LOCKHEED MARTIN ENERGY RESEARGH L) Gl

(LTI

3 445k 0513445 3

LEGAL NOTICE ™

This. report wus prepared us on accownt of Governmaent sponsored work. Neither the United States,

nor. the Commission, nor any person acting on hehulf of the Cammission:

A. Makes ‘ony ‘warranty or’ répresentation, expressed or impled, with respect to the wrcuracy,
completeniess, or usefulness of the information. dontdined in this raport, or that the vse of
any ‘information, appuratus, method, of process disclosed ‘in this report may not infringe
privately owned rights; or :

B. Assumes any liabilities with respect ta the use ¢f, or for damuyes resulting from the vse of
any information, apparatys, method, or process disclosed in this report.

As uaed in the above, *“person acting on behulf of the Commission’ includes ony employee or

contractor of the Commission, or smployee of such contractor, to the extent that such employee

ot - contrartor - of the Commission, or employee of such contractor: prepares, disséminates, or
provides access to, any information purswvant to his emplayment or ¢ontract with the Commission,

or his employment with-such contractor.

Removal of Constant Terms from DO Loops

The Fortran DO-loop is a convenient facility made available to the
programmer in order to simplify repetitive processes.

Consider the following coding:
Example 1

DO 1 I=1,1000

1 Y(I)=X(I)*8QRT(3.14159)/2.

This 1s perfectly legal and proper coding but what is being performed on the
computer is a matter strictly between the Fortran compiler and statement 1.
Some compilers (very few in number) would discover that there are two constants
involved, the f% and 2., and remove them to the outside of the DO loop. Other
compilers might change the division by 2. to a multiplication by .5 (division
takes more time on most computers than multiplicationt). The majority of
compilers would perform the statement as it exists so that 90% (at a guess)
of the time used in performing the DO loop would be spent on the calculation
of the \,;/?

Rewrite the code as follows:
Example la

RTPIO2=SQRT(3.14159)%*.5

DO 1 I=1,1000

1 Y{I)=X(I)*RTPIO2

The only loss is that a certain visual reference to what is being calculated
has disappeared or, at least, been hidden to some extent. So, if this is a

great loss, do the following:

tOn the IBM 560/75, division averages 3.9 psec and multiplication averages

2.1 usec.
LOCKHEED MARTIN ENERGY RESEARCH LIBRARIES

LA

3 445k 0513445 9

S

Example 1b
RTPTO2=SQRT (3. 14159)%. 5
DO 1 I=1,1000
c %% v(T) IS X(T) * SGRT(PI)/2.

1 Y(I)=X(I)*RTPIO2

If this really sizable gain in time is not reascn enough for using "good"
coding, add a few more similar statements and then you are wrong not to
worry about the machine time involved:
Example 2

DO 1 TI=1,1000

DO 1 J=1,1000

Y(T,J)=X{T,J)*SQRT(5.14159)/2.

1 X(I,J)=X(I,J)*SQRT(2.%3.14159)/2.

Consider this:
Example 2

DO 1 1I=1,1000

DO 1 J=1,1000

1 XL, 3)=X(T,d)*W(L)/2.+X(L,T)

Example %a 1s a better version of FExample 3:
Example 3a

DO 1 I=1,1000

WIOV2=W(I)*.5

DO 1 J=1,1000

1 X(T,J3)=X(T,J Y*WIOVA+X(T,J)

Example 5a could also be better written as:
Example 3b

DO 1 I=1,1000

WIOV2=W({I)*.5+1.

DO 1 J=1,1000

1 X(I,d3)=X(I,J)*WIgv2

Some coding practices recur quite often. One point is that
a DO-loop such as:
Exeample 4

DO 1 I=1,10

X=(I-1)*DX

ete,
requires a conversion from the integer form of I to the floating point
form before the multiplication by DX can be performed. Conversion requires
tests for the sign of I, the storing of I into a special sort of machine
mumber (a floating point number having a fractional part of zero and a
special exponent) and the normalizabion of this number. Nowadays we can write

"mixed" expressions but the computation which occurs is no different than:

X=FL@ATF (I~1)*DX

l

The simple way to avoid the time spent for the conversion is
Example ha

EXTRA=0.

DO 1 I=1,10

X=EXTRA*DX

etc.

1 EXTRA=EXTRA41.

EXTRA now runs from O. to 9. as T runs from 1 to 10. But note that even
here the multiplication by DX could be completely avoided:

Example Ub
X=0.
DO 1 I=1,10
ete.
1 X=X+DX

Another practice frequently seen is:

Example 5
DO 1 I=1,k4
Y = X**[
ete.

1 CONTINUE

First of all an appearance of an expression of the form:

X*HT

causes a library function to be executed which has to check on the sign and
value of both X and I and then performs as few multiplications as possible to
calculate X*¥*¥T. 1In the loop above the function would be invoked four times
for X, X2, X0, X7, or 0, 1, 2, 2, multiplications respectively (5 in all
for the looﬁ) plus all the checking which must take place each time. The
time needed for the checking is probably equivalent to the time required for
three multiplications so that we have forced sbout 5 + 4 X 3 = 17 multipli-
cation cperations by writing the . loop thig way. Another way is available:
Example 5a

EXTRA=X

DO 1 I=1,4

Y=EXTRA

ete.

1 BXTRA=EXTRA*X

which would cause only four multiplications rather than 17. Multiplication
time is relatively slow compared to addition time so we might even gain by
the following, which saves one multiplication:
Example 5b

EXTRA(1)=X

EXTRA(2)=X*X

EXTRA(3)=EXTRA(2)*X

EXTRA (4)=EXTRA (2)*EXTRA(2)

DO 1 I=1,k

Y=EXTRA(T)

etc.

1 CONTINUE

An expression such as X*¥*2 is quite different from X**2. because
the exponents are of differing types. In the first case many compilers check
the exponents and if it is a small integer (less than 6, or less than L for
example) may generate "in-line" coding to perform the multiplication. In
the second case the number, 2., is not checked for having an exact integer
value and the expression is treated just as y¥¥a would be. That is;
X**AZ@AEDX and every expression which causes exponentiation to a floating
point {(real) power involves the employment of two library functions and
instead of X**A one might just as well have written in Fortran:
EXP(A*ALGG(X)). Both EXP and ALOG are usually computed by evaluation of
an approximating polynomial or continued fraction and each would perform
several multiplications and divisions. One often sees:

Y=X*%,5

or

Y=X*¥1.5
which is approximately the same as:

Y=8QRT (X)

or

Y=X*SQRT(X)

The SQRT routine employs three or four Newbon iterations and involves
fewer operations than either the EXP or ALOG routine. It might also be
noted that SQRT is usually coded for accuracy to the last one or two bits.

