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CHAPTER I 

ZNTROIJUCTION 

The quantum-mechanical three-body problem has played in the past 

and continues to play, as it will in the future, an important role in 

the development of atomic and nuclear physics. 

One reason for this importance of the three-body problem is 

that it provides a nontrivial test of the validity of the fundamental 

laws of quantum mechanics. For example, the calculation by Hylleraas 

(1929) of the ground-state energy of the helium atom demonstrated not 

only the essential correctness of the atomic model but also the ef- 

ficacy of the laws of quantum mechanics. 

Another reason for the importance of the three-body problem is 

that it provides a tool for  studying the forces of interaction between 

f’undamental particles. In particular, it may be used to investigate 

the extent to which the two-body forces are valid for a many-body 

system. Thus, the study of three-body systems may help verify the 

results of two-body interaction studies and, at the same time, demon- 

strate the nature and strength of three-body forces. 

Another important role played by the three-body problem is that 

of providing a transitional step in degree of difficulty of calcu- 

lation in going from the simple two-body system to the complex many- 

body systems. At the same time that it provides this bridge from two- 

body systems to many-body systems, i.t may also be used as a limiting 

case in the general theory of many-body systems. 

1 
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A three-body problem may be c l a s s i f i ed  i n  a number of ways. One 

way i s  t o  c l a s s i fy  the  problem according t o  the  p a r t i c l e s  i n  the system. 

Thus, there i s  the  atomic three-body problem ( t h e  helium atom, f o r  

example), the molecular three-body problem ( t h e  hydrogen molecular ion),  

and the  nuclear three-body problem ( t h e  t r i t o n ) .  

course. 

There are  others,  of  

Another method o f  classifying three-body problems i s  by the 

pliyical processes involved. In par t icu lar ,  there  are the bound s t a t e s  

with t h e i r  energy eigenvalues and the  corresponding propert ies  which 

may be obtained from t h e i r  wave f’unctions, and there  a r e  the  unbound 

s t a t e s  which, ordinar i ly ,  a re  associated with co l l i s ion  phenomena. 

Some nuclear reactions,  although involving many nucleons, may be viewed 

from t he  standpoint of a three-body problem. 

th i s  i s  deuteron stripping. 

A pa r t i cu la r  example of 

The a r t  of calculation of t he  energy eigenvalues of the bound 

s t a t e s ,  especial ly  the  ground s t a t e s ,  i s  highly developed. However, 

there  i s  s t i l l  much t o  be done i n  the way of calculat ing the  wave 

functions i n  general, and f o r  the bound states as well as t h e  unbound 

states, One of tine purposes of t h i s  t hes i s  i s  t o  develop a p rac t i ca l  

method of calculating the  wave function of a three-body system i n  t‘ne 

inner region where a l l  three p a r t i c l e s  a re  strongly in te rac t ing .  It 

w i l l  be shown that such an inner wave function may be joined t o  an 

outer  wave function which vanishes a t  la rge  distances from the  center 

of mass of  t he  system i n  such a way as t o  give a good representation 

t o  the ground s t a t e  of t he  helium atom. I n  order t o  be useful f o r  
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appropriate incoming 
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the  inrier wave function w i l l  have t o  be joined t o  

and outgoing waves. 

The f i r s t  matter Lo be disposed of i s  the choice of a coordinate 

There a r e  a number of considerations t o  be taken i n t o  account. system. 

Do, o r  should, t he  coordinates t r e a t  the pa r t i c l e s  i n  a symmetric 

fashion? To w h a t  extent do the coordinates separate out the motions of 

i n t e re s t ,  i n  pa r t i cu la r ,  the ro ta t ions  and the  translations? Are the  

coordinates orthogonal? Do the  operators o f  i n t e r e s t  ( i n  pa r t i cu la r ,  

the k ine t i c  energy, the po ten t i a l  energy, and the angular momenta) take 

on convenient forms with the coordinates chosen? To what extent  i s  the 

Schroedinger equation separable i n  the chosen coordinates? 

I n  an attempt t o  f ind  answers t o  some of these questions, a 

method of c lass i fy ing  coordinates has been developed i n  the  following 

Chapter 11. On the bas is  of t h i s  c l a s s i f i ca t ion ,  the  form of the 

metric tensor  i s  then calculated i n  Chapter 111. 

spec i f ic  results fo r  the  two-, three-, and four-body problems. 

Appendix B gives 

Most workers i n  the pas t  have found it convenient t o  separate 

out the  center-of-mass motion, and f o r  t h i s  reason the ordinary rec-  

tangular coordinates i n  the observer's frame a r e  not su i tab le .  On the 

other  hand, rectangular coordinates i n  the center-of-mass system are  

redundant because they a re  not l i n e a r l y  independent. I n  the general 

N-body system, the center of mass can be separated out leaving N - 1  

c lu s t e r  vectors as described i n  Chapter 11. The coordinates of these 

cluster vectors form an orthogonal system of coordinates. 

It i s  usual ly  desirable  t o  use Coordinates which a l s o  dis t inguish 

the ro ta t ions  f r o m  the other  motions. Hylleraas (1928) introduced a 
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set of &der angles f o r  the  ro t a t iona l  motion t h a t  was quite  asymmetric 

w i t h  respect t o  the pa r t i c l e s .  These a re  the Euler angles used by 

B r e i t  (1930) for  h i s  separation of the angular dependence i n  the two- 

electron problem. 

f ining the  Euler angles f o r  the t r i t o n  i n  a symmetric fashion. 

and Temkin (1964) give a symmetric Euler-angle decomposition f o r  the 

two-electron problem. Pror io l  (1967) generalizes t h i s  l a t t e r  method 

t o  systems of three and four identical .  p a r t i c l e s .  

thesis, the Euler angles a re  defined with respect t o  the pr inc ipa l  axes 

of the system. This i s  one of the s p n e t r i c  methods discussed by 

Derrick and Bla t t  and, fo r  the purposes of t h i s  thesis, seems t o  be 

par t icu lar ly  convenient. 

Derrick and B l a t t  (1958) discuss two ways of de- 

Bhatia 

In  Appendix B of t h i s  

For the remaining three coordinates which describe the  internal  

motioii of the three-par t ic le  system, the three in t e rpa r t i c l e  distances 

may be chosen. These form a symmetric s e t  w i t h  respect t o  the  three  

pa r t i c l e s .  These in t e rpa r t i c l e  coordinates may be used t o  describe 

two-, three-, and four-body systems only, and they may not be used t o  

describe the general N-body system. This does not destroy t h e i r  use- 

fulness f o r  the three-body problem, however. 

In the Ritz-HylPeraas var ia t iona l  method (Hylleraas 192'3) of 

calculat ing the ground-state energy of the helium atom, asymmetric 

l i n e a r  combinations of the in t e rpa r t i c l e  distances were used. Present 

(1936) and Rarita and Present (1937) used these coordinates f o r  their  

calculation of the  t r i t o n  binding energy. 

