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Abstract

Using a variational principal for the guiding center plasma, the
implications for absolute stability of local stability plus interchange
stability are examined. The geometry chosen for this analysis 1s open
ended, with magnetic lines free to interchange at the ends.

The method of analysis uses the fact that any admissable varia-
tion away from an eguilibrium can be decomposed intco an interchange
plus a variation which vanishes at one end of the plasma domain. Then
the second variation, as a quadratic form, is accordingly separated
into three terms which are examined separately.

We find that if the spatial magnetic field and plasma gradients
are sufficiently small, then local stability plus a strong form of
interchange stability do suffice for absolute variational stability.
This strong form is actually weaker than most of the sufficient condi-
tions for interchange stability which have previously been derived.

It is shown that for a plasma which satisfies these criteria
stability is independent of the plasma length; i.e. lengthening such

a plasma does not destroy its stability.
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1. Introduction

This thesis is addressed to the genmeral problem of stability
of a plasma adeguabely described by the zero order guiding center
theory. This theory is rigorously valid only in the ideal limit
where the Larmor radius vanishes, since the plasma particles are
identified with their guiding centers. However, it has been shown
[1,2] that the true particle orbits are approximated asymptotically
(in the sense of Poincaré) by the guiding center eguation of motion.
Guiding center motion is Hamiltonian, akin to the motion of a bead
on a wire; hence we can write fluid equations (Liouville's equation)
for a collection of such particles [3,4,5]. The salient features
of such a fluid are that it is perfectly conducting, flux preserving
(which implies the particles are "stuck" to a field line and move
with it), and is macroscopically described by two pressure components,
one parallel and another perpendicular to the magnetic field.

We are concerned with the stability of static equilibria of
such a plasma when confined by a magnetic field of "mirror machine"
(i.e., open ended as opposed to toroidal) geometry. In particular,
we investigate the relationship between stability against interchanges
(these are motions which leave the magnetic field unchanged and merely
alter the assignment of plasma) and general stability of low pressure
plasma. There is considerable confusion in the literature on this
score. The usual argument which relates the two types of stability
runs somewhat as follows: the plasma is stable if its energy can only

be increased by any motion. Now the energy change is composed of a
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magnetic variation plus a plasma variation. The equilibrium field
of a low pressure plasma is essentially a vacuum field, hence a mini-
mum energy configuration. For any motion which is not an interchange
the plasma variation will be dominated by the positive magnetic
variation below some pressure level. Thus, the only possible unstable
motions for a low pressure plasma are interchanges, and in this case
interchange stability implies absolute stability.

The fallacy in this argument has been pointed out in [6]. In
particular, we must always require local stability (defined in this
thesis on page 10). But if we do adjoin this requirement then under
suitable conditions we will show that it and interchange stabilility do
imply absolute stability at low pressure (or sometimes even at moderate
pressure). Thus the physical intuition can be salvaged and made precise.

Caution should be given that our analysis, while precise analy-
tically, encompasses only a small corner of plasma physical reality.

For one thing, the guiding center model, while sophisticated magneto-
hydrodynamics, distinguishes only some of the microinstabilities which
plague plasma physics. For another, we confine ourselves to variational
stability against infinitesimal perturbation. Our definition of stability
is really positivity of the second variation, which is at most equivalent
to boundedness of solutions to the linearized equations of motion. But

in general our definition is even more restrictive than this, for the
equivalence requires self adjointness of the associated operator and a
discreet spectrum in the neighborhood of the origin. Explicit examples

can be given which violate these criteria.
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Although many of our results, most notably those in section 5 on
the plasma with lines tiedat one end, will generalize easily to the
two fluid case, we consider only a neutral single fluid plasma in
which charge separation is neglected and it is assumed that E- B = O.
We assume that the magnetic moment y is constant for a particle but
we do not require constancy of the second adiabatic invariant J.

The general plan of the thesis is as follows: 1in section 2 the
variational principle and the geometry of the problem are discussed
along with the relevant boundary conditions and some of their impli-
cations. 8Some of the more important concepts are introduced and
clarified.

Section 3 is devoted to a derivation of the gecond variation in
a form suited to the problem. This is by far the most tedious of all
the sections since many of the .formulas are of necessity long and
involved. The most important equation in this section is (3.6)
which digplays the form of the second variation which we use. It
should be mentioned that there is exact equivalency between (3.6)
and the original form; no approximations have been made.

Section L4 outlines the method of attack on the problem. This
involves splitting a general variation into two parts, one an inter-
change and the other vanishing on one end. Then the second variation,
as a quadratic form, is likewise split into a second variation for
each of the parts plus a cross term.

In the following sections each of the three terms is analyzed
separately. Section 5 shows when a plasma with one end tied is

stable. Two theorems are proven. Section 6 considers the cross term



and an estimate is found for its magnitude. 1In section 7 the second
variation for an interchange is examined in light of the above estimate.
Conditions are derived for positiveness of the whole second variation.
Thege conditions form the main result of the thesis, showing under what
restrictions interchange stability plus local stability imply absolute
stability.

Section 8 discusses the results of lengthening the plasma and
indicates the difficulties to be overcome before this analysis can be
extended to toroidal geometries. We then examine our results and
compare them with others in the literature. We find them to be quite
general, encompassing and extending even results obtained by purely

formal perturbation methods.

