,  ..., n) ,  

f o r  some p C= 1. 

The procedure out l ined  a t  t h e  end of Sect ion V was used t o  

determine bounds on 

The polynomials were normalized by taking c1 = 1. 

as p 

obtained fo r  values  of eo 

ranging from lo-" t o  

l a r g e s t  bounds on K were 3.6, 9.2, 14.8, 20.9, 27.5, and 34.2 

The D.  were taken 
1 

i- 1 3 
(i = 2,3, . . . , n )  and y - 1 as 10-l'. Bounds f o r  K were 

ranging from 2 t o  2-8 and values of p 

For n = 5, 10, 15, 20, 25, and 30 t h e  

r e  spe e t  i v e l y  . 
Thus by Corol lary 5.2, t h e  e f f e c t  of rounding e r r o r  on t h e  Cohn 

algorithm i s  exac t ly  t h a t  of per turb ing  h ( z )  by a polynomial e(.) 

whose coe f f i c i en t s  s a t i s f y  

where c i s  t h e  magnitude of t h e  l a r g e s t  coe f f i c i en t s  of h ( z )  and 

h 
y = 1.1 (72 - 1) . 

Moreover on t h e  evidence presented above, K assumes values  t h a t  a r e  

about n i n  magnitude. 

of h ( z )  and h ( z )  + e(.). 

There remains t h e  problem of comparing the  zeros 
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It i s  hoped t h a t  h ( z )  and h ( z )  + e(.) have t h e  same number of 

zeros i n  t h e  u n i t  d i sk .  By Rouche/'s theorem t h i s  w i l l  happen when 

for a l l  I zI = 1. Now because of t h e  overlapping of  t h e  d isks  i n  t h e  

search, r may be taken t o  l i e  away from t h e  boundary of t h e  u n i t  disk:  
1 

Irl - zI 2 d , 

Then i f  h ( z )  i s  normalized so t h a t  c = 1, n 

121 = 1. 

Mor e over 

There a r e  now two p o s s i b i l i t i e s  concerning t h e  number c .  F i r s t  

Then 
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On the other hand if 

In either case it is seen that for reasonable values of the I r. 1 ,  the 

quantity I e(z)/h( z) 1 remains less than unity even for small values of d. 
All this indicates that, at least asymptotically, rounding 

1 

errors have a negligible effect on the Cohn algorithm. The breakdown 

in the search must then come from the perturbations in the zero intro- 

duced by the shifting algorithm. Such a breakdown can occur when the 

region bounding the perturbations intersects both the current annulus 

and the exterior of the region defined by the covering circles. 

Unfortunately for the disks used in the search pattern of Section I1 

this can happen where the perturbations are as small as 1/15 times the 

inner radius of the annulus, although it is not likely. Nevertheless, 

even in this extreme case the center of the annulus is near the region 

defined by the perturbations and is not a bad approximate zero. Since 

there is reason for believing that the perturbations introduced by the 

shifting algorithm lie within the region of indeterminacy of the zero 

r, the above informal arguments support the contention that the search 

pattern will break down only when the center of the annulus is near the 

region of indeterminacy. 



CHAPTER I1 

ACCELERATING THE ORTHOGONAL ITERATION FOR THE EIGENVECTORS 

OF A HERMITIAN MATRIX 

I. INTRODUCTION 

Let A be a nonsingular,  normalizable mat r ix  of order  n. Then to 

t he  n eigenvalues,  hl, ... ,, &, of A t h e r e  corresponds a s e t  o f  l i n e a r l y  

independent e igenvectors  xl, ..., xn. 

have been ordered so t h a t  

Assume t h a t  t h e  eigenvalues  of A 

and t h a t  t he  eigenvectors  have been sca led  so t h a t  

Bauer’ s t r eppen- i t e r a t ion  [ 11 and i t s  orthogonal v a r i a n t  [9,p. 6071 

t o  be considered here  a r e  based on t h e  fol lowing f a c t .  

n x r matr ix  (r  < n) and suppose t h a t  lhr l  

r e s t r i c t i o n s  on Q 

i nva r i an t  subspace spanned by xl, x2, ..., xr. 

sequence of i t e r a t e s  Q(k)  as follows. 

matr ix  A.  

normal form to give &(k+l). 

columns of Q(k) remain s t rongly  independent. 