Kinoshita (1957) used. a re la ted  system formed by r a t i o s  of Hylleraas 

coordinates. 

Again, f o r  the helium atom, 
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Asymmetric linear combinations of the interparticle distances 

f o m  the perimetric coordinates introduced by Coolidge and James (1937) 

A similar set was used by Pekeris (1958) for his extremely accurate 

calculation of helium atom ground-state energy. The perimetric co- 

ordinates have the advantage of having fixed ranges. Kinoshita's co- 

ordinates have this same advantage. 

GronwaU (1932) showed that the introduction of the area of the 

three-particle triangle, along with two linear codinations of the 

squares of the interparticle distances, had the advantage of making 

the space formed by using these as coordinates conformally Euclidean. 

Cur-biss, Hirschfelder, and Adler (1wO) introduce the lengths 

of the two cluster vectors and the angle between them as internal co- 

ordinates. 

ordinates. 

three-body triangle and the included angle as coordinates. 

Baker, Gammel, H i l l ,  and Wills (1962) use the same co- 

Luke, Meyerott, and Clendenin (1952) use two sides of the 

In Chapter I1 of this thesis, the classification of the internal 

coordinates is refined. In this way a set of coordinates for the 

three-body system has been found which treats all three particles sym- 

metrically, which further distinguishes between various internal motions, 

and which diagonalizes the metric tensor as much as is consistent with 

the known failure of complete separability of t h e  rotational motion. 

The classification is done for the general N-body problem, and hence, 

the corresponding generalization of the coordinate system should be 

possible. The generalization to the four-body coordinates is done in 

Appendix B. 
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Similar three-body coordinates have been found almost simulta- 

neously and apparently independently by Gallina, Nata, Bianchi, and 

Viano (1962), by Kramer (I-963), and by Zickendraht (I$>). 

After the choice of a coordinate system there  remains the de- 

termination of t h e  wave function. The usual procedure i s  t o  choose a 

s e t  of functions i n  which t o  make an expansion, d i r e c t  integrat ion of 

the Schroedinger equation being ordinar i ly  out of the question. The 

problem then reduces t o  determination of the coef f ic ien ts  of the se r i e s  

expansion, which i s  truncated a t  some point ,  

A set of flmctions may be found i n  various ways. The center-of- 

mass motion i s  always ignored, since it my be factored out of the wave 

fknction. 

Hirschfelder, and Adler (1930) show how a wave f’unction of de f in i t e  

angular momentum decomposes ink0 a sum, each term of which i s  a product 

of a rotat ion function and an in t e rna l  function. The ro ta t ion  functions 

associated with the  o r b i t a l  motion a r e  just  those functions vhich 

‘digner (1951) showed were associated with the  symmetric top and which 

were f i rs t  obtained by Reiche and Rademacher (19%) and Kronig and 

Rahi (1927). 

The ro t a t iona l  motion i s  not so simply disposed of.  Curtiss, 

In  addition to the separation of the o r b i t a l  notion f a r  the  

t r i t o n ,  it i s  desirable t o  separate out the  spin dependence, the I-spin 

dependence, the par i ly ,  and t o  give the symmetry c l a s s i f i ca t ion  w i t h  

respect t o  p a r t i c l e  interchange. 

c l a s s i f i ca t ion  for the t r i t o n ,  

p l e t e  treatment,. 

Derrick and B l a t t  (1958) give such a 

Clapp (1961) gives an even more com- 
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One of the e a r l i e s t  s e t s  of i n t e rna l  f’unctions, which depends 

on the three  in t e rna l  coordinates, was t h a t  chosen by Hylleraas (1929) 

fo r  h i s  R i t z  var ia t ion  calculat ion of  the helium atom ground-state 

energy. The form of these f’unctions i s  a power s e r i e s  i n  the three 

Hylleraas coordinates multiplied by a su i tab le  exponential which guaran- 

t ee s  t h a t  the flmction vanishes i n  the  l i m i t  of l a rge  electron displace- 

ments as well  as guaranteeing the convergence of the var ia t ion in tegra ls .  

The same functions may be used for calculat ions of the t r i t o n  binding 

energy as was shown by Present (19%) and Rarita and Present (1937). 

Coolidge and J a m e s  (1937) showed t h a t  the Hylleraas form i s  complete 

i n  a cer ta in  sense which i s  s u f f i c i e n t  f o r  the binding energy calcu- 

l a t ion .  

Kinoshita (1957) uses a more complete expansion than t h a t  of 

Hylleraas i n  t h a t  Kinoshita’s s e r i e s  contains some terms with negative 

powers. Thus, Kinoshita’s s e r i e s  includes Hylleraas’s as a subser ies .  

Pekeris (1959) uses an expansion i n  a s e r i e s  of products of 

three Laguerre polynomials, each polynomial having f o r  i t s  argument one 

of the perimetsic coordinates. Again, as with the  Hylleraas functions 

and the Kinoshita f’mctions, the se r i e s  is  multiplied by a su i tab le  

exponential function. 

A s e r i e s  expansion i n  Legendre polynomials, the argument of 

which is  the cosine of one of the angles of the three-par t ic le  tri- 

angle, w a s  made by Luke, Meyerott, and Clendenin (1952). The coef- 

ficients of these polynomials are functions of t w o  variables and must 

s a t i s f y  a second-order p a r t i a l  d i f f e r e n t i a l  equation. Baker, Gammel, 

H i l l ,  and W i l l s  (1962) use a s imilar  expansion. 
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For sca t te r ing  problems, the plane wave expansions a r e  espe- 

c i a l l y  u s e m ,  This i s  because they are so closely re la ted  t o  the 

d i r ec t  physical  observations as well as having nice ana ly t ica l  proper- 

tlies. They do not form a denumerable basis, however, and, hence, the 

expansion of the so-called in t e rna l  wave functions i n  these functions 

cannot be t rea ted  by the  usual method of truncating. 

Delves (1960) writes  the wave function i n  the form of a product 

of two spherical  harmonics, the arguments of which are  the angles of  

the spheri-cal coordinates of the two c lus t e r  vectors, respectively.  

This product i s  multiplied by a f’unction of the  remaining two coordi- 

nates,  which a re  the  lengths o f  the two c lus te r  vectors. 

f’unction i s  shown t o  satisf’y a cer ta in  second-order p a r t i a l  d i f f e r -  

e n t i a l  equation. 

The l a t t e r  

Delves goes on t o  show that  t h i s  equation i s  separable a f t e r  a 

change of coordinates is  made. One of these coordinates i s  the  radius 

of gyration, and the other  i s  an angle o f  projection. 

s e t  of fwnctions form a denumerable bas i s .  

The resu l t ing  

This s e t  of f w c t i o n s  i s  closely relahed t o  the functions studied 

by Zickendraht, (1963) and i n  Chapter I V  of t h i s  thes i s ,  where the 

s t a r t i n g  point i s  that  of forming harmonic polynomials i n  s ix-  

dimensional space. 