Acknowledgement: T would like to thank my advisor Professor
Harold Grad who suggested this problem and contributed many valuable
ideas to its solution. Thanks are also due to Professor Harold
Weitzner who saved me from at least one serious mistake, and to Dr.
Gareth Guest who broadened my perspective on the physics of plasma
physics. This research was sponsored by Oak Ridge National Laboratory,
operated by Union Carbide Corporation for the U. S. Atomic Energy

Commission.



2. Formulation of the Problem

The terminology and variational principal which we employ have
been developed by H. Grad [6,7,8], and whenever possible we follow
the same notation. Since we will constantly refer to a variation as
a motion, it is wise to review the origin of this motion. From the

field equations

3B _
ST + curl E =0

and from Ohm's law for a perfectly conducting fluid
E+UxB=0.
Combining these two equations

%% = curl (U x B) (2.1)

This equation indicates that the magnetic flux is frozen into the
plasma (as can be seen by calculating the change in flux through

a moving surface); it also relates the change in B to the motion
of the plasma. For the variational principal we invert the logic
of this relation. As is well known we can imbed an equilibrium
field in a family of fields admissable to the variational problem
and parameterized by a variable t such that the equilibrium field
is B(0,x), all otherg are identified by B(t,x), and the variational

notation 8B is replaced by

8B = 3B/dt] ,_,



Alternatively we can use (2.1) to characterize the variation by a
velocity field U; for given any variation 8B we can find a U which
yields that variation. In fact it i1s only the component of U perpen-
dicular to B which enters, and we shall take U to be perpendicular

to B in order to make use of the relation
U-.- B=0.

That U doeg represent a motion is seen by introducing the
representation (sometimes referred to as a Clebsch transformation)

of the solencidal B field:
B=Vax VB
with which (q,B) constant identifies a field line. Then
3B/3t = v(da/at) x wB + va x v(3p/dt) (2.2)

and (2.2) together with (2.1) imply

Do - Jo 04 .

D f - a—t t U UOA = O
- = ___aﬁ - . —

I = 4 T Vﬁ = O

so that the field lines move with velocity U. (We shall reserve
D/Dt for the particle derivative moving with U.)

The quantities o and B can be used to define a Lagrangian
coordinate system moving with the field (o, B, o) where ¢ can be
arclength at some initial time and then is carried by the motion.

To relate ¢ to arclength s we introduce the factor (:



C = 3c/3s

As stated before the plasma is constrained to remain on its
initial field line as this is carried by U. The motion along the
given line is governed by a Hamiltonian H(o,p,t) where p is canoni-
cally conjugate to o. Thus the fluid is described by a single
distribution f, a function of (o,p,t) directly and (a,B,u) as
parameters. This distribution f(o,p,q,B,u;t) is related to the usual

particle distribution F(x,£,t) by

£ = 2MFm e
and the Jacobian relations
dx=§g%§g—q-, ag = oneg 8
dxd§ = %g dodBdodpdy = ég an
which imply
Fd&= B(fdpdy, Fdxd§ = £4AQ

(see [7]).

The variation of the distribution function is well described in
[7]. Essentially we admit any function f which is obtainable from a
given reference function by an incompressible mapping w in the (o,p)
plane. Thus the variational class is broader than the clasgsg accessible
by a dynamic motion for we admit any Hamiltonian motion, and not just

that derivable from the particular known Hamiltonlan. A complete varia-
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tion is then given by two velocity fields (U,w) which describe (8B,8f)
but by using the pessimistic variation we can find w as a function of
U, leaving U as the only variational field.

The success of the variational principle depends upon the con-
servation of total energy which is the sum of kinetic, internal, and

magnetic components defined by

X

1
J 30 * ax
o
u = J ef dQ

m = J L P ax
2o

where

1
5 CP° +uB

@™
1

If we are careful to refer to the equilibrium when t = 0, then ¢ = 1,

and letting v represent speed along the line we can also write

me + wB

m
I
ol

Conservation of energy is verified in [7]; this is not trivial
because of the singular zero order guiding center limit.
The variational principle is clagsical in form; we take as

variational function ¢, defined by

® = H+EIR

A static equilibrium is defined as a stationary value of ¢; it is

also a stationary solution of the equations of motion for which
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# = 0. To study stability we form §%& and ack whether it is positive
for any variation U.

Of course a variational analysis depends as much on the admissable
class of functions and the geometry of the problem as it does on the
variational function; our problem is BC IT as defined in [7].

We assume that we are given a fixed tubular domain D shown in
figure 1 with lateral side S, and ends S, and S,. For B we admit
any field which is topologically simple (i.e., the field lines
traverse D from §, to 8,) and satisfies div B = O as well as certain
boundary conditions. On the lateral side S, we have By = O’(So is a
flux surface). On the ends 8; and S, B, is specified arbitrarily
subject to B, > O on §, and By < O on S,. The flux requirement is
imposed that jslB-dS + jszB-ds = 0.

Physically these boundary conditions correspond to a perfectly
conducting plasma vessel with ends insulated from the plasma.

In addition we impose the boundary condition on the ends §;and S,
that J, = 0. This is a natural boundary condition for an equilibrium
which results from the variational analysis; we impose it as well for
any variation away from the equilibrium. This is physically reasonable,
for no current can flow through an insulator.