EXP and ALOG are rarely coded to this accuracy over their whole range.

It should go without saying that:

Example 6

DO 1 I=1,10

X(I)=Y(I)*2.**1

ete.

1 CONTINUE

should be written as:
Example 6a

EXTRA=2.

DO 1 I=1,10

X(I)=Y(I)*EXTRA

ete.

1 EXTRA=FXTRA+EXTRA

Another common practice is to write eguations inside DO loops
with constant values (so far as the DO loop is concerned) which, depending
on the complexity of the DO loop and on the compiler, may be reevaluated each
“time through the loop. Beveral examples of this appear in the Appendix. One
should remember that programs distributed for general use are not always run
under the "best" of compilers and the extra trouble taken can protect the
naive user of the program.

In calculations involving sines and cosines one might see:
Example 7

A=COS (X)*SIN(Y)+SIN(X)*SIN(Z)

B=C08 (X)*C08 (Y }+SIN(X)*C0s(Z)

The COS(X) and SIN(X) are computed in both equations when one could have

written:

Example 7Ta
XCOS=C0S(X)
XSIN=SIN(X)
A=XCOS *SIN(Y)+XSIN*SIN(Z)

B=XCOS*COS (Y)+XSIN*COS(Z)

Let us consider the problem of calculating the first nine Legendre
coefficients using: x = cos 9, PO(X) =1, Pl(x) = x, and (n+1) Pn+l<x) =
(2n+l)x Pn(x) - n Pn_l(x).

Fortran subscripts must run from 1 up to 10 rather than from O to 9.
So, "straightforwardly" :
Example 8

P{1)=1.

P(2)=X

DO 1 L=3,10

1 P(L)=((2%1-3)x*P(L-1)- (L-2)*P(1-2))/(1-1)
There are at least two things "wrong" about this loop. The first and (in this
case) least important is the expression 2¥L-3. This could, and should, be
written as I+L-3. The more important point is that the use of the integer L
mixed in the expression with variables of type real implies at least one extra
set of coding to convert L to a real (floating point) value before it can be
used in the calculation. This, depending on the compiler (and the computer),
can cause anywhere from five instructions to a library function call to

perform the conversion. The following change removes both of these pitfalls:

9

Example Oa
P{1)=1.
p(2)=x
FI=3.
DO 1 13,10
P(L)=((FI4+FL-3.)*¥x*P(L-1)- (FL-2.) *P(1-2))/(FL-1.)

1 PL=FI+1.

If this section of coding is used very often then the coefficients
should be precomputed and the equation reduced to
P{L)=A(L)*X*P(L~1)-B(L)*P(L~2):
Example 8b

SUBROUTINE LEGEND(X)

coMmmon P(10)

DIMENSION A(10),B(10)

DATA (INIT=0)

IF(INIT)1,2,1

[Rv]

INIT=
FIML=2.
DO 3 13,10
B(L)=1.-1./FIML
A(L)=1.+B{L)
% FIML=FIMI+1.
1 p(1)=1.
P(2)=x
DO 4 1~%,10
b P(LY=A(L)*X*P(L-1)-B(L)*P(L-2)
RETURN

END

10

Notice particularly the use of the DATA statement. At the time LEGEND is

first called, INIT will have the value O by wirtue of the DATA statement.

This will cause a transfer to statement 2 where the computation of the

coefficients A and B can be performed. The value of INIT is changed from

O s0 that on all subsequent calls the test of INIT will transfer around the

section of coding beginning at statement 2 and begin computing at statement 1.
This "trick" of using a DATA statement to preset a value which can

be tested on entry to a subroutine or function is an extremely useful tool

at the programmer's disposal. One wmore polnt to note is that the running time

could even be further improved by removing the DO loop on statement 4 and

replacing it by:

A(3) * X * p(2) - B(3) * P(1)

i

P(3)

P(k)

i

Ak) * x * P(3) - B(k) * P(R)

P(10) = A(10) * X * P(9) -~ B{10) * P(8)
From this point only marginal gains can be accomplished; e.g., using the
DATA statement to set the values of A and B:

DATA(A(3)=1.5), (A(4)=1.6666667), etc.

DATA(B(3)=.5), (B{4)=.6666667), ete.
This would allow the removal of the test on INIT.

It one were to suggest that all of this is very fine but the number
of coefficients (10 in the example) is not fixed and may vary from CALL to
CALL, say, CALL LEGEND(X,IMAX) and, therefore, the above methods would not be

applicable, one would be wrong.

11

If IMAX were, generally, 4 or less one should not be calling a
subroutine as the values of the P's could be written out without recourse
to a subroutine at all. If IMAX ranged randomly from 4 to 10 one could
use Example 8b with DO L L=3,10 replaced by DO 4 L=3,IMAX. If IMAX ranged
from 7 to 10, one could write out explicitly the first 7 P's and then test
IMAX and branch to a RETURN for IMAX=7, branch to a section calculating

P(8) and RETURN for IMAX=8,etc.

Summary

Generally, equations are written in Fortran in their most
easily recognized forms. These forms, unfortunately, involve lengthy
recomputations (within loops particularly) of constant factors and even
of functions in some instances. Ancother source of lost time is the
requirenent for the use of a variable as both an index (integer form)
and a value (floating point form). A bit of effort to "simplify"
DO-loops and to avoid the use of library functions to convert numbers
from one form to another can yield a significant decrease in executlon

time.

12

Examples

Three monitor input tapes, consisting of approximately 50 jobs,
were listed and examined. All of them consisted of short Jjobs for debugging.
The point of the examination was to study the way programmers were writing
their Fortran programs.

It must he emphasized that all of these programs were either in
the debugging phase or were short, one-time programs to compute a few
results. FExcerpts from these programs (statements taken out of context!)
appear in the appendix together with comments as to how they would be
improved if they were debugged and used in production very often. Some
of them were of the one-shot type (which are usually sloppily written)
but these are also treated as if they were massive users of computer time.
Once the Fortran programs have been debugged presumably a treatment as
suggested in the comments would be in order. DNo attempt 1s made to change

the subscripting since this has been described previously in TM-1969.