After the seleckion of the s e t  of f’unctions i n  which t o  expand 

the wave function, t he  ac tua l  calculations must be car r ied  out. 

and Salpeter (1957) review the methods avai lable  f o r  the calculat ion 

of the atomic three-body problem. 

nuclear three-body problem. 

Bethe 

Verde (1957) gives a review of the 
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Unt i l  recent ly  the only method used f o r  the calculat ion of the  

t r i t o n  binding energy was the  va r i a t iona l  technique. 

of t h i s  i s  the work of Pease and Feshbach (1952) i n  t h e i r  study of the  

t r i t o n .  

A good example 

Reference t o  e a r l i e r  work may be found there .  

The var ia t iona l  technique i s  of only l imi ted  u s e W n e s s  f o r  the 

calculat ion of excited s t a t e s ,  unbound s t a t e s ,  and wave functions i n  

general. 

first successful approaches t o  a calculat ion of the t r i t o n  by a method 

other  than the var ia t iona l  one. H i s  approach was made possible  by the 

use of a separable poten t ia l .  Ea r l i e r  work with a very short  range 

po ten t i a l  had been done by Skornyakov and Ter-Martirosyan (1956). 

This was pointed out by Mitra (1962) who made one of the  

Aaron, Amado, and Yam (1$4) used a f ie ld- theore t ic  approach t o  

the  three-body problem. However, t h e i r  method is formally equivalent 

t o  the method of Mitra. They found a reasonable value f o r  the t r i t o n  

binding energy and resolved the question of neutron-deuteron sca t t e r ing  

lengths.  

In  Chapter V of t h i s  t h e s i s  an apparently novel method of calcu- 

l a t i n g  the wave m c t i o n  and energy eigenvalue of a bound s t a t e  of a 

three-body system is  developed. 

the wave function which reduces the  Schroedinger equation t o  a s e t  of 

coupled ordinary d i f f e r e n t i a l  equations. The method does not depend 

on the  form of the  po ten t i a l  except insofar  as the resu l t ing  wave 

functions may be well  represented by the truncated expansion. 

The method i s  based on an expansion of 

A generalization of two-body co l l i s ion  theory t o  three o r  more 

bodies w a s  made by Delves (1938, 1959, 1960). 

a denumerable s e t  of flunctions, the many-particle channel wave functions 

H e  showed t h a t  by using 
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were formally ident ica l  t o  the  two-body channel wave functions.  

Roskies (1966) generalized R-matrix theory t o  three-body systems 

f o r  the r e s t r i c t ed  case f o r  which there  were no two-body in te rac t ions .  

He pointed out t h a t  the r e su l t s  of Delves were va l id  only f o r  t h i s  

r e s t r i c t ed  s i tua t ion .  Roskies discussed ana ly t ic  propert ies  of the S- 

matrix and gave a three-fold c l a s s i f i ca t ion  of three-body co l l i s ions :  

(1) two-body co l l i s ions ,  (2)  sequential  co l l i s ions ,  and ( 3 )  r e a l  three- 

body co l l i s ions .  

The formal theory of the  sca t te r ing  of a three-par t ic le  system 

has been c l a r i f i e d  by Faddeev (1960, 1961, 1962), by Lovelace (1964), 

and by Weinberg (194). 

ever, there  remains the  d i f f i c u l t y  associated w i t h  the  mul t ip l ic i ty  of 

coordinates. 

In  the p rac t i ca l  solution t o  tine problem, how- 



THE CLASSIFICATION OF COORDINATES 

In the study of systems of several particles it is both desirable 

and easy to separate out the motion of the center of mass from the SO- 

called internal motions, This is accomplished by using orthogonal co- 

ordinates, three of which describe the center-of-mass motion, and the 

remainder of which describe the internal motions. There is a cor- 

responding separation in the spherical harmonics and wave f'unctions 

associated with the system. 

It would be convenient if one could set up an orthogonal eo- 

ordinate system, such as those described in Appendix A, which, in 

addition to being orthogonal, would have the property of separating 

out the rotational motions from the remaining internal motions, as is 

done for the center of mass. 

Such a coordinate system does not exist. This fact is well 

known for the three-body system. Here it is shown that no such system 

exists for the general case of N bodies. 

The following two questions then arise: (1) if a coordinate 

system which distinguishes the rotational motion from other motions 

cannot be completely orthogonal, just how orthogonal can it be, and 

(2) to what extent can one "peel off" the internal motions? 

This and the following chapter, along with Appendix B, attempt 

to give answers to these two questions. 

classifying some of the internal motions in an invariant manner is 

developed. 

In this chapter a method of 

11 
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The iriost general linear homogeneous transformation of the rec- 

tangular coordinates of N particles is obtained by operating on t he  3N- 

dimensional vector formed by the components with an arbitrary 3N-by-3N 

matrix. 

The resulting elements formed by the matrix product are the transformed 

coordinates or components. 

Usually one requires the matrix to be an element of a group. 

Such a viewpoint which treats all the components homogeneously 

is often useful, especially for the construction of coordinate systems 

and the associated harmonic functions. From just this viewpoint the 

well known generalizations of ordinary spherical coordinates have been 

made (Morse and Feshbach 1933). An even more general expansion of the 

simple three-dimensional rectangular, cylindrical, and spherical co- 

ordinate systems is given in Appendix A by making use of a schematic 

cluster diagram. 

orthogonal. 

Such coordinate systems have the advantage of being 

The associated harmonics are also derived in Appendix A .  

However, such transformations as the above are too general for 

the requirements of most physical applications. In particular, they 

disregard the natural physical correspondences between the components. 

For example, there is no correspondence between t he  x-component of one 

particle and the x-component of another particle, or between the x- 

component and the y-component of the same particle. 

The above viewpoint can be brought into greater accord with the 

requirements o f  physics by restricting the transformation to the direct 

product of a spatial rotation and a linear substitution on the particles, 

Accordingly, the transformation will be written in the fornl 
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where x is a three-by-N matrix consisting of the rectangular coIQonents 

(specifically, x 

corresponding matrix of transformed components, R is a three-by-three 

orthogonal matrix specifying the rotation, and U is an N-by-N matrix 

specifying the linear substitution on the particles. 

chosen to be an orthogonal matrix in order to keep distance a rotational 

invariant. R is an element of the rotation group. At this point one 

requires of U only that it be an element of a group. 

- 
is the ith component of the jth particle), x is the 

ij 

The matrix R is 

Under the rotation R the components of one particle transform 

in the same way as the components of another particle, and the com- 

ponents belonging to different particles are not mixed. On the other 

hand, the transformation induced by U causes the x-comgonents of dif- 

ferent particles to combine in the same way as the y- and z-components, 

but x-components are not mixed with y-components, only with other x- 

components. 

It is advantageous at this point to enlarge the subgroup of 

rotations to the subgroup consisting of translations as well as ro- 

tations. This may be done by introducing homogeneous coordinates in 

the spirit of projective geometry (Graustein 1947). Instead of three 

nonhomogeneous (ordinary) components, x, y, and z, for each particle, 

there are four homogeneous coordinates, Ax, hy, Az, and A, where A is 

an arbitrary nonvanishing scalar which may be different for each 

particle. 