These boundary conditions imply certain relations which will be

used later. B, fixed means n-3B/3t = 0 or by (2.1)

n . curl (Ux B) =0 (2.3)
The natural boundary condition Jp = O implies

n - curl B=20 (2.4)
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on 8, and S,, since poJ = curl B. Differentiating (2.3) and (2.L) yields
n - curl 3(U x B)/3t = 0 (2.5)
n - curl 3B/d3t = O (2.6)

Relations (2.3) to (2.6) indicate that B and U xB as well as their
time derivatives are all surface gradients (see e.g. [9]) wherever
the corresponding boundary conditions hold. This fact means that
such integrals as [B x 3(UxB)/3t - dS, which appears in (3.4),
vanish, since we have the calculus formula ﬁ Vo x V§ - dS = O.

The concept of line tying enters into this analysis, and it is
best defined by comparing (see [7]) the two boundary conditions BC I
and BC II. In BC I o and B are specified on the ends, which requires
U = O there. In this case the lines are tied on the ends; they are
not free to move since ¢ and P are fixed. The physical mechanism to
support this line tying must be good electrical contact with the
vessel ends through a perfectly conducting medium such as cold plasma.
On the other hand in BC II (our case) we merely require B, fixed on
the ends. This allows a motion of the lines which is equivalent to

an incompressible mapping of the (a,B) plane through the relation

[s B-as = [ daap

We also introduce the concept of local stability. 1In [8] it is
shown that the necessary and sufficient conditions for stability against
variations which are sufficiently localized in extent along a line are

the following inequalities
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Flug +Pp -py >0
B Jug + 2p, - CoB® >0

2t%/3e > 0

(2.7)

where £° is the equilibriuvm distribution, of necessity a function of

o and p only through ¢, and C;, is a certain moment of £°.

ciently localized variations certain terms dominate in §° ¢ ; these

inequalities arise naturally to make those terms positive.. Local

stability is then equivalent with (2.7).

For suffi-

Finally we say a word about interchanges. We have defined them

ag variations which leave B fixed, but often we speak of them as incom-

pressible mappings of (a,B) to (a*,B'). It is easy to show the equiva-

lence of these. If 3(c*,B8)/3(@,B) = 1, then there is a flux function

¥ (a,B) such that

Now

B you P
3T Vat X VB + Va x Vat

and dB/dt = O is equivalent to (2.8). We exhibit the proof in one

direction: inserting (2.8) into (2.9) yields

i

9B ) - XV gy kB - Yy x
X3 vg% x VB Vo x Vaa ~ o3P o X.VB o X VB

and the conclusion follows.

(2.8)

(2.9)
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3. Derivation of the Second Variation

From among the various (equivalent) forms for the second varia-
tion we select for our analysis one which manifests the role of local
stability. For the fluid variation we can use the results of [7] and
[8], but we shall derive the magnetic variation in a form appropriate
to our boundary conditions. Reference [7] gives in equation (10.2L)
the following form for the fluld variation, and the brackets <> denote

an average defined by (7.7) of [7].

r DU .
U = | “PlGl + Palp + F7 + div P | ax

v 2y OF
v ] (@-<ex®) T

where

_ . oUy
G-t (b )

= (U2 _ . Uy CdU L. e . QUi 3Uj
Go= (BS) 2 (b as) + (b Y div U)? + S aXJ
= 3¢/ ot

If we transform this as suggested in [8] by evaluating the term

involving ¢&we find

#u = [((0p- o) (0% 207 & (2, - %) (b & - aiv 1)) ax
— o]
3Ui ol _ 2, DU g - J 2 of

J{ Pz ax %) (aiv U) + g - div P} dx <8 aQ
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The most direct way of deriving the second magnetic variation is
to use Lagrangian coordinates. We parallel [7], but there are sub-
tleties in handling the boundary terms.

The domain D is fixed in Bulerian coordinates, but not in Lagrangian.
The velocity of the boundary in Lagrangian coordinates is -(U+n). We

have

M = é-l— j g dododB

2y dodads - —§B9 U .as

Em B 1 D ,B
5 ,2% j e (E) dododp - 5—0—§ B 5¢ (E) U-ds (3.1)

&g

The final boundary term vanighes since
3 : _§.3._.
SEat(ng as = t(BxeB)

and as shown in section 2 the boundary conditions imply that both
B and U x B as well as their time derivatives are surface gradients.

For the other boundary term in (3.1) a direct calculation yields

L 1 g; - B ‘B + WlU-

If we work out the volume term as in equation {10.32) of [7] then

the second magnetic variation is
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Fm N 1 DU
a—t?—uj'dmdx-l-&—;jlb—ﬁ-Bxcurlex

(1 .. DU DU .
+ iy ? 3 B Dt " B x Pt X B ds

)

1 1 .
+ — ¢ (¥ divU-B-B-VU]U. d
Mo § 2 )
where
~ 1 T 3Uy U5 . aU \
- - 91 9%5 | 2 = -
G, = Oszan axi (div U) +2(aS b div U

To achieve the desired form for the second variation requires

o

(3.2)

further manipulation of (3.2). The first boundary term is expanded

as follows:

"1 o DU DU _ T
JEBQB-E-BXDtXB: ds

— —

1 .- DU DU\7 |
= ._232]-)-,C-+B(B ]-)—E)w as

::j’-—%BaaU——El-BQ (U - vU) + BB - 22) + B(B -

3t
This can be simplified using the identity

oU _ 3 9B .
Beat = Bxat(UxB)—atxeB~2B(U

which follows immediately from the relations

=R = ou =190 . oB
Bxat (Ux B) = B 3t B(B at\) + U(B T
_ 8B __uls - 9By 4y . 9B
3t xUxB= - UB at) + B(U Bt)

JB

ot

- YU)

(3.3)

- 4as .
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This identity and (3.3) then yield the form desired for the first

boundary term of (3.2):

1 71 DU DU T
o ’2139 -Bxppx B - dS
= IB —-§-(UxB)-——BxeB . ds (3.4)
2“‘0 ot at

+—%—J‘ -=F(U.vU) + B(B-U-VU):! " a8 .
Ho 2 -

L

Now the first of these two term vanishes because of the boundary

conditions; thus the second magnetic variation is

&= ~ 1l (DU
- J Gm dx + o DL B x curl B dx

1 , 1
°§[B(B-U VU)-2 (U . vu)] - as

+—J‘—§[-1—B2 divU - B+ B - VU] U 48 .
Mo 2

Combining this form of the magnetic variation with the fluid

variation, and using the equilibrium condition

div P =J x B, (3.5)
yields for the full second variation
F U
62@ :j (LI°—+p2 —pl) (bX"a‘g)g dx
+J(§2—+2p2 - ¥o,) (b - & - aiv UP ax
) as

TUL 3Us a5y u)E
J Py %5 %y (aiv U)® | ax

-
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-j<g>ag dQ+~—§ L W) -3 B(U-)U - as

—Lﬂg[%Bz divU-B+ B VU] U- a8
0

We shall have the desired form after performing two integrations by

parts on the term involving p,,

L?:.’

, ds 2 _ T . ; - U - V)4
Jp*LaXJaJ (dlvU)]dx»-JVp* (Udiv U - U - VU)-dx

§B2 (UdivU - U - W)-38
T 2uo

EJp*-UdldeXwLJ.U Tpx U, dx
i

10 .
-a-—L—O—fB?(UdlvU-U- w) - ds——-§(BUVB)UdS.

Making this substitution gives

62@:f(—+pz—p1)(bx~)2dx+f(—§f-+ 20, -3¢, ) (57 - aiv U)%ax
¢}
£
+2va*-Ud1dex+JU ——E—B—X—U GX-J<g>2%€—dQ (3.6)
+JP(U'JXB)U'dS--—§ VB) B - a8

where we have used the identity
U+*B* -B-U"* VB=-U-Bxcurl B.

We shall give for reference a form for the second variation where
we do not perform the second integration by parts on the p, term. This

is
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el

25 - [(E - 3Uya B .oU ; 2
5%%: = J(Mo + py- Py )(b x as) dx + .E(p,o +2p - BC,)(b 35 - v U)PR ax
¥ . a£°
+ VB, (UdivU - U - vyU) dx - f <P 3 an (3.7)
1 1
+ =90 (U- B. VvB)U-. d8 - ——-§ (U-U- vB)B + ds
Mo Mo

To allow later estimates and to make explicit the effects of scaling,
it is helpful to introduce a characteristic length and field strength and
to define new variables in terms of them. ILet R, be the radius of the
domain D and B,the maximum field strength in D. Then define new primed

variablegs by

Roxi = X,
2

B .

Lo i i

BoBi :Bl

In terms of these variables (3.6) becomes

2
88 = RO_BQ— { j\(qu + B - 31) (b x Qg')g dx' (3.6a)
Mg os
2 13 [ aU . 1 2 t
+ j(B' + 2B, - B"™C3) (b - 350" div' U)® dx
+ 2fv'6 . Udiv' U ax’ +fU -@iﬁ—*—-U dx' ..J‘<g§ @_ffde.
* i BX{BXj J de

+ ﬁ (U-J'"xB')U - a8' - § (G- U- VvB'")B'" - d8'

However it is only in section 6 where we require this form to make esti-
mates such as 2ab < a2 + V¥ where in the original form a and b have

different dimensions. Sacrificing rigor for clarity, we use the unprimed
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variables and (3.6) instead of (3.6a); for the change merely intro-
duces dimensional constants which are unimportant for the success

of the estimates.
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4, Method of Analysis

The boundary condition Bn fixed on the ends means that on the
end any variation U is limited to an incompressible mapping of the
(@,P) plane, i.e., an interchange. We exploit this fact by selecting
(to be definite) the end 8, and extend the interchange produced on
S,by U throughout D. Thus, given any variation U, we can define an
interchange Ui, such that U-Ui vanishes on 8;. Naming this difference

UO we have
U=U +1

: i, X o . .
where U™ is an interchange and U~ vanishes on 8;. Then §°% , as a

quadratic form Q(U), is written as
528 = (u") + (U ,1°) + q(u°) (4.1)

To find when 8°§ is positive we examine each term separately.
Q(Ui) is the full second variation for an interchange. If we pos-
tulate interchange stability (and we do) it is positive by hypothesis.
Q(UO) is the full second variation for a general variation which
vanishes one end. This corresponds to BC I on end S; and BC II on 8,,
i.e., a plasma with one end tied. 1In section 5 we consider this
problem and show that Q(UO) is positive definite for (speaking impre-
cisely) either a short plasma or a smooth plasma which is locally
stable. Accepting these conditions we estimate Q(Ui,UO) in section 6.