Let Q be an 

Then under mild 

- -- 

> I A,+, I .  - ~ -  - 
k a s  k inc reases  t h e  column space of A Q approaches the - - - _. 

Both methods generate  a - 

F i r s t  Q(k) i s  mul t ip l i ed  by the  

Then the  product A&(k) i s  reduced by column opera t ions  to a 

The normal form i s  chosen so  t h a t  t he  

For t h e  t r eppen- i t e r a t ion  

40 
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Q(k)  i s  required t o  be u n i t  lower t rapezoida l ;  f o r  t h e  orthogonal i t e r a -  

t i o n  t h e  columns of Q(k)  a r e  requi red  t o  be orthonormal. 

Both i t e r a t i o n s ,  with t h e i r  two s t eps  of mul t ip l i ca t ion  followed 

by normalization, a r e  genera l iza t ions  of t h e  power method [9,p.571]. 

Like t h e  power method they  a re  most u s e f u l  when only a few of the  dominant 

eigenvalues and eigenvectors of A a r e  required.  

sparse  matr ices  they  may be the  only f e a s i b l e  methods. 

However, f o r  very l a r g e  

The orthogonal i t e r a t i o n  s tar ts  wi th  a matr ix  Q") having ortho- 

normal columns and generates  a sequence of i t e r a t e s  by the  formula 

(k)  where R ( k )  i s  upper t r i a n g u l a r  with p o s i t i v e  diagonal elements and Q 

has orthonormal columns. 

t h i s  decomposition of A& (k-l)  is always possible ,  and moreover it i s  

unique. 

Gram-Schmidt or thogonal izat ion t o  t h e  columns of A& (k-l)  [4,pp. 134-1371. 

Since A i s  nonsingular and Q (k-l) has fill rank, 

The columns of t h e  matr ix  Q(k)  a r e  t he  r e s u l t  of applying the  

By applying the  i t e r a t i o n  formula (1.2)  repeatedly,  it i s  easy t o  

show t h a t  

Q (k) x(k) = Ak Q ( O )  (1.3) 

where 

Since each of t h e  matr ices  R(') ,  . . ., R(k) i s  upper t r i a n g u l a r  with 

pos i t i ve  diagonal, so i s  ?$k). Hence Q(k) i s  t h e  matr ix  obtained by 

orthogonalizing t h e  columns of A Q k ( 0 )  . 
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If A is Hermitian, i I j I r, and 

(k) 
i ’ * ”  

then the space spanned by the vectors q 9 qj (k) of Q(k) converge 

to the space spanned by xi, . . . , x . If i = j, then q(k)  approaches an 
j i 

eigenvector of A. 

produces vectors which converge to eigenvectors of A or at least, in the 

Thus for Hermitian matrices the orthogonal iteration 

limit, span invariant subspaces corresponding to eigenvalues of equal 

modulus. However, for eigenvalues of nearly equal modulus, the conver- 

gence to the individual eigenvectors is slow, and it is the object of 

this chapter to examine a device for accelerating the convergence. 

In the next section the accelerating procedure will be described. 

It produces a set of refined eigenvalues and eigenvectors, and the 

remainder of the chapter is devoted to determining their accuracy. 

order to do this, it is necessary to examine the convergence of the 

orthogonal iteration in detail. 

In 

Throughout this section the notational conventions of [ 41 will be 

followed. The symbol I /  1 1  will always denote the Euclidean vector norm, 

or the spectral matrix norm, 

The space spanned by the columns of a matrix will be called the space of 

the matrix. 
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11. A REFINEMENT PROCEDURE FOR APPROXIMATE EIGENVECTORS 

Let 

A = diag(hl , .  . . , A n ) ,  A, = diag(hl , .  . . , h r ) ,  A2 = diag( $ . . ., a), +l' 

and 

Because A i s  Hermitian, t h e  A. a r e  r e a l  and the  x. may be chosen so t h a t  
1 1 

fi = I. 

Moreover 

Ax = xn 

with similar r e l a t i o n s  holding f o r  X,, A, and X2,  A,. 

The following refinement procedure may be appl ied to any matrix 

Q with orthonormal columns whose space approximates t h e  space of X1. Let 

and consider t h e  matr ix  

H H H H 
B = Q A& = P AP = P l A 1 P l  + P 2 A 2 P 2 -  

Let 

H Y BY = M = diag(pl,  . . . , p r ) ,  
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where Y i s  t h e  un i t a ry  matrix whose columns a r e  t h e  eigenvectors  of B. 

