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ABSTRACT

This dissertation considers two disjoint topics in numerical
analysis: Lehmer's method for solving algebraic equations and an
acceleration procedure for the orthogonal iteration for the eigenvectors
of a Hermitian matrix.

Lelmer's method for finding a zero of a polynomial is a procedure
for searching the complex plane in such a way that a zero is isolated in
a sequence of disks of decreasing radii. In this dissertation modifi-
cations of the method that improve its numerical stability are given.
The asymptotic behavior of the method in the presence of rounding error
is examined.

The orthogonal iteration for finding invariant subspaces is a
variant of Bauer's treppen-iteration. For a Hermitian matrix, it yields
a set of dominant eigenvectors. However, the method converges slowly
to eigenvectors corresponding to poorly separated eigenvalues. An
acceleration procedure is proposed which yields a set of refined eigen-
values and eigenvectors. Error bounds for the refined eigenvalues and

eigenvectors are derived.
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CHAPTER T
LEHMER'S METHOD FOR FINDING THE ZEROS OF A POLYNOMIAL
I. INTRODUCTION
Lehmer's method [ 3] for finding the zeros of a polynomial
£(z) = sy tazt .. taz (aoan # 0),

is based on a procedure for determining if f£(z) has a zero in the

closed disk
D(s;p) = {z : |z - s| = o} .

This procedure is used to search the complex plane in such a way that
a zero of f(z) is isolated in a sequence of disks of decreasing radii.
When a sufficiently small disk containing a zero is found, the center
of that disk is accepted as an approximate zero to be divided out of
the polynomial. The process is then restarted usiﬁg the reduced poly-
nomial. Of course, at any point in the process an iterative method
such as Newton's method may be applied in an attempt to find a zero
contained in the current disk.

Lehmer's method, as proposed by Lehmer, tends to be numerically
unstable. In the next section a modified form of the method is
described in which these difficulties are eliminated.

In practice the method must be carried out in the presence of
rounding errors, and the remaining sections of this chapter are devoted

1



2
to assessing their effect on the method. In particular if the process
of dividing out an approximate zero is not to distrub the remaining
zeros unduly, the approximate zero must be accurate to a degree that
depends on the amount of rounding error and the character of the zero.
It will be shown that for an isolated zero the modified Lehmer's method

tends to break down only when this accuracy has been attained.
IT. LEHMER'S METHOD

Lehmer's method uses the basic procedure for determining if
f(z) has a zero in a disk to search the complex plane for a zero of
f(z). One step of the search pattern goes roughly as follows.

Starting with a disk D(s;p), an annulus
A(s'sp') = {z : p' < |2z - s"| < 2p"}

containing a zero of f(z) is determined. This annulus is then covered
by disks and one of them, D(s";p"), containing a zero of f(z) is found.
The process is then restarted using the disk D(s";p"). Except perhaps
for the first step, each annulus A(s';p') is contained in D(s;p)-

Moreover after the first step
o' <p/2
and
o" = T70'/8 , (2.1)

so that the process must converge.
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Specifically, given the disk D(s;p), determine if it contains a
zero of £(z). 1If it does, determine the first positive integer i such

that the disk D(s3;2 "p) does not contain a zero of £(z), and set

If D(s,p) does not contain a zero of f(z), determine the first positive

integer i such that D(s;27p) does contain a zero of f(z), and set

ot =2t g
In either case if s' = s, the annulus A(s';p') contains a zero of f(z).
If s # 0 let
uw=-s/|s| ; (2.2)
otherwise let u be chosen so that lul =1. If

Sy = 8 +-%? p'u exp <$il'n%> , (k=1, 2, ..., 8)

and p" is defined by (2.1), then the disks

D, = D(s};0")

cover the annulus A(s';p'). Examine the disks D, for zeros of f(z) in

the order D, D
1 8

5 D2, D7, D3, D6, D4, D5- Let Dj be the first of these

disks containing a zero of f(z) and let

This completes one step of the search.
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The choice of a starting disk depends on whether a zero has

already been found. If one has, let s = O and p be equal to the outer

radius of the first annulus obtained in the search for the last zero.

If no previous zero has been found, take s = O and
1/n
= 1. .
0 1 Iao/an|

This last choice insures that the starting disk D(0j;p) contains a zero
of f(z).

No disk after the first one can contain the origin. Hence the
number u is well defined by (2.2) except in first step of the search.
For the first step the choice of u again depends on whether a zerc has
already been found. If none has, take u = 1. If the last zero found

is r, take

u = ?/[rl . (2.3)

This choice of u is motivated by the expectation that f(z) will usually
have real coefficients and hence conjugate pairs of zeros. If u is
defined by (2.5), then, having found the zero r, the search immediately
attempts to find a conjugate zero.

The procedure for determining whether f(z) has a zero in D(s;p)
consists of three steps. First note that f(z) has a zero in D(s;p) if

and only if

h(z) = f(pz + 8)



>
has a zero in the unit disk D(0;1). Thus the procedures can be broken
up into the following three steps.

L. Calculate the coefficients of

n
g(z) = by + 0,2+ v+ yz = flz + s) .

2. Calculate the coefficients of

n(z) = co + ez + «on + oz = g(oz) - (2.4)

3. Determine whether h(z) has a zero in the unit disk.

The polynomial g(z) is obtained from f(z) by shifting, and h(z) from
g(z) by scaling.

The shifting step can be accomplished by iterated synthetic

division
bff;l) =a . (10,1, .+ +,0) ,
| N (k=0,1,...,n) , (2.5)
br(ll_yirl) = bfllfi +t s br(llfiﬂ , (i=1,2,...,k+l; k=0,1,...,n-1) .

The coefficients of g(z) are given by

bi = b]g_n) 3 (i=O,l, "')n)

This straightforward scheme offers no special computational
difficulties.
; More care must be taken with the scaling step. Mathematically

the coefficients of h(z) are given by
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i
c, = pb; - (2.6)

However, if n is large and p > 1, the absolute values of the Ci mnay
exceed, or overflow, the largest number representable in the computer
performing the calculations. Likewise if p < 1, then the abéolute
values of the ci may underflow the smallest positive number repre-
sentable in the computer. Most computers have provisions for setting
the results of an underflow producing operation to zero. The following
scaling algorithm uses this feature.

Let © and w be the largest and smallest pesitive numbers that
can be represented in the computer. Then a set of Ci’ different from

those of (2.6), are defined as follows:
1. Determine the largest number o satisfying

O<o< @,

A
o

Glbil > (i = 0,1, "';n)

2. Ifp< 1, set

Ci = (O‘pl)bi s (i = 0,1, ---,l’l)

where it is understood that Ci = 0 if underflow occurs in

its computation.

3. If p>1, set

i-n

¢, = (o™ )b, (i = n,n-1,...,0)

with c, = O if underflow occurs in its computation.
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The nonzero Ci defined by this algorithm stand in constant pro-
portion to the Ci defined by (2-6)- Overflows cannot occur in the
course of the algorithm. The effect of setting underflows to zero is
to produce a polynomial slightly perturbed from scme constant multiple
of n(z) as defined by (2.6). To these perturbations in the coefficients
there correspond perturbations in the zeros of h(z). The perturbations
in the zeros may be large; for if p < 1, the degree of the polynomial
produced by the scaling algorithm may be less than ﬁ. However, the
searching procedure only requires that the zeros of h(z) in and about
the unit disk be well determined, and it is Jjust these zeros that are
least sensitive to the perturbations generated by the scaling algorithm-
For the case of a well isolated zero, this point will be treated more
precisely in Section VI.

The algorithm for determining whether a polynomial has a zero in
the unit disk is based on the following theorem due to Cohn [2].

Theorem 2.1. With the polynomial

n
n(z) =cy+cz+ oo+ cz (cnco £ 0),
associate the polynomial
x* _ n— -1 _"" - -
ho(z) =z ho(z ) = c o fe  BF ee.etCoz)
Let
m. = c / I
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Then if lmol = 1, ho(z) has a zero in the unit disk. On the other hand

if ]mO] < 1, the polynomial

b (z)

h (z) -m h*(z) (2.7)
o o o

is of degree less than n and has the same number of zeros in the unit

disk as h (z). Moreover n (0) # 0.

