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CALCOMP PLOTTING OF X-RAY PQLE FIGURES

Gordon R. Love

INTRODUCT TON

A quite general problem faced by the experimentalist is the publi-
cation of intrinsically three-dimensional plots of data in but two
dimensions. A solution to this problem may be approached in two principal
ways. One may try either various kinds of projections or various kinds
of constant-parameter cross sections of the data. Projections range
from the simple "three views" of the machine drawing through isometric
to trimetric projections and ultimately to the pairs of drawings which,
viewed in stereo, produce an excellent illusion of three dimensionality.
An unfortunate corollary of these projection schemes is that any part of
the three-dimensional figure which is not coplanar with the observation
plane is more or less badly distorted by projection. Both distances and
angles may be affected. Recovery of experimental data in quantitative
form from these drawings is made difficult by the very manipulations
which make observation of qualitative features easier and, furthermore,
these drawings are hard to produce. Because it is relatively easier to
construct constant-parameter cross sections and because these do not
introduce ambiguity in recovering quantitative data, the latter approach
has been preferred by scientists.

One may distinguish two variants of the constant-parameter plots.
Drawings of the dependent variable versus one of the independent
variables for various constant values of the other variable
[U(X,Y) vs X at Y = Y,, Y,, etc.] will be called "parametric" plots.
Drawings of the loci of pairs of independent variables giving constant
values of the dependent variable [Y vs X such that U(X,Y) = Ul, U, ete.]

2)
contour” plots. Perhaps the most common of these latter are

"

we call
contour maps that show lines of constant elevation above sea level,
Constant values of independent variables may be relatively easy to
maintain in the laboratory, and therefore parametric graphs are produced

with a2 minimum of data processing. Only by coincidence do they clearly



reveal significant trends in experimental data. Contour plots almost
inevitably require interpolation in the set of experimental measurements
and hence data reduction, but they freguently are the best possible
compromise between clarity, accuracy, and convenience.

In selected cases, especially when the independent variables display
some natural symmetry which is not cartesian, it might be desirable to
combine contour plotting with some form of conformal mapping in order to
preserve a facsimile of the experimental symmetry in the reported data.
As an archetype for this class of data representations, we cite the x-ray
pole figure.

Typically, a pole figure for a polycrystalline solid is determined
by examining the reflected x-ray intensity for a selected crystallo-
graphic plane as a function of angular position. 1In ideal presentation
format, then, data on x-ray reflection intensity might be presented in
a guasispherical figure in which the variocus sphere radii correspond to
reflected intensity and the angular positions of the radii represent the
angles of the observations. 1In more practical terms, the angular
coordinates of a given observation may be reduced to coordinates in a
plane by use of the conventional stereographic projection and the varia-
tion in intensity may be represented in the cartesian space by drawing
selected iso-intensity contours.

To guarantee adequate determination of the angular variation of
x-ray intensity, that is, to assure that no peaks are missed, a large
number of individual observations are made. Usually intensity measure-
ments are made continuously along a set of relatively closely spaced
paths and the positions along that path of preselected values of inten-~
sity are recorded. However, automatic conversion of the digital data
is not continuous but yields numerical data taken at intervals; the raw
data for pole-figure construction are recorded as an array of discrete
points. Typically, over 900 such data points are incorporated into a
single figure.

The crudest possible way to locate a line of constant intensity in
such data 1s to note that it must pass between, and only between, points
of higher intensity than it on one hand and points of lower intensity

than 1t on the other. Because of the large number of data points



incorporated in a single pole figure, this criterion and "eyeball inter-
polation" have been used for decades to construct pole figures of
satisfactory accuracy. Even so, the construction of pole figures is
time-consuming and deadly boring and, therefore, a fit problem to reduce
to machine~-processing methods. A secondary advantage of machine data
processing in this case is that the machine is able to do considerably
more careful interpolation among the data should it ever be reguired or
warranted,

The problem of machine construction of x-ray pole figures is in
reality two problems. First, it is necessary to enter and/or generate
within the machine a very large number of single items of data. Typi-
cally, the x- and y-coordinates of each of over 900 points in a stereo-
graphic projection of the data must be calculated and the value of
intensity at each point must be read from input. Also included in this
step should be provisions for adjusting the observations, specifically
for background intensity corrections, normalizing the observations to a
multiple of the equivalent reflection from a random sample, scaling the
output to a convenient size for examination and/or publication, etec.
Second, the machine must construct pole figures summarizing the input
data in a form useful to the user; in particular it must draw contours
that approximate as well as possible actual lines of constant reflected
x-ray intensity in conventional stereographic projection. Depending on
the scale of the drawing, the accuracy of the data, and the whim of the
programmer, it might be advisable to construct a relatively large number
of iso-intensity contours, rotate the constructed figures about refer-
ence axes, change the labeling of maxima and minima, and otherwise modify
the output.

The program to be described here is, I feel, an adequate solution
to the problem ocutlined above. It is, in addition, capable of accepting
data in a large variety of input formats; that is, a large number of
geometries of the data-taking procedure or a large number of possible
paths through the experimental space. While it does not produce contours
continuous in first derivative and therefore it might offend the purist,

it at least does not permit intersection of lines of different intensity



or any similar offences against the necessary properties of contour
curves. Furthermore, it operates with an absolute minimum of auxiliary
control cards, can readily be adapted to automatic data-taking eguipment,
and is relatively economical of computer time.

I shall discuss the subroutines in roughly the order in which they
are used by the program and in barely sufficient detail to make the
Fortran listings, included as appendices, readable. Systematic optimiza-
tion has not been attempted; careful estimates of computation time are
not available; the specific language used throughout is Fortran 63; but
there are no known incompatibilities with Fortran IV. The program has
run in this laboratory for pole figure construction using the CDC 1604
and the Calcomp plotter for approximately one year without incident. To
illustrate various features of the program, selected computer-drawn plots

are included later in this report.

