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ABSTRACT

A model is presented which optimizes strategic defense. Surviving
population is considered the measure of the effectiveness of the defense
system which can include active and passive elements. If the attack
size and defense budget are specified, the model produces optimum active
and passive defense mixes and allocates defense spending to regions of

the United States according to population density.



A DEFENSE SYSTEM DESTGN MODEL

R. A. Uher”
I. INTRODUCTION

This paper presents a mathematical method for solving a problem of
optimum strategic defense allocation. The model is limited since it does
not include the interface with the strategic offense or national policies
and objectives. Surviving population has been singled out as the measure
of effectiveness of the defense systen, which, in the light of the total
strategic picture, is probably insufficient.

Other measures of defense effectiveness which we have not included
are

1. The cost to the enemy to overcome the defense.

2. The time necessary for the enemy to develop the technology to
overcome the defense.

3. The degree to which the system helps prevent the conflict from
erupting in the first place.

The first of these requires that the offense build more weapons or
other devices which have the capability of negating the defease. If he
chooses to 4o this, the cost he incurs may be a measure of the defense
quality.

The second measure of defense effectiveness recognizes that a more
realistic picture of conflict is a dynamic one with changing threats and
concepts of defense. A measure of effectiveness is the amount of time
necessary for the offense to technologically negate the defense system.
During this time, advanced technological defense concepts are developed
to keep ahead of the offense.

Finally, the last measure of effectiveness is the ability of the

defense to prevent an all-out nuclear war either by preventing damage

caused by accidental launchings or by producing such a strong defense

that an attack seems unwise in the eyes of the offense.

¥
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As a measure of effectiveness some combination of these objectives
is probably better than any cne of them.

In the outline of the civilian defense allocation model to be pre-
sented, we assume a two-person, constant-sum game. The offense wants to
destroy the most people by distributing his weapons over the United States
in the "best”" way while the defense desires to save the most people by
allocating dollars to localities in the United States in some "best" way.
The Lagrange Multiplier formalism is applied to find the solutions to
the game. We make no attempt to solve the larger game where strategic
offengse and defense of N-countries are considered.

We are concerned with the problem of the design of defense systems
at fixed budgets which save the most people. Although we restrict atten-
tion to surviving population, the analysis which follows can be applied
to other kinds of surviving value.

A defense system can be categorized according to the behaviour of

the offense and defense before and during engagement. There are three
classes:

1. The Offense Favored System against which the offense has the

last move. The offense chooses the strategy to minimize survivors

against the optimum defense strategy. A fixed-shelter system is a good

example of an offense favored gystem if the offense has good knowledge
of the defense system.

2. The Defense Favored System in which the defense has the last

move. The defense chooses the strategy to maximize survivors against the

optimum offense strategy. An active defense is a defense favored system

if the defense has good knowledge of the offense system.
3. The system in which neither the offense nor defense is favored.
Both the offense and defense choose the strategy which optimizes survivors

against all strategies of the opposing side. This system does not base

its strategy on the strategy of the other side. It will be shown later

that such a system can be treated by considering it to be simultaneously

defense and offense favored.



The following discussion deals with the mathematical formulation
of the problem, a method of solution, and application to specific defense
systems. We include passive defense, active defense, and mixes of both

systems. The limitations of the method are also discussed.
II. MATHEMATICAL FORMULATION OF PROBLEM

To solve the design problem, we divide the geographical area of the
defended country into localities within which attacking weapon and defense
effects are confined. Because of this confinement, the localities, or
more properly, cells, are considered independent. The number of survivors

after an attack size N and defense expenditure C is

8 =) 8;(nep) (1)

where Si is the number of survivors in the i'th cell, which has been
attacked by n; out of a total of N weapons and which has received s
out of total defense expenditure C. The total attack 1s constrained

to N weapons,

N ::Zn.l s (2)

and the set {ni} is called the offense strategy. Likewise, the defense

expenditure is constrained to C dollars,

C:Zci, (3)

i
and the set {ci} is called the defense strategy. There is an additional

constraint; namely, if a defense cost ey in the i1'th cell can be spent
among many elements of a defense system (such as active and passive
defense, warning, rescue, etc.) then it must be spent in such a way as