The theorem may be applied repeatedly to generate a sequence of
polynomials hi(z), all having the same number of zeros in the unit disk
as ho(z), and a sequence of associated constants m, - The process
terminates either when some m, 2 1, in which case ho(z) has a zero in
the unit disk, or when some hi(z) is constant, in which case ho(z) has
no zeros in the unit disk. This is the basic algorithm for determining
if ho(z) has a zero in the unit disk.

The foregoing algorithms and the searching procedure constitute
a method by which a zero of f(z) may be localized in a sequence of
disks whose radii tend toward zero. There still remains the question
of deciding when the process has converged.

The shifting algorithm and the Cohn algorithm are compu-
tationally expensive, requiring 0(n?) arithmetic operations as opposed
to 0(n) operations for evaluating f(z). Hence the most efficient use
of Lehmer's method is as a device for producing a starting value and
a region of applicability for a simpler iterative method. When this is
done, the iterative method will carry its own convergence criterion.

If it fails to converge, the search can be advanced another step to

provide a better starting value.
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However, the iterative method may never converge, so that the
search is continued until it breaks down because of rounding error.
This failure occurs when a zero of f(z) is located in an annulus but
fails to appear in any of the covering disks. 1In this case the center
of the annulus must be accepted as the best approximate zero the method
can provide. In the next four sections arguments will be given to indi-
cate that for an isolated zero it is near to the best approximate zero
that any method can be expected to provide.

After some value s has been accepted as an approximate zero, it

must be divided out of the polynomial:

£(z) = (z - s) £1(z) + £(s) .

The search is then restarted with the deflated polynomial f1(z). It is

given by

fl(z) = bgn—l) + bin—g) Z o+ ...+ béo) z ,

where the bgk) are defined by (2.5).

The method proposed in this section differs from Lehmer's
original method in a number of ways. In the search pattern the orien-
tation of the disks covering an annulus and the order in which they are
examined have been changed to enhance the tendency of the method to find
smaller zeros first. This tends to increase the stability of the

deflation process [T, pp- 56-59]. More important the covering disks

have been enlarged so that if in the course of the search a zero lies

near the boundary of one disk it lies well within another. This is
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designed to prevent the premature breakdown of the method due to
rounding error. That this possibility must be taken seriocusly may be
seen by considering a search in which the covering disks have been so
reduced that the boundaries of any iwo adjacent disks and the boundary
of the annulus intersect at a point. Then any zero in the annulus, but
very near such a point of intersection, is in danger of being lost.

The scaling algorithm has been modified as described above to
deal with the problem of overflows and underflows.

The Cohn algorithm has been modified in two ways. First instead
of forming the polynomial hi,(z) of equation (2.7), Lehmer (and Cohn)

work with the polynomial

G, (2) =T n(2) - e m(2) - (28)

While the resulting sequence of polynomials are constant multiples of
those resulting from (2.7), their coefficients can increase or decrease
so rapidly that overflow or underflow becomes a serious problem. On the
other hand if (2.7) is used, the coefficients in the polynomials hi can
at most double in size at each step. Note also that (2.7) requires

half as many multiplications as (2.8).

Secondly, Lelmer only asks to determine whether h(z) has zero
interior to the unit disk. The Cohn algorithm fails to answer this
question when scme m, has absolute value unity; for then hi(z) may have
all its zeros on the boundary of the unit disk. In this case Lehmer

modifies the search by slightly enlarging the offending disk. The
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method, as modified here, eliminates this indeterminacy by asking for

zeros lying in closed disks.

IITI. ROUNDING ERROR

In the next four sections arguments will be developed which
indicate that the deflation process can be safely used with the method
presented in the last section, at least as far as simple zeros are
concerned. This development draws heavily on Wilkinson's theory of
rounding errors and his analysis of the deflation process [7]. Most of
the development is informal; however, the results stated as theorems
are rigorous -

Let a be a nonzero complex number and b be a number close to a.

Then the relative error in the approximation b to a is

e=(b-a)la

A
If ¢ is small, the approximation b is said to have low relative error.

Evidently

where
e=1+¢

If ¢ is small then ¢ is near unity. The following convention will be

observed throughout the next four sections. A Greek letter, say 7,
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will denote a complex number presumed to be near unity, and

Most modern digital computers have the ability to perform real
floating point computations. A floating point number consists of a
characteristic ¢ and a signed fraction f. The value of the floating

point number is

£ x b°

where b is a positive integer called the base. The fraction consists
of a fixed number of digits in the base b representation of the real
nmumbers. It is usually normalized to lie between 1 and b~ . TFor most
computers b is either ten or a power of two.

Let w and @ be the smallest and largest positive floating point

numbers. Then any real number a with
w< |al =0

has a floating point representation whose value will be denoted by
f2(a). Because of the fixed length of the fraction, fi(a) corresponds

to a rounded value of a and hence has a low relative error:
fi(a) = a e ,

where
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Here % is a small positive number that depends on the computer being

used. When
a = fﬂ(a> )

the number a will be identified with its floating point representation.
There are three basic floating point operations: addition
(including subtraction), multiplication, and division. If o denotes

one of these operations and a and b are floating point numbers, then
fi(a o b)

will denote the value of the result of the operation. In most com-
puters these operations are carried out with low relative error; that
is
A A
f[(aob)=(aob)€, IEIST\

A
Again n is a small positive number that varies from computer to com-
puter. It also varies with the operation o -

A complex number is usually represented by two real floating
point numbers corresponding to its real and imaginary parts. Again the
value of this representation of the complex number a will be denoted by

fi1(a), and
£(a) = a € , el <7 - (3.1)

. A, s
Here ¢ is in general complex, and 7 is a small positive number.
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The complex floating point operations consist of sequences of
real floating point operations giving the desired result. Varah
[6, ». 82] has shown that these calculations can be arranged in such a

way that the result has low relative error:
A A
fi(a o b) = (a o b) €, le| <7, (3.2)

where a and b are complex and % is small.

In (3.1) and (3.2) the symbol n has been used generically to
denote any of a number of bounds that depend on the computer and the
operation involved. For a fixed computer let n denote the largest of
these bounds. Then (3.1) and (3.2) hold uniformly for all operations.
This simplification will give slightly cruder results in the following
error analyses, but it will not affect the nature of these results in
any essential way-.

Is is convenient to use the notation fi(e) to denote the result
of evaluating the extended expression e in floating point. When this
is done, some fixed way of calculating e must be specified, either

Implicitly or explicitly. For example the notation
f4(ab + c)
means
f1(f4(ab) + c) .

As an example of how these error bounds can be applied to

extended calculations, consider the problem of evaluating the polynomial
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f(z) =a_ +az+ ... +az
o 1

by synthetic division. Mathematically the algorithm is given

b= ey
b, =zb . +a , (i = n-1, n-2, ..., 0),
and f(z) = by Now let bi represent the numbers obtained by actually

carrying out the calculation in floating point arithmetic, so that

b = a
n n

b, = fi(z bi+l + ai) , (i=mn-1, n-2, ..., 0)

Then from (3.2)

bi = (z bi+l a, + ai) si =zb. 7 tey 51 s (3.3)

where

A A A

o[ 5 [By] = m
and

7i = oéi Bl

Hence

A 2

< -
7.l =% -1

If (3.3) is applied repeatedly, the result is
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Theorem 5.1.
£4(£(2)) = ag eyt a € 24 oA e A
where
lénl <% -1 (3.4)
and
|2:i] < 2 (i = n-1, n-2, ..., 0) (3.5)
Corollary 3.2. Let
£(2) = |ag| + |ay| 24 oo+ [a] 2.
Then
[£2(£(2)) = £(2)] = (7 - 1) £.(]2]) - (5.6)

Theorem 3.1 may be interpreted as saying that the value £4(f(z))
is the exact value of a polynomial whose coefficients are relatively
near those of f(z). In other words, no matter how inaccurate the value
of £1(£(z)), the same error could be attained by changing the coef-
ficients of f(z) slightly. The bounds (3.4) and (3.5) are rather
pessimistic. On statistical grounds alone one would expect the |2i| to
be about ni - 1 in size. However, as Wilkinson [ 7] has pointed out,
even this may be a severe overestimate.

