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CHAPTER I 

INTRODUCTION 

The volume plasmon theory,  proposed by Bohm and Pines (1 95 1) and 

t h e  su r face  plasmon theory proposed by Ritchie (1 957) pred ic t  t h e  exc i ta t ion  

of s u r f a c e  plasmons and volume plasmons by e lec t rons  which p e n e t r a t e  solids. 

These exci ta t ions in th in  metal l ic  f i l m s  have been t h e  subject  of s tudy  by 

Garber (1965) and Pray  (1966). I t  was  t h e  purpose of this investigation t o  

examine t h e  dependence upon t h e  angle of incidence of t h e  pr imary beam t o  

t h e  su r face  plasma exc i ta t ion  utilizing an ultrahigh vacuum sys t em t o  obtain 

cleaner  surfaces. Also of i n t e r e s t  was the  e f f e c t  upon t h e s e  exc i ta t ions  

of var ious amounts  of secondary e lec t ron  suppression. 

A nearly monoenergetic beam of e lec t rons  was incident upon a thin 

(< 300 4) aluminum f i l m  deposited under ultrahigh vacuum conditions (- 10 

t o r r )  as t h e  t o p  l aye r  of an  A1-A1 0 -A1 diode. The c u r r e n t s  f r o m  t h e  t o p  
2 3  

and bo t tom layers  were  then measured as a funct ion of electron energy. 

The top  c u r r e n t  was  expressed as a f r a c t i o n  of the total  c u r r e n t  and p lo t ted  

versus  t h e  pr imary  energy. The e f f e c t  of various amounts  of suppression 

voltage on t h e  c u r r e n t s  has been invest igated under normal vacuum conditions 

-9 

t o r r ) .  Substant ia l  d i f fe rences  w e r e  noted which indicated t h a t  except  

a t  t h e  lowes t  e l ec t ron  energies (< 60 e .V,)  and t h e  highest (> 500 e.V.), no 

e lec t ron  t r a n s p o r t  took place a c r o s s  t h e  t o p  layer  which could lead t o  

t r a v e r s a l  of t h e  AlZ03 dielectric.  

1 



CHAPTER I1 

GENERAL CONSIDERATIONS 

In t h i s  chap te r  consideration is given t o  previous work on low energy 

e l ec t ron  s tudies  in th in  solid films. At t en t ion  is given t o  t h r e e  types of 

interactions:  surf ace plasma excitation, volume plasma excitation, and inner 

shell interactions.  

I. PREVIOUS WORK ON LOW ENERGY ELECTRON TRANSMISSION IN SOLIDS 

f o r  several  years  i n t e r e s t  has been centered on t h e  cha rac t e r i s t i c  

energy losses  of e lectrons in solids, Experimenters  sought t o  determine 

electronic energy levels in solids using a n  incident e l ec t ron  beam of high 

energy. 

[ L. Marton e t  al. (l955), I;. Marton (1956), R. H. Ritchie (19571, Klemperer 

and Shepherd (19631, R. D. Birkhoff (1964), G. Hbihler (1965), R. H. Ritchie, 

M. Y .  Nakaiand R. D. Bkkhoff (1967)l. 

Several review articles give adequate discussion of previous work 

The theory which b e s t  seems t o  explain t h e  cha rac t e r i s t i c  energy 

losses  is t h e  collective excitation or plasmon model originated by Bohm and 

Pines (195 I), 

and experimentally. 

i n t e rp re t ed  by Ritchie  (1957) as s u r f a c e  plasmon excitations. 

This model has been studied by invest igators  both theoretically 

Some losses  below t h e  plasmon energies have been 

2 
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11. TYPES O F  INTEFUCTIONS OF LOW ENERGY 

ELECTRONS WITH ALUMINUM 

Mean Free Paths of Elec t rons  Near t h e  Fermi Energy 

First we consider e lec t rons  with energies between t h e   fer^ level and 

t h e  plasmon threshold. An e l ec t ron  with energy one vol t  o r  less above t h e  

F e r m i  level wi l l  have a very long mean free path. This is easily understood, 

because a f te r  collision, both the  pr imary  and secondary e lec t rons  m u s t  have 

energies above t h e  Fermi level. 

c loser  and c loser  t o  t h e  Fermi energy, t h e  number of e lec t rons  with which it 

Thus, as an energet ic  e lec t ron  slows down 

may i n t e r a c t  is ef fec t ive ly  reduced. Attenuat ion lengths  have been calculated 

t o  be 520 A [see Ritchie e t  al. (196711 f o r  s i lver  f o r  e lectrons with energies 

near t h e  Fe rmi  level. 

electron-electron sca t te r ing .  We concern ourselves with a t tenuat ion  lengths  

The a t tenuat ion  is due t o  electron-phonon as we l l  as 

because t h e  several  processes  involved prevent  a precise  determinat ion of t h e  

mean free pa th  f o r  a par t icu lar  process. The a t tenuat ion  length is more  

easily in t e rp re t ed  experimentally as t h e  dis tance in which a .beam of 

1 
e lec t rons  is reduced t o  - of its original intensity.  

e 

For comparison with o t h e r  me ta l s  w e  c i t e  t h e  results of several  

researchers .  Quinn (1962) has calculated t h e  electron-electron mean f r e e  

pa th  t o  be 560 obtained 

through the experiments  of Crowell, Spitzer, Howarth,  and LaBate (1962). 

For gold, Crowell e t  al. (1962) obtained a 740 A a t tenuat ion  length. In so 

in  si lver,  a slightly higher f igure  th.an the  440 
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doing they assumed that  t h e  optical  absorption of gold on silver was t h e  same 

as tha-t- f o r  gold on glass. This assumption was found unreasonable by Soshea 

and Lucas (1965) who, using c o r r e c t  optical  data ,  obtained an e l ec t ron  

at tenuat ion length of 350 d.  

A method avoiding t h e  problems inherent i n  t h e  optical  method f o r  

determining a t t enua t ion  lengths and mean f r e e  pa ths  h a s  been given by Crowell 

and Sze (1965). 

by a G e  o r  Si s u b s t r a t e ,  through a Si point contact.  

duced at tenuat ion lengths in  gold of between 229 and 372 b ,  values in 

reasonable agreement  with t h a t  of Soshea and Lucas. 

They injected electrons into a th in  metallic film, supported 

This method has pro- 

A tabular  l i s t ing  of t h e  d a t a  of several  invest igators  f o r  Ag, Pd, Cu, 

and Au is given in Table I. 