to maximize Si' The actual results of this maximization procedure (that

is the distribution of s among the component systems) at this cellular

level will be called a tradeoff at the local level, while the results of

the procedure summed over all cells will be called the tradeoff at the

national level. Eguations (2) and (3) are labeled the offense and defenge

constraints, respectively. When the terms offense {n;} or defense {ci}




strategies are used, they will be used within the implicit boundary of

offense and defense constraints unless otherwise indicated. The problem

presented here fits the description of a two-person, constant-sum game.
The game theoretic story appears in the appendix.
We formulate the offense favored problem. For each defense strategy

AT s . .
{ci}, an offense strategy {ni} is chosen to minimize survivors

5 [{Ci}; i.?ll}] = 5 [[ci}’ {ni}] ° ()-%)

The strategy {ﬁi} depends on the particular defense strategy chosen.
The defense strategy {@i} is chosen which maximizes the number of survi-

vors against all offense strategies {ﬁi} which satisfy inequality (4)

s [{8,}, (A1) = s [ley), (11 - (5)
Inequalities (4) and (5) are represented in one relation with the intro-
duction of new notation
MAX MIN :
5 [{ei}’ {ﬁi}] = {Ci} {ni} S iici}’ {ni}] . (6)

Equation (6) is also referred to as the max-min solution.

The defense favored problem is formulated in two steps. For each

*
offense strategy {ni}, a defense strategy {ci} is chosen to maxi-

mize survivors

s [{egds (3] = 8 ({c;}, in}] - (7)

The offense strategy {n } is picked to minimize survivors against all

defense strategies {c } satisfying inequality (7)

* * *
s [{ell, (01 = s [{c}), (0] (8)
Inequalities (7) and (8) merge into one relation

s [{ey)s (03] = oy ( oy ® [ingds Leg31 ) (9)
1 1



Equation (9) is also referred to as the min-max solution. The defense
favored solution is better for the defense than the offense favored

since it may represent a higher survival level

s [{&.1, (31 = s [{c}}s (n}]

The defense system which is neither offense nor defense favored has
been solved during the discussion of the first two categories of defense
systems. The defense chooses the strategy {éﬁ} which maximizes survivors
against the best offense strategy. The offenée chooses the strategy
{n:} which minimizes survivors against the best defense strategy.

An offense favored system means that the offense moves against a
known defense strategy. A defense favored system requires that the
defense fight a known offense strategy. Since a system which is neither
offense nor defense favored means that offense and defense moves are

hidden from each other, then the following relation holds

s 008}, (811 =5 [18)), (3] = 5 (ey), {n))]

When many cells and large forces are involved, the task of finding the
optimum strategies is formidable. The introduction of Lagrange multi-

pliers to soften the constraints simplifies things.

IIT. SOLUTIONS USING TAGRANGE FORMALISM
The local Lagrangian at cell 1 is defined by the equation

Ll(>"} |J‘) Ci) ni) = S]..(Cl, ﬂi) + >\nl - “‘c.l 2 KlO)

where ) and y are positive numbers independent of the index i. The

total Lagrangian for the system of cells is

L(X: wa C, N) = z Li(X: B> Cyo ni) . (1]-)
i

Everettl has shown that for any defense strategy {ci}, the minimization

of the local lagrangian with respect to n, produces an optimum offense



strategy {ﬁi} against the defense strategy {cij

8 [{egds (3] = s [{egd, {ng}] - (12)

For each offense strategy {ni}, the maximization of the local Lagrangian
*
with respect to cy produces an optimum defense strategy {ci} againgt the

offense stragegy {ni}

s [le;d, (03] = 8 [{e;}, {011 - (13)

Pugh2 has pointed out that maximization of the local Lagrangian

A ,
L{r, p, e, ni) with respect to c; may produce the optimum defense
strategy {éi} to be used with an offense favored system. The choice

of éi subject to the inequality
A A
Li(xﬁ p’) Ci) Qi) = Ll()\') U): ci’ ni) b (ll‘l')
generally leads to the result®
A
5 [18,), (831 = s [{c;}, 81 . (15)

However, the answer must be verified employing a procedure described
by Pugh.2 Similar arguments can also be applied to the defense favored

%
problem. The choice of n, subject to the inequality
¥ * *
Li()” My Cyo ni> = Li(>\-) By Cso ni> s

generally leads to the result

A

s [{e}}, {m3] < 8 [{c}}s {n;)] (16)

which again must be verified.