The theorem also indicates that any method depending on function

evaluations to locate a zero of f(z) is limited by the sensitivity of
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the zero to small relative perturbations in the coefficients of f(z).

Let

A
e(Z)=€O ao+gl alz+...+€n anz . (57)

Then the theorem states that for each z, £i(z) = f(z) + e(z) for some
set of éi satisfying (3.4) and (3.5). If r is a zero of f(z), then
there will be a nearest zero r' of f(z) + e(z). As z, and hence e,
varies, the perturbed zero will vary in a region about r. The best
that can be expected of any zero finding method that depends on the
values of f(z) is that it produces an approximate zero lying in this
region.

Thus it is necessary to investigate the behavior of a zero r of
T(z) under the influence of the perturbing polynomial e. The chief
tool for this investigation is Rouché's theorem, which is here stated

in a simplified form.

Theorem 3.3. Let f(z) and e(z) be regular in a region R, and

let the closed disk D be contained in R. If

]e(z)] < ]f(z)]

for all z On the boundary of D, then f(z) and f£(z) + e(z) have the

same number of zeros in D.

Let r be a simple zero of f(z) and let e be defined by (3.7).

For simplicity suppose that

<h (3.8)
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The problem is to find the radius of a disk D about r such that
£(z) + e(z) has a single zero in D. In order to do this a lower bound
for |£(z)| and an upper bound for 'e(z)l are needed. The latter may be

obtained from (3.7) and (3.8):
le(z)] < ¢ fa(,zl)

To get a lower bound on [f(z)| let

g(w) = flw + r) = bW b ek bﬁwn

Because r is a simple zero of f(z), b, # O-

Theorem 3.4. Let

b -i—_l
o= min'{ 5 n—i 5 t1l=2, 3 ... n}’- (3.9)
If
|z - | <0,
then
[t () (z - r)|/e < |£(2)| < 3£ (x) (z - r)|/2 . (3.10)

Proof. Let w = z - r. Then gw) = £(z). If |w| < p, then from

(5.9)
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Hence

n

o, wl/2 < [bw] - _22 o] s [e()]

n .
< o, + ), o7 | < 3|0 /2
i=2

But by = £'(r), whence the inequality (3.10) follows.
The number p defined by this theorem will be called the radius
of simplicity of the zero r. It defines a region about r in which the

linear approximation
f(z) ~ £f'(r) (z - )

gives a fair estimate of the size of f(z). The polynomial f(z) has

only the zero r in the disk D(r;p).

— . —— s ettt i,

simplicity p. If there is a positive number & satisfying

€ <8%<op, (3.11)

then f(z) + e(z) has one and only one zero in the disk D(r;3).

Proof. Let d satisfy (3.11). Then
er ([x[ +8) < |£(x)]5/2 - (3.12)
If z lies on the boundary of D(r;p), then

le(z)l < ¢ fa(lrl +38) .
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Moreover by Theorem 3.4
[£(z)] = [£'(x)]B/2

Hence on the boundary of D(r;d)

Ie(z)l < |£(2)]

and by Rouch€'s theorem £(z) and f(z) + e(z) have the same number of
zeros in D(r;8). But f(z) has only the zero r in D(r;d).

If fa(]r] + &) does not vary too much when & < p, then the

number 2 fa(lrl)/lf‘(r)] is a condition number for the zero r with
respect to relative perturbations in the coefficients. It estimates
by how much perturbations in the coefficients may be magnified in the
zZero r.

Informally, each simple zero r may be regarded as surrounded by
a region of indeterminacy in which the rounding error made in evalu-
ating f(z) exceeds the magnitude of f(z). Then Theorem 3.5 provides
an estimate of the radius of this region of indeterminacy.

Now for an ill-conditioned Zero r the approximate zero produced
by Lehmer's method, or for that matter by any other method, may be
quite inaccurate. Since this approximates zero must be divided out of
the polynomial, the question arises of to what extent the inaccuracy
of the approximate zero generates inaccuracies in the zeros of the
deflated polynomial. Wilkinson [7, pp. 56-59] has analyzed this
problem in detail with the following results. The use of an approxi-

mate zero in the deflation process will not unduly affect the other
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well conditioned zeros provided first that the zero divided out is
among the smallest in absolute value and second that the approximate
zero lies in the region of indeterminacy.

The search pattern in Lehmer's method tends to find smaller
zeros Tirst, so that the first of the above conditions is satisfied for
an approximate zero located by Lelmer's method. The next three sections
are devoted to showing that the second condition will tend to be satis-
fied provided that the search is pursued until it breaks down. In
order to do this it is necessary to give error analyses of the shifting

algorithm and of the Cohn algorithm.
IV. ERROR ANALYSIS OF THE SHIFTING ALGORITHM

From the equations (2.5) which define the shifting algorithm it

follows that the bgk) satisfy the matrix equation

4 e
b£k+1)\ 1 h (.bik) A
p (K1) s 1 p{%)
n-1 n-1

= : . (4.1)

biﬁl ) 1 O s 1 br(fl)g

b(k+1) J s 1

n-k-1
From this it is seen that the vector b<k> = (b£k>, békz, ey béki)T

(k)

may be obtained by premultiplying the vector a = (a_j,a  _,.-+8
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by a unit lower triangular matrix Lk of order k+1. The idea of the

following error analysis is to show that in the presence of rounding

error b(k) may be obtained by multiplying a(k) by a perturbed matrix

Lk + Gk’ where the elements of Gk are small.
Let the (i,j) element of L, be z§§>. When (i,3) falls outside

the range 1 < i, j < k+tl and (i,j) # (k+t2,k+2), let zij = 0, and

finally let zk+2’k+2 = 1. Then from (4.1) it follows that
(k1) _ (k) (k) L
zij = lij + s Zi—l,j 5 (i,53 =1, 2, ..., kt2)
Since

1 0
Ll=
S 1

it follows by an easy induction that

’Zgj{) = 5779 0(k-3+1,1-5) (1,5 =1, 2, o0y k1) .
Here C(m,n) denotes the binomial coefficient m'/[n.(m-n)'] and is

assumed to be zero for n > m-.

Suppose now that the b§n> represent computed values. Then

(k+1 k k k k ‘
by ) . bﬁ_z eg ) + s bnfizl a§ >, (i=1,2, ..., k+13;k=0,1, ...,n-1), (%.2)

where
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IA(k)

A
ei l s

l@ik)l < 7]2 - 1.

Let e§k), 6§k> = 1 when i and k fall outside the bounds in (4.2).

It will now be shown that the vector b(k) may be obtained from

the vector a(k) by premultiplying by a matrix Lk + Gk’ where the (i,3)
element of G is ﬂ( k) A(k) and
ij lJ

Ak

7&1) =0,

Ak kti-1 .

|y§1>| -1, (i=2,3, .., kt1) (+.3)

k k+'-2'+2 . R
I ( )l < I -1, (3=2,3, ooy kt13i=7, 41,  + -, k1)

The proof is by induction. Throughout the proof the symbols e and ©

(k)

will be used generically for the e(J) and 8, 13

For k = 1, define Gi1i by

1 0
L1+Gl= )
s0 €

so that
= (L1 + Gy)

Moreover



0 0
Gl= A A
50 €
Hence the 7§§) satisfy (4.3).
Assume that G is given and the 7§?) satisfy (4.3). Consider the

quantity

g{l_?rl) _ (k)

. . (k) e(k) + s l(k
1J 1d ‘ i

k k .
iy Si-1 ; i 7( ) 5{®) , (1,5 = 1,2,...,k+2)

7 ;3 7i-1,3 Cia

Then it is easily verified that the matrix L + G whose (i,3)

kt1 k+1
(k) produces the vector b(k+l)

element is gij N when it premultiplies the

(k+1).

vector a Moreover since

arg(2)) < azg(s') = ara(s 109) )

(5 (09 4 g ) o) () )

where

lg](k—l—l)

ij l S max {17§?) € - ll s IV(k> & - ll}

i-l;j

But for j =1

k ki - .
|7§1) e -1 < +i-1 N- 1= nk_+1 o1,
and
k k+i- ;
|7( ) 5 - 1| < i-2 ng -1 = nk.+1 -1

i-1,1
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For j> 1
17%) I A I [z
and
l7§%3,j 5 - 1| < nk*i‘2j+1 n2 1. T]k+i-2j+3 1

Hence the 7§§+l) satisfy (¥.3). In particular

n

lg’](_l;)I < *q2 -1 .