Surface Plasmon Cross  Section 

Above 10 e.V. in aluminum, su r face  plasmon exci ta t ion by incident 

The equation relat ing electrons is thought t o  occur with high probability. 

surface plasma frequency t o  volume plasma frequency f o r  a n  ideal free 

electron metal has  been given by Ritchie as 

v ,  
plw = hw s m  

w h e r e  w 

A is Planck's constant  and E 

bounding t h e  investigated surface. 

is the  volume plasma frequency; w is t h e  su r face  plasma frequency, 
V s 

is t h e  dielectr ic  cons t an t  of t h e  medium 
0 
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TABLE I 

ATTENUATION LENGTHS AND MEAN FREE PATHS FOR ELECTRONS 

Element  Attenuat ion Electron-  Electron-  Investigator 
Lengths ( I )  Elec t ron  Phonon 

Mean Free Mean Free 
P a t h  (A) P a t h  (A) 

Ag 560* Quinn (1962) 

95 O* Quinn (1963) 

5 20JC Ritchie e t  al. (1965) 

440 Crowell et al. (1962) 

570* M o t t  and Jones (1958) 

Pd 170 

c u  5 0-200 

Crowell e t  al. (1962) 

Crowell e t  al. (1962) 

420* M o t t  and Jones (1958) 

7 20JC Quinn (1962) 

1580* Quinn (1 963) 

5 SO* 

Au 740 415* 

35 0 

Ritchie e t  al. (1965) 

Crowell e t  al. (1962) 

Soshea and Lucas (1965) 

229t Crowell and Sze (1965) 

357$ Crowell and Sze (1965) 

523* Ritchie e t  al. (1967) 

*Theoretical value 

?Observed a t  298 "K 

$Observed a t  105 OK 
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In t h e  case t h a t  t h e  c r y s t a l  is bounded by vacuum, E is unity. The 
0 

s u r f a c e  plasma frequency then becomes 

For normal incidence, t h e  probability f o r  a surface plasma exci ta t ion 

by a relatively merge-t ic  incident e l ec t ron  is 

where E >> E . Here E 

energy above t h e  vacuum level of t h e  incident electron; and Ry is Rydberg's 

constant ,  13.60 e.V. 

is t h e  energy of t h e  surface plasmon; E is t h e  
s s 

For a n  incidence angle of 8 ,  primarily f o r  8 near r/2 

0 

For intermediate  angles 

An inspection of equations ( 3 )  and ( 5 )  shows t h a t  P(E) increases  with 0. 

While a t  high energies the  Born approximation may be used t o  calculate 

t h e  inverse mean free path,  it may only be relied upon a t  lower energies 

(E 2 E ) t o  produce values of t h e  c o r r e c t  o r d e r  of magnitude. S t i l l  these 

equatians give some indication of t h e  angular dependence of t h e  probability 

a t  low energies above t h e  surface plasmon threshold. 

s 
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The oxidation of t h e  surface a f f e c t s  t h e  energy of a surface plasmon. 

According t o  equation (1) when one finds a n  oxide layer  on aluminum o r  

magnesium, with a d ie lec t r ic  cons t an t  g r e a t e r  t han  one, t he  su r face  plasma 

frequency is lowered. 

I t  has been shown [Stern  and Ferrell (1960)] t h a t  a layer  of d ie lec t r ic  

cons t an t  E and thickness of 20 A is su f f i c i en t  t o  f o r c e  the  u s e  of equation (1) 

instead of (2). Consideration of t h e s e  f a c t s  demons t r a t e s  t h e  importance of 

performing experiments  under ultrahigh vacuum conditions. If t h e  ultrahigh 

vacuum s y s t e m  suf f ic ien t ly  decreases  t h e  oxidation rate, it is possible t o  

neglect t h e  d ie lec t r ic  cons t an t  of t h e  su r face  oxide layer. 

Volume Plasmon In te rac t ions  

In the  energy region between 15 e. V. and 100 e. V. , volume plasma 

exc i ta t ion  may occur. 

Ri tchie  (1959) and Quinn (1962) derived results which make it possible 

t o  calculate  t h e  stopping power of aluminum f o r  e lec t rons  of pr imary  

energy below t h e  L 

are two dominant in te rac t ions  in  t h i s  energy region, e lectron-electron and 

volume plasma exci ta t ions.  

t h e  Fe rmi  energy t h a t  it is possible t o  w r i t e  a s imple expression f o r  t he  

shell  threshold, 72 e.V. As mentioned above the re  
23 

I t  is only in an  energy region one t o  t h r e e  t i m e s  

stopping power due t o  electron-elec t r o n  in te rac t ions :  

-(-) d@ =------- 0.073 (E I 113 . 
d x e e  E 

In this re la t ion  the stopping power is in F e r m i  energies per angs t rom where 
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E is the  energy of the  incident e lectrons in Fermi units. I t  is clear t h a t  

e lec t rons  of a few t ens  of vo l t s  energy will slow t o  near  t h e  Fermi energy 

within a f e w  angstroms.  

dE 
dx 

I t  is possible t o  calculate ~ f r o m  mean free paths. Quinn calculated 

t h e  mean f r e e  path of a low energy e lec t ron  f o r  volume plasmon excitation. 

Birkhoff (1964) has  shown th i s  re la t ion t o  be expressible as 

u Rn 
P 

J E  F t Ep - JEF 

p- / E - E  
*v P 

1 
i 

where u is t h e  volume plasma frequency, E 
P P 

r a t i o  of e lec t ron  velocity t o  t h e  velocity of light, c, EF  is t h e  F e r m i  energy 

and E is t h e  energy of the  incident e lec t ron  in e lec t ron  volts. 

is the  plasma energy, p is the  

Dividing t h e  

plasma energy of aluminum by th i s  mean free path,  one obtains t h e  stopping 

power of aluminum f o r  plasmon exci ta t ion;  

-Wvp = 

Figure 1 gives t h e  curves f o r  t h e  stopping powers of e lectron-electron 

and volume plasma in te rac t ions  and the sum of t h e  two. 

Inner Shell Interact ions 

In t he  energy range f r o m  about 100 e.V. t o  the  limit of t h i s  .investi- 

gation, it  is possible to  have a n  in te rac t ion  of t h e  bombarding e lec t ron  with 
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t h e  inner shell e lectrons of t h e  target a tom.  

ionization is 72 e. V. and f o r  t h e  L -shell 117 e. V. 