Program POLE

The main program of the package for drawing x-ray pole figures is
POLE. It has two significant functions: it converts the angular posi-
tions of each data point from coordinates on a hemisphere tTo x- and
y-displacements in a plane by the trigonometry of the stereographic
projection; it also acts as a clearing house and traffic cop among the
other subprograms of the package. Several options are available to the
user of the program, and these are reflected in the multiplicity of
possible paths through this program. Though we defer detailed descrip-
tion of the options, we can identify them as: (1) multiple data sets,
(2) choice of either the Normal Direction or the Rolling Direction as
principal reference direction, (3) a numerical dump of the data in pole
figure format, and (4) variable number of iso-intensity contour lines.
A single punched~card input record is read by POLE statement 90, which
contains a 32-character title in columns 4—35 and four integer constants
NDEX, KTYPE, N4, and TK(7). If NDEX, columns 1-3, is negative, the
program ends normally. Yero or positive values of NDEX imply further
data, and each completion of the entire program returns to statement 90,

allowing option (1). Tf KTYPE, columns 36-45, is zero or negative, the



data to be entered subseguently will be assumed to be taken with the
Rolling Direction as axis of rotation ("R.D.-data"). 1In this case, the
random intensity will be calculated in the program. If KTYPE is greater
than zero, the data is assumed to be taken with the Normal Direction as
rotation axis ("N.D.-data") and the value of KTYPE will be used for
random intensity. If N4, columns 46-55, is zero or negative, a numerical
dump of the input data will not be made; if positive, option (3) will be
exercised. Finally, the number of iso-intensity contours, up to ten,

to be plotted is entered in IK(7).

Common arrays are established which ultimately will contain the
values of observed intensity, the x- and y-coordinates of each observa-
tion, and a number of internally necessary integers. The program then
calls upon subroutine INPUT to read the set of intensity data and to
generate the two angles which describe the location of each datum.

INPUT returns to POLE only sufficient data for one plot. Typically this

is just half of all data, and it is assumed that these data are from the

"Front Side" of the hemispherical figure. The program calls upon POLECAT
to construct a semicircular field of radius RO inches and then calculates
the projection of the data onto the plane of the plot.

Two different sets of trigonometric relations are necessary to
project the data onto the plane of the plot because the origin of coordi-
nates in the spherical coordinate system depends on whether the data are
taken represent R.D.-data or N.D.~data. In the former case, the point
at which both angular coordinates are zero is the rolling direction; in
the latter case, that point is the normal direction. Since, in either
case, we prefer the plotted figure to present the rolling direction as
the "North Pole"™ of a semicircle centered on the normal direction, two
separate conversions are required. The relations are;

(1) for R.D.-data:
X = RO-cos ¢«sin ¢-A
Y = RO-cos ¢-A

where

2

A= (1 — sin ¢-sin @)/(sin®? Q-cos? ¢ + cos?® @) .



(2) for N.D.-data:

X

I

RO-tan (¢/2).cos «

Il

y = RO-tan (¢/2)-sin a .

In either case, ¢ represents the polar angle measured from the
reference direction, ¢ is the azimuth angle measured clockwise from the
direction labeled Transverse Direction in the plots, and RO is the
diameter of the figure desired.

If an all-number dump of the experimental data is requested,
option (3), it is made in PLOT. In this case, as in all cases in which
the plotting subroutines are applied systematically to the data arrays,

a specialized scanning loop is used. The loop forces the plotting
routine to examine increasing values of I for odd-numbered values of J
and decreasing values of I for even-numbered values of J. This scanning
procedure eliminates long traverses of the figure with the pen in the
"up" position since it always considers adjacent points in the data
array.

The balance of the program inserts titles on the figures, labels
the data "Front Side" and "Back Side" appropriately, reexamines the input
list for multiple data sets, times jtself using ICLOCKF, and records the
total machine time per plot. The central variable to correct seqguenching
of the subroutines and execution of the labeling steps is IK(4). A
summary of the variable names used in PLOT, with brief definitions of
their function, is given together with the Fortran listing of the full

program in Appendix A.

Subroutine INPUT

This subroutine reads the raw values of reflected intensity, stores
them in arrays in the machine for use by the other subroutines, and
generates from auxiliary input information the pairs of coordinates that
locate each intensity observation in terms of the experimental coordinate
system. The relationships that are established within the computer among
the data entries, that is, among both the position and intensity variables,
are crucial for the subseguent success of the program. They merit

careful study here.



The simplest form of parametric data taking, in concept, is based
on taking each of the variables within the experimenter's control (in
this case the position variables) and treating them as independent
variables. One may then select a number of values of each variable
arranged in some serial order such that X > Xi’ etc., and observe

il
the dependent variable, the intensity, for every value of Yj at each

value of Xi' These coordinates define a natural rectangular data array,
and there is an observation (data point) at every point Ui,j within that
array. This data-taking scheme is very common in practice and has a
number of properties that make it convenient for subsequent data
processing. The two most important properties are: (1) the subscripts
of each data point serve to link it directly and unambiguously with the
independent variables for which it was determined; and (2) points which
are stored in adjacent locations, that is, have subscripts differing by

unity, are points which are "adjacent”

in the experimental space, that
is, have incremental differences in one or the other of the independent
parameters. Both these properties are necessary to the construction of
x-ray pole figures using the techniques of this program. However, the
form of data taking which has been found most convenient in this labora-
tory does not allow completely independent selection of the two-position
parameters and is not therefore directly compatible with the simple
scheme for data storage outlined above.

The pole-figure goniometers in use in this laboratory are designed
for scanning of reflected intensity while both angular position variables,
o and ¢, are varied continuously. The position variables are therefore
no longer truly independent of one another and it is not possible to
construct storage arrays in the computer in the fashion described above.
However, if a value of intensity is recorded at constant intervals of
time (since the rate of change of both position variables is constant)
then there are sufficient regularities in the data-taking process to
pernit simple, useful storage of the data. Figures 1 through 3 are
schematics which help to illustrate how this 1s done. Figure 1 shows in
stereographic projection how data are taken for N.D.-data. From arbi-
trary starting points (usually ¢ = O, o = O and 180° but here taken to

be ¢ = 30°, o = 30 and 210° for clearer illustration) the scanner proceeds
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Fig. 3. Schematic Typical of Data Storage in Computer Memory. The
numerical values chosen for IO(i), and IMAX correspond to those that would
apply for either the Fig. 1 or 2 data-taking schemes.

along one or more (here two) shallow spiral paths and records single
data observations at regular intervals of time. In this schematic, data
are recorded at 5° intervals in & and 0.2° intervals in ¢; the total
increase in ¢ is 7.2° per circuit and, as there are two scans, the
separation of the traces in the ¢-direction is 3.6°. Figure 2 shows
the same data-taking procedure as it might appear for R.D. data. To
emphasize that the differences between Figs. 1 and 2 are merely matters
of the choice of projection and location of the point ¢ = 0, we care-
fully preserve in both figures the number of traces, their starting
points, and the relative position of successive data points on each
trace.