$2% will be positive if

oo, 1% < quty + qu°) (k.2)
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The estimate which is found is
(U, U%) < 5,0(U°) + 65 [ (UT)Pax (4.3)

where §, and 6,, functions of the tensors VB and sz*,/axiaxj, can be
made arbitrarily small by choosing their arguments small enough. To

derive (4.2) from (4.3) requires the estimate
Qut) > ¢ j(ui)z dx (4.4)

This will not be true in every equilibrium. For example if there
are neutral surfaces (4.4) will obviously fail.

In section 7 interchanges are studied to find when (4.4) is valid.
We are able to weaken (k.4) and strengthen (4.3) to include equilibria
with neutral surfaces. We find a gsimple and general requirement on the
equilibrium to permit these estimates. This includes as a special case

Grad's sufficient condition for interchange stability [10].
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5. q(u°): Plasma With One End Tied

Following [8] we assume local stability and seek conditions under
which the obviously positive terms in 6° & dominate all others. The
crucial fact in this analysis is that since UO vanishes on 5, we can
estimate both [(U°)?dx and §s, (V7P a8 in terms of [(b x 2U° /38 )P ax.
To establish these estimates we let I be a quantity larger than the

length of any magnetic line in D, i.e.,
max j ds < L

Then from U = j (3U/3s) ds we have
¥ < j as | (éy\z ds
J \3s/

<L I (U - n)® ds + L j (b x %gya ds

- 2
< BR2{R+ L j(b x &Y as
as/
or

L AUV
F< ——ae J(b x & ds (5.1)

Q

ful

where U is the maximum of U on a given line and » the maximum of «n
in D. Integrating (5.1) over any smooth surface S cutting all lines

(but not multiply and nowhere tangent to a line)

*
In this section we shall drop the superscript on .



22

B

NP max L QU

'j Pas < (B-n) T 5e12 J‘ (b X -a-g)z dx
min

the factor involving B arises since dS = dadB/(B~n) where n is the local
normal to the surface, and dx = dodpfds/B(c,P,s). The maximum is taken
over D and the minimum over 8. Calling this factor ¥, we have in par-

ticular on the end Sp

Ly [/ DNV dx . (5.2)
] F ds < T ka X SE)
Sz

Integrating (5.1) over dadp and then ds (and recalling dx = dodBds/B)

21 ¢ .
J ¥ dx < i%%%fg-j(b X %%)2 dx (5.3)

where y' = B both taken over D.

max/Bmin’

With these estimates we can prove the following theorems:

Theorem 1: If the plasma is short enough so L can be made
suitably small, then local stability plus boundedness of
the tensors VB and agp*/axiaxj ensure stability of the

plasma.

Theorem 2: If the tensors vB and azp*/axiaxj are suffi-
ciently small then local stability ensures stability of

the plasma.

Theorems 1 and 2 are parallel, in both cases the small quantities
allow the terms in &°¢ made positive by local stability to dominate
all others. The analog of theorem 1 for both ends tied (no boundary

terms) is proven in [8]; accordingly we prove only theorem 2 and then
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indicate the estimate of boundary terms required for theorem 1.
Referring to the expression (3.6) for §°¢ , local stability

(éee (2.7)) implies that the first two terms plus the term involving

afo/ae are all positive. We ignore the latter term and show the first

two dominate all others under the conditions of the theorem. Now local

stability indicates there is a positive number M such that

1 B

ﬁ<£+p2 —pl < M (5.4)
1R

=< =+ 2p, - BPC, <M

M [170) Pz 2

From the equilibrium equation (see e.g. (9.7) of [6])
U= Vp, = U #(B g + Dy - Dy) (5.5)
Thus for the third term of (3.6)
va* © U aiv U dx € Mx [[[U] (Uswrdiv U)dx + [ |U[(U w)ax] (5.6)
< Mn [—% J rax + % [ (un+div UPax +n [P ax]

which (5.3) and (5.4) show to be smaller than the dominant terms if

u is small enough.

The other volume term is easily estimated by

——

2 px > px
JUi 3%, 3% Uy dx Slaxiaxj| X ¥ ax (5.7)

which again is made arbitrarily smaller than the dominant terms if

B?p*/axiaxj is small enough.
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The boundary terms are estimated as
[ (u-u-vB)B.as<BlyBl [ Pas (5.8)
Sy, 52
J.(U-3gxB)U. ds |7 B j 1 ds
So Sz

which (5.2) shows to be dominated if VB is small enough, proving
theorem 2.

In proving theorem 1 the boundary terms are estimated exactly as
in (5.8); in this case (5.2) indicates the integral I P dS becomes
arbitrarily small with L compared with the dominant terms.

The conditions of theorems 1 and 2 guarantee that §°@ is actually

positive definite, since (5.2) and (5.3) show that U = 0 if %% = O.
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6. Estimating the Crosg Terms

The inequality to be derived in this section was stated in section

where §,and §; become swall with their arguments VB and agp*/axiaxj,

o (U5,0%) <& a(if) + 8 [ (01)? ax

and Q(U",U°) are the cross terms corresponding to (3.6) which are

defined by (L4.1).