Now let g(z) be the computed shifted polynomial. Then

n+i n+int+a ( ) ( )
_ n-i+i v n-it1 (n n
g(z) = .23 Phoity 2 - .23 .ZJ Z lij 713 Pn-j+1

i=1 i=1 j=1
n+1 n-+i . (n)

_ 1 n-i+i j—'J c(n-5+41,1i-7

= .23 an—j+1 .}; Z s (n-j+1,1 3) 7ij
J=1 1=J
n+1 n+i +

= 23 a (z+s)n_i+l + E: a n}i zn—i+lsi_jc(n—'+l i—')AQO

T n-j+1 . n-j+1 & I =)
J=1 J=1 1=J

£z + s) + e(z) ,

where

n+li n+1

n-i+1 i-J . . .y Aln
e(2) = 0 2y s L 2 5777 c(n-g+1,1-j) 7§j)
j:l j_:j
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Hence
2n n-il n-i l Il’l—i+l i-j C( 1.4 )
e(e)] = (0 - 1) ) lay 0l D 5] n-j+1,1-]
J:l :I_:J
= (™ - 1) lel | (2] + sy
=\ et Fn-j41

211

(1 1) £ (]z] + |s])

This proves

Theorem 4.1. Iet

n
g(z) = b+ z+ ...+ bz

be the polynomial calculated from (2.5) with rounding error. Then

|a(z) - 2(zts)| = (0% - 1) £ (2] + [s]) - (k.4)

If lz+s' is approximately equal to lzl + ,sl, say when ,zl << ]sl,
then the bound (4.3) is approximately equal to the bound (3.6) for
| t4(£(s+z)) - f(s+z)|. To the extent that these bounds reflect the
actual errors, the shifting algorithm produces a polynomial g(z)
differing from f(z+s) by an amount comparable to the error made in
evaluating f(z+s). In particular if s is near a zero r of f(z) and r'
is the corresponding zero of g(z), then r' + s should tend to lie in

the region of indeterminacy of the zero r.
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V. ERROR ANALYSIS OF THE COHN ALGORTITHM

Suppose that, starting with the polynomial

ho(z) = céo) + cio)z F o F Cio) 2",

the Cohn algorithm is carried out with rounding error, so that

(i))

= 24 3l

=
I

)

and

=
—~

N
~

Il

f/z(hi(z) - m, h:(z)) .

For the error analysis suppose that hi+1(z> has been perturbed by
ei+l(z):

Then it will be shown that pi+l(z) and m, may be obtained by applying
one step of the Cohn algorithm without rounding error to a perturbed

polynomial

p.(z) = hi(z) + ei(z) ,

i
and bounds will be given for the coefficients 2§1) of ei(z).
All but the extreme coefficients of hi(z) and hi+1(z) may be

i+1’bi+1) in such a way that each pair

grouped in pairs, (ai,gi) and (a
of coefficients in hi+1(Z) is calculated from the corresponding pair in

hi(z).
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Then
8, . = fl(ai - m, bi) =a, 8 -m b B,
(5.1)
141 = ti(- m, &, + bi) =-m a B, +Db 5, ,
where
A
|5k| <72 -1, (k = 1,2,3,4) . (5.2)

A A . . -
Let (ai, Bi) and (ai+l’ éi+l) be the corresponding pairs of coefficients
in ei(z) and ei+l(z)- Then the requirement that pi+l(z) be the result

of applying the Cohn algorithm to pi(z) leads to the equations

A A 8 A
(a; +0;) -m (b, +8.,)=a & -m b d +a, ,

m (s, +0.) + (b, +B,) m B, + b, B, + F
TN T 3 PPy = omy 8y Bty B By,

If these equations are simplified and written in matrix notation, the

result is
A A A A
a, d ~-m, b. d o Q.
i1 S - i+1 i
+ = M, 5
m 5 b, 5 B \ A
- m. a + .
i 1 3 i 4 i+1 61
or
. + a, = M, a,
i+l i+1 Ml al

where



1 - m,
Mi = _
- m, 1
1
Hence if |[+||  is the usual infinity vector and matrix norm [ 7],
[e]

ol = G Aoyl + flay L) -

But
oy, = mex 18,15 B,13
1o, 0l s (% - 1) max {|ag], [0;]3
= G- DT

Thus

max [I&il, 'éil} < (1 - [mil)_l [(ﬂ2

- 1) max {]ail, Ibil}
(5.3)
131 -

A A
+ max {Iai+l!, |Bi+1

The extreme coefficients must be treated differently. Let ai and
_ A A
bi denote the low and high order coefficients of hi(z) and_oc:_L and Bi the

corresponding perturbations. First a; and bi are used to calculate m, :

Then m. is used to calculate a., _:
hE 1+1

= - = + .
84, fl(ai m, bi) a; b, +m; b, B,
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Of course b,,, 1s zero. The 8, satisfy (5.2). The requirement on the

pi leads to the equations
A A A
a, +a, ~-m (b, +B.)=2a, 8 -m b. d + Q.
1 1 1 1 1 1 1 1 2 1

i —
= — 64 = m
a.

i i i

A A A A
ai 61 - m, bi 62 ai+1 ai
* + = M, . (5.4)
5 0 A
bi 4 Bi
A A
But equation (5.4) is just equation (5.1) with 5, =B,,, = 0-

A A
Hence the o and Bi for the extreme coefficients also satisfy (5.3).

Let n, be the degree of hi(z),
c(l) = max {lcgl)l, Icii)], R |c£?>l} s
i

and

m>
|

(1) = max {,eéi)], |e§i>[, cen, ,eii)l}

Then from (5.3)

g(i) < [(n2 - 1) c(i) + é(i+l)]/(l - lmil) .

A (k+
Starting with e(k 1) = O, this bound may be applied repeatedly to give

Theorem 5.1. Let k steps of the Cohn algorithm be applied to

the polynomial ho(z) and suppose that




lmil< 1, (i = 1,2,...,k)

Then hk+1(z> and.ml, My «ee mk are the result of applying k steps of

the Cohn algorithm without rounding error to the perturbed polynomial.

ho(z) + eo(z) s

(o)

A
where the coefficients e,/ of eo(z) satisfy

koo i
O < 2o Y HTT - o™ (5.5)
i=0 J=0

with

o)) < o)

From (5.1) it is apparent that

(1)

c(i+l> < (1 + Imil) n2 c

For reasonable values of k and 7,

2
n k < 1.1 .

Hence

Corollary 5.2. Under the hypothesis of Theorem 5.1,

—T—S—I%O)l < 1.1 (n% - 1) i - Iml) (5.6)
5 . n - —_— .
c i=o j=o (1 - Imil)

The bound (5.5) is an a posteriori bound, depending on the com-

puted quantities m, and c(l). The bound (5.6) depends only on the m, -
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Tt becomes large when some ]mi| is near unity. In fact it is rather
pessimistic compared with (5.5), for when lmi[ is near unity it is
(i+1)

common to observe a compensating decrease in ¢

In order to use the bound (5.6) in an a priori analysis it is
necessary to obtain upper bounds for the lmi|- The following procedure

permits the tabling of such bounds in some cases.