If Pz i s  zero and t h e  eigenvalues hl, ... , $ a r e  d i s t i n c t ,  t hen  t h e  pi 

H 
may be ordered so t h a t  M = fll, Y = Pl, and 

Hence i f  P2 i s  small, which means t h e  space of Q i s  a good approximation 

t o  t h e  space of X1, t he  matr ices  M and QY should be good approximations 

t o  A, and X1. 

It i s  proposed t h a t  f o r  some s u i t a b l e  k t h i s  refinement process 

be appl ied t o  t h e  matr ix  &(k) generated i n  t h e  course of t h e  orthogonal 

i t e r a t i o n .  To evaluate  the  amount of work requi red  t o  perform t h i s  

acce le ra t ion  s tep,  note t h a t  t h ree  d i s t i n c t  ca l cu la t ions  a r e  involved: 

1) the  ca l cu la t ion  of Q (k)H AQ(k)  

2 )  the  ca l cu la t ion  of Y and M, 

3) the ca lcu la t ion  of  Q ( k )  Y.  

If n >> r, then  t h e  f i r s t  ca l cu la t ion  w i l l  dominate t h e  other  two. B u t  

t h e  bulk of t h i s  ca l cu la t ion  l i e s  i n  computing AQ(k) ,  which must be done 

anyway t o  f i n d  Q(k+l) .  

e r a t ion  s t e p  i s  about equal t o  t h e  amount of  work requi red  t o  perform 

one s t e p  of t h e  orthogonal i t e r a t i o n .  

Hence t h e  amount of work involved i n  one accel-  

Wilkinson [ 9,p.  6091 has proposed a r e l a t e d  technique f o r  f ind ing  

complex conjugate eigenvalues of a r e a l  nonsymmetric matrix.  In  h i s  

method t h e  f i r s t  two columns of  Q(k)  a r e  used t o  determine a 2 x  2 non- 

symmetric matr ix  from which t h e  eigenvalues a r e  ca lcu la ted .  
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111. CONVERGENCE OF THE ORTHOGONAL ITERATION 

The convergence proof i n  t h i s  s ec t ion  i s  adapted from Wilkinson's 

proof of t h e  convergence of t h e  QR algorithm [SI. The idea  of t h e  proof 

i s  to e x h i b i t  AkQ(') as t h e  product of a matr ix  with orthonormal columns 

and an upper t r i a n g u l a r  matr ix  wi th  p o s i t i v e  diagonal elements. Since 

such a decomposition i s  unique, it follows from (1.3) t h a t  t h e  f a c t o r  

with orthonormal columns must coincide wi th  Q ( k ) .  

Q(k)  may then be read o f f  from t h e  f a c t o r i z a t i o n .  

The p rope r t i e s  of 

Suppose t h a t  P ( O )  can be w r i t t e n  i n  t h e  form 

where I,(') i s  lower t r a p e z o i d a l  wi th  diagonal elements equal to u n i t y  i n  

absolute  value and U ( O )  i s  upper t r i a n g u l a r  with p o s i t i v e  diagonal 

elements . Then 
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Now L(k) may be decomposed into the product of a matrix with orthonormal 

columns and an upper triangular matrix with positive diagonal: 

Hence 

But has orthonormal columns and --(k) U U(k)  is upper triangular with 

positive diagonal. Hence by the foregoing comments 

Now the (j, i) element of L ( k )  is 

j < i. 

Since the 1. are real and 11. I 2 11. 1 for j 2 i, it follows that the 

elements of L (2k) must approach zero or remain constant with increasing 

k. In particular suppose that for some i I r 

1 J 1 

and let 

jr = min [j,r] . 
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Then t h e  elements of L (zk) i n  rows i through j and columns i through j T  

t end  toward zero with t h e  exception of t he  elements i n  t h e i r  i n t e r sec t ion ,  

which remain constant .  

s t ruc tu re ,  and t h e  nonvanishing block has  a l i m i t .  

mul t ip l ied  by X and t h e  block s t r u c t u r e  of P (2k) taken i n t o  account, t h e  

r e s u l t  i s  

I n  the  l i m i t  P (2k)  must have t h e  same block 

If P (zk) i s  pre- 

Theorem 3.1. If (3.3) i s  s a t i s f i e d  then the  columns - - -- 

nat ion  of x ..., x . 
iy j - 

The same r e s u l t  holds f o r  t h e  columns of Q (2k+1). From t h e  proof 

it i s  evident t h a t  t h e  r a t e  a t  which t h e  l i m i t  i s  a t t a i n e d  depends on 

t h e  l a r g e r  of the two r a t i o s  lL/li-ll and Ihj+l/hjl. 