The point to be made by comparison of the two figures is that,
from the point of view of data storage and handling, they are bhasically

identical. A given 'row" of data, the string of data for O < o < =,
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contains a constant number of single observations. Further, if we

define a "column" as the sub-set of points having approximately the same
value of a (in our schematic, identical values of &), then the "columns"
in each array are also of identical length. In fact, if we assign the
subscript I to the position of an observation counting from left to

right along one "row," and the subscript J to "column" position from top
to bottom (or from ¢ = O to increasing ¢), we may construct in computer
memory rectangular arrays, shown schematically in Fig. 3, in which

there is a one-for-one correspondence between each storage location and
each individual datum. For a single pole figure drawing, it is necessary
to construct three such arrays in machine memory -~ one containing inten-
sity values and two others containing each of the position values. The
method of storing data in the arrays preserves the property of "adjacency"
among the experimental data; a single pair of subscripts, I and J,
identifies in each array exactly the corresponding three variables which
define a single observation. We have therefore preserved both the
consistency of subscripting and the "adjacency" of data storage which

are so useful in subsequently constructing the pole figure.

In the next several paragraphs we describe in considerable detail
the decision-making steps involved in defining the limits of the arrays
in machine memory, the techniques for avoiding storage of multiple data
entries in single locations, and the unit logical steps of data entry.

A test of the adequacy of our solutions to these problems is given by
the later figures and the average machine time spent in data entry.
This will be discussed later.

The storage arrays are defined using the following auxiliary infor-
mation read from punched cards: ADEC, the a-increment between successive
points; BDEC, the o¢o-increment; NTRACES, the number of scans made by the
x-ray camera; KMAX, the total number of data points to be used from
a single scan; and NIRACES values of ATPHO(K) and PHIO(K), the a- and
¢-coordinates on the first points on each of the traces. The integer

width of a single plot, that is, the maximum value of I subscript, is

IMAX = 51/ADEC ,
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except that if this division is exact and if the traces begin at an
integral multiple of ADEC it is necessary to increase IMAX by one to

retain all the data. The maximum value of the J subscript is
JMAX = (NTRACES * KMAX)/(2 * IMAX) .

Notice that doing integer arithmetic in this way truncates the arrays
actually used for plotting to the largest available rectangular array;
if the final points of an individual trace do not end just at the
starting point of a trace, they are stored correctly, but will not be
recalled by the plotting program. This loss of data appeared a small
price to pay for the programming simplicity it introduced. .
For each of the NTRACES values of ALPHO(K) an appropriate value of

the starting point for the I-subscript is calculated according to
I0(K) = AIPHO(K)/ADEC + 1 .

Beyond their obvious use as the first subscript of a string of stored
data values, these integers have an additional critical function. ZEach
time that the experimental trace passes one of these values of I it is
"eclipsed" by another trace, that is another trace (possibly itself) now
lies between it and the "North Pole," the point ¢ = 0. We have agreed
to consider the J-subscript to indicate the number of traces "south” of
the point ¢ = 0; therefore each time one of the points T = IO(K) is
encountered, it is necessary to increment J to get the stored values
"out of the way" of the values to be stored for the other trace. This
is shown in schematic in Fig. 3. We have retained the geometry of point
location and separation shown in Figs. 1 and 2, and we intend each symbol
of Fig. 3 to indicate that a data value from that trace would be entered
into that location of the rectangular array.

In the simplest case of a single spiral scan, the working of this
sorting process 1s trivially obvious. The data are read in successively
for one complete circuit of the sampling hemisphere and J is held con-
stant while I is incremented by one between each point. After one
circuit, when I becomes again equal to IO(1) (there is only one value
of I0), J is incremented by one and another circuit of the figure is

stored in the next row of the two~dimensional array. It may not be so
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obvious, but 1t is also true that any number of interpenetrating scans
can be handled with no additional logical complications. Of course, if
the pitch of the spiral scan is very high, the method becomes logically
cumbersome; for this reason the storage arrays for AIPHO and IO are
equipped to accommodate no more than ten separate traces.

The unit operation of data entry is then as follows: All of the
intensity data for a single trace (KMAX =< 1500 entries) are read from
input into temporary storage in GUT. AIPHA and PHI are set initially
equal to AIPHO(K) and PHIO(K); for the KB trace, T is set to I0(K) and
J to 1 (an exception is discussed below). The value of AIPHA is compared
with n and 2n, respectively, to determine the guadrant of the sphere
into which the data fall, "Front Side" or "Back Side," as illustrated in
Fig. 2, and the appropriate storage arrays are selected. A single value
of intensity is read into its array and, immediately, the appropriate
values of AIPHA and PHT are stored in their arrays according to

FR(I,J) = ALPHA ,

i

Fz(I,J) = PHI ,

Il

FU(I,J) = GUT(K) .

Then I is incremented by one, AIPHA by ADEC, PHI by BDEC, K by one (to
select the next variable in the buffered input), I is compared with each
of the I0(K) in turn to determine whether J should be incremented and
the above procedure is repeated from the point of comparison of AIPHA
with n and 2.

There are other complications which have been passed over for
expositional simplicity. The I-subscript increases from 1 to IMAX twice
during a complete revolution; once as the trace crosses the "Front Side"
array, again as it crosses the "Back Side." So that the beginning points
of the several traces are correctly identified, it is necessary that an
additional integer variable, IC, be used for comparison with the IO(K).
The range of IC is Jjust twice that of I. Similarly, although ATPHA may
have all values from 0. to 2n, the plots of data representing the "Back
Side" are "right handed" only for values of @ between 0. and n. There-

fore entries in the "Back Side" arrays are

BR(T,J) = AIPHA — =m; BZ(T,J) = PHI; BU(I,J) = GUT(K) .
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Data taken at o = 0. and =« properly exist in both the "Back Side"
and "Front Side" arrays. When this situation arises, the ﬁrogram expands
the array storage to accommodate the repeated variable (the last entry
in any row of the front side array becomes the first entry in the back
side array, ete.). The details of this replication operation are best
revealed directly in the Fortran listing of this subroutine, Appendix B3
the critical statements are those defining JB and JC togethér with the
four statements beginning at statement No. 14. A word of caution here;
The decision to expand the array capacity is based on the first trace
alone. If any point on that trace coincides with a limit eof the figure,
the arrays will be expanded and the last entry of each row will be
duplicated whether or not it coincides with an edge of the plot. So
long as the density of data observations is high, this will introduce
only small distortions in the plots.

The two other tasks performed by this subroutine are backgound
correction and normalization of intensity. Background is measured by
setting 26 off the Bragg peak and either making an additional spiral
scan or by sampling background at several values of @ and ¢. In either
event, the background correction is made by simple subtraction of that
observed background intensity nearest the particular data point and the

background varies sufficiently slowly that this introduces only trivial
errors. In practice in this laboratory the background intensity varies
so slowly that it has proved to be more convenient to enter it in
modified fashion; on one or more punched cards, containing up to eight
pairs of numbers, are entered fixed-point numbers representing the back-
ground correction and integers representing the maximum subscript in the
input array, GUT, which has that value. The array GUT, filled with KMAX
- values of background intensity, is then used term~-by~term to make the
background subtraction. Up to 64 different values of background correc-
tion may be read.