A i e S S L S b o S T Ko KWK KA I KKK KKK e NI Ho e eI NI 5
22 MO = 2 * (MO/4) + 1 @)
GO TO 2h
f'\‘
25 MO = 2 % (M0/8) + 1 (B)
I e e D ¥ KK %X B e L R A R e g o o S S KK W Ho S %o R A
A. Faster would be:
22 MOX = MO/h
MO = MOX + MOX + 1
B. Faster would be:
0% MOX = MO/3
MO = MOX + MOX + 1
He I K Koo Ko Ko Ko Ho o Ho KKK L I 2 %% He K% Ko A% FHeH KKK FHoRKH %o XA K ¥

B e B e A B S L T S B S VI YA UK VRV VR VRS

Faster would be:

]
=
~
N

KP

KP KP + KP

1

B L S L SUA 3 S L A S S 3 (i o 3 o % XHH KK YW XN HHHNK %
m — o % 1 3\ {"I
T = 5.% TOGF(10.0) (&)
C =hb0o xm7
PT15 = (1.0/5.1L4150265)%%1.5 (E) (E)
K HHHH KK FoW KA KKK KR WK 7 KXo o Yo KK KKK KR H KoK KW R W K Ko AR HHRKR XK HH AKX AAK N
A 5, ¥ LOGF(10.0) is a constant.
1
(E)j/g is a constant.
B. Faster execution would occur with:
PI15 = 1. /SQRT(3%.1L159265%%3)
HR KK KR ANHHH 3 KKK K %% KK K KK D * X% KKK XKW H A, AN A A KKK HRHHNH
DO 20 K = 1, IX
IF(ALF(XK) .LT. 0.) 14, 20
19 ALF(K) = 0.5 * ALFX(K)
XX(K,1) = -1.0 * ALF(K) (B
20 CONTINUE
T B O O A S AT R Aar o o X ¥ XK A

A This is better written as:

XX(K,1) = -ALF(K)

15

B e A B R = S o VAV R AU VIR R NV VSV VS

U(1) = COSF(THETR)
U(2) = -SINF(THETR)
U(3) = 0.
V(1) = SINF(THETR)
V(2) = COSF(THETR)
B i B B B R I B o X% Fo Ko Ko Ho K H R KN Fo 2 K K oK Ko U WK e W RN X K3 KK
Faster is:
U(1) = COSF(THETR)
U(2) = ~SINF(THETR)
Uu(3) = o.
V(1) = ~U(2)
v(2) = U(1)

FH KA KK I KKK oW A Fo 3 oK 2 Ko Mo e H KW I K I K N e o e K e e S 3K Ho DAY A K

DO 5 I = 1,NL
DPMS(I) = CASM(I) * RMF
PIC(I) = DPMS(I)/2.22

5 AMC (I) = PIC(I)/ 1000000.0

e e O e B B g L o & 2 o B S VISV I IV 18

The loop would be faster as:
CON = 1. / 2.22
DO S I =1, N1
DRMS(I) = CASM(I) * RMF
PIC(T) = DPMS(I) * CON

5 AMC(I) = PIC(I) * 1.0E-6

4

KKK H KX KK KK KR KK KR KK H K K 3K HeK A KN XK e Ko N * X% KK KK

H

SELTH = SQRT(SELTH / (K - 3.))
SELSG = SQRT(SELSG / (K - 3.))
RESIG = SQRT(RESIG / (K - 3.))

1
i

KKK KA XK HK KKK AN HANK XXX KKK LK KKK KAXXKNK, XK KK s ¥R KW AR K

'.__I

is a constanf for these equations, so:
XK = 1. / (K- 3.)
SELTH = SQRT(SELTH * XK)
SELSG = SQRT(SELSG * XK)

RESIG = SQRT(RESIG * XK)

LY}

KXo Koo A ¥ AWK H KK AKX Ko K e A KR KK HKT KK KXRNKKEKAK X KX K% AN S S

QL = .010%20 * EXPF(L. * 1.17202 * SQRT(SL) / (1. + .4 * SQRT(S1)))

KKK RXKARKRKAKX W Ko KN R AKX

HH B KKK A NHIAN K Ko KR H AN KRR K He A N

x>

Notice that SQRT(S1) appears twice.

17

e o L L A RA T I e e S T O o e S LR e o s S o 3

DO 10 I = 1,12
10 BB(I) = B(100) * BB(I) / h8.sk2

e O O A L e o o R B (S A b S

B(100) / 48.542 is a constant inside this loop.
Rewriting as:
EX = B(100) / L48.542
DO 10 I =1,12
10 BB(I) = BB(I) * EX

would save eleven divisions.

R A ARAIA N e e o T S O L L T b I TS RV 3

ToP = 1./EXPF(XR)

EREPA = 6. * B * EXPF({-XR)

KKk % Ea IR I e B e e e L L I I S =

EREPAG = 6, ¥ B ¥ T2P iz faster.

B i S P (8 S O 0 e A (o (A s T A Ol f R G e SR S e o

i

YC = 0.5 * A/GP1(1)

FI = Y(J) - YC

DERIV(1) = -0.5 * A/(GPL(1))**2
DERIV(2) = 0.5/GPL(1) * X(J,1)
DERIV(3) = 0.5/GP1(1) * X(J,2)

J1

B O I S 3 B A (rair e b st i S s o i A A e e i a3 v A S e S S o b

Rather:
YCC = .5/GP1(1)
YC = A * YCC

FI =Y(J) -~ YC

DERIV(1) = -YC/GP1(1)
DERIV(2) = X(J, 1) * YCC
DERTIV(3) = X(J,2) * YCC

The original has five multiply and four divide operations. The revised
version has three multiply and two divide operations. One can also write:
XGP = 1./GPL(1)
YCC = .5 * XGP
etc.
DERIV(1) = -YC * XGP
ete.

and have five multiply and one divide operations.

19

B e e A L B B AT I e b L o R e L T3

1

no

o

DENOM = 2 * IMAX - 1 (A
IMAX = 2 % IMAX

It

oy

il

DELTA.= (TWMAX - TWONE)/DENOM Y
i

DENOM = IMAX - 1

DELTA = (TWMAX - TWONE)/DENOM |

GO TO P
? @)
CONTINUE ¥}

A T O e i O O A L o S A T & o & S L e

A. These two statements could well be reversed:

1 IMAX = IMAX + IMAX

DENOM = IMAX - 1

B. Note that these five statements could also be written:
GO TO &4
2 DENOM = IMAX - 1
4 DELTA = (TWMAX - TWONE)/DENOM

3 CONTINUE

No machine time is saved or lost but the amount of memory used would

be reduced.