In order to confine the physical problem to metric geometry A 

is chosen as unity, although it w i l l  be shown that a better choice 

would be the square root of the mass of the particle, In any case, the 
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ordinary nonhomogeneous coordinates are found by dividing each of the 

first t'nree homogeneous coordinates by the fourth. 

"he use of such homogeneous coordinates allows the transformation 

consisting of a rotation R and a translation d to be specified by a 

four-by-four matrix 31 of the form 

The corresponding transformation of the coordinate matrix is 

( 2 . 3 )  ~ - + F = T ~ u ,  

where r is of the form 

(2.4) 

- 
r has a similar form in which the last r o w  contains only unit elements. 

For the purposes of mechanics a diagonal mass matrix is 

introduced, 

m =  

Lagrangian mechanics applied to the above formalism yields the following 

quantities of physical interest: (1) the kinetic energy 



K = -  Trace( h? ) , 
2 

where, as usual, the dot above indicates the time derivative, and the 

prime denotes the transposed matrix; (2) the linear momentum 

p = r m ,  (2.7) 

where p is the momentum conjugate to r and ( 3 )  the symmetric 
ij ij’ 

moment-of-inertia matrix 

M = r m r ’ ,  

the elements of which are the plane moments of inertia, the products of 

inertia, the center-of-mass coordinates, and the total mass of the 

system. 

rectanwar components. 

The plane moments are the mass-weighted second moments of the 

A generalized angular momentum matrix can also be formed by 

taking the anti-symmetric part of the direct product of r with p. 

has been the subject of an investigation by Smith (1960). 

This 

Under a time independent transformation (which is interpreted 

herein to be a change in the coordinate system) r transforms as follows: 

r 4 ?  = TrU . ( 2 . 9 )  

- - -  1 
2 

- 
K 3 K = K = - Trace(r m r’) , 

(2.10) 

(2.11) 

- -  
p -+I? = T p U ‘ - - 1 =  x m , (2.12) 

and 
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??le transformations induced by T, that is, rotations and trans- 

lations, form the Euclidean group. The transformations induced by U 

w i l l  be called kinematic transformations, generalizing the nomenclature 

of Smith (1959) . 
A particular type of kinematic transformation is the trivial re- 

ordering transformation. For example, if initially particle 1 and 

particle 2 with masses ml and m, are at rl and r2 respectively, after 

applying the reordering transformation, particle 2 and particle 1 with 

masses m2 and ml will be a t  r2 and rl respectively. 

formabion may be represented by a permutation matrix, which has in each 

row and each column only one nonvanishing unit element. 

Such a trans- 

The mass matrix m remains symmetric under an arbitrary transfor- 

mation, but it does not necessarily remain diagonal. 

subgroup of transformations which keep the mass matrix diagonal. 

a transformation has the form 

There i s  a special 

Such 

(2.14) 

1 
where rn; is the square root of the initial mass matrix before the 

transformation, 0 is an arbitrary orthogonal matrix of order N, and 
L - 

m2 is the square root of the final transformed mass matrix. 

element of rn may vanish.. f 

No diagonal f 

It; is now clear that the initial mass matrix may be transformed 

once and f o r  all into the u n i t  matrix I i f  the initial kinematic trans- 

formation 1s chosen to be 



and if all subsequent kinematic transformations are confined to ortho- 

gonal matrices in N dimensions. 

The effect of the kinematic transformation of Equation (2.15) on 

the other quantities of physical interest is given by the following: 

1 - - 
r 4 r = r m 2 ,  (2.16) 

. .  - -  - 1  K K = - 2 Trace(r r) , (2.17) 

- - -  
M + M = r r ' ,  

as 

- 
m + m = I .  

(2.18) 

(2.19) 

(2.20) 

It is noteworthy that an effect of the kinematic transformation 
1 - 

m2 is to m a k e  the fourth component of the homogeneous coordinates equal. 

to the square root of the mass of the particle. More explicitly, the 

form of the transformed coordinate matrix is 

. . .  

. . .  

. . .  

. . .  

Y (2.21) 

where the elements of the matrix are given in terms of initial untrans- 

formed quantities. 
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The orthogonal transformation matrix 

1 

(2.22) 

applied t o  the r igh t  o f  r gives f o r  the f i rs t  two columns of the t rans-  

formed matrix 

where p12 i s  t'ne reduced mass o f  p a r t i c l e s  1 and 2, and where m12 i s  

the  sum of t h e i r  masses. The remaining colums a r e  unchanged by the 

above transformation. 

The result of a transformation such as i n  Equation (2.22) i s  t o  

cause the fourth component of one of the column vectors t o  vanish, 

thereby indicat ing that, t h i s  column vector. represents a point  on the 

project ive plane a t  i n f in i ty .  

t rans la t ion  group. 

This vector is  invariant  under the 

After such a transformation, the o r ig ina l  masses 



19 

ml and m, disappear completely from the formalism; only their sum 

remains. 

the transformations must be remembered for a physical interpretation of 

the components. 

Of course, the masses must be remembered, or, more completely, 

The effect of the above transformation may be graphically 

represented as in Figure 1. 

cles 1 and 2 with masses ml and m2 respectively, are associated with 

the joining line 12, representing the point at infinity, and with the 
line center 12, representing the center of mass of the two particles. 

Somewhat similar graphs have been used by Smith (1939). 

The two points 1 and 2 representing parti- 

Since it is associated with mass, namely, the sum of the two 

masses, the line center 12 may again be used as a point in a similar 

transfornation with another point or  line center. (The distinction 

between real mass and reduced mass is clearly made here. It may be 

interesting to note, as an aside, that the latter would not be associ- 

ated with any gravitational interaction. ) 

The transformation corresponding to a complete graph, such as 

shown in Figure 1, and the judicious use of reordering transformations 

(these are orthogonal too) cause the last row and the last column of 

t h e  transformed coordinate matrix to take the form 

I 1 -  
M2 X 

1 - 
M2 Y 

M2 2 
1 - 

1 - 
3 M2 - 0 

5 

L 

I (2.24) 



20 

I 

42 e n e 
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i, V 2 
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Figure 1. Graphs representing transformations to cluster coordinates 
for two-, three-, four-, and N-body systems. 
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where X, Y, and 2 are  the  center-of-mass coordinates of the system, 

and where M, the  t o t a l  mass, i s  the element G4 of the  moment-of-inertia 

matrix of Equation (2.19).  

of the  square root  of a reduced mass multiplying a component of a d i s -  

placement vector and may be ca l led  the c lus t e r  coordinates of the 

system. The corresponding column vectors w i l l  be ca l led  c l u s t e r  vectors. 