These results are summarized in the following statement. TFor a
defense (offense) favored system a min-max (max-min) solution of all
local Lagrangians generally produces a min-max (max-min) solution of
the survival problem. We now consider the existence of max-min or

min-max solutions for the local Lagrangian.

*
Hugh Everett, private communication.



The properties of the local survival function determine whether or
not the max-min or min-max solutions of the local Lagrangian exist. The
local survival function, S{c,n), (we drop all i-subscripts when considering
a single cell) is monotone increasing in the variable c with an upper
bound of P (the cell population) and monotone decreasing with variable n,
vanishing as n gets very large. This statement is sufficient to prove

that the Lagrangian
L =8{n,ec) + xa - pc (17)

always has a minimum with respect to the variable n for each value of
¢ and a maximum with respect to the variable ¢ for each value of n. This

is illustrated in Fig. 1.

A Lagrangian increases. A
minimum must exist for each
value of ¢

AN

Lagrangian decreases. A
maximum must exist for each

value of n \\\i>>
4

increasing n

AV

increasing c

Fig. 1



If we call the value of ¢ which produces a maximum of the Lagrangian for
each value of n, ¢(n); and call the value of n which produces a minimum
of the Lagrangian for each value of ¢, n(c); then, if the functions n(c)
and c(n) are bounded, the respective max-min and min-max will exist. To
prove this one uses the fact that 8 is bounded if one of the variables
is fixed (the fixed variable corresponding to the bounded function n(c)
or c(n) and the Lagrangian then either decreases as a function of c as
the bound of n(c) is reached or increases as a function of n as the bound
c(n) is reached.

If the functions n and ¢ are not bounded, the min-max or max-min
may or may not exist depending on the rate of change of the slope of the
survival functions at large values of ¢ or n. We must examine each of
the particular survival functions to ascertain this condition.

The usual procedure for solving the optimum allocation problem is
to pick values for A and p, maximize the minimum (minimize the maximum)

of the local Lagrangian with respect to ey and n, taking into account

other offense and defense constraints and sum the results to find the

global constraints N and C.

Iv. THE SURVIVAL FUNCTION

The cellular model for defense system optimization is valid if the
local or cell survival function is independent of the offense and defense
effects of other cells. FEach element of a grid representation3 of the
U.8. population could be the basic cell. The geographical area, A, of
each grid element is chosen so that the area of lethal weapons effects
is within the area of the cell. This guarantees the cellular independ-
ence of the local survival function. The fatalities caused by the n'th
weapon are calculated with the assumption that the survivors of the
(n-1) "th weapon are distributed uniformly over the cell. It can be
shown, however, that this condition is eguivalent to saying that the

weapons are randomly targeted against the area of the cell.
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We assume that I(i) interceptors have been allocated to defend the
i'th cell and each weapon has a penetration probability gq if & inter-
ceptors are expended. Although we restrict atteantlon to all warhead pay-
loads, the average effects of including decoys can be studied by varying
8. The attack size, ne, necessary to exhaust the defense is defined by

the equation
-t - nél) : (18)

Passive defense in a cell is characterized by a fixed blast shelter
system having overpressure protection b, Althougn we assume full occu-
pancy of shelters the method is easily extended to include other situa-
tions. The first weapon penetrating the active defenses of the i'th
cell kills o of the population

A (P')Y)
w1

where Aw is the lethal area of a weapon of yield Y against a population
with overpressure protection pis If there are k-penetrating weapons,

the expression for the number of survivors is

s, () =2, [1-9.7° , (20)

where Pi is the population of the i'th cell.