(k.3)

For an interchange curl (Ul x B) = 0, and the following identities

hold
i ,
bx 2 - ol ow
38
i _
au . i i VB
b -g:q—— -~ div U = U B
) , v
div Ut = - U (3? + )
Hence the cross terms have the form
i 0 5 i 3u°
Q(U ;U) E‘J (’_+P9-P1) (U 'Vb)' (bx""""‘) dx
Mo s
- 3 v‘ O
2 f E voop, - o) (0 By (b 3 L aiv 19) ax
e B 38
i . o o VB
> j[(U - vp,) aiv 00 - (0% - wp (Ut - (224 )] ax
roi Fpy o ¢ 1o af°
21U, == Ul -2 v
FE Iy vy Uj dx 2 J <gg > 3 an
1773
§ (v -3 xB) U° - as + § (v° - J x B) U - dsS
L § (ut - v° - vB) B- as - jk-§ (v° - ut - vB)B -

¢}

ds .

(6.1)
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To establish the estimate (4.3) for the volume terms of (6.1) we

note that all these terms have the form

oo
| Ut - £(U°) ax

where n is a vector (or tensor) which becomes small with its argument,
VB or azp*/BxiaKj. For example, in the first term n is Vb, while f(UO)
is b x an/as. Thus for each of the volume terms the following estimate

holds:
Tot e %) axs RI[ [ 052 ax [ e0p o
1l - ’ 1ye ) Oy 7
s 3 7] . (U7)? ax * £(U7)? dx (6.3)

(Here we have used the inequality 2ab < &% + b® which requires that
Ui and f(Uo) have the same dimension. It is for this reason that a
dimensionless length, field strength, and pressure were introduced in
section 3.) But jf(Uo)z dx is in every case bounded in terms of the
dominant contribution to Q(U°), hence for the volume terms (4.3) does
hold.

The term in (6.2) containing afo/ae can be esgtimated using the
identity (where gi and go refer to their respective arguments U'i and UO)

o
e i o df i af
oL 4q - RS
Jsee>mX= g <g ks e 0

which is easily proven and is implicit in (10.10) of [7]. Now

1
e 3 TR

o
ri o f - 2 Bf
LgT — 40 £ ag

Jg g = de Q - J ( ) de J

) <g
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and using (I.25) of [8]

| @ .g.ff @=[ (-3, (0 wp -2p, (0wt B
- CgB° (Ui . 3%)2} dx
s const. mex (|x|,]|VB]) I (Ui)e dx
whence follows immediately an estimate of the form
j <gig°> %—fi ao < § j (Ui)2 dx + & Jr <g %P %.ef.i ao (6.1)

which again has the form of (4.3) since § is small with VB.
To achieve the same type of estimate for the boundary terms we
' ivg . . iz . i,
must show Is (U")2d8 is bounded in terms of I(U J? dx. Since U is
2
an interchange, the existence of such a bound is obvious; it is derived

in the Appendix and we find

§

which is similar to the estimate in (5.2) for U°. Then the boundary

< (U')® as < const. j (U')? ax (6.5)
2
terms are estimated (we do only the first term as a typical case) as:

P

Jo

1. xB)w° - as s |TXB J“|UiHU°l as
—-—-»—-1?"5 i IO -
J x Bl=| ¥#a U )2d
s|x|2L(U,S+()SJ
Then using (5.2) and (6.5) it follows

(boundary terms) < 5, [(U)2 ax + 8,Q(U°) (6.6)
1

Combining {6.3), (6.4) and (6.6) yields the desired estimate (4.3).
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7. 8Stability Theorems
Thus far we have shown
28 > q(ut) + Q(u°) - 8 | (U2 ax - 6, Q(U°)
If Q(Ui) satisfies the inequality
Q(Ui) > const. J“(Ui)2 ax (7.1)

which can be interpreted as a strong form of interchange stability,
then under the conditions we have found in sections 5 and 6 &°% can
be made positive definite. We summarize these conditions in the
following theorem:

Theorem: an equilibrium, i.e., a stationary solution of

the variational problem, is a stable equilibrium if the

following conditions are satisfiled:

1. It is locally stable.

2. The tensors VB and aap*/axiaxj are sufficiently small
throughout D, where X, and xj are directions locally
perpendicular to B.

3. It is strongly interchange stable in the sense that
the second variation for an interchange Ui has the
property:

5° &

T =C>0
J(U )?dx

In cases such ag axial symmetry where there are neutral surfaces,

requirement (7.1) will not be met (merely let U' be a neutral inter-
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change so ¢ = 0). However, the result of a neutral interchange is
again an equilibrium. Thus if U; is a neutral interchange and U any

other variation
U+ 1) = Q) (7-2)

Expanding (7.2), we find the cross terms must vanish, or

Q(U)Uz-l) = 0

We can use this fact to weaken the requirement (7.1) on Q(Ul). Splitting

an interchange into its components
. 5 .
U= U+
where now Qi is perpendicular to the neutral surface, the original form

for the second variation becomes

858 Q(UO + Ui + Ui)

i3

it

Qv +(v’,uhy + qqud)

Thus requirement (7.1) can be weakened to

Q(Di) > const. | (Ui)z dax (7.3)

Now (7.3) is a fairly weak requirement and is included in a number
of sufficient conditions for interchange stability. To show this we
analyze the second variation for interchanges using the methods of
[10]. Since an interchange is an incompressible rearrangement of
magnetic lines in the A = (&,B) plane, the analysis is simplified

by using these coordinates and representing the variation of
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lines by an incompressible velocity field u = ax/at. This flux

velocity u is related to U by
U, = (axi/axj)uj, U+ V=u- (3

The pessimistic variation requires f to be a function of (o,p) only
through the action integral J if we impose the necessary condition
af/ae < 0. B8Since the magnetic field is unchanged we consider only

the fluid variation and set
2 = [e(dpn) £ (J,u,0) 4
where
dQ = aJdudn .