Theorem 3.1 i s  t r u e  only under t h e  assumption t h a t  P(O) has a 

decomposition of t h e  form (3.1). 

t o  be disordered. 

t h e  rows of P ( O )  i n  such a way t h a t  the  r e s u l t i n g  matr ix  has  a decompo- 

s i t i o n  of t h e  form (3.1) - and t h e  above convergence proof goes through. 

For the  orthogonal i t e r a t i o n  the re  a r e  two types of d i sorder .  Let 

When t h i s  fa i l s ,  t h e  i t e r a t i o n  i s  s a i d  

Wilkinson handles t h e  problem of disorder  by permuting 

where Pik) i s  square. 

order  t h e  space of Q conver.ges to t he  space of X, bu t  t h e  eigen- 

vec tors  a r e  found i n  a d i f f e ren t  order.  When Pio) i s  s ingular ,  t he  

If P1(0) i s  nonsingular, then i n  event of dis-  

(k) 
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space of Q(k) w i l l  converge t o  a d i f f e r e n t  i n v a r i a n t  subspace. 

of d i sorder  w i l l  not be t r e a t e d  here ;  however, a l l  t h e  r e s u l t s  of t h i s  

chapter remain e s s e n t i a l l y  una l te red  f o r  t h e  f i r s t  kind of disorder .  

The case 

Some a u x i l i a r y  quan t i t i e s  w i l l  be needed l a t e r .  Let L(k )  be 

p a r t i t i o n e d  i n  the  form 

Then 

From (3.2)  

where P!k) ( i=1 ,2)  i s  defined by (3.4) .  Hence 
1 
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Moreover since 

IV. SOME MISCELLANEOUS THEOREMS 

Some theorems that will be needed later will be developed in this 

see t ion. 

It is a well known fact that for 0 0 2 1 cos 8 is nearer to 

unity than sin 0 is to zero. Namely 

1 - cos 8 = 1 - 41 - sin2 8 cc sin2 8 . 

The following theorem generalizes this fact. 

Theorem 4.1. Let the matrix -- 

have orthonormal columns, - and suppose that Q1 has at least as many rows - - ------ 
as columns. Then - 

Q1 = N + F, 

where N has orthonormal columns and - -  

IIF II I / I  Q2 1 1 2 *  
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Proof. The matrix Q1 has the singular value decomposition 

Q~ = u r SI, 

where ? is unitary, T is nonnegative diagonal, and U has orthonormal 
columns [4, p.31, ex.191. Let 

N = U $  

and 

F = u(r - I)+. 

Then #N = I and (4.1) is satisfied. Now 

I = (~$1"  (QSI) = r* + v Q ~ Q V H  

= r2 + c2. 

Hence C2 is diagonal and 

1 
I - r = I - (I - c2)Z. 

Since 1 - 41 - x2 is an increasing function of x, 

1 1 1  - rll = 1 - 4 1 - llc2/1 * 

But 

and 



Hence 

Consider the eigenvalue problem 

where B is Hermitian, Y is unitary, and M is diagonal, all of order r. 

Suppose that the eigenvalues of B have been ordered so that 

The following theorem is well known. 

Theorem 4.2. Let F be Hermitian. -- Then the eigenvalues - of B + F - -  
satisfy 

The hard part of the famous minimax theorem is the following 

Theorem 4.3. Let the r x s matrix Q have orthonormal columns -- - 
and let -- 

VI 2 v;! 2 ... 2 v 
S 

H be the eigenvalues - of Q BQ. Then -- 

and - 
S % -  
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This theorem may be applied repeatedly to give 

- Corollary 4.4. -- Under the hypothesis - of Theorem 4.3 

vi Pi, (i = 1,2 ,..., s), 

V s- it- 1 2 pr-i+l, (i = 1,2,. . . , s ) .  