In the presence of an active defense the survival function can be
written as a sum over terms having the form of Si(k) and weighted Dby
factors representing probabilities of having various aumbers of pene-

trating weapons. The survivors in the i'th cell with n attacking weapons

is
n,
i
. AUEEIT RGO IBNCD I ok
s.(ngse) =P ) B (qp “lay |k ny) [1-0,1 (21)
k=0
where B (q( )I )Ikln } is the probablllty of k weapons penetrating

( ) (=)

probabilities before and after exhaustion of the active defenses. OFf

out of n, . The quantltle° and a; are single warhead penetration
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course, after exhaustion, the single warhead penetration probability is
the single warhead reliability. The defense cost c; depends upon the
number of interceptors and the overpressure protection allotted to the
cell.

We assume that overpressure 1s the only kill mechanism which means

that fallout and thermal protection have been provided. The survival

function will be described for three cases.
a. Passive Defense Only
b. Active and Passive Defense, Leakage Attacks

c. Active and Passive Defense, Exhaustlon Attacks

a. Passive Defense Only

Since no interceptors defend the area, the penetration probability

is just the single weapon realiability

) -

(2
qi qo

and we may write the survival function

1

i
k
sy(ng, ) =By ) B (g lklng) (14,0 (2
k=0
where B is the probability of having k arrivals out of n, launches
n, k n, -k
B (alin) = (%) o - a)%T L ena (2

n.
where <k1> is the combinatorial symbol

n n, .
( i\ i
k)~ kz(n_l-kjr

If we substitute equation (24) into equation (23) and work out the
algebra, the result is
Py
Si(ci}ni) = Pi [l - qocpi] * (2
Equation (25) is the form of the survival function to be used with no

active defense.

3)

5)
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b. Passive and Active Defense, Leakage Attacks

If the weapons launched penetrate the active defense by leakage
alone (i.e., the number of weapons is less than or equal to the number
necessary to exhaust the defense)

0 < n((ei) , (26)

1

then the same argument applies as in the derivation of eguation (25)

except that the penetration probabllity (qgl) = q) replaces the quantity

(qu) . qo) in eguation (25)
e (1)
si(ci,ni) = P, (1 - qpij n, <n. . (27)

1

¢. Passive and Active Defense, Exhaustion Attacks

Another complication enters when the attacking weapons exhaust the
defense. The probability of realizing k penetrators depends not only
upon the total number of weapons but also upon the number necessary for

(1)

N of them penetrate with
probability g while (ni - nél)) penetrate with probability q . Under

exhaustion. IT ni weapons are launched, then n

these circumstances, the probability of having k penetrators is

k
Bala |kn) = ¥ Blagln) Bla ki [ny? - n) (28)
k, =0
where
b a b-a
B(q|a|b) =(;)<1(l-q) asb
= 0 a>b (29)

FEquation (28) is substituted into equation (21) and the result is
n,

i k .
s,(eom) =B, ) (1 -9)" Y Blalk|n)) B(q,|k-ky |nl - n)  (30)

1
k=0 k, =0 (5)

n, > n
1 e
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Equation (30) simplifies if the indicated summations are done. The

result for the survival function is

n, )
Si(ci’ni) =P, (1 - qmi) * n, s nél'
(1) NG _

=P (L-qp) © (L-a9)  °  n > ”@' (31)

The functional dependence of P, on the defense cost cy is discussed in

the following sections.
V. PASSIVE DEFENSE

We assume that the blast shelter is the basic unit of a passive
defense system. It 1s characterized by a mid-~lethal overpressure
(referred to as overpressure protection) at which 50% of the occupants
become fatalities. All shelters in a cell have the same mid-lethal over-
pressure rating. Each cell or locality contains enough blast shelters
so that all people in the cell can be sheltered given sufficient warning.
The people in a cell not provided with blast protection have thermal and
fallout shelters which have an incidental overpressure protection of
about 10 psi. These thermal and fallout shelters are provided at zero
cost.