Performing the first variation

- L .2
e=-feu-Fa=[fu.F

No boundary terms appear since f = O at the boundary of D. A necessary
and sufficient condition that j u - ¢« d\ vanish for arbitrary incom-
pressible u is that a be a gradient, a = aq/ax. Thus §¢ = O implies
edF/3N = dp/d\ so that ¢ and then ¢ are constant on constant £ contours.

Taking the second variation
2¢ - . 8¢ . of
& j (u BX) (u ax} &

Specializing now to equilibria with axial symmetry or other neutral
surfaces so that f is a function of (a,B) only through ¢ [f=f(J,u,¥(x,B))],

the vanighing first variation implies also
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u - de/on = (u - 3p/3) de/
so that

= [(u - Sy 2e
Pe- -y E©

It is obvious that a neutral interchange is one which satisfies

u - /3 = 0. Thus Ut is equivalent to the component of u (denoted

by u,) parallel to 3y/3r, and
22 = -[ uz 280 oo (7.4)

since (3y/an)?= 1. From (7.4) we see that the requirement (7.3) is

equlvalent to

[$5 ww <o (7.5)

on each neutral surface . (Interchange stability alone requires
non-positivity of 7.5.) TInequality (7.5):is independent of the

variation and is instead a property of the equilibrium alene.

This condition is satisfied if Grad's sufficient condition for
interchange stability [10] holds. When interpreted properly such

conditions as that of Rosenbluth and Longmire [11], namely

Jerm) FF >0

or that quoted by Furth [12]

j'-g—f— %(pz+pl)%§->0
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are also stronger than (7.5) and are all less general.

We can summarize this analysis in the following theorem:

Theorem: an equilibrium with neutral surfaces (e.g.

axial symmetry) is a stable equilibrium if the follow-

ing conditions are satisfied:

1. It is locally stable.

2. The tensors VB and aap%/axiaxj are sufficiently
small.

3. On each neutral surface the inequality holds

that

j-a-ﬁé—ﬁdeu<o

A Y
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8. Scaling Analysis and Conclusions

There is a psychological belief that a short plasma will be easier
to stabilize than a long one. It is therefore of value to examine
our estimates more closely to determine the effect of stretching the
domain D lengthwise while keeping the same f and plasma radius.

First we note that as L becomes long the behavior of x is u ~ I 2.
For if b is almost parallel to the plasma axis, the component perpen-
dicular to the plasma axis scales as L ' and the derivative 3/ds also
scales as L *.

Tc analyze the effects of lengthening the plasma we must write
down the specific quantities involved in the estimates of Q(Up) and
Q(Ui,UQ)- Looking first at Q(Up), we focus on (5.6) and (5.7) which
estimate the volume terms. Now | U° dx ~I® and # ~ 172, so the esti-
mate of the term (5.6) becomes no worse. To expand azp*/axiaxj we

use (5.5) to form

2
g/, = (B /uo + pa - 1y)
(8.1)
azp* [ 2
i/B B 2
ax£§;; = 5§3-<:;.+ Pa- pl> + nihﬁ<¢; + Pz - Py) - Ry 5;5'(Pz + Pl)

which implies azp*/axiaxj ~ #. Thus {5.7) is also unchanged as L be-
comes larger.
The estimate (5.8) of the first boundary term is similarly done;

for

U-(U- 9B < |B] 1 |3b/ay|
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which goes down like L'l, while j U'2 dS ~ L. 1In the second boundary
term

2

U-JxB = U-B-\’/B—U'V%—

Wow U*B- VB=8 U-+#x~n but U - VB

is unchanged as the plasma
is lengthened. However, if we initially orient the surface S, to
be perpendicular to the axis of the plasma, then U - dS ~ L% and

the estimate is unchanged as I, increases.

We summarize this analysis in the following theorem:

Theorem: If in a plasma with one end tied the end plate
on the free end is oriented perpendicular to the plasma
axis, then an equilibrium stable by the estimates of
sections 5, 6 and 7 remains stable if the plasma is

lengthened keeping the same B; 8°3% remains positive.

We can prove a similar theorem for the plasma with both ends free
(BC IT) by analyzing the estimate of Q(Ui,UO)- But since there are so
many terms in Q(Ui,UO), it is easier to write down all the terms at
once instead of considering each term separately. 1In detail the esti-

mate (4.3) is

; — A _ vs o
Ut v%) < {IVLb[M + {—§§1 Mo+ M |u] + |~E-+ 7l o+ ‘SE;%E;*
+ (3py + 2pa + CgB ) (|®| + IZ%EW)} f (Ui)g dx (8.2)

AR 15 1EE) Y as
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T 12w [anlmuaxga]—l’gz—z

s (Al 1B} e

AITEE 15 191 e o)

All the terms in the factor multiplying I(Ui)2 dx scale as L"l with
the exception of vy B which is unchanged. Thus this estimate becomes
no worse. Similarly (A.3) shows that the factor multiplying j(Ui)‘? das
is unchanged while that integral scales as it f(Ui)zdx. So lengthening
the plasma leaves the estimate involving Ui unchanged.