The threshold f o r  t he  L-shell  
2 

1 

One may use e i t h e r  t h e  Born approximation o r  t h e  Gryzinski (1965) 

classical  approximation t o  calculate t h e  electron-L-shell interact ion c ros s  

section. Ritchie (1967) used t h e  prescr ipt ion of Walske (1956) t o  c o r r e c t  t h e  

Born approximation f o r  K- and outer-shell screening. 

dE 
dx 

The stopping power -(-) of a given L-shell f o r  e lectrons with energy 

3 5 2  11 2 1 4  3 2  64 1 6  3 2 3 2  5 [Q - (3 +E) Q f (p +5k f-) Qt(-k t-+---k 
48 3 4 48 

gl(Q9k) = { 2 1 2  
QC(Q-k  + z )  + k 2 1  

24 1 2k 2 1  )> i -2~rr/k 
-1 

1 -e 
~ e x p  {2 t a n  ( 

Q-k f -  
4 

-2m/k 2 
The quant i ty  (1-e ) is unity if k becomes negative. W is t h e  

energy l o s t  by t h e  incident electron, and Q = (change i n  momentum of incident- 

particle)/(2M Z 

Zef f 

2 =  Ry).‘. A l l  energies are measured in units of Z 2 Ry.. 
e€€ e€€ 

= (2-4.15). A l l  L-shell e lectrons are  assumed t o  have equal binding 

energies. 0 is t h e  r a t i o  of t h e  ac tua l  L-shell ionization energy t o  the  
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Ry. N is t h e  a tomic  densi ty  [Ritchie 
2 

t leffect ive” ionization energy $2 

e t  al. (1967) 1. 

values f o r  t h e  L-shell stopping power. 

ef f 

Figure 2 gives a comparison of theore t ica l  and experimental  

An estimate of t h e  probability of L-shell ionization in  t h e  energy 

region employed he re  may be made as follows. If P is the  probability of 

reaching depth x without an  L-shell in te rac t ion  and dx/h t h e  probability of an  

in te rac t ion  in  t h e  d is tance  x to x+dx ,  then  t h e  probability f o r  no in te rac t ion  

decreases  according t o  

0 

dx 
-dP = P - 

0 0 h ( E )  

Using t h e  re la t ion  dx = dE/(dE/dx) and integrat ing we  g e t  

where E is t h e  i n i t i a l  e lec t ron  energy, E t h e  energy with which t h e  pr imary 

e lec t ron  ex i t s  t h e  top layer,  X (E) t h e  L-shell mean f r e e  path,  and -(E) the  

1 2 
dE 
dx 

stopping power of t h e  conduction electrons.  A graph of (1 - P )y f r o m  Eq. 12 
0 

dE 
dx 

using values of X(E) and -(E) f r o m  Ritchie e t  al. (1967) is given in Figure 

3. Thus w e  see t h a t  t h e  probability f o r  a n  L-shell in te rac t ion  is qui te  high 

in  foils a few hundred angs t roms in  thickness. 

A s  t h e  pr imary energy increases  p a s t  t h e  maximum in  t h e  L-shell 

c ros s  sect ion,  t h e  range of t h e  pr imary e lec t ron  increases.  These ranges 

have been calculated f r o m  experimental  da t a  by Kanter  and Sternglass (1962) 

and Garber (1965). Their results are summarized in  Figure 4. 
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CHAPTER I11 

EXPERIMENTAL 

I. OUTLINE O F  THE EXPERIMENTAL METHOD 

In th i s  experiment a beam of e lectrons was  directed a t  a thin non- 

self-supporting f i l m  t o  de te rmine  t h e  number of electrons,  i. e., t h e  

f r a c t i o n  of cu r ren t ,  t h a t  was stopped in  t h e  f i lm  due t o  absorption and 

sca t te r ing .  Since these  films of aluminum were of t h e  order  of 150 t o  

300 thick,  it w a s  necessary that t h e r e  be a supporting subs t r a t e .  A s  in  

previous work, w e  decided t o  use t h e  aluminum-insula t o r  -aluminum 

sandwich. The bo t tom layer  w a s  aluminum of high puri ty  and of suf f ic ien t  

thickness t o  s t o p  a l l  e lec t rons  leaving t h e  top layer. The insulator  was 

aluminum oxide formed on t h e  bot tom layer  of aluminum through an  

anodizing process. 

vacuum s y s t e m  t o  t h e  desired thickness. A beam of e lec t rons  f r o m  an  

e lec t ron  gun was  incident upon the t o p  layer  e i t h e r  normally o r  a t  any 

desired angle. The c u r r e n t s  t o  t h e  f i l m  and conducting s u b s t r a t e  were then  

measured as  a function of energy. A cross-sect ional  view of t h i s  t a r g e t  

is presented in  Figure 5. 

The top layer  was then  evaporated in the  ultrahigh 

15 
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11. EQUIPMENT 

The vacuum sys t em,  t h e  e l ec t ron  gun, and t h e  c u r r e n t  measuring 

s y s t e m  w e r e  t h e  t h r e e  major  components involved i n  this work. A photo- 

graph of t h e  apparatus  is given in Figure 6. 

Vacuum System 

The vacuum s y s t e m  is shown in Figure 7. A National Research 

Corporation &inch, oi l  diffusion pump using Dow-Corning 705 fluid backed 

by a Welch Duo-Seal mechanical f orepump const i tuted t h e  pumping sys  tem. 

Oil  back-streaming was reduced by incorporation of a Granville Phillips 

Company series 25 1 6-inch cryosorb liquid nitrogen cold t rap.  

forepump and diffusion pump oils is reduced by tk incorporation of a 

molecular sieve in  t h e  vacuum line between t h e  two pumps. 

before  operation were normally 2 x 10 

measured by a n  NRC Equipment Corporation Type 563-K ionization gauge, 

read by a n  NRC thermocouple and UHV ionization gauge control,  model 763. 

The evaporation chamber was a 12-inch electropolished stainless steel 

pipe with a lower 10-inch flange t o  connect t o  t h e  cold t r ap .  All O-rings 

w e r e  diamond-shaped copper O-rings except t h e  one between t h e  s y s t e m  

cover  and a 16-inch upper flange which was of aluminum wire. The cover, 

made of 1-inch-thick stainless steel, was a t t ached  t o  t h e  upper flange by 

means of twelve 5/8-inch stainless steel bol ts  and nuts. These were 

t ightened t o  175 foot-pounds of torque t o  properly seal t h e  aluminum O-ring. 