The other  elements e i j  a11 have the  form 

The above reduction i s  car r ied  out as far as t i m e  independent 

transformations can go. !There are s t i l l  3N coordinates, but a l l  the 

masses have been absorbed i n t o  the  coordinates themselves; only the 

t o t a l  mass remains. 

var iant  under the Euclidean group of t rans la t ions  and rotat ions.  It i s  

a l s o  invariant  under N-dimensional orthogonal kinematic transformations 

The form on the right of Equation (2.24) i s  in-  

0 of the form 

O =  
OH-1 

0 

0 

0 .  . 0 1  

Again, these transformations form a subgroup. 

A glance a t  Equation (2.19) or  a t  Equation (2.21) reveals t h a t  

s ca l a r  nrult iplication of the row vectors x of the  coordinate matrix 

y ie lds  the elements of the moment-of-inertia matrix, namely, the plane 

moments of i ne r t i a ,  the  products of i n e r t i a ,  the  coordinates of the 

center of m a s s  multiplied by the  t o t a l  mass, and the t o t a l  mass i t s e l f .  
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This property of the row vectors is  invariant  under kinematic t rans-  

formations with orthogonal matrices. 

It i s  well known t h a t  there ex i s t s  a Euclidean transformation 

T which diagonalizes the symmetric moment-of-inertia matrix M ( Je f f reys  

and Jef f reys  1.930). 

dependent. It causes the coordinate matrix t o  take the form 

Such a transformation w i l l  generally be time 

0 

0 

0 

- 
rl 

I O .  . O M  

Since the products of i n e r t i a  vanish i n  the new coordinate 

syst;em, the  row vectors of the matrix 7 i n  Equation (2.26) are ortho- 

gonal. Hence, i t  i s  readi ly  apparent t h a t  an orthogonal kinematic 

transformation of the form given i n  Equation (2.25) e x i s t s  which w i l l  

give the coordinate matrix the f i n a l  form 

i' This defines the p 

The values of the nonvanishing components of 7 are, according t o  

Equation (2.151)~ the square roots of pr inc ipa l  plane noments of i n e r t i a .  

In  essence, then, the coordinate matrix has been transformed in to  the 
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square root  of the diagonalized moment o f 3 n e r t i a  matrix, M 9 given by 
0 

M =  
0 

(2.28) 

where A,, &, A,, a r e  the pr inc ipa l  plane moments and & i s  the t o t a l  

mass. 

The o r ig ina l  coordinate matrix r, which gives the  coordinates 

of the p a r t i c l e s  i n  the observer's reference frame, may be expressed 

i n  terms of the diagonalized moment of i n e r t i a  matrix Mo by invert ing 

the  matrices used i n  a r r iv ing  a t  Equation (2.27). The r e s u l t  i s  

1 
r = T M F U ~  0 , 

where the subscr ipt  t on U ind ica tes  t h a t  the matrix U has been 

truncated t o  i t s  las t  four  rows. 

The matrix T has the form 

where R i s  an ordinary three-dimensional orthogonal matrix, and Xc i s  

a vector giving the three components of the center  of mass. The ro- 

t a t i o n  matrix R i s  t i m e  dependent and depends on three coordinates, the  

Euler angles being examples. The center-of-mass vector  X a l so  depends 

on three coordinates, the three rectangular components themselves being 

examples. 

c 
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1 

0 
O f  the four  nonvanishing components of the matrix M2 only three 

may vary with time, the t o t a l  mass M belng kept constant. Again, three 

coordinates specify these three  components, and, again, the components 

themselves m y  be chosen. 

The form of  the truncated matrix Ut i s  

1 
ut = 0 ~ 0 ,  m-5 , 

where m i s  the diagonal mass matrix given by Equation (2.5), and 0 

an orthogonal transformation specif ied by the  masses and a c lus t e r  

graph. The t i m e  dependence of U i s  given e n t i r e l y  by the  truncaked t 

matrix Ot which has the  form 

i s  m 

o =  t 

Here Ot, 

d 

0 

0 
O t ’  

0 .  . 0 0 1  

( 2 . 3 2 )  

i s  an orthogonal matrix i n  N-1 dimensions truncated t o  i t s  

last three rows. 

cons tmints  specifying the  orthonormality conditions. Hence, 0 i s  

specified by 3N-9 coordinates. 

There a re  3 ( N - l )  time dependent components with s i x  

t’ 

By using the coordinates t o  specify the transformations, one 

has a method of c lass i fy ing  the coordinates i n  an invariant  manner. 

‘mnUs, one m a y  say that six external  coordinates s p e c i Q  the t ransfor-  

nation T, three specifying the t rans la t ion  and three specifying the 

rotat ion.  Three s i ze  coordinates specify the diagonal moment-of- 

i n e r t i a  matrix M and 3N-9 in t e rna l  coordinates specify the  truncated 

kinematic transfornation matrix 0 On the basis of this c la s s i f i ca t ion  

0’ 

t’ 
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the internal variables and the size variables are independent of the 

reference frame whether i-t be an inertial one or not. 

Even the rotational coordinates and the center-of-mass coordi- 

nates are independent tensors in the sense that their components do not 

mix under an arbitrary Euclidean transformation which may vary with 

time in an arbitrary way. That is to say, the rotation matrix in the 

new reference system does not depend on the center-of-mass coordinates 

in the old system, and, conversely, the center-of-mass coordinates in 

the new system do not depend on the rotational coordinates in the old 

system. 

The single-particle system is the most trivial example. A l l  com- 

ponents vanish except the center-of-mass components. 

The two-particle system is characterized by three center-of-mass 

coordinates, only two rotation coordinates, and one size coordinate. 

The third rotational coordinate is lost because rotations about the line 

joining the two particles do not alter the configuration. 

Three-particle systems are the simplest systems which have an 

internal coordinate according to the above classification scheme. There 

are, in addition to the three center-of-mass coordinates and the three 

rotational coordinates, two size coordinates specifying the two prin- 

cipal plane moments of inertial, and one internal coordinate. 

The four-particle system is characterized by three rotational 

coordinates, a fliLl complement of three size coordinates specifying the 

three principal moments, and three in te rna l  coordinates. 
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Another re la ted  example is tine r i g i d  body, which i s  character-  

ized by having 110 i n t e rna l  coordinates, only three rotational coordi- 

nates  and three t r ans l a t iona l  center-of-mass coordinates, 

moments as w e l l  as the t o t a l  mass are constant parameters. 

The pr inc ipa l  



CHAPTER 111 

THE MXTRIC TEXSOR FOR N-BODY COORDINATES 

In  the  course of answering the  question i n  the  opening of Chapter 

11, it i s  necessary t o  ca lcu la te  the  metric. 

troublesome problem unless some care i s  taken. The following method 

s implif ies  as f a r  as possible the calculat ion,  and, a t  the same time, 

shows some important s t r u c t u r a l  propert ies  of the metric tensor .  

This i s  a d i f f i c u l t  and 

The form of the metric tensor f o r  a system of N p a r t i c l e s  w i l l  be 

found using the formalism developed i n  the foregoing Chapter 11. It will 

be assumed that a coordinate system has been chosen which fits the  

c l a s s i f i ca t ion  scheme associated with the formalism. The i t h  such 

coordinate i s  designated by Ci; with the use of a coordinate of a par- 

t i c u l a r  c l a s s i f i ca t ion ,  a c l a s s i f i ca t ion  l a b e l  may a lso  be appended. 