20

B B O S L e L L AT e e e S

UDZD = UDZDO * SQRT(E)
UL =ULO * SQRT(E)

il

e O AT O (10 O NE A I AT (S (A a3 KKK HKK KX XN KR KWK KK AT RARK KN KR KRN

Faster is:
SQRTE = SQRT(E)
UDZD = UDZDO * SQRTH

UL = ULO * SQRTE

KKK R K KKK I NN KKK KRN H KN H KKK KK HHH KR K KWK R WH K AR KA RN KK HHHHHAK

H11 = H11 - Wh(A,10.,15.) ¥ cos(Lk. * D)
Hi2 = H12 - W3(A,10.,24.) * COS(4. * D)
H13 = H13 + W4(A,8.,12.) * cog(2. * D)
H1b - HI1bL + W3(4,8.,16.) * cos(k. * D)

i
1

i

B e e o o AT At S S B e S R G At S oY

Note that COS(L4. * D) is computed three times.

21

B b L O A A A A S

DO 6 I =1, N1
DPMS(I) = DPMS(I)/Wa (1)
PIC(I) = PIC(I)/MWG(I)

6 AMC(T) = AMC(I)/wa(T)

The loop would run slightly faster on most computers if written as:
DO 6 I =1,N1
EX = 1. / wa(I)
DRMS(I) = DRMS(I) * EX

PIC(I) * EX

#

PIC(I)

6 AMC(I) = AMC(I) * EX

i

360/75 Multiply = 2.1 wsec.
Divide = 3.9 usec.

so that 1 divide + 3 multiplies = 10.2 usec.

it

and 5 divides 11.7 usec.

B B (S b i o v S AR AR S e N

El = EXP(-UF * 2% - UDIF * V * z/CO)
E2 = EXP(-UF * 2% ~ UDIF * V ¥ Z/CO - UDZD)
TK = (E1 - E2)/(1.0 - EXP(-UDZD))

B O o R e N e o e ek ar i i

Faster and yielding the same results would be:

El = EXP(-UF * ZZ - UDIF * V * 2/CO)
E2 = E1 * EXP(-UDZD)
TK = E1
XN KA KK AR RN AR KRN KK FH WK KK KK KRR AR AKHNK W WK KR AN K * %K KKK K KWK
YDIREA = A(1) + A(2) * D + A(3) * D¥*2 + A(L) * D¥*3 + A(5) * D¥xh + A(6) * D¥*¥5
YINREA = A(1) * D + (A(2)/2.) * D*¥*2 + (A(3)/3.) * D**35 + (A(h)/L.) * D¥xh +
1 (A(5)/5.) * D*¥*5 + (A(6)/6.) * D*¥6

K] v}

Y3 LVRVILVRVEVEVE VI VLY AVELVILVIEVVIEC VIR 'S
KK KHEAKXRKARXRXLEXARAKXERAARNRERNRX

R L AT e S s S o o e O S ARANA XK K KK UK

This would be considerably faster if written as:
YDIREA = ((((A(E) * D + A(5)) * D + A(4)) * D + A(3)) * D + A(2)) * D + A(1)
YINREA = (((((A(6)/6. * D + A(5) ¥ .2) * D + A(k) ¥ .25) * D =+

1 A(3)/3.) * D+ A(2) ¥ .5) *D + A(L)) ¥ D

R He K K HHHHH KA KRS R KA KWK KR AK R KR HHH KK Ko KoK KoK R KN e R R HHe e e He N e e

V(5) = 3.1416 * X ¥ (R(5)%*¥2 ~ R(4)**2) + 2.4 * (R(5)*%35 « R(4)¥*3)
V(6) = 3.1416 * X * (R(6)**%2 - R(5)%¥2) + 2.4 % (R(6)**3 - R(5)#*%3)
A A e A L S A O o L P ok S P X% #H

Notice the use of R(5)**2 and R(5)%**3., This sort of operation is faster

if done as follows:

i

CONA = 3.1416 * X

il

R58Q = R(5) * R(5)
RUSQ = R(k) * R(k)

R5CU = R58Q * R(5)

V(5) = CONA * (R58Q - RLSQ) + 2.4 * (RSCU - RLSQ * R(4))
R6SQ = R(6) * R(6)
V(6) = CONA * (R6SQ - R5SQ) + 2.4 ¥ (R68Q * R(6) ~ R5CU)

2h

X KK KA HHX WK KoKW T W e R PR K MR K N K KN He B HEH I H KK KWK KKK KR KN HH K HNK

i

DC(L) =F ¥R - 4, * PT * D % (X *C(2) *C(1) + Y *C(2) x¢(1))
ne(h) . X PI ¥ D * RIT * C(2) * ¢(2)

DC(5) = k. * PI ¥ D * (y * ¢(2) * ¢(3) + RIT * C(2) * ¢{3))
DC(6) = L, * PT * D * (X * ¢(2) * C(1) + X * c(2) * ¢(3))

il
=

i

X > *¥% MoK KA XHe KN NN AKRK XN X% KX CRK KX KK KN *

The calculation of 4. ¥ PI * D appears in each statement.
Y * ¢(2) appears two times.

X * C(2) appears three times.

¢(2) * ¢(3) appears three times.

c(1) * ¢(2) appears three times.