Normalization of intensity is performed in two different ways
depending on the data-acquisition method. For textures determined from
spherical samples, where data are presumably available from an entire
hemisphere, the random intensity is determined by elementary numerical

integration of U sin ¢ d¢ using the trapezoidal rule and the available
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(background corrected) input data. Then each data point is normalized
to a multiple of this random intensity. For sheet textures, since data
are not available for an entire hemisphere, an external normalization
constant must be supplied via KTYPE in PLOT. Typically, this is deter-
mined from measurements on a powder sample in the same x-ray geometry
but, where this value is not available, we commonly enter a dummy value
such that the final plots are in arbitrary units from 0. to 10.

In Appendix B, along with its Fortran listing, we list the variable
names used in INPUT together with their physical significance as defined

in this text.

Subroutine POLECAT

This subroutine performs three simple functions. It constructs the
semicircular field on which the plot is to be drawn and labels it with
the directions which are reference direction on the x-rayed sample. It
also locates and labels relative maxima in the numerical input data as
adjusted and normalized by INPUT. Finally, it reads the values of inten-
sity for which iso-intensity contours are to be constructed and calls
SKETCH to do the plotting. A quirk of the identification of the local
maxima has proved to be useful and deserves some additicnal explanation.

To avoid discriminating against local maxima defined by multiple
data points, points which are at least equal to all their neighbors are
tentatively defined as maxima. This means that large-area local minima
containing at least one point egqual to all of its nearest neighbors will
also be identified as "maxima." Tn determining the maxims, therefore,
we count the number of equal nearest neighbors of each maximum and,
where there are any, we label only a few of all the identical points.
The decision to label a given maximum is also based on the ratio of that
maximum to the first iso-intensity value entered; only if that maximum
is greater than 1/2 UISO(1l) will it be recorded. As for the preceding
segments the correlation between variable names in this subroutine and
physical parameters of the plotting package is given, together with the

Fortran listing, in Appendix C.
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Subroutine SKETCH

The problem of constructing a set of iso-intensity contours through-
out the whole set of observed data i1s formidable. Happily, it simplified
to the problem of constructing the set of contours passing among a sub-
set of only three data points and the corollary problem of choosing those
three points in a consistent sequence that finally covers the whole set
of observed data. The logical steps in this process are considerably
simplified by the necessary properties of iso~value lines; they are
continuous and do not branch.

Consider the "triangle" defihed by three pairs of subscripts, I and
J, such that each of its three corners represents a combination of
Uij(X’Y)’ X; 50 and Ty If any two corners of the "triangle" have values
such that U at one is larger than, and U at the other is smaller than
the value of UISO corresponding to a given iso-intensity line, then the
line must pass between those points, Further, if the Iine enters the
triangle along one side then it must exit through one of the other two
sides; equivalently, if one pair of points "brackets" an iso-value line,
then one and only one other pair also "brackets" the line, Obviously,
since we use a finite sampling interval, there might exist pairs of
points between which the true iso-value line passes twice and which
therefore lie both to the same side of the contour. Such circumstances
are ignored, that is, a plotted iso-value line passes but once between
two points. This constitutes a limit to the resolution of the plotting
technique that is more serious than the accuracy and reproducibility of
the plotter pen position, for example.

Two simple functions are used in conjunction with this subroutine.
The first of these, BRACE, asks whether the third of its three arguments
is intermediate in magnitude between the first two of its arguments and
returns BRACE = 1 if the answer is affirmative and BRACE = O if negative.
This function is used, with two adjacent values of Uij and the value of
UISO, the contour value, as arguments, to determine whether the contour
passes between the points. The second function, GUESS, does simple
linear interpolation in terms of one of the position variables to make

an estimate of the value of that variable for which the intensity U
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equals UISO. Granted that the intensities at two corners of the triangle
are found to bracket a contour line, BRACE = 1, GQUESS is called twice to
interpolate between the known values of the position variables and thus
to determine the x- and y-coordinates of the point through which the
contour passes.

When such a point 1s identified and located, the pen of the plotter
is moved to that point, pen up. Then each of the other sides of the
conceptual triangle is examined, in turn, and when the point at which
the contour leaves the triangle is identified and located, the pen of
the plotter is moved to that point, pen down. This is the unit process
of drawing the full contour plot. Note that if the iso-value line does
not pass through either of the first two sides examined, it is not neces-
sary to examine the third side. PFurther, note that if the contour does
not pass through the first side examined but does pass through the second,
it is not necessary to call BRACE to verify that it passes through the
third, etc. Fach segment of contour 1line is constructed as an isolated
straight line. These lines join to within the accuracy of the plotter,
an accuracy of approximately 0.005 in., when the appropriate adjacent
triangle is examined.

A set of four triangles is constructed in the machine at each point
in the array considered by the subroutine. A schematic representation
of these triangles is given in Fig. 4 which is also the defining figure
for the variables. For a given value of the subscripts I and J, defining
a given storage point for each of the position variables and the inten-~
sity variable within machine memory, we define a "box" by the following

relations:

(1) = 1,7 5 (2) = T+1,J ; (3) = I+1,J+1 ;
4
(4) = 1,041 3 (5) = 1/4 ) (i) .

[

i=1
The point (5) is the mean of the first four points. Note that this is
a relation among subscripts and, in fact, at each point of the "box"
there exist defined values for each of the intensity and position vari-

ables necessary to make the plot. The system of numbering triangles
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Fig. 4. Schematic of Minimum Logical Unit, "Box," for which Plot
can be Constructed. Numerical values chosen for illustration only.
Detailed explanation 1in text.

and points illustrated in Fig. 4 makes it possible to examine the compo-
nent triangles in systematic fashion. Rather than attempt to decipher
the numbering system, merely note that each triangle is examined in
clockwise order about the common center point, point (5), and each side
of each triangle is examined in counterclockwise order beginning at the
side opposite point (5).