Assume that the following bounds on the coefficients c; of ho(z)

are known:
0<d < |co| <D, >
0<d < [c| =D,
|Ci| <D, (i =2,3,...,n)

If an upper bound M < 1 is known for Iml = ]mo|, then the following

quantities bound the coefficients ci of hl(z):

D5 = Dq
D! =D, +MD_. , (1 =1,2,..,n-1) ,

1 1 n-

(5-7)
d' =4 (1 - M) ,
o

d'=4 -MD

1 1 n-1

If di < O, then the procedure fails.
Two upper bounds, Ml, and Mé, will be given for ]m]- The first

bound follows immediately from the bounds on the coefficients of ho(z).

It is
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M, = Dn/do

For the second bound let

k = Dn_l/dl

If k> 1, take M, = 1. Otherwise assume that |m| > k. Then

| | =|mc ~c | = (Im| - x)a. . (5.8)

1 n-1 1

Hence if m' = ¢! /¢!
n-1

[m'| = ,cé_l!/DO > (|m| - k)dl/DO

Thus if |m'| < 1,
[m| <k +D/a =u, -
There remains the case [mfl > 1, for which the Cohn algorithm

terminates. In this case ]mj may be very near unity. However, it will

be shown that if Mé < 1 there is a small number e such that if
!ml = M2 + e
then

|£2(m")| = 1

This implies that for Im[ =3 M2 + e the Cohn algorithm terminates even
with rounding error. Hence there is no need to consider values of ]ml

greater than M_ + e in computing the bound (5.6).



3h

First for some €1 and 62 with

Hence from (5.8)
|fz(c£_l)| = (| - x4, - (n® - 1) (Jm|] + x)D -
Also lcél < lcol so that almost certainly
[£2(cl)] <% D -

Hence
]fz(cé_l), (|m| - K)d, - (n? - 1) (m| + x) D
>

n]te(cl) | n’ D,

1

[f2(m")| =

Thus e is to be chosen so that

3
(M2 + e - k)dl - (¢° - 1) (M2 + e + k) D

3 > 1 .
17 Dy

This will always be satisfied if

In computing the primed quantities in (5.7), M should be taken

to be min {Ml, Mz}' If M= 1 then the process fails. In computing the
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bound of Corollary 5.2 the value min {M , M, + e} should be used. The
process can be repeated until n = 2. At this point the process fails

it Ml =z 1; for if n = 2, then o, =¢

, k=1, and M_ = 1. This
-1 1 2

breakdown in the bounding procedure corresponds to a possible numerical
breakdown in the Cohn algorithm that may occur when it produces a

quadratic polynomial with Iml very near unity.
VI. ASYMPTOTIC BEHAVIOR

Tn this section the behavior of Lemlmer's method in the neighbor-
hood of a simple zero will be considered. Suppose then that the method
has proceeded so far that a simple zero r of f(z) has been isolated
from its neighbors in a disk whose radius is small compared to Ir].

The three points at which rounding error enters the computations are in
the shifting algorithm, the scaling algorithm, and the Cohn algorithm.

Since the method is well advanced toward finding the zero r,
the'center s of any disk inspected will be an approximation to r. This
means that each value & used in the shifting algorithm has the property

that
|r - s <<|s| .

Thus according to the analysis of Section IV, the shifting algorithm
when carried out with rounding errors will produce a polynomial g(z)
with a zero r' - s, where r' tends to lie in the domain of

indeterminacy of the zero r.
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The errors produced by the scaling algorithm and the Cohn
algorithm may be treated together. For the effect of setting underflows
to zero in the scaling algorithm is to produce a polynomial h(z) whose
coefficients differ from the true values by quantities that are small
compared to the largest coefficient of h(z). But the backwards error
analysis of Section V shows that the effect of rounding error in the
Cohn algorithm corresponds to perturbing h(z) by a polynomial e(z)
whose coefficients are also small compared to the largest coefficients
of h(z). Thus the errors made in the two algorithms are one and the
same, and the remaining problem is to assess their magnitude and their
effect on the zeros of h(z).

since w << 5 - 1, the errors introduced by the Cohn algorithm
are dominant. In order to bound them, the procedure described at the
end of Section V will be applied to the kind of polynomials found at

the end of the search. Let the zeros of

hz) =c +cz+ oo +c 2z
0 1 n

be Ts Ty ey r with r corresponding to the zero r of f(z). Then
it may be assumed that

Irl[ < 4,
and

Iril > 1, (i = 2,5,---,1’1)
Moreover if ]r2|,...,|rn[ are sufficiently greater than unity, the

largest coefficient of h(z) will be either c. or c. and

e} 1
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i-1

lci, s=p ’Cl, s (j- = 2,5, --~,l’1),

for some p< 1. .
The procedure outlined at the end of Section V was used to

determine bounds on

n-3 i

k= Y TT@ Jm /e - |ug]) -

i=o Jj=o

The polynomials were normalized by taking c = 1. The D.l were taken
as pi—l (i =2,3,...,n) and n3 -1 as 10°™°. Bounds for K were
obtained for values of R ranging from 2 to 2_8 and values of p
ranging from 10° " to 10°°. For n = 5, 10, 15, 20, 25, and 30 the
largest bounds on K were 3.6, 9.2, 14.8, 20.9, 27.5, and 34.2
respectively.

Thus by Corollary 5.2, the effect of rounding error on the Cohn

algorithm is exactly that of perturbing h(z) by a polynomial e(z)

whose coefficients satisfy

where ¢ is the magnitude of the largest coefficients of h(z) and
A 2
7=1.1(n"-1)

Moreover on the evidence presented above, K assumes values that are
about n in magnitude. There remains the problem of comparing the zeros

of h(z) and h(z) + e(z).
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Tt is hoped that h(z) and h(z) + e(z) have the same number of

zeros in the unit disk. By Rouché's theorem this will happen when

Ie(z)/h(z)l <1

for all lzl = 1. Now because of the overlapping of the disks in the

search, r, may be taken to lie away from the boundary of the unit disk:

Il
[

r. - zl =24, Iz]

Then if h(z) is normalized so that cn =1,

Il
=

|n(z)] ='§_f Iri - z| 2 d'T:£'|ri -z, | z|

1=1
Moreover
A
le(z) < nyKc.

There are now two possibilities concerning the number c. First

Then

e(z) nyK|r v ... n 5 r n =
o) _m e nlszlllTT(l_l>,
[n(z)| a Iz—r2[...[z-rn| d i=2 lril

o) =1 -
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On the other hand if

c = ]cl] < n|r2 S A

Ie(z)| n® ; K n 1 -t
Ih(z)l < - ’IZE- 1 - lrilj) IZI =1 .

In either case it is seen that for reasonable values of the lri', the

quantity Ie(z)/h(z)l remains less than unity even for small values of 4.
All this indicates that, at least asymptotically, rounding
errors have a negligible effect on the Cohn algorithm. The breakdown
in the search must then come from the perturbations in the zero intro-
duced by the shifting algorithm. Such a breakdown can occur when the
region bounding the perturbations intersects both the current annulus
and the exterior of the region defined by the covering circles.
Unfortunately for the disks used in the search pattern of Section II
this can happen where the perturbations are as small as 1/15 times the
inner radius of the annulus, although it is not likely. Nevertheless,
even in this extreme cagse the center of the annulus is near the region
defined by‘the perturbations and is not a bad approximate zero. Since
there is reason for believing that the perturbations introduced by the
shifting algorithm lie within the region of indeterminacy of the zero
r, the above informal arguments support the contention that the search
pattern will break down only when the center of the annulus is near the

region of indeterminacy.



CHAPTER IT

ACCELERATING THE ORTHOGONAL ITERATION FOR THE EIGENVECTORS

OF A HERMITTAN MATRIX
I. INTRODUCTION

Let A be a nonsingular, normalizable matrix of order n. Then to
the n eigenvalues, Ay, ..., An, of A there corresponds a set of linearly
independent eigenvectors xi, ..., X, Assume that the eigenvalues of A

have been ordered so that

Il =z ae]z... 2 lxnl >0 (1.1)
and that the eigenvectors have been scaled so that

aall = el = oo = flx [l = 1.