This would be faster if written as:

DPI4 = L. * PT ¥ D

it

ceCl

i

c(2) * ¢(1)
C2C3 = C(2) * ¢(3)

DC(1) = F * R - DPI4 * Ccocl * (X + Y)

DC(L) = DPIh * RITI * ¢(2) * Cc(2)
DC(5) = DPIL * C2C3 * (Y + RII)
DC(6) = DPIL * X * (C2C1 + C2C3)

The original contained 27 multiplications. The revised version contains

14 multiplications.

e
A

KK KR HH AR H KR HH KKK KR KR KW R IR KK H W KN H Ho K I K HoHo W Yo e K N KUK

DO 52 I =1,K
SCALEX = MAX1F(SCALEX,ABSF(X(I)))
SCALEY = MAXLF(SCALEY,ABSF(Y(I)))
IF(W(I)) 51, 51, %2

B R R O o G R O & S 8 S e S S S S S e

The use of the library function MAX1F could be avoided by:
DO 52 I = 1,K

EX = ABSF(X(I))
IF(SCALEX-EX) 520, 521, 521
520 SCALEX = EX
521 BY = ABSF(Y(I))
IF(SCALEY-EY) 522, 523, 523
522 SCALEY = EY
523 IF(W(I)) 51, 51, 52

KX

20

KKK X XK R D e R e a3 *

¥

Z = COSF(A) * COSF(C) + SINF(A) * SINF(C) * COSF(B) ;

A7 = SQRTF(1. - Z * Z)
7,
z

it

i

AMINL(1., 2)

2 = AMAX1{-1., Z)

D = ATANF(SQRTF(1. - 2 * 2) / Z)
RETURN

END

i

il

3
Note

stat

20

10

FHH NN R WK KK % XN K * KK A

(COSF(A) - COSF(C) * 2) / (SINF(C) * AZ)

N

A

The cosine of A is computed twice.
The cosine of C i1s computed twice.

The sine of C 1s computed twice.

Rewrite as:

COSA = COSF(A)

COSC = COSF(C)

SINC = SINF(C)

Z = COSA * COSC + SINF(A) * SINC * COSF(B)
A7 = etc.

7 = (COSA ~ COSC * Z) / (SINC * AZ)

i1

il

IF(z-1.) 1, 3, 2

Z = 1.

GO TO 3

1F(z+1.) 4, 3, 3

A I

D = ATANF (SQRTF(1. -Z % Z}/7)

also that when Z is set to either 1., D =

ements in B. could be rewritten as:

TF(Z-1.) 10,20,20

D = 0.

RETURN

IF(Z + 1.) 20, 20, 3

and similarly for Z < -1.

0.

2

K KKK KKk KKK %

so the filrst three

no
-3

E 3 T T e A B A L T o R O L S e Ko oo KB KK

DO 26 L =1, IMAX
26 F(L,I1)=F(L,I) + T(1Q,I) * U(LLQ,1) * (2 * LI + 1) ¥ A(L) * (2 * LP + 1)*.079

Note that only wvalues which are functions of L need be recomputed in the loop.
EXTRA = T(LQ,I) * U(LLQ,1) ¥ (2 * LT + 1) * (2 * LP + 1) * 0796
DO 26 L =1, IMAX

26 F(L,I) = F(L,I) + EXTRA * A(L)

Also: 2% LT + 1 -LI + LT + 1

and 2 *ILP +1~-LP +LP + 1

28

R B D A L L L e L S A o o o

DO 21 L =1,30
XA = XA + FP(L, N1) * P(2 * L - 1, J1)
21 X =X + TOTAL(L,N1) * (2 * L - 1, JL)

kv
A

KoK Ko KKK oK HKH K HHHH N KX K F A o B A\ N S R\ S i A O b o

For L =1, 2 % L-1 =1
L=2, 2%IL-1=3
L=3% 2%L1=5

Faster is:
LXML = 1
DO 21 L = 1,30
XA =ZXA + FP(L, N1) * P(ILxM1, J1)
X =X + TOTAL(L, N1) * p(LxMl, J1)

21 LXML = IXM1 + 2

HHRK

29

R i o O B O e o i e A e s i S P o o

DO 2 I =1,7
Z = (I-.175)%.7854/6.825

C(I+1) = COSF(Z)
D(I+1) = SINF(Z)
2 E(I+l1) = 0.

R B o e S S b T 0 S 2 a3

Rewriting as follows would save considerable time:
CON = .7854/6.825
Z = .825 ¥ CON

D0 21 =1,7

C(I+1) = COSF(Z)
D(I+1) = SINF(Z)
E(I+1) = 0.

2 4 =172 + CON

50

LEARs Ho X X X Ko K oK Koo Ho e K IR KH o B H KKK HHH I HIAA KN KR K KN KR KWK W%

DO 1T =1,19 (5)
X =(I~1.) * 5,

B=(I~-1.) *¥ .087267

DO 6 J = 1,50 (ﬁ)

C = (J - .5) % .050M16

B I s e L e Tk i i e i o e i O S (S i v b v i e i o v

A, Note that:
I=1—-X=0.2andB=0.
I=2=X=25.and B=1. % 087267
I =3%~X=10. and B = 2. ¥ 087267

Rewrite as:
B = 0.
X = 0.
DO % I=1,19
e?c.
B =B+ .087267

1 X=X+ 5.

B. Note that:
J=1-C=.5% 030416
J=2=C=1.5% .050416
Rewrite as:

C = .5% ,030k16 or C = .015208

ete.

6 C =C + .0350416

F R KW KR KKK Ko KoK He e e He o e Ko Fo N F e Yo Koo e Ho A e Y Fo K S A R KKK KK K KKK KK KW N KKK %
INTVL = 100
H = 1./FLOAT (INTVL) (5}
DO 23 I =1, INTVL
S = 1. - (FLOAT(I-1) + .up26ho7) * H ®)

C FORTRAN STATEMENTS
23 CONTINUE

NN N Y Y Ny SN SE N S B A 6 N S S 3 e e e 3o 3o 3 - 3 LA S Y RV VYS LYYV VIR LYYV ¥
N R KK ~ X TRR b P KD Al 3
A. H=.01

B. Note that FLOAT (I-1) can be removed:
S = 1. - .heoskygy * H
DO 23 I =1, INTVL
¢ FORTRAN STATEMENTS

25 8=8-H

32

B L O S LA (L o I e A O

EH KRR K AXKAXD

®

31

DO 31 I =1,N

Z = COSF(0.01745329 * THRTA(T))

P(1,1) = 1.

P(2,1) = Z

P(3,I1) =1.5%Z *¥Z - 0.5

DO 32 K = 2,57

P(RK+2,1) = ((2. * K+ 1.) ¥ Z * P(K+1,I) - K * P(K,T))/(Ki1)
CONTINUE

i

i

B R e e T L R L L R i o A ISy i e o A e O O S0 S S S e e e o

A, Both XK and K + 1 will be converted from integer to floating point each

time through the loop on statement 32.

Rewrite as:

XK = 2.
XKA = 5. % Z

XKAINC = % + Z

DO 32 K = 2,57

XKP = XK + 1.