The sequence of calculations which produces a plot is best described
by example referring to Fig. 4. When the "box" corresponding to I,J is
first examined, values for U(1l...5), R(1...5), and Z(1...5) are copied
out of the storage arrays and calculated as indicated above. It is at
this point that the care exercised in subroutine INPUT to get physically
adjacent points into adjacent storage locations bears fruit; because the
first four of these points are physically adjacent, the fifth point is
intermediate in value between the first four in a fashion that allows us
artificially to increase the apparent resolution of the plots. In effect,
for plotting purposes, we double the number of usable data points. The
program then examines the "triangle" defined by point (5) and each of

1

the outside edges of the "box," in turn, in the sequence defined by the

Roman numerals.
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For the values of intensity and UISO indicated on the figure the
sequence of calculations is as Tollows. Subroutine BRACE finds that
points (1) and (2) bracket the iso-value line and, by linear interpola-
tion using GUESS, that the contour should pass through a point 0.282
of the distance between R(1) and R(2) (measured in the x-direction) and
0.282 of the distance between Z(1) and 7Z(2) (measured in the y-direction).
The pen is lifted from the paper, wherever it is, and moved to the
appropriate x- and y-locations, pen up. BRACE next finds that the
points (1) and (5) bracket the contour value and GUESS calculates that
the contour line should pass 0.728 of the distance between the appropriate
values of R and Z. The pen moves to that point in a straight line, pen
down. It is not necessary to examine the side (2) to (5) because, by
definition, the contour cannot pass through that side. Entering
triangle ITI, BRACE examines the pairs of points (2) to (3) and (2) to (5)
without finding a pair that bracket the contour; it is not necessary to
examine the pair (3) to (5). In triangle III, BRACE verifies that the
points (3) to (4) bracket the contour and GUESS directs the pen to a
point 0.875 of the distance from (4) to (3) in each of the position
coordinates. In this case the pen moves in the up position, as indicated
by the dotted line. Once BRACE finds that the contour does not pass
between the pair of points (3) and (5), GUESS is called immediately to
interpolate between points (4) to (5) since the contours must pass
through that side. Again the pen moves to that point pen down. Despite
the fact that both ends of the segment in triangle IV have been previously
identified, the side (1) to (4) is checked by BRACE to verify that the
contour does not pass through that side; the side (4) to (5) is checked
and the pen moved to the appropriate point, pen up (in this case no
motion) and the side (1) to (5) is used, with GUESS to fix the coordinates
to which the pen next proceeds, pen down.

These four triangles are examined again for each of the contour
values used in the program and appropriate line segments are constructed.
Only after all possible contour lines have been constructed for this

"box" does the attention of the program shift to a new value of T and J.
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The boxes are examined in the serpentine sequence defined in the discus-
sion of POLE, I increasing for J odd and I decreasing for J even. The
upper limits on the DO loops which scan the array are one less than the
array dimensions so that undefined parameters will not be introduced as
box varisbles. Note that it is an intrimsic property of this plotting
scheme that it plots to the limits of the data and then allows the lines
to end "in space." This is considered a useful feature in the particular
case of sheet textures since the region over which the texture is known
is visually defined by the limits of the array of contour lines. Where
data exist for an entire hemisphere, the small misfit between the limits
of the data array and the limits of the field constructed by POLECAT is
not usually objectionable. In this regard, note Figs. 5 through 10 of

this report.

Discussion and Summary

Several examples of the figures produced by this plotting package
are shown in Figs. 5 through 1C. Textures determined from hemispherical
samples, Figs. 5 and 6, are the result of four interpenetrating scans
spaced at 90° in a (or 3.6° in ¢) apart. The all-number dump, Fig. 5,
shows the helical scanning path most clearly and also illustrates the
problems inherent in using such & field as the basis for a hand-drawn
figure; in the region near the pole, overlap of the numbers is inevitable,.
In this figure, as in all plots of the numerical data itself, the numeri-
cal information is positioned on the page SO that the decimal point in
the tabulated value lies at the point for which the ohservation was made.

The data used to construct sheet textures, Figs. 7 and 8, are taken
in a single helical scan with increments of 3.6° in o0 and 5° in ¢. The
maximum value of ¢ for which data are used is normally ¢ = 75°, the
approximate extreme valﬁe of the contour lines in Fig. 8. Fake dats were
used in Fig. 9 to illustrate that the program can handle other data-
taking formats without incident. As is typical in this laboratory for
transmission pole figures, the data were considered to have been obtained

from ten circular scans teken so that each scan was separated from its
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Fig. 8. Pole Figure of Typical Fine-Grained Sample of the "N.D.-Data" Type.
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Fig. 10. The Pole Figure cf Fig. £ Reduced to One-Ealf Size before Drawing.
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neighbeors by 5° in ¢ and single observations on a scan were separated by
3.6° in . Again ithe contours end where the data ended at ¢ = 45°,

Working drawings of the size included in the gatefolds are highly
desirable. They are not satisfactory for preparation of slides or sub-
mission for publication. By reducing both the number of iso-value lines
and the scale of the plots, as drawn, changes which do not affect the
labeling, figures more convenient for publication can be generated as,
for example, Fig. 0.

For a "normally" complex pole figure, the total computational time
required to convert a string of 1500 data points to two figures of the
size shown in the gatefolds {one "Front Side," one "Back Side," no all-
number output) is 3.5 min. OFf this time; 22 sec elepses during compil-
ation of the binary deck representing the Fortran program; 31 sec are
consumed by the marnipulations of subroutine INPUT; outiining the field
of the drawing, identifying and labeling local mexima in the field,
converting the angular position variables to cartesian cocrdinates, and
the miscellaneous operaticns of POLE and POLECAT require 15 sec per plot
52 sec are then required for actually generating thke instructions that
prcduce each piot. The all-number dump of the input data consumes an
additional 55 sec per plot (it is not recommended except in dire cases).
Exceptionally intricate figures, as those obtained from coarse-grained
crystallized samples, may require up to 75 sec per plot as the computa-
tional time is roughly proportiocnal to total line length on the pliot.
For array storage of up to 3500 data points ({convenient array storage in
the laboratory has proven to be IMAX = 50, JMAX = 35 for both "front side"
and "back side" arrays), the available storage capscity of the CDC 1604
is Just adequate without temporary storage on tape or cverlay.

Plotting time on Calcomp plotters averages to 10 min per plot,

20 min per data set, prcvided no number dump is used.

Table 1 summerizes the kind and format of inputs to the computer
and the order in which they are required. In addition tc the tape of
plotting instructions, the only ocutput is a time record at the comple-
tion of INPUT, the entry to SKETCH, and the completion of each plot.