If we assume that attacking weapons burst on the surface, the

function 9 has the approximate formu

_293 v
1T Ap;
where Pi is the overpressure protection {psi) afforded the people in
the i'th cell, Y is the yileld of the weapon in megatons, and Ai is the
geographical area of the cell in square kilometers. If all people in
a locality do not reach shelter, the survival function in equation (25)

must be modified to

n, n,
Si(ci’ni) = Pi[{l - fi}{l - qOCP:EO)} Py fi{l - qocpi} 1] s (33)
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where fi is the fraction of the people in the i'th cell who are sheltered,
@go) and 0. is the fraction of those not sheltered and sheltered, respec-
tively, who are fatalities.

The cost of blast shelters is not well established. For example,
the Project Harbor Summary Report5 lists the cost of a 1000 space, 100
psi shelter (10 sq. ft per space) at $175 per space, while Robbins and
Narver lists the cost of the Tunnel Grid (again in 10 sq. ft per space)
at about $500 per space. One reason for this ambiguity is the lack of a

precise definition of overpressure protection. A systems analyst must

know the overpressure at which blast shelters fail while the shelter

designer gives the overpressure at which the shelter will be safe.

There have been several estimates of the variation of cost with over-
pressure. For overpressures in the range from 10 to 200 or 300 psi the
cost varies with the square root of the overpressure. The 1D-~50 and

LD-85 overpressures7 for various design or rated overpressures are plotted
in a graph in Pig. 2. Figure 3 shows the cost of a 7.5 sg. ft blast

shelter space as a function of the mid-lethal overpressure. This graph

results from costs used in several system studies.7 In dollars, the

cost per space is
¢ =100+ 15 p | (3k)

This formula is valid to a design overpressure of about 200-300 psi.
Beyond that, the cost-overpressure relationship may become linear.
Equation (33) expresses the survival as a function of the fraction
sheltered fi and the overpressure protection P, - The fraction sheltered
depends upon the nature of the threat, the warning system and shelter
accessibility. Therefore, it is conceivable that the defense can {rade-
off overpressure protection for increased shelter occupancy by diverting
part of the defense funds to better the warning system and educational
program. Unfortunately, the offense can also manipulate the occupancy
factor f. There have been no studies of any significance addressing the
shelter occupancy problem. Therefore, we assume that fi is a parameter

and we begin by taking fi = 1 for all 1.
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If the objective of the offense is the destruction of a certain
number of people, he can overcome any passive defense system by increasing
the number of weapons he intends to direct toward this objective. This

increase in number of weapons by the offense can be used as a measure of

the effectiveness of the defense. More specifically the defense strategy

is chosen at some survival level to maximize the additional number of
weapons needed by the offense to negate the defense. This kind of study

has been done in relation to active defense.
VI. INCLUSION OF ACTIVE DEFENSE

The design of defense systems which contaln active and passive
elements is more complicated than the design of systems having only one
element. Before the Lagrangian method outlined in section IV can be
applied, the local survival function must contain the active and passive
mix which maximizes survivors for any local defense cost. This pro-
cedure is called a tradeoff.

The geographical area covered by a terminal active defense is larger
than the area of lethality of weapons which might consider penetrating
this defense. If the basic cells are chosen to have areas slightly
larger than lethality areas then defense effeclts extend over more than
one cell, which are no longer independent. However, we may remedy this
difficulty. The active defense system cost (radars, data processors,
etc.) is expressed in the cost of an "average" interceptor. The cost

of one "average"” interceptor is the total active defenge system cost

divided by the total number of interceptors. We allot "average" inter-

ceptors to the cells in a manner consistent with the tradeoff and La-
grange solutlons. Radar and assoclated equipment are added to complete
the system. The costs of "real® interceptors, radars and all other equip-
ment are tallied to obtain the real system cost. We reguire that this
cost be identical to the cost of the "average" interceptor multiplied
by the number of "average' interceptors.