Mixing of 

Pressures 

-9 
t o r r .  These p re s su res  were 
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Figure 6.  Photograph of Apparatus 
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This cover s e w e d  a s  a mounting p l a t fo rm f o r  all internal  equipment except  t h e  

f i l m  thickness monitoring crystal which w a s  mounted upon a dividing p l a t e  which 

separated t h e  evaporation source and t h e  filrn subs t r a t e .  Eight 1 1/4-inch in- 

side d i ame te r  feedthroughs equipped with non-rotatable conf l a t  flanges. Varian 

number 954-5069, were located a t  all access  ports .  The flanges w e r e  equipped 

with standard f la t  copper O-rings and w e r e  capped by t h e  pxoper feedthroughs. 

There  were two eight-wire c u r r e n t  feedthroughs, Varjnn model 954-5014, with 

conflat  f langes which provided e l ec t r i ca l  c o n t a c t  with t h e  gun, sandwich, and 

f i l m  thickness monitor, Two threaded copper ba r  feedthroughs supplied c u r r e n t  

t o  t h e  evaporation boat. Two linear motion f eedthroughs p e r m i t t e d  movement 

of t h e  mechanical s h u t t e r  between s u b s t r a t e  and evaporation source,  and 

r o t a t i o n  of t h e  t a r g e t .  This arrangement  is seen in Figure 8. 

f i l m  thickness monitor,  Model 1, was used t o  determine f i l m  thickness. 

A Speedivac 

E lec t ron  Gun __I 

Previous research had made use of a gun whose lowest energy range 

w a s  about 6 e.V. T o  go below t h i s  energy, it w a s  necessary t o  a l ter  t h e  

design of t h e  electron gun. 

by Compton __I e t  al. (1966). 

with an energy spread, which varied f r o m  10% a t  t h e  lowest energy t o  3% 

a t  100 e.V. and above. The gun, which is shown in Figures 9 and 10, w a s  

composed of a s t a c k  of f ive  stainless-steel plates  numbered f r o m  1-5. 

The f i l amen t  w a s  positioned near  t h e  a p e r t u r e  i n  p l a t e  one. A narrow 

The gun used w a s  modified f r o m  a design used 

The lowest energy w a s  on t h e  order  of 1.0 e.V. 
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stainless-s teel  p l a t e  was placed in back of t h e  f i l amen t  and connected t o  

t h e  negative side of t h e  f i l amen t  ( the  cathode) t o  t u r n  t h e  electrons toward 

p l a t e  number 1, t h e  anode. 

t h e  gun w e r e  machined of l av i t e  and f i red t o  harden and t o  reduce outgassing. 

The f i lament  w a s  made of 5 iz i i l  tungsten wire .  Before using the  gun, it was 

necessary t o  allow it t o  warm up f o r  approximately 1-$ hours t o  permi-t the 

c u r r e n t  f r o m  t h e  f i l amen t  t o  become stabilized. 

procedure was neglected, t h e  electron energy of t h e  gun varied enough t o  

render  unreliable readings. Normal c u r r e n t  through t h e  f i l amen t  w a s  2.5 

amperes  a t  a potent ia l  of 2 volts.  The energy range of t h i s  gun was f r o m  

1.0 e.V. t o  3 k. e.V. The higher value was limited by arcing t h a t  took place 

between the f eedthrough terminals. Power f o r  t h e  accelerating voltage was 

supplied by a John Fluke power supply, model 400 BDA. Leads w e r e  a t tached 

t o  t h e  plates  first by s p o t  welding, bu t  t h i s  was found t o  produce a bond of 

insuff ic ient  s t r e n g t h  t o  withstand the  necessary amount of handling t o  

a t t a c h  t h e  gun in place. 

t empera ture  solder would produce a good bond t h a t  could be cleaned so  t h a t  

outgassing was negligible. The only o the r  problem encountered in using t h e  

gun w a s  t h e  alignment of t h e  plates  a f t e r  disassembly t o  replace a f ilarnent. 

This diff icul ty  was resolved by the use of two aligning pins placed in t h e  

holes in the  back of t h e  gun and by placing small ceramic tubes over t h e  

screws t h a t  hold t h e  p l a t e s  together.  All in all t h e  gun served i t5  purpose 

very wel l ;  however, its energy spread was not  as  narrow as had been hoped. 

The f i f t h  pla-l:e w a s  grounded. All space r s  in 

I t  w a s  noted t h a t  if t h i s  

Finally, it w a s  found that  soldering with a high 
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This was  perhaps due t o  t h e  f a c t  t h a t  t he  beam was  not  pulsed as described 

by Compton e t  al. (1966) nor was a magnetic focussing field p re sen t  as called 

f o r  in t h e  original design. 

Cur ren t  Measuring Sys t e m  

Previous work indicated t h a t  t h e  c u r r e n t  in the  e lec t ron  beam should 

amps and t h a t  t h e  exposure time of t h e  beam t o  t h e  t a r g e t  
-7 

not  exceed 10 

should be  a s  s h o r t  as possible t o  reduce heating. These s t ipulat ions required 

t h a t  t he  c u r r e n t  measuring device have a high sens i t iv i ty  and a f a s t  response 

t ime.  

t he  o rde r  of 10 ohms; t he re fo re ,  t h e  input impedance of t he  cu r ren t  

measuring s y s t e m  had t o  be much less than  th i s  figure. A sys t em which m e t  

all of t h e s e  requi rements  w a s  two Philbrick model P 2  solid state d i f f e ren t i a l  

operational ampl i f ie rs ,  a Vidar model 5 10 in tegra t ing  digital  vo l tme te r ,  and 

a Vidar model 260 voltage-to-frequency converter .  These w e r e  connected as 

shown in Figure 11. 

t h a t  t he  input c u r r e n t s  f r o m  t h e  foi ls  w e r e  converted t o  output  voltages. 

Suppose we require  a c u r r e n t  of 10 

The r e s i s t i v i ty  of t h e  aluminum oxide d ie lec t r ic  w a s  found t o  be of 

6 

The two ampl i f ie rs  w e r e  operated in  a closed loop so  

-7 
amps. ,  I t o  give a n  output  voltage of 

i' 
-'( 

10 millivolts, V 

scale def lect ion of 10 millivolts). 