The library subroutines (available on demand to users of the CDC 1604

at this location) are also listed in Table 1.
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Table 1. Auxiliary Inputs to Program POLE

Card 1:

Columns 1-3 NDEX, an integer

Columns 4—35 RUN, a Hollereith string, the title of the plot
Columns 3645  KTYPE, an integer

Columns 46~55 N4, an integer

Columns 56-65 1IK(7), an integer

These integers described in text, Subroutine POLE

Card 2: Format, five 10-column entries in order;

ADEC, the o-decrement between entries

BDEC, the ¢-decrement between entries

NTRACES, the integer number of traces

KMAX, the integer number of points to be used per trace
ALFPH, the diameter in centimeters of the plot to be drawn

Card 3: Format, eight 10-column entries by pairs:

AIPHO and PHIO, the initial points on the TRACES traces

The Data: taken in this listing from auxiliary magnetic tape
which, in turn, was constructed from an on-line
Talley punched-paper recorder

Card 4: Format, sixteen 5-column entries by pairs:

BKG and IK, an observed background correction and the maximum
scan value for which it is applicable

Card 5: Format, eight 1O0~column entries:

UISO, the value of intensity for which a contour is to be
constructed

Note: Cards 3, 4, and 5 may represent more than a single card,
as necessary

Auxiliary subroutines required from the computer library:

ICLOCKF, references a 1000-cycle clock to time program execubion

PLOT, PLOTS, NUMBER, and SYMBOL, the set of subroutines which
generate instructions for the Calcomp plotter

SINF, COSF, TANF, the trigonometric subroutines used in performing
the stereographic projection
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CONCLUSIONS

A Fortran 63 program has been written which satisfactorily converts
x-ray reflected intensity data from a serial string of numerical values
to a contour map, in stereographic projection, of intensity as a function
of angular coordinates relative to the specimen.

The principal goals of the program were minimization of the number
of auxiliary inputs and construction of high-resolution working figures;
both these goals have been satisfactorily met.

A multitude of possible input formats can be used, but all are
expected to be simply related to one or more helical scans during which
both variables change simultaneously. Both pole figures having the
origin of coordinstes at the rolling direction and textures in which the
origin is the normal direction are acceptable inputs.

The general features of map drawing, location of points bracketing
a given value and linear interpolation to approximate its exact position,

should be applicable to a wide variety of data-processing problems.
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APPENDTX A. PROGRAM POLE™

DIMENSIEN pu150,25),A(50,2%),
I THETA(S0,2%), Ix(20),rUNCA)

COMMON As THETA,PH], IK,AX
IR(Q)=1CLacKF{RI)

cALL PLOTS (AX,5000,25)

caLl PLETCIU,,0,,-3)

90 READ 25,NDEX,RUN,KTYPE,N4,I1K(7)

25 FOURMAT (13,448,3110)
IK(B8)=KTYPE
IFCNUDEX+1) 100210005

6 1K(4)=z]

92 CALL INPUT(ALEPH)
IKCIO)=(ICLOCKF(RIY=1K(9))/6D
PRINT 101, 1xt1D)

10+ FORMAT (17H END INPUT, TIME=.14)
RO=SALEPH/2.54

35 CALL POLECAT(RUN,N4,78)
IMAXSIK(D) B JMAXSIK(6)
IK(4)=1K(4)+|
1K4z1K(4)

GO TO (34,34,36,34,3h)1K4

34 IF(KTYPE)44,44,45

45 DE46Iz1,IMaX
NOd6d=z|,JMAX
ASIN=SINF(THETA(I,U))
ACBSSCOSF(THETAC(T 2 J))
PTANSTANF(PHICI»J)/2,)
THETA(L,J)= RO  #PTAN®*A[SS

446 PrI(I,J)= RO *PTAN*ASIN
GO 7O $9

44 DOS|I=1,1MAX
NG 31 J=zl,JMAX
ASINZSINF(THETAC(T2J))
ACCS=COSF(THETA(T+J))Y
PSINZSINF( PHI(I,J))

PCES=gdSF( PHICLI,J))
DEL:(‘.!PSIN’ASIN’/(ASIN*“z'PCGS*'Q*ACQS"Z)
THETA(I,J)= RO *ACHS*PSIN*DEL

) PHICIS,W)=® RO *PpOS*nEL

39 I1F (N4)35,3%,33

33 DO32 Js|sJIMAX
Do 32 IM=z|,IMAYX
JM=Eg=2%(Jd/2) % IF(UM,GT,.n)22.:21

22 1sIMAX = M + | § 68 TA 32

21 1=1M

32 CALL NUMBER (THETA(I,J)=, | 2+sPHICI»U)ss07sA01,U)0,0,6H(F4,1))

36 CALL SYMBOL(3,05745,n,28,RUN,0,0.32)
IF (IK(4)=3)4],4],42
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APPENDIX A (continued)

4]

42
43

CALL SYMBOL(5+02649,0.28, | OHFRENT SICE,0.0.10)
GUTE43

CALL SYMBOL(54.0,6,9,7,28,9HBACK SIDE,0,0,9)
CALL PLAT(20.204s"3)
IKCIU)=CICLOCKF(RII=TK(9)) 460

PRINT 102,1KC1D)

FORMAT (16H END PLAT, TIME=,14)

[K4=1K(4)

GO TO (3D5,35,92.35,92)1K4

CALL EXIT

END PBLE

a .
Correspondence list:

Pr?gram galled Significance

Variable in Text
A U Intensity of x-ray reflection
PHT Y or ¢* y-axis position of observation
THETA X or o x-axis position of observation
X Array for communicating constants

between subroutines

RUN title Hollereith title of 32 characters
KTYPE KTYPE See text

*The same arrays are used, initially, for the coordinates
of a single datum in the spherical coordinate system sppropriate
to the data-taking system and, finally, for the coordinates of
that same datum in the cartesian system appropriate to making
the plot.
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APPENDIX B. SUBROUTINE INPUT2

S0
120

102

>0

23

>4
55
26

105
65
104

2|

W -

DIMENSION FU(50,25),RU150,25),FR(50,25),BR(50,25),FZ(50425),

fgUT (15000, IK(20) ,RBZ(50,25) LALPHE(IQ),PHIBCID), 1810,
2RKG(65),LK(65)

COMMUN FU,FR,F2.:1K

Ml=]K(4)

GO TO €¢30,30,35,35yM¢

READ 120, ADEC.BDEC,NTRACES:KMAX,ALEFH
FORMAT (2F10,2,2110,F10,2)
AD&C=ADEC/57.2957795
RUEC=BDEC/57.2957795

READ 1022 (ALPHACIN) ,PHTIA(N) yN=| NTRACES)
FORMAT (8F|0.2)