For example, i s  the i t h  ro ta t iona l  coordinate. 

The simplest method of finding the metric tensor i s  by elabo- 

r a t ing  the expression f o r  the k ine t i c  energy of Equation (2.11). 

time der ivat ive of the coordinate matrix, derived from Equation (2.29) 

and Equation (2.31), i s  

The 

Six terms a r e  present i n  the resu l t ing  expression for the 

k ine t i c  enerw.  They a re  a s  follows: 

1. The external  energy 

K ex = $ Trace($'? Mo) . 
27 
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2. The size energy 

1 
= 1 Trace(T'T(M2-)2) . 

2 0 
(3 .3 )  

3 .  The internal energy 

1 1 
K = 1 Trace(MF T'T M2 0 (5') in 2 0 0 t t  

4.. The external-internal interaction energy 

1 1 
Kei = 2 Trace[ME(T'? - $T) MZ Ot6i,] . 

5 .  The external-size interaction energy 

6. me size-interndl interaction energy 

(3.4) 

( 3 . 5 )  

In deriving the above six expressions, use has been made of the 

orthonomality properties of the truncated matrix 0 

agonal character of Mo. 

and of the di- t 

The expression on the right of Equation (3.7) vanishes from 

symmetry requirements, so that the size-internal interaction energy 

vanishes with i.t. The external-size interaction energy of Equation 

(3.6) vanishes also; this is seen by looking more closely at the de- 

tailed structure of the matrices. Furthermore, as is well known, the 

external energy decomposes into the sum of a translational energy and 

a rotational energy. 

Use of the detailed structure of the matrices T, M and 0, as 
0' Ir 

given in Equation (2 .30) ,  Equation (2.28), and Equation (2.32) results 

in the following expressions: 
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1. The external  energies, 

a) The t r ans l a t iona l  energy 

1 
Ktr = 2 40,)' 

b)  The ro ta t iona l  e n e r a  

1 = - W'JW . 
Krot  2 

2. The s i ze  energy 

K =--'I* 1 
s 2 p p *  

3 .  The in t e rna l  energy 

= p U'JU f 2 V'AV . 
4. The ro ta t ion- in te rna l  energy 

1 1 
Kin 

(3.10) 

The 4 used above i s  j u s t  the t o t a l  mass as may be reca l led  from 

i t s  defining Equation (2.28). 

i n e r t i a  fo r  i t s  diagonal elements. 

The matrix J has the usual moments of 

Explicity,  

Related t o  the matrix J i s  the matrix 

E =  



m e  column matrix p i s  given by 

where the  components p 

(2.28) , satisfy t he  re la t ions  

according t o  Equation ( 2 . 2 7 )  and Equation i’ 

2 
Ai = &.pi = (Mo)ii . 

The angular ve loc i t ies  i n  the body system are given by 

where the components are given by 

W ij 5 ( f i ’R)i j  . 

Just  as there  a re  angular ve loc i t ies  associated with the  t i m e  varying 

ro ta t ion  matrix R, so there  are angular veloc i t ies  associated with the  

time varying orthogonal matrix 0. 

according t o  Equation ( 2 . 2 3 ) ,  the  var ia t ion of i n t e rna l  coordinates 

apparently corresponds t o  the motion of  a r i g i d  body i n  N - l  dimensions. 

Since the only part of physical i n t e re s t ,  however, i s  the truncated p a r t  

of the matrix,  the correspondence i s  rather to a r i g i d  body of three 

dimensions ro ta t ing  i n  an N - 1  dimensional space. 

body moving i n  ordinary three-dimensional space. Some of the  motions 

leave the plane of the body fixed, other motions tend t o  take the  body 

out of i t s  own plane. 

Since one row of matrix 0 i s  kept f ixed 

An analogy i s  a planar 
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The components of  u and v of Equation (3.11) are just  such 

angular ve loc i t ies .  The three angular veloci ty  components of u, given 

w i t h  

are the three components of t he  angular ve loc i ty  which correspond t o  

the motions which keep the three-diwnsional  body i n  i t s  own space as 

it moves i n  N - 1  dimensions. 

The components of the angular veloci ty  which tend t o  take the  

body out of i t s  own space are given i n  the  column matrix 

v =  

with the  components themselves given by 

v = ( 0  I 6' t' ) t j  ij 
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The matrix OL i s  made up of j u s t  the f irst  N-4 rows of the  N-l 

dimensional orthogonal matrix 0 of Equa-tion (2.23).  These a r e  the  

rows which a re  thrown away to  form the  truncated matrix 0 

N - 1  

t'. 

The matrix A appearing i n  Equation (3.11) i s  given by 

wherein each of the plane moments of i n e r t i a  A. appears N-4 times. 
1 

The time der ivat ives  of the coordinates are introduced in to  the 

f i v e  contributions t o  the k ine t i c  energy given by Equation (3.8) through 

Equation (3.12) by means of the following r e l a t ions  involving pa r t i a l  

der ivat ives  : 

(3 .25)  

(3.27) 

The sum of the f i v e  contributions t o  the k ine t i c  energy a re  

equated t o  the following expression f o r  the k ine t i c  energy involving 

the m e t y i c  tensor g: 
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H e r e ,  as i n  the  previous equations, summation over the repeated index 

j i s  t o  be car r ied  out. 

The metric tensor i s  then seen t o  be of the form 

ij ' gi j  = (S'R s) 

where % i s  a square symmetric matrix depending only on the elements of 

Mo (that is, only on the s i z e  coordinates) and having the form: 

J E  

E J  

A 

, 

where A i s  the t o t a l  mass n4; mult ipl ied by the unit matrix of order 

th ree ,  t h a t  i s ,  

0 

S =  

The matrix S has t he  form 

- 
w o  

(3.32) 

(5.33) 
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These r e su l t s  great ly  simplify the calculat ion of the  metric 

tensor.  Furthermore, the determinant and the inverse are eas i ly  calcu- 

l a t ed ;  The determinant i s  simply 

and t;he inverse g”- i s  given by 

Whereas the matrix S, i t s  determinant IS/ ,  and i t s  inverse Se1 

depend on the choice of the  coordinate system, the matr ix?l l is  inde- 

pendent of the choice o f  the Coordinate system except i n  so  much as the 

pr incipal  moments of i n e r t i a  and re la ted  quant i t ies  depend on the s i z e  

variables.  In  par t icu lar ,  the determinant of M i s  found t o  be 

and the inverse i s  given by 

- I 

J -E (3.37) 

where the matrices 5 and. E are given by 



- 
J =  

and 

- 
E =  

35 

Al.+nE1 

( 3 . 3 8 )  

(3.39) 

A r e s u l t  similar t o  t h i s  f o r  8 par t i cu la r  choice of coordinates 

fo r  the three-body problem has been given by Derrick (1960). 