P(Kt2, I) = (XKA * P(K+1, I) - XK + P(X, I)) / XKP

XKA = XKA + XKATNC
XX = XKP

35

B T i & g e I e e e O o o I

DO 71 NK = 1,K

YCALC = A(1)

DO 61 I = 2,LIM
61 YCAIC = YCALC + A(I) * (X(NK) / SCALEX)**(I-1)
71 SIGR2 = SIGR2 + (Y(NK) / SCALEY - YCALC)**2

B e o D B b I I L b e O e

Statement 61 is:

. ~ I-1
[X(NK) !
= * 2
YCALC = YCALC + A(I) | SCATEK S

X(NK) .
<aTEc 18 8 constant for the loop on 61 so:

DO 71 NK =1, K

YCALIC = A(1)

CON = X(NK) / SCALEX

EXTRA = CON

DO 61 I =2, LIM

YCAIC = YCALC + A(I) * EXTRA
61 EXTRA = EXTRA * CON

71 SIGR2 = SIGR2 + (Y(NK) / SCALEY - YCALC)**2

3h

KK KKK W KK X% K ¥ x A A FRAHH KR KKK AN % K RHK KKK KK HHK¥ K

DO 60 X =1, N

DO 60 L =1, M

SQT = SQRT(Y(L))

G(K,L) = -Al * DELZ(K) * SQI/(1. + Bl * 8QT) - C1 * Y(L) + D1 * Y(L)
60 X(K,L) = G(X,L) * Q(L)

KK HH KKK KW K H WA AR NH X T e S S S e S S A e A N AT o ol o

These DO loops would be much faster if reversed and written as:
DIMC1 = D1 - Cl
DO 60 L =1, M
8QL = SQRT(Y(L))

AX

i

-AL ¥ SQI/(1. + BL * SQI)

BX

il

Y(I) * DIMC1

DO 60 K =1,

N
G(K, L) = AX * DELZ(K) + BX

60 X(K, L) = G(X,L) * Q(L)

R R e e e i o o e R L B R S S e S S ST

DO 2200 J = 1,NOBS
NZ = NOZ(J)
X(J) = XI(J) / WIDOWN(NZ)
DO 2200 I = 1,11
FRAC(I) = FLOAT(I - 1) / 10. ®
IF(XI(J) - FRAC)) 2100, 2100, 2200
2100 NFRAC(I) = NFRAC(I) + XINTF(WI(J))
XFRAC(I) = FLOATF(NFRAC(I)) / EXPSUM
2200 CONTINUE

it

fl

B o e R e o S R e b e R R T i e 3

A. XI = 0.
DO 2201 I = 1,11
FRAC(I) = XI
IF(ete.) 2100, 2100, 2201

2201 XI = XTI + .1

2200 CONTINUE

would be faster.

Since the computation of FRAC(1) to FRAC(11l) is performed identically for
each J, the outer loop, speed would increase by:
FRAC(1) = ©.

DO 3000 IJ =2, 11
3000 FRAC(IJ) = FRAC(IJ) + .1

DO 2200 J = 1, NOBS
ete.

DO 2200 I =1, 11
etc.

2200 CONTINUE

Notice that the FRAC's are now computed once rather than NOBS times.

56

Rt e kG O S e e A e S e O L AR P (R AT A o e S S S S v o el

DO 1 I=1,x
c(I) = 0.0
DO 1 J=1, N
1 B(I,J) = O.
DO 2 I=1, N
DO 2 J=1, M
2 C(I) =c(1) + Y(J) * X{I,J)
DO 5 I -1, N
DO 5 J=1, N
DO 5 K=1, M
5 B(Z,J) = B(I,J) + X(J,K) * X(I,K)

A b o L A (el A et o 26 KA KA T A o a a a

This can be "collapsed" as follows:

DO1I=1,N

c(1) = 0.0
DO2J =1, N
B(I,J) = O.
DO2K=1,M
2 B(I,J) =B(I,J) + X{(J,K) * X(I,K)

DO 5J =1, M
3 C(I)=0(1) + Y(J) * X(I,J)
1 CONTINUE

There are now four DO loops instead of seven and the code will run faster.

57

B A T i kI e e AP N L

COEF = 2, * PI/(PI * BOLZ * TEMPK)**1.5 ﬁ@}

DO 4o T =1,K ~ |)

YI =1-1

X(I) = X1 + YI * XINC ' \
Y(I) = COEF * SQRTF(X(I))/ E **(X(I)/(BOLZ * TEMPK)) { (§)

XEV(I) = X(I) / ERG (E)
YEV(I) = Y(I) * ERG !
4o CONTINUE

B R I i R e R b e e b e b B s o i S

A. Faster would be:
EX = 1. / SQRIF(PI ¥ (BOLZ * TEMPK)**3)
COEF = EX + EX
B. Note that E¥¥(-BOLZ * TEMPK) and 1./ERG are constant for the loop.

- X(1) X(T)
X1 Xl

0. K
1. X1 + XINC EX pAINC
. *_EXINC o gXINC

X1 + 2. * XINC E

WO

BTK = BOLZ * TEMPK
EX = COEF/E**(X1/BIK}
EXINC = 1./EX%(XINC/BTK)
CONA = 1./ERG
XA = X1
DO 40 I = 1,K
X(I) = XA
Y(I) = EX ¥ SQRTF(XA)
XEV(I) = XA * CONA
YEV(I) = Y(I) * ERG
EX = EX * EXINC

L0 XA = XA + XINC

i

i

He KoK KKK KN KKK KWWK R KK RK

%
%
%k

DO 12 J = K,NR
IPRJ = (J - 1) * WA + IPR ;A
7 = A(IPRJ)
KJ = (J - 1) *NA + K
A(IPRJ) - A(KJ)
12 A(KT) = 7Z
DO 13 J = 1,NV
IPRJ = (J - 1) ¥ X + IPR rA
Z = X(IPRJ)
KJ = (J - 1) *NX + K (A
X(IPRJ) = X(KJ)
X(KJ) = 2

(o

i1

'_l
(Y]

B R e b b e i O N e i v s e o S A o

A. Notice that (J-1) * NA and (J-1) * NX are eaeh computed twice.
This would be much faster if done as follows:

JNA = (K-1) ¥ NA
DO 12 J = K,NR
IPRJ = JNA + TPR
Z = A(IPRJ)

KJ = JNA + K
A(IPRI) = A(KT)

A(KT) = 2
12 JNA = JNA + NA
JNX = 0

DO 13 J = 1,NV
IPRJ = JNX + TPR
Z = X(IPRJ)
KJ = JNX + K
X(IPRT) = X(KJ)
X(KI) = 2

13 JNX = JNX + NX

Now, instead of 2 * (NV + NR - K) multiplications there is only one multipli-

cation and all the other multiplications have been turned into additions.