Let G be a nonsingular Hermitian matrix. With the substitutions 

Y = G Z ,  

and 

C = G B G  

the eigenvalue problem (4.2) becomes 

CZ - G2ZM = 0. 

Obviously 

H 2  Z G Z = I .  

(4.3) 

(4-4) 

Any matrix (possibly rectangular) satisfying (4.4) will be said to have 

columns that are orthonormal with respect to G, or for short  G-orthonormal 

columns. If V has G-orthonormal columns, then GV has orthonormal columns. 

Given any r x s matrix V of rank s, there is an s x s matrix T 

In fact let the unitary matrix such that VT has G-orthonormal columns. 

H diagonalize the matrix ?G2V: 

H~$G~VH = P. (4.5) 
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Since G i s  nonsingular and V i s  of full rank, A i s  nonsingular.  Then 

i s  t h e  required matrix.  

shows t h a t  t he  smallest  eigenvalue of A2 i s  not l e s s  than  the  smallest  

eigenvalue of G2. 

If V has  orthonormal columns then Corol lary 4 .4  

Hence f o r  t h i s  case 

The following nota t ion  w i l l  prove usefu l .  Let 

4 = {il, .. ., is] 

be a s e t  of d i s t i n c t  i n t e g e r s  taken from {l, 2, . . . , r] and l e t  1 be i t s  

complementary subset .  

def ine 

If V i s  any matrix having a t  l e a s t  r colwnns, 

The matr ix  

i s  t h e  oblique p ro jec to r  onto t h e  space of Z4 along t h e  space of Zf. 

Since 
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i s  an r x r matrix pro jec t ing  onto r space, it must be the  i d e n t i t y .  

If V has  G-orthonormal columns, then  

= $G2V = I. 

Hence 

has orthonormal columns. 

The following analogue of theorem 4 holds f o r  the  eigenvalue 

problem (4 .3) .  

Theorem 4 . 5 .  -- Let the  r x s matr ix  V have G-orthonormal columns 

and l e t  -- 

v1 2 v2 2 ... 2 vs 

be t h e  eigenvalues - of  $ C V. Then -- 



Proof. Let 

Q = GV. 

H Then Q Q = I and 

H V%V = Q BQ. 

Hence theorem 4.3 applies to give the result. 

Although the individual eigenvectors corresponding to a set of 

clustered eigenvalues are poorly determined by the elements of the 

matrix, the invariant subspace spanned by them is well determined. 

following generalization of a theorem of Swanson [5] gives this assertion 

a quantitative form. 

The 

Theorem 4.6. Let V be an r x s matrix and - - -- 
D = diag (6 ,6. , ..., 6. >.  

Suppose 

Let 4 = Cil,i2 ,..., is] and 1 = C1,2,.--,r3\4. 
21 12 1s - 

(i € 4 ,  j E [ ) .  



then 

Proof.  Let M' = diag (1-1 .) ( j E)). Then 
J 

H z$(cv - G ~ V D )  = M ~ Z ~  G ~ V  - Z ~ G ~ V D .  

Hence 

(4.7) 

] / ( M ' Z H t G 2 V  - ZHk G2VD)eil/ < 7 /IZ 811, 

where e i s  t h e  i t h  column of t h e  s x s i d e n t i t y  matrix.  i 

But 

H 
= \ \ ( M I  - 6i I )  Z gG2Veill 

2 a IIZ; G2Vei//. 

H Thus t h e  norm of t h e  i t h  column of Z # G2V i s  no t  g r e a t e r  t h a n  Tl lZg I \ /  a!. 
Since Z & G  V has  s columns, H 2  

But 

(4.9) 

Since GZ has  orthonormal columns. The i n e q u a l i t y  (4 .7)  follows from 

(4.8)  and (4 .9) .  
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Corollary 4.7. - If VT - has G-orthonormal columns, then there is a 

unitary matrix N -- such that 

/(VTN - z q / (  9 a 2ssri llG-lllz / I T  II 

Proof.  Since VT has G-orthonormal columns, the matrix 

has orthonormal columns. Moreover by Theorem 4.6 

Hence by Theorem 4.1 

where # is unitary and 

Premultiply (4.10) by (Za, Za>. and postmultiply by N 

(4.10) 



t o  ge t  

H 
VTN = zQ(r + FN) + Z ~ Z ~ G ~ V T N ) .  

Hence upon t a k i n g  norms 

Since 

t h e  r e s u l t  follows. 