R , is given by the  relationship 

( t h a t  is, allow a c u r r e n t  of 10 amps. t o  produce a full- 
0 

Then t h e  required feedback res i s tance ,  

f 

R f = Vo/Ii . (14) 

H e r e  R r ep resen t s  the feedback res i s tance ,  V t h e  output  voltage, and I. 
f 0 I 
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Figure 11. Schematic  Diagram of Cur ren t  Measuring Sys tem 
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the 

5 
10 

input cur ren t .  From this relation, w e  can  see t h a t  t he  value of R is 
f 

ohms. The input impedance (Ri) of t h e  Philbricks is given by t h e  following 

re la t ions  

R. = V./I.  
1 1 1  

and 

A = V  /V. . (16) 0 1  

Here V. is t h e  input voltage with r e s p e c t  t o  ground, V is t h e  output  voltage 

with r e spec t  t o  ground, I. is t h e  input cu r ren t ,  and A is t h e  ampl i f ie r  gain. 

-2 -7 
If t he  maximum output  voltage is V = 10 vol t s  whi le  If, 10 amps. and 

A is approximately 10 , t hen  t h e  input impedance is 1.00 ohm. This require- 

men t  f o r  input impedance is we l l  within t h e  range of t h e  P2 Philbrick 

amplif ier .  The c u r r e n t  f r o m  the  top foil ,  J 

ampl i f ie rs  where it is converted t o  the  voltage which is proportional t o  

1 0 

1 

0 

5 

is di rec ted  t o  one of t he  P2 1’ 

t h e  c u r r e n t  received (see Figure 12). This voltage is f e d  t o  t h e  in te rna l  

voltage-to-frequency conver te r  of t h e  Vidar 510 in tegra t ing  digital  vo l tmeter .  

H e r e  it is converted t o  a frequency which is a lso  proportional t o  the  ini t ia l  

cur ren t .  

digital  vo l tmeter .  

second P2 ampl i f ie r  where it is converted in to  a voltage which 2 proportional 

t o  t h e  cu r ren t ,  I 

voltage-to-frequency conver te r  where it is converted in to  a frequency, 

Next, t h i s  frequency goes t o  the  s c a l e r  of t h e  Vidar 510 in tegra t ing  

The c u r r e n t  f r o m  the  bo t tom foil ,  I 
2’ 

is fed  into the  

This  voltage is then f e d  in to  t h e  external Vidar 260 2‘ 

proportional t o  the  cu r ren t ,  Iz. 

s ca l e r  of t he  in tegra t ing  d ig i ta l  v o l t m e t e r  where it cont ro ls  a variable t i m e  

This  frequency goes t o  t h e  p r e s e t  count 
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base gate. By thus  regulating t h e  amount of time f o r  which t h e  scaler scans 

t h e  frequency, F , f rom t h e  t o p  foil ,  we receive a r a t i o  of t h e  c u r r e n t s  

& 

1 

leaving t h e  t o p  and b o t t o m  foils.  

The unity gain band width f o r  f u l l  output  is 1.5 kHz, i. e. * t h e  response 

time is less than  1 millisecond. 

ically shielded, thermally insulated, and have high l inearity and low leakage 

The amplif iers  are electrically and mechan- 

cu r ren t s .  A f t e r  200 hours warm-up time, t h e  d r i f t  was guaranteed t o  be 

less than 200 microvolts pe r  month. 

5 
The Vidar model 260 conve r t e r  has  10 ohms input r e s i s t ance  with 

input voltage of 10 millivolts and a full-scale sensi t ivi ty  f r o m  5 millivolts 

t o  5 volts.  The accuracy of each scale is b e t t e r  t han  0.05%. The converter  

has  a n  accuracy of within 0.10% of t h e  final value after 200 microseconds. 

The Vidar model 510 digital  v o l t m e t e r  has t h e  input impedance of 10 ohms 

a t  100 millivolts. 

5 

Full-scale sensi t ivi ty  w a s  f r o m  10 millivolts t o  100 vol ts  

with an accuracy g r e a t e r  than .015% on any scale  i n  a 5-digit readout. The 

3 4 5  
time-base g a t e  was variable with p r e s e t  count options of 10 , 10 , 10 

counts. Thus, the Vidar model 5 10 d ig i ta l  vo l tme te r ,  t h e  Vidar model 260 

voltage-to-frequency conve r t e r  and t h e  Philbrick P 2  amplif iers  meet all t h e  

requirements  placed upon t h e  c u r r e n t  measuring devices. 

Secondary Electron Suppressor Assembly 

To invest igate  t h e  role  played by secondary electrons in t h i s  experi- 

men t ,  w e  decided t o  incorporate a suppressor  assembly in to  t h e  apparatus  
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which would allow varying amounts of secondary suppression. The assembly 

took t h e  f o r m  of two s ta inless-s teel  p l a t e s  containing small a p e r t u r e s  and 

separated by two 2mm-thick lavi te  spacer-washers. The first plate,  t h a t  

f i r s t  encountered by a primary electron on its way toward t h e  t a r g e t  f r o m  

t h e  e l ec t ron  gun, was grounded. 

completely shield t h e  edges of t h e  a p e r t u r e  in t h e  second p la t e  f r o m  t h e  

pr imary beam. 

which t h e  appropriate biases were applied. 

t h e  f i l m  (second p la t e  2 mrn f r o m  t a r g e t  su r f ace )  by mounting it on t h e  

t a r g e t  holder. Again two lavi te  spacer-washers were used t o  electrically 

insulate t h e  second plate  f r o m  t h e  grounded holder. 

I t s  a p e r t u r e  w a s  suff ic ient ly  sma l l  t o  

The second plate  ( t h a t  next t o  t h e  t a r g e t )  w a s  t h e  one t o  

The assembly was positioned near 

When t h e  bias was t o  remain constant  during a complete investigation, 

t h e  bias  voltage was  provided by a Keithley model 240 regulated voltage supply 

with an accuracy of I t 1% o r  . 1 volt. 

vo l t s  more positive than t h e  cathode, t h e  bias w a s  obtained by tapping the  

accelerat ing voltage and adding t o  it a positive t e n  vol ts  by means of two 

8.1 vol t  mercury b a t t e r i e s  and a potent ia l  divider. 