D850 Ns|sNTRACES

PHIBIN)=PHIO(NI/ST ,2657795
ALPHO(N)ZALPHO(NYI/ST,2957795
I0(N)=XFIXF(ALPHA(N) /ADEC+,00005)+]
MAXMENTRACES+I
IMAXEXFIXF((3,1415926)/ANEC*,00005)+]|
ITEP=IMAX=|
1BMaXFIXF{(6.2R31852)/ADFC+,00005)+1
Al2=1BM=18(1) % AlosiMAX=10(])
ALIM=ALPHO () +AlO*ANEC-=3,1415926
IFCABSF(ALIM) LT, 001)5%1,52

JEZ2 § [BM=IRM+ [FJIMAXS(KMAX® NTRACESY/(2*1T8P)
NG 60 Nzl ,NTRACES
IFCITO(N)-IMAX)IE0,61,5h)

JO(N)=1a(N)+|

CONTINUE $ GB TO 53

Jesl $ IMAX=IMAX~! % IRM=z[BM=|
JMAXE (KMAX*NTRACES)/ (2*]1MAX)
ALOMZALPHO(I)*Al2%ADEC-6,2831852
IK(S)=IMAX B IK(6)I= MAY

IF CABSF (ALEM) LT, 001)54,55%

Je= 2 $ 68 Ta 56
Je= |

DA U M=1,NTRACES

N=M

READ (4, 1085 CCTDUMP,GUTIK) YsK31,KMAX)
FORMAT (17,F&4s0)

READ(4,104)

FORMAT (1X)

[FCETF»4)21,88

ALPHASALPHB(N) $ PHI=PHIOG(N)
IF (ALPHA-3,1415024)1,2,2

1IC=0 $ GO TO 38

ALPHA=ALPHA=3,1419926 % 1C=IMAX
1=18(N2=1l § 1C=Ic+}

IF(BDECY40,40.41
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APPENDIX B (continued)

—_— D — - PO — —
B D — NN W]

o

- N
LelYe)

190
a2

82
103
80

gl

70

43
24
25

44
27

26

JsN=1 & Gg To 42

JEU

DOIIK= |, KMAX

151+ b Ig =10+

DO 15 Nzl ,NTRACES

[FOIC-10(N) )5, 1Rs15

CONTINUE $ 69 rg 2%

JEJH

TFCU~JdMAX) O, 100100

IFCIC=IMAXY | 2214,1(7

[FCIC=18M)Y ) 1,16,20

FULT»J)=GUTCK) 3 FR(1,J)=ALPHA & FZ(1,J)=PH]l & GO T& 29
RUCT2J)=GUTIK) ¥ BR{1,J)=ALPHA § BZ(15)=PHI § GO TA 29
1C=1C = IgM & GO Ta (7

FUCTaJ)=GUT(K) % FR(T1,J)=ALPHA $ FZ(1,J)=PHI

10 » ALPHA = ALPHA « 3,1415926 ¢ g8 Te (29,13) JB
RUCT»J)=GUT(K) % BR{1,J)=ALPHA & BZ(1sJ)=PHI

1050 § [0 % ALPHA =zalPHa = 3,1415926 F 6o T6 (29,13) JC
ALFRAZALPHA+ADFEC § pPul=pd1+B8DEC

CONTINUE

CONTINUE

K=

NES b N

READ JUO3»(RKGIMY, LMY, MaN]2N)

FORMAT (B(F5,0,15))

nasg M=2sN

IFCLR(M) LT.KMAXYBN, 8] -
CONTINUE {
NI=NT+8 3 NEN+R F 68 Ta a2
NEM

pa/gM=2,N

LRISLKOM=1) § | K23 K(M)

e 70 KzLKjsLK?
GUT(K)=BKG (M)

DU 26 J=1,  MAX,NTRACES

ny 2o I=sl,17a8p

nw 24 N=I|,NTRACES
IFCJEN-1-JMAXDI45,43,25
RULT2JPN=1)FRUL] ,J+Ne|)ennUT(K+ITEPR)
FU(I:J*N'|)=FU(I,J*N-|)WGUT(K)

KK+

Ne 27 N={,NTRACES

TFCJEN=]~JMAX ) 44,444,206

RUCIMAXs J+N= 1 2=zBUL IMAX, JeN= ) =GUT (k=) +1TEP)
FUCIMAX, JeN= 1) 2F Ul IMAX, J#N= | d=GUT(K=1)
KEK+]TaP

CONTINUE

KTYPEsIK(8)

IF(KTYPEGTn)A2,63
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APPENDIX B (continued)

62 SUMsKTYPE f G6 T8 723
63 SUM=L,
0o 37 J=l, JMAX
no 37 Lal, IMAX L
87 SUMSOUM+S*BRECY((FUCT,JY+FUCT+ o)) SINF(aS*(FZCI o) +FZCI* s
[I24(BUCTs I *BUCT+ 5 )Y *SINF S (BZ2(T4)+EZ(I+]15J))))
SUMESUM/ INTRACES*B2(IMAX, JMAX))
73 DU71 J=1s JMAX
DB7il=i,IMAX
FUCTagY=FUCL,J)/SUMA
71 RUCI2g)sBUCL,J)/SUM
72 RETURRN
$5 no 36 Jsl, gMAX
nY 36 I=z1,1MAX
FUuClsJdd=sUCLl,Jd) % FRET,JI=BR(I,J)
$& FLCI»W)=BZ(],J)
RETURN
b

a .
Correspondence list:

Name in Name in e
Program Text Significance
FU U "Front Side” Intensity observed for O = a =< +80
BU U "Back Side" Intensity observed for 180 < o = 360
FR o "Front Side" a-coordinate of observation
BR o "Back Side" Same
Fz ¢ "Front Side” ¢-coordinate of observation
BZ ¢ "Back Side" Same
ATPHG ATPHG Q-coordinate of first point in a trace
PHI@ PHI® ¢-coordinate of first point in a trace
I¢ 19 I-subscript of first point in a trace
GUT - GUT Temporary storage location for input
data
AIPHA ATPHA Initially, the a-coordinate of an
’ observation stored, as generated, in
FR or BR
PHI PHT Initially, the ¢-coordinate of an