V. ACCURACY OF THE REFIrJED EIGENVALUES 

Suppose now t h a t  t h e  acce le ra t ion  s t e p  i s  appl ied  a t  t h e  k th  

s t e p  of t h e  orthogonal i t e r a t i o n  so t h a t  mat r ices  B, Y, and M a r e  

determined from A and &(k) by equat ions (2 .2)  and (2 .3) .  

a u x i l i a r y  mat r ix  P def ined by (2 .1)  i s  i d e n t i c a l  t o  t h e  mat r ix  P(k) of 

equat ion (3 .2) .  

i n  t h e  next two sec t ions .  

Note t h a t  t he  

For b r e v i t y  t h e  i t e r a t i o n  supe r sc r ip t s  w i l l  be dropped 

The f i r s t  s t e p  i n  assess ing  the  accuracy of t he  r e f i n e d  eigen- 

values  and eigenvectors  i s  t o  reduce t h e  eigenvalue problem t o  a more 

t r a c t a b l e  form. Let 

z = Ply. 
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Then t h e  eigenvalue problem 

H P APY = YM 

may be w r i t t e n  i n  t h e  form 

where K i s  defined by (3.6) .  By equation (3.7) 

If 

C = (I,?) h (i) = A, + ?AzK 

and a Hermitian matr ix  G i s  determined [&I, so t h a t  

G2 = I + 8 K ,  

Then equation (5.1) takes  t h e  form of  t h e  eigenvalue problem (4.3) of 

t h e  l a s t  sect ion.  Moreover 
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A s  i n  t h e  l a s t  s ec t ion  l e t  d denote a s e t  of s i n t e g e r s  taken 

from {1,2,. . . ,r].  Let t h e  columns of Ed be taken from t h e  r x r 

i d e n t i t y  matrix.  Then t h e r e  i s  a matr ix  T, def ined i n  t h e  las t  sec t ion ,  

such t h a t  E $  T has  G-orthonormal columns. 

Lemma 5.1.  For V = E l e t  T be d e f i n e d &  equations (4 .5)  and - - -  
(4 .6) .  Then - 

T = H ( I  - l?) (5 *3) 

where r i s  diagonal and - - -  

Moreover 

Proof. By t h e  d e f i n i t i o n s  of H, G, and A 2 ,  

2 H H H  H H  A = I + H EgK K EsH = I + H K&K+ H = I + 02. 

Since A2 i s  diagonal, so i s  02, and 
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Also i f  

t hen  T i s  given by (5.3). 

of x 

Since 1 - (1 + x2)-' i s  an increas ing  funct ion 

F ina l ly  

and s ince  x2/( l+x2) i s  an increas ing  funct ion of x, ( 5 . 5 )  holds.  

I n  order  t o  compare t h e  elements p i of M with t h e  hi, it i s  

important t h a t  t he  p, 

(1.1) and l e t  0 be a permutation of t he  in t ege r s  1,2,. . . , r  such t h a t  

be ordered properly.  Let t h e  hi be ordered as i n  
i 

then t h e  pi a r e  t o  be ordered so  t h a t  

9 

2 ... 2 
c"o(1) % ( 2 )  

and pi w i l l  be compared with h . i 
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-1 H Let 7 = 0 . The pi are the eigenvalues of the section Q A Q 

of the matrix A. Suppose that h > 0. Then h is the T(m)-th largest 

eigenvalue of A and 1-1, is the T(m)-th largest eigenvalue of B. 

Corollary 4.4 

m m 

Hence by 

Similarly if Am is negative then it is the (r - T(m) + 1)-th smallest 

eigenvalue of A while p is the (r - T(m) + 1)-th smallest eigenvalue 

of B. Hence 

m 

m <Pm 

Thus to determine the accuracy of IJ. it is only necessary to determine m 

a sharp lower bound for p 

when hm is negative. 

when & is positive or  a sharp upper bound m 

The case < 0 is typical. Let 

3 = C i :  A. 5 A 3 ,  
1 m 

and let the columns of Eg be taken from the r x r identity matrix. Let 

T be defined as in Lemma 5.1 so that E T has G-orthonormal columns. 