When t h e  final bias was t o  be t e n  

111. PROCEDURE 

Target Preparation 

I t  w a s  necessary t o  have a supporting s u b s t r a t e  f o r  the  non-self - 

Kodak projector  slide cover glasses 8.3 cm. x IO, 2 cm. supporting fi lm. 

were wrapped in Scotch brand masking t ape  and sawed t o  a size of 5 cm. x 
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10.2 cm. The wrapping procedure w a s  performed t o  prevent scratching of 

of  t h e  surface of t h e  subs t r a t e .  

a solution of Knox-70 Laboratory G l a s s  Cleaner and flushed with disti l led 

water .  

dichromate and sulfuric acid f o r  a period of not  less than  24 hours. Just  

p r io r  t o  inser t ion i n t o  t h e  vacuum deposition sys t em,  t h e  p l a t e s  were 

removed f r o m  t h e  mixture  and flushed with disti l led w a t e r  f o r  about 30 

minutes. 

cedure was in i t ia ted ,  t h e r e  was no t  a single case in  which t h e  fi lm came 

loose f r o m  t h e  s u b s t r a t e  during t h e  anodizing procedure. A f t e r  flushing 

with disti l led w a t e r  t h e  p l a t e s  were placed in  a vacuum desiccator  and left 

unt i l  thoroughly dry. When dry t h e  plates  w e r e  removed f r o m  the  desiccator  

and placed in t h e  s tandard 12-inch bell j a r  vacuum evaporator. Here they 

were cleaned again by ionic bombardment f o r  a period of f r o m  3-5 minutes 

a t  a p re s su re  near .05 t o r r .  This s y s t e m  was then pumped down t o  operating 

p res su re  of 2 x 10 

f r o n t  of t h e  s u b s t r a t e ,  t h e  aluminum containing boat  was outgassed. The 

shield was removed, t h e  evaporating mask was placed between t h e  s u b s t r a t e  

and t h e  boat, and t h e  evaporation was made. In previous work it had been 

necessary a t  t h i s  time t o  remove t h e  fi lm f r o m  t h e  vacuum evaporator ,  

anodize t h e  aluminum, and then place it back in t h e  vacuum evaporator t o  

evaporate  t h e  silver-manganese electrical contacts .  

however, by changing t h e  shape of t h e  bot tom film. 

These glass p l a t e s  were then cleaned with 

The p l a t e s  w e r e  t hen  placed in a chromic acid mixture  of potassium 

This process  cleaned t h e  glass  very well; t h a t  is, a f t e r  this pro- 

-6 
t o r r .  A t  t h i s  p re s su re  and with a mechanical shield i n  

This s t e p  was eliminated, 

With t h e  bot tom 
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fi lm in t h e  shape as shown in Figure 13, it is possible t o  lower t h e  film 

into t h e  anodizing solution without contaminating t h e  solution with the  

silver-manganese. 

A f t e r  t h e  bot tom layer  had been evaporated on t h e  glass, t h e  s i lver  

rnangauese con tac t s  w e r e  evaporated onto t h e  s u b s t r a t e  in t h e  same vacuum 

system. 

vacuum evaporator and placed in t h e  anodizing apparatus  shown i n  Figure 14. 

The anodizing solution is a 3% solution by weight of tartaric acid in distilled 

w a t e r  with a pH adjusted by ammonium hydroxide t o  5.5. For t h i s  arrange- 

m e n t  H a s s  (1949) r epor t ed  t h a t  a linear relationship between t h e  oxide 

The glass s u b s t r a t e  a d  t h e  bot tom f i lm w e r e  removed f r o m  t h e  

thickness and t h e  applied voltage existed. However, more r e c e n t  work by 

Garber (1965) and Holland (1961) showed t h a t  t h i s  relationship is not linear. 

Their  work is indicated in  Figure 15. 

Bridge type 1650-A, t h e  capacitance of t he  t a r g e t  can be measured. F r o m  t h e  

capacitance the  thickness of t h e  dielectr ic  can be calculated. The dielectric 

cons t an t  is taken t o  be 8 [Hartman and Chivian (1964)l. 

Using a General Radio Company Impedance 

The relat ion between 

capacitance and thickness is: 
2 

0 E 8.85 A (cm. ) 
C(tJf* 1 T ( A )  = 

Were T is t h e  thickness in angstroms,  E is t h e  dielectr ic  cons t an t  r e l a t ive  

t o  vacuum, C is t h e  capacitance in  nzicrofarads, and A is t h e  area in  cm. 

t h e  dielectric.  I t  has been shown in previous work [Garber(l965)] t h a t  a 

75 A thick aluminum oxide dielectric gives suff ic ient  insulation f o r  th i s  

work. 

of 

To insure t h a t  t h e  dielectr ic  was of good quality, t h e  p l a t e  was left  
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i n  t he  anodizing solution f o r  a period of 5 minutes, A f t e r  removal, the 

p la t e  w a s  flushed with disti l led w a t e r  t o  rernovc t h e  electrolyte  and was 

degreased with isopropyl alcohol, 

desiccator.  Next t h e  leads w e r e  soldered t o  t h e  s i lver  manganese c o n t a c t s  

The p la te  was next dried in a vacuum 

by means of a low tempera ture  solder. 

f i lm and dielectric w e r e  shielded by means of a paper shield t o  prevent  any 

During th i s  procedure t h e  bot tom 

contamination, e. g. , solder droplets.  

would puncture t h e  dielectr ic  arid a s h o r t  would result when t h e  top f i lm  was 

evaporated. The s u b s t r a t e  w a s  t hen  placed in the ro t a t ing  holder, shown in 

Figure '?, in t h e  vacuum sys t em,  and t h e  s y s t e m  w a s  closed. To obtain 

A t  this point any contamination 

proper operating pressures, t h e  s y s t e m  w a s  baked ou t  a t  a tempera ture  of 

200°C f o r  a p e r i . d  of f rom 12 t o  24 hours. The baking procedure was not 

observed in t h e  instances when t h e  s y s t e m  was t o  be opened before  observations 

were taken t o  allow placement of t h e  secondary electron suppressor assembly. 

A f t e r  baking, t h e  s y s t e m  was cooled, t he  gun f i l amen t  was heated, t h e  

mechanical s h u t t e r  was  closed and t h e  outgassing procedure f o r  t h e  evaporation 

source was performed. A f t e r  outgassing t h e  s h u t t e r  was  raised, and t h e  

material f o r  t h e  t o p  layer  w a s  evaporated. The t a r g e t  was then  r o t a t e d  t o  

t h e  proper angle. If a target  was t o  be observed with varying degrees of 

secondary suppression, t h e  s y s t e m  was then opened and t h e  suppressor 

assembly was ins talled. 