The r e s t r i c t i o n  to  a coordinate system whose coordinates f i t  the  

c l a s s i f i ca t ion  scheme of Chapter I1 may be relaxed i n  an obvious manner. 

Any coordinate system may be used; the matr ixwremains unchanged i n  

form, but  the matrix S mst be changed so  t h a t  the  f i rs t  row contains 

the p a r t i a l  der ivat ives  of Xcl with respect t o  each of  the  3 N  co- 

ordinates,  and s imi la r ly  f o r  the  remaining row of S. 

However, using coordinates which a re  invar ian t ly  c l a s s i f i ed ,  the 

metric tensor  cannot be put  i n t o  diagonal form except f o r  the one- and 

two-body systems. 

couples the ro ta t ions  with the i n t e r n a l  motions. 

This i s  because of the presence of the matrix E which 
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Appendix B contains results of t h i s  method for calculating the 

metric tensor for the t w o - ,  three-, and four-body systems. 

results are given also.  

Some general 



CHAPTER I V  

" 4 0 N I C  FUNCTIONS FOR THE THFG3E-BODY SYSTEM 

From t h i s  point  on, t h i s  t h e s i s  will be concerned with the three-  

p a r t i c l e  systems, espec ia l ly  those of atomic and nuclear physics. 

The i n t e rac t ion  po ten t i a l  between the p a r t i c l e s  i s  assumed t o  be 

a function depending not on the  ex terna l  coordinates but only on the  

s ize  coordinates and the in t e rna l  coordinates as c l a s s i f i e d  i n  Chapter 

11. 

product of two flmctions, a center-of-mass wave function and a so-called 

i n t e r n a l  wave function. Whereas the center-of-mass wave function de- 

pends only on the center-of-mass coordinates as c l a s s i f i e d  invar ian t ly  

i n  Chapter 11, the  i n t e r n a l  wave f'unction depends on the  ro t a t iona l  

coordinates and the  s i z e  coordinates as w e l l  as the in t e rna l  coordinates.  

It i s  only t h i s  i n t e r n a l  wave f'unction of the  th ree -pa r t i c l e  system that 

w i l l  be considered here.  

Accordingly, t he  wave f'unction of the system separates  i n t o  a 

An important problem i s  t h a t  of f ind ing  a set  of functions i n  

which t o  expand the  i n t e r n a l  wave f'unction, which i s  defined on a six- 

dimensional space. E igenfhc t ions  of the k i n e t i c  energy operator  a r e  

known t o  be a u s e m  set of functions i n  many sca t t e r ing  problems. 

These k i n e t i c  e n e r a  eigenflxnctions w i l l  be used here as a basis f o r  

the expansion of the  wave flunctions. 

The problem, then, i s  t o  f ind  these eigenfunctions as a function 

of the s ix  coordinates which are invar ian t ly  c l a s s i f i ed .  The p a r t i c u l a r  

choice of coordinates w i l l  be as chosen i n  Appendix B, namely, the Euler 

3 '7 
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angles a, p, and y, the two size coordinates p and X, and the single 

internal coordinate y l .  The angle y t  appears in the Laplacian in a 

form very similar to that of the Euler angle y .  

y are the 4 ,  8, and * of Goldstein (1933)). 

(The angles a, f3, and 

These coordinates, in 

addition to sorting out the rotational motions, the size motions, and 

the internal motion, have the f'urther advantage of treating the par- 

ticles in a completely symmetric manner. 

The approach considered here is similar to that of Weyl (1931) 

in his treatment of three-dimensional spherical harmonics. The spherical 

surface harmonics of order k? will be constructed from the homogeneous 

polynomials of degree .4 in the rectangular coordinates of the six- 

dimensional space. For the use of these rectangular coordinates, the 

metric tensor must be the unit matrix. The rectangular coordinates nay 

be taken to be the components of the two three-dimensional cluster 

vectors, that is, the cluster coordinates g as defined by Equation ij 

(2.24). 

It is desired to classify these energy eigenfunctions according 

to the total angular momentum quantum number ,lo and the corresponding 

azimuthal quantum number mo. In addition, the wave functions may be 

characterized by a quantum number p which is associated with the in- 

ternal. motion and its coordinate y ' .  There may still remain a number 

of solutions for a griven set of these quantum nurnbers. 

of these solutions is derived in the following. 

The multiplicity 

Delves (1960) and Zickendraht (1$3) have studied the construc- 

tion of such flunctions by the vector coupling of -the two spherical 

harmonics associa'ced with the two cluster vectors. This leads to 
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e i g e n m c t i o n s  of the angular momentum i n  a six-dimensional space. 

Zickendraht has found the e x p l i c i t  expressions f o r  the S-, P-, and D- 

s t a t e  flmctions and fo r  some "stretched" cases of  grea te r  angular 

momentum. 

Instead of using the rectangular components 5 d i r e c t l y  i n  the 

forming of the polynomials, it i s  convenient t o  form first the complex 

spherical  basis i n  three  dimensions. A convenient de f in i t i on  i s  

i s  

e =  
4 

1 
e = 2-2(i  I - i d )  , -- 

and 

(4.1) 

(4.2) 

e = k .  (4 .3 )  

-.+> --' 
-0 - 

The e e and e form a complex orthonormal bas i s  i f  the usual 
-0 

Hilbert  space inner  product i s  used t o  form the sca l a r  product. The 

t r i p l e t  &, $, k i s  the fami l ia r  r e a l  orthonormal bas i s  i n  the  observerls 
c 

system, and i i s  the imaginary root of -1. 

A vector i n  the six-dimensional space may now be specif ied by 

the  s i x  r e a l  rectangular c lus t e r  coordinates 6 

plex components R 

o r  by the three com- ij 

and R-. These two s e t s  of coordinates a r e  re- +' OO, 

l a t e d  by 

where Al and & a r e  the two c lus t e r  vectors defined by the f i r s t  two 

rows respect ively of the matrix on the r i g h t  of Equation (2.24).  

A s  i n  Equation (B.29)  of Appendix B, t he  c lus t e r  coordinates 

may be r e l a t ed  t o  the invar ian t ly  c l a s s i f i ed  coordinates by a matrix 
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equation, namely: 

(4.5) 
cos yl 

The combination of Equation (4.4) and Equation (4.5) leads to the 

following eqressions for the complex components: 

(4.6) 

and 

+ (1 rt: cos p) cos(x - 75 exp(--iy) 1 ('4.7) 

This is a vector of magnitude given by 

p12  = R Q* -t- fi+q + R Q* = p2 . - -  0 0  (4.8) 

A homogeneous polynomial Y of degree a may now be formed as 

follows : 

The six indices of summation must a l l  be non-negative. This polynomial 

Y w i l l  be a surface harmonic of order J if the radius p is chosen to be 

unity and if the polynomial- satisfies Laplace's equation in six 
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dimensions 

(4.10) 

where 02 is the Laplacian operator, which takes on the form 

(4.11) 

It follows that the coefficients A(a,b,c,d,e,f) must satisfy 

the requirement 

(a+l) (d+l) A( a+l,b, c,d+l,e, f )  + (b+l) (c+l )  A( a,b+l, c+l, d, e, f )  

+ (e+l)(f+l) A(a,b,c,d,e+l,f+l) = 0 , (4.22) 

if Y is to be a solution to Laplace*s equation. 