The terms involving Q(Uo) are also unchanged. 1In the first of
these there is a factor L2, but » and azp*/axiaxj scale as L°° so
these cancel. The second term, resulting from the boundary integrals,
scales just as in the plasma with one end tied. The estimate is
unchanged as L increases if the end is oriented perpendicular to the

plasma axis. In summary we state the following theorem:

Theorem: If the estimates of sections 5, 6, and 7
yield a positive §°%, so the plasma equilibrium is stable,
then lengthening the plasma while keeping the same B8 will
not produce instability if the end plates are oriented

perpendicular to the plasma axis; 6°¢% remains positive.

Since recent results {137] indicate that in mirror machines the
classical scattering into the loss cone is perhaps much worse than
originally predicted [14], attention is turning to toroidal machines

as the prime hope for controlled thermonuclear fusion. It would be
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of value therefore to extend our results to the torcidal case. However,
at least two difficulties preclude doing this with the present analysis.
The first of these is the fact that the perfectly uniform field in the
straight machine becomes an azimuthal 1/R field in the toroidal machine.
Thug in the latter case y~ l/R at best. And since I, is now the cir-
cumference, L ~ R. So it is not possible to reduce u 1independent

of the plasma length, and further the egtimates become worse ag the
length increases; for there are terms in (8.2) involving L2. This
difficulty could be circumvented if the estimate j(UO)2 dx ~ LEQ(UO)
could be improved; efforts to do this have been unsuccessful.

The second difficulty is that we have used end plates to restrict
the variation on the ends to an interchange. This artifice is obviously
impractical in a toroidal machine. However, we might still make use of
the technique of splitting up 6% by introducing a mathematical cut
through the torous and writing U on that surface as an interchange plus
a compression. As pointed out in [15] there are difficulties in pro-
ducing guiding center equilibria in a torus, so this analysis might be
vacuous except for simple geometries such as axial symmetry.

In a recent paper Taylor and Hastie [16] considered a problem
similar to ours: a perturbation about a uniform magnetic field BO
with pressure ordering p; << py << E%z and the gradient ordering apl/ax <<
dp; /3% ~ ¥B/dx,. They find, in addition to the local stability
conditions, the following sufficient condition (in (%.2) of [16])

B° syl 2R, . 3y _ (B 2 é_@_:]
j(uo CoB.%) T ngi (Mo % 5% ds < 0 (8.3)
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OQur sufficient condition (7.5) includes as a special case Grad's
sufficient condition for interchange stability (in (8.4) of [10]),

*
which in the above l1limit can be written as

b0 3B 3 - 2y 8B 7
B J%Eﬁi_(% CBBo)aXles<O (8.4)

Inequality (8.3) is much more restrictive than (8.4) because it includes
a term lacking in (8.4):

j%%~€cz%2%§&+§%a}ds
which is almost always positive except in a magnetic well. 1In fact
(8.3) is very hard to satisfy except in a magnetic well, whereas (8.4)
can be gatisfied in any long thin plasma, almost independent of field
geometry [6].

OQur exact analysis confirms that the Taylor and Hastie condition
is approximately correct (modulo the details of the field and pressure
gradients) but is rather crude for it is unduly restrictive of field
geometry. Also their analysis is only formal, being an expansion
around a uniform field and zero B which has not been proven to con-

verge (or be asymptotic) for any finite B or field non-uniformity.

¥see [ 6] for a similar comparison.
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Appendix. Estimating J U’)st in Terms of j(U J?ax

This estimate results from the familiar one-dimensional inequality

relating the max norm of a function to its integral norms:
S L
1 T “";’12 2
max le(x)| s ==, j |£]? ax / + /L J lgf dx:”!]j/2
T L | Ld lax .
o] o -~
To apply this inequality we choose 4 and I, such that
{4 < min f ds L > max j ds
with both min and max taken over all lines. Then along any line
1 rj /2 re 2u /2
max U] = === | F ds + /1 j =)? das
W= 75 ey i G
Squaring,

® < J,V Pds + L | r ( )2 ds + 2/T 74; ‘ ® dsf (S———E)E ds?/e

ﬁ!H

Integrating as in (5.2) over any transverse surface and as there letting

7= Bmax/Bnmin

[Ras s L fax + o1 j(») dx + eyth[‘U? ax Jr gg jl/z (A.1)

rf a
Here use is made of the identity j fgas <! * as J & dSJ

For an interchange, curl (Ul X B) = 0, and from this we find

o/
aw)
=N

< - b - (vt . Wb (A.2)

Using (A.2)with (A.l) it is easy to see that

fs (Uh)2ds < const.I(Ul)E dx
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The precise estimate, which is required for section 8, is

I(Ui)eds S-{% + 7L (1§:E‘+ l;l)g + 2y /T (‘5:51+|;1} I(Ui)zdx (A.3)



Figure 1. Plasma Domain D
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