A completed t a r g e t  is shown in Figure 16. Thickness was rnonitsxed 

during evaporation using a calibrated Speedivac film thickness monitor. 
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Experimental  Procedure 

A f t e r  t h e  gun had been warmed, t h e  t o p  layer evaporated and t h e  sl ide 

r o t a t e d  t o  the proper angle, t h e  accelerating voltage w a s  set a t  1.0 e.V. 

Readings w e r e  taken a t  1 vol t  intervals  f r o m  1 vol t  t o  20 volts. From 20 

vol ts  t o  50 vol ts ,  2 vo l t  intervals  were taken and f r o m  50 t o  100 vol ts ,  5 

vol t  intervals  were taken. 

vol ts  and 50  vol t  intervals  f r o m  500 t o  1000 volts. 

Twenty vo l t  intervals  were used f rom 100 t o  500 

T h e r e a f t e r  t h e  intervals  

were 100 vo l t s  unti l  t h e  energy required f o r  complete penetrat ion w a s  

reached. The evaporating mask in  the ultrahigh vacuum s y s t e m  was made in 

t h e  Eo:rtri of an L s o  t h a t  when the  sandwich was r o t a t e d  t o  the  chosen angle, 

t h e  mask could also s e r v e  as a bias plate. 

The bias on t h e  L-shaped bias p l a t e  during e l ec t ron  bombardment of 

t h e  t a r g e t  was usually f i v e  vo l t s  negative, a f igure suggested by previous 

work [Garber (1965) 1. I t  was desired t o  invest igate  the  effect  of various 

bias voltages on t h e  c u r r e n t  ra t ios .  

t h e  secondary electron suppressor  assembly. Voltages were applied as 

indicated in Table I1 unless otherwise specified. 

This investigation w a s  carr ied ou t  using 

This evaporation mask a l so  served as an electronic s h u t t e r  t o  prevent  

t h e  beam f rorn t h e  elec-tron gun f r o m  s t r ik ing  the t a r g e t  continuously. 

The ro t a t ing  switch,  ckrcui t  diagram in Figure 17, was connected s o  t h a t  

when the switch is turned t o  t h e  off  position t h e  bias applied t o  -the bias 

pla-t-e w a s  1500 vo l t s  negative o r  larger.  

f r o m  reaching t h e  film. 

This prevented t h e  e l ec t ron  beam 

When -&he switch was in t h e  on position t h e  p l a t e  was 
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TABLE I1 

SECONDARY ELECTRON SUPPRESSOR ASSEMBLY BIAS VOLTAGES 

Bias Plate Primary Elec t ron  
Voltage Energy, E,  in  e.V. 

Grounded 
I t  

. 
-1 
-2 
-3 
-4 
-5 
-6 

-Et10 

1 
2 

. 
10 
11 
12 
13 
14 
15 
16 



TO BATTERY I 
I 
I 
I 
I 
I 
I 

I 
I 

I 
I 
I 
i 
1 
1 TO HIGH VOLTAGE 
I 
1 
I 
I 
1 
I 
I 
I 

I TO SHUTTER PLATE 

Figure 17. Circui t  Diagram of Rotat ing Switch f o r  Electronic Shu t t e r  
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biased as shown in  Table I$. A f t e r  a n  accelerat ing voltage w a s  set ,  t he  

ro t a t ing  switch was  turned so  t h a t  t h e  bias was on t h e  plate. The counting 

in te rva l  on t h e  sca l e r  was  turned on. When the  sca le r  ceased counting its 

ac t iva t ing  switch w a s  turned off t o  prevent  a second count and t h e  ro t a t ing  

switch was turned off so t h a t  t h e  electronic  s h u t t e r  was act ivated.  The 

r a t i o  w a s  noted and then  another  accelerat ing voltage was set. The previous 

reading w a s  then  recorded. This method allowed a s h o r t  t ime  f o r  equilibrium 

t o  be a t ta ined  before  a second reading was  taken. The se tup  described 

previously in  t h e  c u r r e n t  measuring sys t em provided a means f o r  measuring 

t h e  r a t i o  of t h e  bo t tom c u r r e n t  t o  t h e  c u r r e n t  in  the  top foil .  L e t  B 

r ep resen t  t h e  c u r r e n t  in t h e  bot tom layer  and T t h e  c u r r e n t  in  t h e  top layer. 

The r a t i o  w a s  then  B/T. The following equation shows t h e  relationship 

between B/T and t h e  quant i ty  p lo t ted  on the  following graphs, T/B + T 

B T 
T B t T  

l/(- t 1) =- 

This r a t i o  T/(B + T)  is plot ted on the  l inear  axis of semi-log paper against  

t h e  energy in  e lectron vol ts  on t h e  logarithmic axiss. 



CHAPTER W 

RESULTS AND DISCUSSION 

Figure 18 p resen t s  a graph of t h e  r a t i o  of t h e  c u r r e n t  collected in  

the top layer of t h e  Al-Al 0 -A1 diode t o  t h e  t o t a l  c u r r e n t  impinging upon 

it for  various bias voltages and taken under 10 t o r r  vacuum conditions. 

The curve represent ing t h e  s i t ua t ion  using -E $. 10  V. bias shows a rising 

2 3  
-6 

c u r r e n t  t o  t h e  t o p  layer  in t h e  lower energy region (< 100 e.V. ). This may 

be explained by a decrease in t h e  mean free pa th  with increasing pr imary 

energy. The order  of magnitude of t h e  at tenuat ion length f o r  e lectrons 

with pr imary energy less than those a t  which t h e  top  c u r r e n t  becomes 

cons t an t  may be determined as follows. We may use the equation 
t -- 

F2-F1 = e  I, , 

where F is t h e  r a t i o  of t op  c u r r e n t  t o  t o t a l  c u r r e n t  a t  t h e  energy of 
1 

i n t e r e s t ;  F is t h e  corresponding r a t i o  a t  t h e  energy where t h e  top c u r r e n t  

becomes constant;  t is t h e  thickness of t h e  top layer in angs t rom u n i t s ,  

and L is t h e  a t t enua t ion  length. A graph of t h e  a t t enua t ion  length f o r  t h e  

180 

2 

fo i l  versus  energy with bias (-E t 10) is presented in Figure 19. 