Bauer's treppen-iteration [1] and its orthogonal variant [9,p.607]
to be considered here are based on the following fact. Let Q be an

n x r matrix (r < n) and suppose that |Xr| > lxr+1" Then under mild

restrictions on @ as k increases the column space of AkQ approaches the

invariant subspace spanned by x3, Xz, «.., X - Both methods generate a

(%)

sequence of iterates Q as follows. First Q(k) is multiplied by the

matrix A. Then the product AQ(k) is reduced by column operations to a

(k+1)-

normal form to give Q

(k)

The normal form is chosen so that the

columns of Q remain strongly independent. For the treppen-iteration

Lo
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o)

is required to be unit lower trapezoidal; for the orthogonal itera-

(k)

tion the columns of Q are required to be orthonormal.

Both iterations, with their two steps of multiplication followed
by normalization, are generalizations of the power method [9,p.571].
Like the power method they are most useful when only a few of the dominant
eigenvalues and eigenvectors of A are required. However, for very large
sparse matrices they may be the only feasible methods.

(o)

The orthogonal iteration starts with a matrix Q having ortho-

normal columns ahd generates a sequence of iterates by the formula
k k k-1

(k) (k)

where R is upper triangular with positive diagonal elements and Q

has orthonormal columns. Since A is nonsingular and Q(k_l) has full rank,

(k-1)

this decomposition of AQ is always possible, and moreover it is

(k)

unique. The columns of the matrix Q are the result of applying the
. . . (k-1)
Gram-Schmidt orthogonalization to the columns of AQ L4, pp. 134-137].
By applying the iteration formula (1.2) repeatedly, it is easy to

show that

QB 7)) _ k() (1.3)

where
#(x) _ p(k) p(k-1) (1)

1 . .
Since each of the matrices R( ), ceny R(k) is upper triangular with

positive diagonal, so islﬁ(K). Hence Q(k) is the matrix obtained by

(o)

orthogonalizing the columns of AKQ
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If A is Hermitian, i < j < r, and

> |

I i

i—l‘ I T o F ‘Ajl > |xj+1l)

then the space spanned by the vectors qgk), ceey q<k) of Q(k) converge
to the space spanned by Xi; ey Xj' If 1 = j, then qgk) approaches an
elgenvector of A. Thus for Hermitian matrices the orthogonal iteration
produces vectors which converge to eigenvectors of A or at least, in the
1imit, span invariant subspaces corresponding to eigenvalues of equal
modulus. However, for eigenvalues of nearly equal modulus, the conver-
gence to the individual eigenvectors is slow, and it is the object of
this chapter to examine a device for accelerating the convergence.

In the next section the accelerating procedure will be described.
It produces a set of refined eigenvalues and eigenvectors, and the
remainder of the chapter is devoted to determining their accuracy. In
order to do this, it is necessary to examine the convergence of the
orthogonal iteration in detail.

Throughout this section the notational conventions of [4] will be

followed. The symbol H : H will always denote the Euclidean vector norm,
H
= %

=X X,

or the spectral matrix norm,

The space spanned by the columns of a matrix will be called the space of

the matrix.
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II. A REFINEMENT PROCEDURE FOR APPROXIMATE EIGENVECTORS

Let

A = diag(xl)"';xn): Ay = diag()\l)"w)\r)) A = diag(k[_l_l}"': >\n)1

and

X = (Xl,...,xn), Xy = (xl,...,xr), Xo = (xr+l,...,xn).

Because A is Hermitian, the xi are real and the X, may be chosen so that
XX = T.

Moreover
AX = XA

with similar relations holding for X;, A, and Xo, Ao,
The following refinement procedure may be applied to any matrix

Q with orthonormal columns whose space approximates the space of X;. Let

H
(Xl Q P, (2.1)
P = XHQ = = 5
LXE Q Pa
and consider the matrix
H H H H
B=QAQ = PAP = P1A;P; + PolAsPs. (2.2)

Let

H .
YBY = M = dlag(ul,...,pr), (2.3)
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where Y is the unitary matrix whose columns are the eigenvectors of B.
If Po is zero and the eigenvalues Ay, ---, Xr are distinct, then the by

H
may be ordered so that M = Ay, ¥ = Py, and

Q¥ = XPPY = X,.

Hence if Po is small, which means the space of Q is a good approximation
to the space of Xy, the matrices M and QY should be good approximations
to Ay and X.

It is proposed that for some suitable k this refinement process

(%)

be applied to the matrix q generated in the course of the orthogonal
iteration. To evaluate the amount of work required to perform this

acceleration step, note that three distinet calculations are involved:

(x)H

(k)

1) the calculation of Q AQ,

2) the calculation of Y and M,
: (k)
3) the calculation of Q Y.

If n >> r, then the first calculation will dominate the other two. But
the bulk of this calculation lies in computing AQ(k), which must be done

anyway to find Q(k+l).

Hence the amount of work involved in one accel-
eration step is about equal to the amount of work required to perform
one step of the orthogonal iteration.

Wilkinson [9,p.609] has proposed a related technique for finding
complex conjugate eigenvalues of a real nonsymmetric matrix. In his

method the first two columns of Q(k) are used to determine a 2x 2 non-

symmetric matrix from which the eigenvalues are calculated.
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IIT. CONVERGENCE OF THE ORTHOGONAL ITERATION

The convergence proof in this section is adapted from Wilkinson's
proof of the convergence of the QR algorithm [8]. The idea of the proof
is to exhibit AKQ<O) as the product of a matrix with orthonormal columns
and an upper triangular matrix with positive diagonal elements. Since
such a decomposition is unique, it follows from (1.3) that the factor
with orthonormal columns must coincide with Q(k). The properties of

Q(k) may then be read off from the factorization.

Let

2(0) _ 4 (o),

Suppose that P(o) can be written in the form

o(0) _ 1(0) (o) (5.1)

where L(O) 1s lower trapezoidal with diagonal elements equal to unity in
absolute value and U(o) is upper triangular with positive diagonal

elements. Then

Ak Q(o) _ x pE P(o) _ oy Ak L(o) U(O)

]

x (8 1{Oa75]) ([a¥] ul®)

x 1) o),

i
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Now L(k) may be decomposed into the product of a matrix with orthonormal

columns and an upper triangular matrix with positive diagonal:
() p(k) 3(x), (3.2)

Hence

AkQ(O) = (X P(k))(ﬁ(k) U(k)).

But XP(k) has orthonormal columns and‘ﬁ(k) U(k) is upper triangular with

positive diagonal. Hence by the foregoing comments

() - ().

Now the (j,i) element of L(k) is

zg.?) = fzgi)(xj/nil)k, jzi,
lgli) =0, j<i

Since the Ki are real and lxj‘ = Ixil for j =z 1, it follows that the

(2k)

elements of L must approach zero or remain constant with increasing

k. In particular suppose that for some i < r

o> Iyl = 2 |>\j| > l)‘j+1‘ (3.3)

and let

J' = min {j,r} .
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Then the elements of L(Ek)

in rows 1 through j and columns i through j'
tend toward zero with the exception of the elements in their intersection,
which remain constant. In the 1limit P(Zk) must have the same block
structure, and the nonvanishing block has a limit. If P(gk) is pre-

(2k)

multiplied by X and the block structure of P taken into account, the

result is

Theorem 3.1. If (3.3) is satisfied then the columns

(2k) (2k)  (2x) e : .
Ay 5 v qu of @ each approach a limit which ig a linear combi-
nation of x., .., X..

—_— =1 J

(2k+1).

The same result holds for the columns of q From the proof

it is evident that the rate at which the 1imit 1s attained depends on
the larger of the two ratios lki/Xi_l\ and ‘xj+l/le.