39
i e e i B R B IV TR TR I I S

DO 54 I =1,K
YC = Y(I)/SCALEY
XC = X(I)/SCALEX
DO 54 J =1,LIM
JA=J+J -1
52 SUM(JA) = SUM(JA) + XC**(JA-1) * W(I)
53 SUM(JA+1) = SUM(JA+1) + XC*¥*(JA) * W(I)
54 SUM(J+15) = SUM(J+15) + XC*¥*(J-1) * W(I) * YC

it

{i

i

R e o L S b L 2 VA AL VP SV I VY

The loops would be faster as:
DO 54 I =1,K
YC = Y(I)/SCAIEY
XC = X(I)/SCALEX

[-
XCIML = YC * W(I)]mJl*W*W@ﬂ,Jd

e}

il

0 for statement 5k

]

XCTAML = W(T) (xo JA-1 w(I)f , JA-1 =0 for statement 52

XC8Q = XC * XC) ’
JA =1
DO 54 J = 1,LIM

52 SUM(JA) = SUM(JA) + XCJAM1

55 SUM(JA+1) = SUM(JA+1) + XCJAML * XC

it

54 SUM(J+15) = SUM(J+15) + XCJIML
XCIM1 = XCJIML * XC
XCJAM1 = XCJAM1 * XCSQ

54 JA = JA + 2

V] 3.
KX NKEXX L AKX O AN N S W REXRNARNKALRAKRK A AN KKK HRNK AKKANEX

DO 1 I =2, NI

SUM = 0.
M = 2%¥%(I - 2)
= 2.%%(T - 1)

DO 2 J =1,M
2 SUM = SUM + ((8 - 2. ¥ J +1.) *A+ (2. ¥*J - 1.) ¥ B)/s
c(2,1) =c(1,1)/2. + (B - A) * SUM/S
DO 3 J=2,1
S = U.**(J - 1)

I

3 C(2,7) = (8 * ¢c(2,J-1) -C(1,J-1))/(s-1.)
c(1,J) = ¢(2,J)
I RN R W W W Y K KWW Y Koo K K KW Y Yo K S HH RN N AW KR KKK R K3 K K b

Set up the problem as follows:

M=1

S = 2.

DO 1T =2, NI

SUM = O.

P o= 1. (FJ will replace 2. ¥ J - 1.)

DO 2 J=1,M
SUM = SUM + ((S - FJ) * A + FJ * B)/S
2 FJ=FJ + 2.
c(2, 1) = ete.
SS = L,
DO 3 J=2,1
c(e,J) = (88 * ¢(2, J-1) - ¢(2, J-1)) / (s8-1.)

3 SS = 88 * L. or SS = SS + 88 (two adds and a store
3 85 = 85 + &8 are slightly faster than
¢, J) =c(2, J) a multiply on the TBM
1 S =8+ 8 360/75)

(Use 8S instead of 8 so that S will not have
to be recomputed)

pi

L1

B B e A T e T i B L L A A e 8 (A O A o e e)

DE = 4.

EI = INTF(VC)

DO 20 I = 1,40

E =EI +DE * (I -1) (&
RM = Z2/E)
s12 = O.

DO 10 J =1,5
812 = 812 + R2 ¥ 2.%¥(2 % J) % (2,%%(2 % J) - 1.) * B(2 * J)
1 * (((RM - RL)/R2)**(2 * J + 1) -~ (=RL/R2)**(2 * J + 1)) / (2. * J + 1)

10 CONTINUE
20 CONTINUE

e Koo K HOH KRN K H AWK I KA HoH N KN AW H KK K KR HoH K KoK W R KR e R HHH AN

A. I-1 runs from 0. to 39. for the loop so:

X1 = 0. or, if DE is not changed inside the loop:
DO 20 I =1,k XI = 0.
E =El + DE * XI DO 20 1I=l, L0
ete. E = EI + XI
20 XI = XI + 1. ete.

20 XI = XI + DE
and, finally, if E, EI, and DE are not changed inside the loop:
E =EI
DO 20 I =1, Lo
RM = ZZ/E
etc.

20 E = E + DE

4o

8. Notice that 2.%%¥ (2*%J) could run with the loop:
=1 - 2. = 4.
J=2 - 2.7 = 16.
TWOJ = U,
DO 10 J=1, 5
ete.

10 TWOJ = TWOJ * L,

As only 2%*J is used and J itself is never directly used in the loop:
DO 10 J2 =2, 10, 2
and use J2 wherever 2%J appears.

The inner loop would then be:

RX = (RM - R1)/R2
RY = -RlL / R2
RXSQ = RX * RX
RYSQ = RY * RY

RX = RX * RXSQ

RY = RY ¥ RYSQ
T™WOJ = k.
DENOM = 3,

DO 10 J2 = 2, 10, 2

S12 = 812 + R2 ¥ TWOJ * (TWOJ - 1.) * B(J2) * (RX - RY) / DENOM

TWOJ = TWOJ * 4.

RX = RX * R¥3Q

RY = RY * RYSQ
10 DENOM = DENOM + 2.

One other "trick" could be used here since R2 multiplies each

element of the sum, S12. Remove the multiplication by R2 which is inside

the loop on statement 10 and after statement 10, put 812 = S12 * R2.