Then the matrix 

s = (TE~) H C(TE&) 

is of order (r - T(m) + 1). Hence by Theorem 4.5 its largest eigenvalue 
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i s  g rea t e r  than the  ( r  - r ( m )  + 1 ) - t h  smallest  pi; t h a t  i s  the  l a r g e s t  

eigenvalue of S i s  g rea t e r  than  p . m 

Let 

A' = diag(hi)  (i € 4 ) .  

Then 

S = THA' T + THG A~KGT. 

From t h e  preceding lemma 

S = H'A'H + I'HHA'H + H H A I H r  + TRKfA2KpT. 

IiH = A'H + F. 

Now S A ' H  i s  a Hermitian matr ix  whose l a r g e s t  eigenvalue i s  h 

i s  a Hermitian matr ix .  

of S s a t i s f i e s  

and F 

v 

m' 

Thus by Theorem 4 .2  the  l a r g e s t  eigenvalue 

But by Lemma 5 . 1  
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If a similar argument is carried out for h 2 0 with m 

4 = Ci: A. 2 xm], 
1 

then the result is 

Theorem 5.2. Let - 

Then if Am > 0, -- 

Thus the error in 1-1 is proportional to the square of IlKdll m 

when IIK411 is small. At the k-th iteration IIKa1I may be estimated from 

equation (3.5): 
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Since lh] decreases with increasing m, the 1.1 
a progressive loss in accuracy from p1 to pr, with 1.1~ being least 

'r? accurate. 

spurious. 

columns of Q(k) will tend to lie in the space spanned by x1, . . . , 
Hence if hl, ... , all have the same sign, as when A is positive 

definite, 1.1, will tend to lie between hr and As 

inaccurate. 

may be expected to show m 

the value of pr will be entirely In fact if hr+l = - 
However, if /As[ is significantly less than Ih 1, then the r 

and may not be too - 

VI. ACCURACY OF THE REFINED EIGENVECTORS 

In assuming the accuracy of the refined eigenvectors, some care 

must be taken to treat clusters of eigenvalues together, for it is only 

the subspace corresponding to a cluster of poorly separated eigenvalue 

that is really well determined. 

such a cluster. Then the question to be answered in this section is 

how well do the spaces of QY,g and Xq compare. 

Specifically, let 4 be t h e  index set of 

As in the last section, it is convenient to phrase the question 

in terms of the transformed problem (5.1). 

taken from the n x n identity matrix. Then the above question becomes 

one of comparing the spaces of PY,+ = ?QYo-and I = . The 

question will be answered by showing that under suitable restrictions, 

there is a unitary matrix S such that 111.0s - PY&lI is s m a l l .  By virtue 

of equation (5.2) this is equivalent to showing that 

Let the columns of I& be 
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is small. 

Let the s columns of Ed be taken from the r x r identity matrix. 

If T is the matrix of Lemma 5.1, then the columns of EdT are 

G- orthonormal. Let 

8 = {I, 2, ..., r] - 4 

be the index set complementary to 4. Now because { h  - i c 0 1  is a 

cluster of eigenvalues, they are well separated from the other eigen- 

i' 

values (j E f). 

so far that the A. (i E 4 )  are also separated from the p 

Suppose that the orthogonal iteration has proceeded 
j 

(j ~ b ) ,  say 
1 j 

Ir, - P j l  a, (ic 8 , j E#.). (6.1) 

Let 

Then 

A' = diag ( h . ) ,  
1 

(i €4). 
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In the notation of the last section (and Theorem 4.6) 

where 

x = mix )hi), (i € 4  >. 

Hence by Corollary 4.7 there is a unitary matrix N such that 

But since E has orthonormal columns /IT 1 1  5 IIG-’//. Hence 

Let 

S = HN 

where H is the matrix of equation (5.3). 

so is S. Moreover 

Since R and N are unitary, 
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= €1 + € 2  + € 3 .  

Thus t h e  problem i s  t o  f i n d  bounds f o r  el, ~ 2 ,  and €3. 

Now 

A l s o  

Hence 



Finally 

In terms of the original eigenvectors, the result of all this is 

Theorem 6.1. Let the index set 4 he chosen -- so that (6.1) - is ---- - 
satisfied. Then there is a unitary matrix S -- such that ---- 

where X is defined& (6.2) - -  

Thus the accuracy of the space of QY is approximately propor- 

tional to llKsll when IIK411 is small. 

there is poor relative separation between the cluster of eigenvalues 

indexed by T# and its neighbors. 

The quantity h/a is large when 
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