(o)

Theorem 3.1 is true only under the assumption that P has a
decomposition of the form (3.1). When this fails, the iteration is said
to be disordered. Wilkinson handles the problem of disorder by permuting

(o)

the rows of P in such a way that the resulting matrix has a decompo-
sition of the form (3.1) and the above convergence proof goes through.

For the orthogonal iteration there are two types of disorder. Let
k
p(K) (3.4)

(x)

where Py’ 1s square. If Pl(o) is nonsingular, then in event of dis-

(k)

order the space of Q converges to the space of X, but the eigen-

vectors are found in a different order. When Pgo) is singular, the
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(k)

space of Q will converge to a different invariant subspace. The case
of disorder will not be treated here; however, all the results of this
chapter remain essentially unaltered for the first kind of disorder.

Some auxiliary quantities will be needed later. Let L(k) be

partitioned in the form

(k)
L (%) L1

@
(k)

where Lj is square. Define

K(k) - Lgk) (Ll(k))_l-

Then
K(k) _ Alg{ Lgo) \Al—kl (Ali L§O) ‘Al—kl)-l
(3.5)
= 8 180 @Oy s k(0
From (3.2)

k k) ~k .
Lg ) . P§ ) (), (i=1,2),
where P§k) (i=1,2) is defined by (3.4). Hence

() = pl) (p(k)y-r, (5.6)
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Moreover since

T+ K(k>H K(k) = (P§k> ng)H)'l. (3.7)

IV. SOME MISCELLANECUS THEOREMS

Some theorems that will be needed later will be developed in this

section.

It is a well known fact that for O < 6§ £ 1 cos 6 is nearer to

unity than sin 8 is to zero. Namely

1-¢os ®=1-~N1- sin® 8 < sin® 8 .

The following theorem generalizes this fact.

Theorem 4.1. Let the matrix

- (0)

have orthonormal columns, and suppose that Qi has at least as many rows

as columns. Then

Q1=N+F; (J-F-l)

where N has orthonormal columns and

I7 1l = llee lI%.
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Proof. The matrix Q3 has the singular value decomposition
Q]_:UPV-H,

where VH is unitary, T° is nonnegative diagonal, and U has orthonormal

columns [4, p.31, ex.19]. Let
N=uUv
and
F=0U(r - I)VH.
Then NN = T and (k.1) is satisfied. Now

1= ()" (@) = 12 + v Qi

T2 + 52,

Il

Hence »2 is diagonal and
1
I-T=1I-(I-233E,
Since 1 - W1 - x® is an increasing function of x,
lz-r=2-v1- =5 .

But

T -l =z

and

I22]] = fleal® -
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Hence

el =1 - 3= Teall® < flazl®.

Consider the elgenvalue problem

BY - YM = O, (4.2)

where B is Hermitian, Y is unitary, and M is diagonal, all of order r.

Suppose that the eigenvalues of B have been ordered so that

p =z ... =z .
Mex Mo Mo

The following theorem is well known.

Theorem 4.2. Let F be Hermitian. Then the eigenvalues of B + F

satisfy

b - IF] < AB+7F) <p, + ||F]-
The hard part of the famous minimax theorem is the following

Theorem 4.3. Let the r x s matrix Q have orthonormal columnsg
e @ T T

and let
\)12\)22--.2\)

be the eigenvalues of QHBQ. Then

and
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Thisg theorem may be applied repeatedly to give

_gorollary L.k, Under the hypothesis of Theorem I, 3

Vi <y, (i =1,2,...,8),
and
Vo i4q p=: M sa1s (i =1,2,...,8).
Let G be a nonsingular Hermitian matrix. With the substitutions
Y =G Z,
and
C=GBG

the eigenvalue problem (L4.2) becomes

Cz - GZzM = O. (4.3)

Obviously

H 2

7z 6z = I. (L)

Any matrix (possibly rectangular) satisfying (L4.4) will be said to have

columns that are orthonormal with respect to G, or for short G-orthonormal

columns. If V has G-orthonormal columns, then GV has orthonormal columns.
Given any r x s matrix V of rank s, there is an s x s matrix T

such that VT has G-orthonormal columns. In fact let the unitary matrix

H diagonalize the matrix VHGzV:

1vigeyn = a2, (4.5)
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Since G is nonsingular and V is of full rank, A is nonsingular. Then

-1

T = HA (4.6)

is the required matrix. If V has orthonormal columns then Corollary 4.k
shows that the smallest eigenvalue of AZ is not less than the smallest

eigenvalue of GZ. Hence for this case
-1
|l < fla™" .
The following notation will prove useful. Let

é = {ilJ M is}

be a set of distinect integers taken from {1, 2, ..., r} and let y-be its
complementary subset. If V is any matrix having at least r columns,

define

Vg = (Vil; Vig’ p) Vls)
The matrix
74 70 67

is the oblique projector onto the space of Zg along the space of Zg .

Since
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is an r x r matrix projecting onto r space, it must be the identity.

If V has G-orthonormal columns, then

7 e Z ¢
G2V G2V
zyl,{ zf
z 4
V'e® (Zg, Z4) G=V
H
Z 4

it
<E
@
M
<
[
H

Hence
G2V

has orthonormal columns.

The following analogue of theorem 4 holds for the eigenvalue

problem (4.3).

Theorem 4.5. Let the r x s matrix V have G-orthonormal columns

and let

Vi 2 Vo 2 v 2V

be the eigenvalues of VH C V. Then




52

<
S

v
e

r=-st+1
and
< .
vs = Mg
Proof. Let
Q = GV.
H
Then Q@ Q = I and
viey = omg.

Hence theorem 4.3 applies to give the result.

Although the individual eigenvectors corresponding to a set of
clustered eigenvalues are poorly determined by the elements of the
matrix, the invariant subspace spanned by them is well determined. The
following generalization of a theorem of Swansgon [5] gives this assertion

a quantitative form.

Theorem 4.6. Let V be an r x s matrix and

D = diag (6il,6. ,...,ais). Let ¥ = {i1,i2,...,i5} and 4= {1,2,...,rI 4.

1o
Suppose
Si—uj > o> 0, (i ed, 3 e})
Ir

lev - 6#vp]| < n,
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then
17 ¢l < L2 ey, (:.7)
Proof. Let M' = diag (uj)(j ef). Then
z%(cv - @) = M By - ZHE}GEVD.
Hence

lor 2% 627 - 2 c2un)e |l < 1 Iz 4ll,

where e is the ith column of the s x s identity matrix.
But
07} o7 - Fyamimye|
H 2
= |0 - 8. 1) 2°p6%ve,|
H =
2 o ||z a®ve, |-

Thus the norm of the ith column of ZH} GZV is not greater than T]HZ} I/ a.

Since ZHJ, G%V has s columns,

HZ%,GEVH < [%;— 1zl - (+.8)
But
Izgll < le™71) lozgll = 1l (4.9)

Since GZ has orthonormal columns. The inequality (4.7) follows from

(4.8) and (4.9).
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Corollary 4.7. If VT has G-orthonormal columns, then there is a

unitary matrix N such that

vy -z = 2L o2 o

Proof. Since VT has G-orthonormal columns, the matrix

z}fa G2VT 7
= GEVT
"
Zy GEVT ZH}

has orthonormal columns. Moreover by Theorem 4.6

12, o2vnl < =L g e .

a

Hence by Theorem 4.1

ZHJ_ NH + F

GAVT = (4.10)
H H 2
Zy 24 GVE

where NH is unitary and

I 1 < 125 e < YEL o) |-

Premultiply (4.10) by (Zg, Za) and postmultiply by N
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to get

VIN = Zo(I + FN) + ZMZH} GEVIN) .

Hence upon taking norms

v -zl s zall )z L e e

Since

< e L Nzl = e,

124

the result follows.

V. ACCURACY OF THE REFINED EIGENVALUES

Suppose now that the acceleration step is applied at the kth
step of the orthogonal iteration so that matrices B, Y, and M are
determined from A and Q(k) by equations (2.2) and (2.3). Note that the
auxiliary matrix P defined by (2.1) is identical to the matrix P(k) of
equation (3.2). For brevity the iteration superscripts will be dropped
in the next two sections.