The region of t h e  -E t 10 V. biased curve of Figure 18 in which t h e  

c u r r e n t  t o  t he  top  layer  is constant  (60 e.V. t o  500 e.V. ) demonst ra tes  

t h a t  a t  t hese  energies t h e r e  is no electron t r a n s p o r t  taking place across the 

t o p  layer  and through t h e  insulator. 
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The th i rd  region, t h a t  above 500 e.V. , shows an increasing penetrat ion 

of t h e  top  layer. F r o m  this region of the  curve one could calc'ulate stopping 

powers. This  has  been done by previous inves t iga tors  [i. e., Garber (1965)l. 

F o r  a comparison of theore t ica l  and experimental  d a t a  of such investigations, 

refer t o  Figure 2. 

Figures 20-25 give d a t a  taken under ultrahigh vacuum conditions 

t o r r )  using a bias of f ive  vo l t s  negative. A s  is noted, observations 

In the Pow energy region (< 60 e.V. ) 

- 9  
(-10 

w e r e  made f o r  various angles of incidence. 

we  not ice  t h a t  t h e  c u r r e n t  t o  the  top  l aye r  increases  as t h e  angle of incidence 

increases. This is in qual i ta t ive agreement  with predictions [Ritchie (1957) 3 

t h a t  the probability of su r face  plasma in te rac t ions  should be enhanced as the  

reciprocal  of t he  cosine of t h e  angle of incidence. 

F o r  the  second region, 60 e.V. t o  500 e.V., we  note  t h a t  t he  r a t i o  af t h e  

top  c u r r e n t  t o  t o t a l  c u r r e n t  is no t  as high a s  f o r  a s imi la r  region o f  t h e  

curve i n  Figure 18 using -E t 10 V. bias. This  f a c t  leads us  t o  conclude that 

t h e r e  has  been a decrease  i n  t o p  c u r r e n t  due t o  secondary e lec t ron  emission 

f r o m  t h e  top  layer. In t h e  vicinity of -150 e.V. t h e  curves represent ing the  

various angles cross. A f t e r  crossing, the curve f o r  t h e  greater angle is 

lower, This  may be explained in  accordance with B r u i n h g ' s  experiments  

(1936) which showed t h a t  above 100 e.V. more secondary e lec t rons  w e r e  pro- 

duced f r o m  a smooth  metal l ic  f i l m  as t h e  angle of incidence of t h e  pr imary 

beam was increased. According t o  Bruining, a high energy  e lec t ron  which 

could t r a v e l  some d is tance  in the  layer  would do SO a d  l ibe ra t e  secondaries. 
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However, t hese  secondaries had a s h o r t e r  dis tance t o  t r ave l  t o  t h e  su r face  

than they would had the  pr imary been normally incident on the  surface.  

A f t e r  150 e.V. t o  200 e.V., w e  note  a rise and peak i n  the  curve which we 

may i n t e r p r e t  as follows. A s  a beam is impinging on the  t a r g e t ,  some 

pr imary e lec t rons  wi l l  f o r m  secondaries t ha t  may be 10s t unless properly 

suppressed. Now if t h e  energy of t h e  pr imary is such t h a t  an L-shell i n t e r -  

act ion may occur, p r imar ies  which would otherwise c r e a t e  secondaries now 

i n t e r a c t  with the  L-shell. Thus the re  is a resul t ing increase in the  top c u r r e n t  

s ince many secondaries which w e r e  being l o s t  are not  now even formed. I t  

m u s t  a l so  be noted t h a t  as the  angle of incidence increases  the  peak due t o  

L-shell in te rac t ion  decreases. H e r e  t he  in t e rp re t a t ion  may be  again t ha t  t h e  

secondaries which a r e  formed now have a s h o r t e r  dis tance t o  t r ave l  t o  reach 

t h e  su r face  and thus  escape. 

The f ina l  region of t h e  curve, t h a t  above 500 e.V., shows a declining 

r a t i o  indicating that penetrat ion of t he  t o p  l aye r  is now taking place. The 

in t e rp re t a t ion  is t h e  same as for  the  corresponding p a r t  of Figure 18. 
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CHAPTER V 

CONCLUSIONS 

This  experiment  divides i t s e l f  conveniently in to  two pa r t s :  t h a t  

performed in ultrahigh vacuum with incomplete suppression of secondary 

e l ec t rons  and that performed w i t h  a t a r g e t  t h a t  had been exposed t o  air 

be fo re  observation bu t  wi th  various amounts of secondary suppression including 

complete  suppression. A comparison of t h e  results of t he  two p a r t s  p e r m i t s  

one t o  conclude that  t h e  shape of t h e  curve obtained is dependent c r i t i ca l ly  

upon the  amount  of the  secondary suppression. 

With complete  secondary suppression, t h e  shape of t h e  init ial  p a r t  

of t h e  curve may be in t e rp re t ed  as a decrease  in  t h e  mean f r e e  pa th  with 

a n  increase i n  t h e  pr imary  energy. This decrease  however is accompanied 

by a n  increased production of secondary e lec t rons ,  and thus  a t t enua t ion  

lengths  calculated f r o m  this curve m u s t  be considered a s  of or ientat ion 

value only. 

An in t e rp re t a t ion  of t h e  work performed in ultrahigh vacuum a t  normal 

beam incidence does n o t  d i f f e r  substant ia l ly  f r o m  t h a t  in  previous work. 

Nor does t h e  f a c t  that secondary e lec t rons  were  incompletely suppressed 

alter t h e  in t e rp re t a t ion  of t h e  various peaks as being due t o  s u r f a c e  plasmon, 

volume plasmon, o r  L-shell interact ions.  
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From the  d a t a  without complete secondary suppression, performed i n  

ultrahigh vacuum, one can see t h a t  t h e r e  is a n  enhancement of t h e  su r face  

plasmon exci ta t ion with a n  increase i n  t h e  angle of incidence of t he  primaries. 

One notes t h a t  t he  peaks obtained with incomplete secondary suppression are 

due t o  e lec t rons  which have urdergone inelastic s c a t t e r i n g  in plasmon 

production and thus  did not  produce secondaries which could be l o s t  f r o m  the  

t o p  layer. 

A comparison of the two curves,  with and without complete  suppression, 

pe rmi t s  one t o  conclude that t h e  cause of t he  decreased probability of an 

L-shell in te rac t ion  with an increase in the  angle of incidence is t h e  105s of 

more  secondaries i n  accordance with t h e  work of Bru inkg  (1 936). 
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