observation stored in FZ or BZ

ALFPH RO Diameter of plots, in centimeters



34

APPENDIX C. SUBROUTINE POLECAT®

NIMENSION U(50,252,%X(50,25),Y(50225),1K(20) ,1C(50),JC(50)
L,rUn(4),U1S8¢010)
COMMONU, X, Y, IK
LI=IR(T7)
IF(N4)14,14,32
32 IK4=1k{4)
GO TO (12,9,12,8)I«4
1IF (IK(4)=1)9,9,8
READ la(UISCLLY»LEl, L)
FORMAT (8F0,U)
CALL PLOT(N,0s-1,0,3)
CALL PLAT ¢0,u,0,0,3)
Rk & RZ=R**2 § 17=R/,N15~1,
CALL PLAT(-R,0,0,2)
NEX
HX==k
22 o 21 I=1,12
BX=dX+U, 015
JYSSURTF(RD=AX**2)
21 CALL PLAT (8XsRY,2)
1FCJ-1230,30,91
3n caLlL PLEBT (0,sR,2)
CALL SYMBOL (~.352R7+,175,,28+4HR4D.s0e,4)
cALL PLAT (U,sR,3)
BX=0.
NERES
g6 TO 22
St ocabl PLOT (R,V,,2)
CALL SYMBOL (R+,125,<«,4,0,28,4KHT,D,.,0.,4)
CALL PLBT (k,0,,3)
caLt PLOT (0.0,0,0,2)
call PLOT (0,0,~,05,2)
CALL SYMBOL (=0,35,~0.4,10,28s4HND.204+,4)
1K4z1K(4)
30 10 (|23|3tl2:'5)[K4
RETURN
IMAXTIK(S)=1 % UMAXsIK(&)=I
UMAX=,520180(1)
LMAX=D
2 DO 20 Js2, gMAX
po 2611=2, 1MAX
JUEJ=2%(J/2) % 1FLJ0.GT.0)41+42
MAX~1I+1 % g0 T& 43
I

D — & D

[ R

[
I
g
(UCTsJ)~UMAXYZ25220,26
(Uel,dy-Utlmi,Jdyy20,37,27
|

5H

(]
L N e I e ]
|1 D T R | S LI ]

(/N
~
X
X
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APPENDIX C (continued)

27
S8

33
23
34
35
36

40
39
24

20
15

20

TP (UL ,Jd)-UtI+t,J)y)?0,38,28
K=K+l

IF (UL, d)-UCl,Jml)y20,33,23
KEK+ !

1F (UCL,J)=Utl,J+13¥)20,34,35
K=K+ |

1P (Ko T 0)36,24

NO 39 Ls=slsLMAX
LKECICIL)=1)**2 8 Ly=(UctL)aJ)**2
IF(LK,GT«9)39:+40
IFCLJ,GTe9)Y39,20

CONTINVE

LMAXZLMAX+| & JCCLMAX)=] § JC(LMAX)S, =

N

CALL NUMBER (X(I1,J)= 12,Y(1+sd)s0e07+sLC1,d)s0,0+6H(F4,]))

CONTINUE

CALL SKETCHIUISO)
CALL SYMBOL

Yz6,3

pe 50 L=l,Ll

YaY=ed

(R+5 125,645,421 4HCENTOLR VALUES,0e¢14)

CALL NUMBER (R*u35aY-0|41UISG‘L,lﬁol6H(F5.2))

RETURN
EiND

aCorrespondence list:

Name in  Name in L
Program Text Significance
U U Observed x-ray intensity
X X x-coordinate of datum
Y Y y~coordinate of datum
1K IK Dummy array for intercommunication of
integers among subroutines
Ic Array established to "remember"” loca-
tions of identical intensity maxima,
I-subscript
Jc Same as IC, but for J-subscript
UIsg UIsg Value of intensity for which contour is

desired



APPENDTX D. SUBROUTINE SKETCH®

NIMENSTIAN A(S50,25),8¢50,253,D(50.25),1k(20)
Lo UCB),R(9),Z(9)sCCigy,u1smeln)
COMMON A-B,D,IK
N4=[K(7)
IMAXZIK(S5) = | $UMAXSIK(6) = |
[KCIU)=(ICLOCKFIRII=TK(9)) 460
PRINT 2,1K¢1D)
2 FORMAT ((8H ENTER SKETOH, T=,14)
DOI IP=1,N4
F COIP)=ULSOCIP)
nuZ6 J=tsJMAX
JE2EJ=2%(J/2)
nO26I13=1, IMAX
TP (J2,EQ.0)4 1,42
42 1=18 § ¢O 71O (5
41 [5IMAX~]3+]
15 UEI)FACTIJY § RCOII=RCLIL,JIY § 2C1)=D(1.d)
UC2)=2a0141,0) FR{ZY=n(T+1,J) % 2(2)=0(1+1,)
UE3I=ali+,d+ 1) § R(3)=g01+ladsi) & 203)=plI+jay+y)
UCa)=allsJd+i) & ROaY=zBR(],J*1) §F Z(a)=zD(1ag+)
UEDIS0.25% U Y +U(2)+Ut3)+U(4)) § RIE)=,25%(REYI+RI2I+R(3II+R(4))
Z(5)=0.25%02C1)+72(2)1+72(33+7(4))
nU26 K=1sN4
NBz26 mM==1,4 g
[I=MS b [2=M5+1 & [F(1°2,0T,4)28,27
28 12=12-4
27 TF(RRACE(UCTIILUCI2Y,CtKY)GTH0,)2102
21 X3GUESS(CIK) U1, ut12),RE11D,R(12))
YEGUESSICIKI»UCTIdaut12),Z2C110,2012))
CALL PLHT (X,Y,3)
IFtﬁHAGE(U(Il):U( G)IC(K))IGT!DO)22'26
22 X=GUESS(C(KIULl1),,ut B5),RE11D,RE B))
YEGUESSCCOKI UL 1)yt 5),2¢€11242¢ 5))
6o TG 24
23 XFGUESSICIKY UCI2),ut B),RUI2),RC 5))
Y2GUESS(CIK) s UCI2),y 5),2¢€12)22¢ 6))
24 CALL PLEBT (X,Y,2) % nd Ta 26
20 IFCBRACECUCIIISUL 5),C(K))GT,0.)25.26
25 XFGUESS(CIKILUCTII,ut 5Y,REI1)2RCE 5))
YEGUESS(CIKI»ULTI Iyt B53Y,2C113,2¢ 8))
call PLAT (X,Y,3) £ e Ta 23
26 CONTINUE
19 RETURN
END
FUNCTION BRACE (AsR,X)
TFCA=X)2,2, |
2 1F(X~BY3,4,4
| 1F(X~R)4,3,3
3 ARACE=|,

0
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RETUKRN

BRACE =0.

RETURN
END

FUNCTION GUESS (AsR,0,N,F)

UESS =
RETURN
END

Dy (E=U)"CA=-RY/(C»R)

aCorrespondence list:

Name in

Program

A

B
D
U

Name in
Text

U

X
Y
U

Significance

Intensity of x-ray reflection
x-coordinate of datum
y-coordinate of datum

The subset of intensity data corre-
sponding to a particular "box" as
described in the text

As for U, the x-coordinate
As for U, the y-coordinate

Actual x-coordinate of pen position
during plotting

Actual y-coordinate of pen position
during plotting
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