The first step in assessing the accuracy of the refined eigen-

values and eigenvectors is to reduce the eigenvalue prcblem to a more

tractable form. Let

Z = PlY.
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Then the eigenvalue problem
PH APY = YM
may be written in the form
(1,8%) A(é) 7 = (P,PRY oM
where K is defined by (3.6). By equation (3.7)
(I,KH) A(é)z = (I,KH)@)ZM. (5.1)

It

C = (I,KH) A (Il{—> =M+ KHAgK
and a Hermitian matrix G is determined [4], so that

G2=I+KHK,

Then equation (5.1) takes the form of the eigenvalue problem (4.3) of

the last section. Moreover
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As in the last section let 9 denote a set of s integers taken

from {1,2,...,7}. Let the columns of FEg be taken from the r x r

identity matrix. Then there is a matrix T, defined in the last section,

such that Eg T has G-orthonormal columns.

Lemma 5.1. For V =E let T be defined by equations (4.5) and

(4.6). Then
T =H(I -T)
where I' is diagonal and
[[,l12
Il s 7

Moreover

[KaT||® =

Proof. By the definitions of H, G, and A2,

A2 - T+ HED

Since A is diagonal, so is @2, and

loll = lIxall.

A
—
+
=~

&

H H H
EgK K FoH = I + H KgKg H = T + ©°.

(5.3)

(5.4)

(5.5)
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Also if

i -1
P=I-(I+63)%=1-,

1
then T is given by (5.3). Since 1 - (1 + x®) ® is an increasing function

of x
ook l|xqll?
Il =1 - (0 + x4l < TR
Finally

Pk = 4™ HKKH A °

- -1
=A% e® = (1+ 67 e

and since x2/(1+x®) is an increasing function of x, (5.5) holds.

In order to compare the elements My of M with the xi, it is
important that the y be ordered properly. Let the ki be ordered as in
i

(1.1) and let 0 be a permutation of the integers 1,2,...,r such that

}\0(1) = >\O<2) Z ... 2 )\O'(I‘).

then the W, are to be ordered so that

bo(1) = HFo(2) * 0 = Eo(r),

and By will be compared with Xi.
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Let T =0 . The b, are the eigenvalues of the section Q@ A Q
of the matrix A. Suppose that KmA> 0. Then Km is the T(m)-th largest
eigenvalue of A and b is the T(m)-th largest eigenvalue of B. Hence by

Corollary 4.4

Similarly if xm is negative then it is the (r - 7(m) + 1)-th smallest
eigenvalue of A while u is the (r - 7(m) + 1)-th smallest eigenvalue

of B. Hence

Thus to determine the accuracy of b it is only necessary to determine
a sharp lower bound for um_when xm is positive or a sharp upper bound

when Xm is negative.

The case xm < 0 is typical. Let

9 ={i:n <),
m

and let the columns of Eg be taken from the r x r identity matrix. Let
T be defined as in Lemma 5.1 so that E T has G-orthonormal columns.

Then the matrix

S = (TE@)H C(TE,)

is of order (r - T(m) + 1). Hence by Theorem 4.5 its largest eigenvalue
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is greater than the (r - t(m) + 1)-th smallest wy; that is the largest

eigenvalue of S is greater than by

Let

A = diag(xi) (i ed).
Then
S = TIA'T + T AoKeT.

From the preceding lemma
H H H
S=HANH+THAHT+ T AND + THKEAQKJT.
= HHA'H + F.

Now HHA'H is a Hermitian matrix whose largest eigenvalue is Km’ and F
is a Hermitian matrix. Thus by Theorem 4.2 the largest eigenvalue Vv

of S satisfies

by S v+ |Ir.

But by Lemma 5.1

7] < 2lfrearn] + TG ALK, T

sllall s le

R N B



6L

If a similar argument is carried out for Xm z 0 with

@‘ :{i:)\izxm}’

then the result is
Theorem 5.2. Let
— s . s —_ 3 >
g = {i: sign (xi) = gign (xm) and Ikil |Xm,},
and

N

€ =
1+ |iKgll2

Then if A\ > O,
— = 'm

Ifx <O
— m

Thus the error in Vi is proportional to the square of HKé”
when HK&H is small. At the k-th iteration HK;H may be estimated from

equation (3.5):

K0 < b,

/1% .
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Since ]xm[ decreases with increasing m, the o may be expected to show
a progressive loss in accuracy from p; to up, with p,. being least
accurate. In fact if xr+1 = - xr’ the value of W, will be entirely
spurious. However, if IXSI is significantly less than |Xrl, then the

(k)

columns of Q will tend to lie in the space spanned by X1, ..., X

g-1"

Hence if Ny, ««., xs-l all have the same sign, as when A is positive
definite, Mr will tend to lie between %r and xs-l and may not be too

inaccurate.

VI. ACCURACY QOF THE REFINED EIGENVECTORS

In assuming the accuracy of the refined eigenvectors, some care
must be taken to treat clusters of eigenvalues together, for it is only
the subspace corresponding to a cluster of poorly separated eigenvalue
that is really well determined. Specifically, let @ be the index set of
such a cluster. Then the gquestion to be answered in this section is
how well do the spaces of QY¥¢ and X¢ compare.

Ag in the last section, it is convenient to phrase the qguestion
in terms of the transformed problem (5.1). Let the columns of I¢ be
taken from the n x n identity matrix. Then the above question becomes
one of comparing the spaces of PYyg = XHQYa.and I = XHXa,. The
guestion will be answered by showing that under suitable restrictions,
there is a unitary matrix S such that ”IJS - PY¢H is small. By virtue

of equation (5.2) this is equivalent to showing that
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[ e - (5) 2]

is small.
Let the s columns of Eyg be taken from the r x r identity matrix.
If T is the matrix of Lemma 5.1, then the columns of E,T are

G-orthonormal. Let
F=0,2, .o, 1=

be the index set complementary to &#. Now because {xi: ie @} is a
cluster of eigenvalues, they are well separated from the other eigen-
values kj (3 e #). Suppoge that the orthogonal iteration has proceeded

so far that the A (i €d) are also separated from the Mj (3 ej.), say

lxi—uj > q, (ied ,jefp). (6.1)

Let

A" = diag (7‘1)’ (i ed).

Then

(I,KH) A (;) Eg - (I,KH) (;) EgA'

H H
=K A2K& - K K‘a_A'.
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In the notation of the last section (and Theorem 4.6)
H
logs - o®mghr ) = K Aeky - KA
< 2M k|| i,

where

vo=max [N, (4 ed).

Hence by Corollary 4.7 there is a unitary matrix N such that

ez -zl = 23 i ol fle* P 2

But since E has orthonormal columns HT H < HG-lH Hence
s -
B -zl < =22 1677 N ) il
Let
S = HN

(6.é)

where H is the matrix of equation (5.3). Since H and N are unitary,

so is 8. Moreover
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TS < || TgHw - T Tl

[x)7

HI,«TN - (;{:) E¢TN

+

+

() -

el + €2+ 63.

Thus the problem is to find bounds for e;, €2, and €3.

Now

[Temm - T,mm = [|ToHTN|

where T" satisfies (5.4). Hence

I, 2 ]
©1 = TTRIE S lxql®-

Also

T4TN (I)ETN (Oj
J — -
x) * K TN

Hence

e2 = [I677 || K-
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Finally

es < ||G || BTN - Z,)}.

In terms of the original eigenvectors, the result of all this is

Theorem 6.1. Let the index set & be chosen so that (6.1) is

satisfied. Then there is a unitary matrix S such that

s - ax = [l + o+ 222 o o2 el ] i,
where )\ is defined by (6.2)

Thus the accuracy of the space of QY 1s approximately propor-
tional to ||Ky|| when ||[Kyl| is small. The quantity A/o is large when
there is poor relative separation between the cluster of eigenvalues

indexed by ¢ and its neighbors.
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