To tradeoff interceptors for overpressure protection at the cellu-

17

lar level, we let s designate the "average' interceptor cost. The cost

allotted to the i'th cell may then be expressed by the equabion
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e, = sTH) | (35)

1 O

The passive defense cost depends upon the number of people protected
(Pi) in the cell and the overpressure protection (pi) to which they are

protected. The tradeoff equation is

(1)

1) o) b (g v ep®) (36)

i

The first term on the right hand side is the active defense cost while
the second term is the passive defense cost. If equation (36) is re-
arranged to express the overpressure protection in terms of the number

of interceptors, we obtain
2

p. = | =— (I(i) - I(‘i)) _ 4 . (37)

i chi 0 Co

(1)
o)
the 1'th cell if nothing is spent for passive defense.

The guantity, I , 1s the maximum number of interceptors bought for

The survivors depend upon attack (ni), total cost (Iél>), and the

)

given Igl)] and equation (37). This relation is expressed in functional

mix of interceptors and overpressure protection [well defined by I *

form

s, =8, (n., Iéi), I<i)) . (38)

1 1 1

The best active-passive mix is obtained by choosing from the set of
I(l), for fixed values of ng and Igl), the value of I(l) (call it
1903 Such that

max

s;(n,, Igi), I;ii) > 8.(n,, Iéi), I(i)) . (39)

The value of I;;i satisfying equation (39) can be represented by the

functional relationship

)50 oy, )



Lagrange's method applied to this new survival function produces the
"pest" defense distribution, the local active and passive defenses, and
the "best” weapon distribution. The national active defense cost is

AL (41)

max

Q
p=3
i

[o2)

S il

while the total defense cosgt is

¢ = s}jIgi) . (42)

VII. THE NATIONAL DEFENSE CALCULATION

If the basic cells are elements of a grid superimposed over the
United States, then they are characterized only by population in each
element. Let M{P)dP be the number of cells with population between P
and P + dP. The graph in Fig. % shows the population of 5 km grid squares
ranked according to population as a function of the rank. Figure 5 shows
the total population for all 5 km grid squares up to a certain rank
again, ranked according to population. The curve in Fig. 5 is the inte-
gral of the curve in FPig. 4. The function M{P)dP can be obtained from
these curves.

The solutions to the defense allocatlion problem are expressed as

functions of P, first the weapon distribution
n = n{P) (replacing ni) R (43)
second, the defense cost distribution
BTN . (i)
I = 1(P) (replacing 15 3, (ul)
and, finally, the active/passive mix

Ioe ® E)  (replacing 1)), (45)

The constraints are obtained by integrating equations (43}, (4k4), or

(L5) over all possible values of P weighted by the function M{P)dP.
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The attack size is

P
max
N = JF M(P) n(P)dp , (46)
o)
the total defense cost is
P
max
c=s | M(P)I(P)aP , (47)
o)
and the active defense cost is
Pmax
= h
C, =8 J M(P) ImaX(P)dP s (48)
o)

where PmaX igs the grid element with the most people.
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APPENDIX A

The defense system design model presented in this paper is a ftwo-
person, constant-sum game. The players are the offense and the defense.
The offense strategies {ni} are distributions of weapons over the geo-
graphical area of the United States subject to a total attack size con-
straint. Likewise, the defense strategies {ci} are allocations of defense
decllars to these same areas constrained by total budget.

The game matrix has a very large dimension so that a complete speci-
fication of the payoffs is literally impossible except perhaps for the
smallest attack sizes and defense expenditures. A second point well
remembered is that the game can be played only once and the stakes are
so high that the desired solution is not a mixed strategy where we must
worry about a standard deviation in a probability, but rather a pure
strategy. There are three games that must be considered.

1. The all-seeing offense game in which the offense sees the
chosen defense strategy. If the offense chooses to play this game
then the optimum solution for both sides is offense favored.

2. The all-seeing defense game in which the defense sees the
offense chosen strategy. If the defense chooses to play this game
then the optimum solution for both is defense favored.

3. The blind-~offense and blind-defense game in which neither side
sees the other's move. The optimum solution for both sides favors neither
offense nor defense. In the language of game theory if the defense and
offense have the rows and columns, respectively, of the payoff matrix
which represents survival then the solutions to the three games described
above are

a. The defense strategy for the offense favored solution.

b. The defense strategy for the defense favored solution.

c. The defense strategy for the "unfavored" solution.
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