B A A B e L A L L R b L I L 3

35 R(@B) =T
DO 10 I =1,8 (n)
10 R(8) = R(8) + X(I) N
Y =2, % (Z2-.575) *R(B) - .5 % (1. + T + x(1) + x(2) + X(3) + (g}
1X(H)) - 2. % (X(1) + X(9))
S =Y % (2. ¥ x(2) * (T + X(1)) + X(2)**%2) (E}
TF(aBS((B * R(8) - 8)/B/R(8)) .GT. 1.E-6) 30, 51 (D)
30 T =T-- (B*¥R(8) - 8)/(B-2.% (2~ .825) % (2. *X(2) * (T + X(1))
1+ X(2)%*2) - 2. ¥ x(2) * Y)
M=M+ 1
IF(M.GT.10) GO TO 31
GO TO 35

Ko HeHHe e S HH KK KD Ko H oW H K Ho KK e e HoRe o KoK HH KK e K He MK H T KK KKK KK X

The code is an iterative loop.
A. DNotice that X(1) thru X(8) are not changed during the loop although
R(8) is. Therefore:
55 XBUM = O.
D0 10 T =1, 8

10 XSUM = X(I) + XSUM

i

36 R(8)

i

T + SUM

etc., and GO TO 35 becomes GO TO 36

B. 2.0 % {Z - .575) is a constant during the loop.
1.0 + X(1) + X(2) + X(3) + X(4) is a constant during the loop.

2.0 ¥ (X(1) + X(9)) is a constant during the loop.

C. 2.0 *X(2) is a constant and also appears twice in statement 30.

X(2) ** 2 is a constant and also appears in statement 30.

i

D. B ¥ R(8) -~ S is used both in the IF test and in statement 30.
If all the "constant" terms were removed:
36 R(8) =T + XSUM

Y =ClL ¥*R(8)~C2- .5%T

ACON = C3 * T + Chk

S =Y ¥ ACON

BCON = B * R(8) - 8

IF(ABS(BCON * CS/R(8)) .GT. 1.E-6) 30, 31

30 T =T - BCON/(B - C6 * ACON - C7 * Y)

B O L L S L L o ey Ik G i S B S e i

DO 2 I = 1,NSHIFT
DO 1 J =1,NUM |
FENERGY(2 * N -1,J) = FENERGY (N,J)
2 N=N-1 ‘
DO 3 I = 2,NUM,2
DO 4 J = 1,NAWEXP,2
CY((J + 1)/2) = FENERGY(J,I)
L CX((J + 1)/2) = XNEP(J)
DO 5 K = 1,NSHIFT
XP = XNEP(2 * X) &)
FENERCY (2% K, I - 1) = FENERGY(1, I - 1) (E}

it

g

i

it

)

{ oo

fl

it

FEP = FENERGY(2 * K - 1,1) C)
5 FENERGY (2 * K, T) = FEP @
3 CONTINUE

) - LYY hVd LYAR VALYV AV NN AYARY a4 BYIRV ALY ARY M. . RYA VALY AYIRY Y] R Y
KA KK HX A XK X KoK KK % Kok KoK LA I i e A AR b e e e RS S KX

A. 2¥ N - 1 is constant within the DO loop on statement 1.
DO 2 I =1, NSHIFT
M =N+N-~1
DO 1 J =1, NUM
1 FENERGY(NX,J) = FENERGY(N,J)
2 N=N-1
B. J runs from 1 to NAWEXP in steps of 2.
J+1 NAWEXP+1 5

—= runs from 1 to

5 5 n steps of 1.

L&

Replace 2%& by JX and:

JX =1

DO L4 J =1, NAWEXP, 2

CY(JX) = FENERGY(J, T)

CX{JX) = XNEP(J)

b X=X+ 1

C. Let the DO loop on statement 5 run from 2 to NSHIFT * 2 in steps of
2 since K by itself is not used in the loop. If K were used in the loop

then use K2 = K + K instead of 2 * K.

NS2 = NSHIFT + NSHIFT DO 5 K =1, NSHIFT
DO 5 K2 =2, NS2 or K2 =K + K
XP = XNEP(K2) XP = XNEP(K2)

ete.

FENERGY (K2, T - 1) = FENERGY(1, I - 1)
FEP = FENERGY(K2 - 1, I)

5 FENERGY(K2, 1) = FEP

L7

R b A R b e e B B e

DO 3 I =1,12

IX = IT
DO 4 J =1IX,100
IT=J-1

IF(B(J) - BB(L)) &, L4, 5
N CONTINUE '
X5 = (BB(I) - B(g-1)) / (B{J) - B(J-1))

\J1

IZ = II1(1)
/ DO 5 K =1,IZ
&) 13 = 1/2
oy AT = I/2. - IJ
o AT = A(IT) * (1. - XJ) + A(IT+1) * JX
- 2 PA = AB(IT) * (1. - XJ) + AB(IT+1) * JX
AK = (.785398 - PA) * (K - 1)/(Iz - 1. + AJ)
C(IK) = SINF(AT) * COSF(AK)
E(IK) = COSF(AI)
D(IK) = SINF(AI) * SINF(AK)
3 IK = IK + 1

R e B L L L e A AT (R s e o

A. Note that IJ depends on I and is a constant for the loop on K
AJ depends on IJ. Both could be moved into the I loop.

IJ =1/2

AT = .5 %I - 1J
DO 3 K =1, IZ

Note also that:

I 1J I/2. AJ
1 o) 5 -5
2 1 1 0

3 1 1.5 5

N,)'LB

and AJ alternates between .5 and 0., so:
AT = .5
DO 30T = 1, 12
ete.
DO 3 K =1, Iz
ete.
3 IK=1IK+1
IF(AT) 31, 31, 32
31 AJ = .5
GO TO 30
32 AJ = 0.

50 CONTINUE

B. The loop on K contains Al and PA, neither of which depend on K and,
consequently, the SINF(AI) and COSF(AT) can be computed before the loop:
XK = 0.
DO 3 K =1, IZ

AK = CON * XK

C(IK) = CONA * COSF(AK)
E(IK) = CONB

D(IK) = CONA * SINF(AK)
IK = IK + 1

53 XK =XK + 1.

768.
769.
770,

)49 ‘ y
INTERNAL DISTRIBUTION

Central Research ILibrary

Document Reference Section
Laboratory Records

Laboratory Records - Record Copy
Division of Technical Information Extension
Laboratory and University Div., ORO
ORNL Patent Office

J. G. Sullivan

V. R. Cain

W. B. Gardner

A. A. Brooks

ORCID List

EXTERNAL DISTRIBUTION

J. W. Givens, Jr. ~ Applied Mathematics Division

Argonne National Laboratory, 9700 South Cass Avenue
Argonne, Illinois

R. P. Leinius - University of Wisconsin Computing Center
1210 W. Dayton Street, Madison Wisconsin

J. A. Thompson - Control Data Corporation

4201 N. Lexington Avenue, St. Paul, Minnesota

W. F. Miller -~ Stanford Linear Accelerator Center

P. 0. Box 43Lg, Stanford, California