This functional relation (4.12) which the coefficients A must 

satisfy relates o n l y  those coefficients for which the following dif- 

ferences are fixed: 

6 1 = d - a ,  (4.13) 

6 ; ! = b - ~ ,  (4.14) 

and 

h = f - e .  (4.15) 

Hence, for any given harmonic these three differences may be assumed to 

be constants. 

Each coefficient A may now be considered a function of only 

three of the summation indices, a, c, and e, instead of a l l  six. 

Equation (4.12) correspondingly becomes 
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( a+l ) ( a+l+ ) A ( acl , c , e) +- ( c +1) ( c +I-+ S2) A( a, c +I., e ) 

+ (e+l)(e+l+&) A(a,c,e+l) .= 0 . (4.16) 

This Equation (4.16) relates the three values of A(a,c,e) at the 

points  of a darkened triangle whi.ch lies in .the plane 

as shown in Figure 2. Not a l l  of t he  darkened triangles on the simplex 

may be used, however. For in addition to the constraints 

a 2 0 ,  

c 3 0 ,  

e 2 0 ,  

there are also the constraints 

b = c + & 2 0 ,  

d = a + 8 , 2  0 , 
and 

(4.18) 

(4.19) 

( 4. 20) 

(4.21) 

( 4.22) 

f - e + % 2 0 .  (4.23) 

'The above si-x constraints may be combined into the following three: 

1 
a>,a min = m 4 0 ,  -81) = ;)(-6l. + Ihjlr) , ( J-k .24 ) 

and 

= max(0, -%) = F(-% 1 -t ] % I )  . e 3 e  min (4.26) 
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0 J 
Figure 2. The 

fieients A 
assurned. to 

- C  

darkened t r i ang le s  on the vert ices  of which the coef- 
are related.  
vanish. 

In t h i s  example amin, emin, and enlin are 
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The key t o  the solution f o r  tAe coeff ic ients  A i s  found by 

observing t'nat t o  each darkened t r i ang le  there corresponds an equation 

re la t ing  the three ver t ices ,  whereas a value f o r  A i s  required a t  each 

vertex. mere i s  a one-to-one correspondence between each t r iangle  and 

i t s  upper vertex, thus leaving the lower ver t ices  of the lower l i n e  of  

tri.ang.Les as points  on which the values of A may be chosen independently. 

If all. but oiie of  the A ' s  on the lower l i n e  are assiuned t o  

vanish, then the solution f o r  the coeffi-cients i s  seen t o  vanish every- 

where except i n  a diamond-shaped region with bounds p a r a l l e l  t o  Lhe s ides  

of the simplex. Thus, i n  Figure 2, i f  the  coef f ic ien ts  a re  chosen t o  

vanish a t  a l l  points i n  the a-c plane except a t  point P, then the so- 

l u t ion  vanishes everywhere except i n  the  region surrounded by the 

darkened l i n e .  There are, of course, o-ther ways of specifying the in-  

dependent parameters, but any- solution w i l l  be a l i n e a r  combination of 

those found here. 

It i s  not  d i f f i c u l t  t o  ver i fy  tha t  the solution f o r  the coef- 

f i c i z n t s  fo r  such a choice of parameters is  given by the following: 

(-11~ ( e  - emin)! 

A(a,c,e) = , (4.27) 
a!c! ( c + ~ ~ ) !  (a+tjl) !e! ( e + b )  !(a -a) ! ( c0-c)! 

0 

where a C and e define the point P a t  which the solution does 

not vanish. 

(4.1'7) o f  the plane, namely: 

0' 0' min 

This t r i p l e t ,  ao, co, and e must s a t i s f y  the Equation 
m i  n ' 

= - [a.  1 - (h .t s, + . 
a 0 min 2 ( )I- , p a )  
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The spherical surface harmonics may thus be completely specified 

by the five parameters R, 9, fi2, &, and ao. 

rameters are as follows: 

The ranges of the pa- 

a = o , 1 , 2 ,  3 ,  ... , 
si = - R ,  -R tl, ... , 4 - 1 ,  R , 

that with the restriction 

and 

(4.29) 

(4.50) 

= a,  a - 2, R - 4, ... 1 (4.31) 

The largest value of a given above in Equation (4.32) may be 
0 

combined with the minim value a min 

the number of harmonics NRi j  associated with the order and the triplet 

(61, €& tj5). The number of harmonics is 

given by Equation (4.24) to yield 

The effect of an infinitesimal rotation of the observerls co- 

ordinate system will not change the degree of the polynomial. 

R is an invariant. 

invariant under rotations. 

Hence, 

The other parameters, Sl, &, h, and ao, are not 

The effect of such a rotation may be calculated in the following 

way. First, the effect of the transformation on the cluster coordi- 

nates is calculated, then the corresponding effect using the complex 

spherical basis, and finally the effect on the terms of the polynomial 

itself. 
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An infinitesimal rotation R acting on the rectangular cluster 

coordinates 5 is given by 
iJ 

-+ (Re) == (I -1- W )  5 . (4.34) 

I i s  the unit matrix, and w I s  given in terms of the infinitesimal 

rotation with components (AI, w2, and m3 by the following matrix: 

The corresponding effect on the components R - , Qo, and R in the 

spherical- bas is  may be calculated from Equation (4.4), Equation (4.34),  

i- 

and Equation (4.33) to obtain 

R -+ (m)= (4.36) 

The powers of the spherical  components which appear in t he  ter-ms of the 

harmonic Y on the right of Equation (4.9) then undergo the fol lowing 

transformations: 
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I -- I 
(4.40) (a+) d = (a+) d-1 [il+ - iwL2-y'd Ro - w22 %d 1;2 + iw3d a+] , 

0 

Only the  f i r s t  order terms have been retained. 

It may be seen tha t  the component Q leads t o  no new harmonics. 

That is, the harmonics given by Equation (4.9) are invariant  with 

respect t o  rotat ions about t he  z-axis. On the other  hand, the com- 

ponents w1 and w2 l ead  t o  two new harmonic f'unctions. 

binat ions (wl + i w 2 )  and (wl. - i w 2 )  are associated w i t h  the  harmonics 

produced by the  familiar "raising" and "lowering" operators of angular 

momenturn theory (Rose 1957). 

Equation (4.42), the  harmonics produced are given by the following two 

l i n e a r  combinations of coeff ic ients :  

The l i n e a r  com- 

According t o  Equation (4.37) through 

(4.43) 

and 

A-(a,c,e;Cjl,k,b) = ( c+ l )  A(a,c+l,e-1; €%~,€b---l,Egfl) 

- (e+&,+l) A(a,c,e; h,&-l,&+l) 

+ (a+%+1) A(a,c,e; %+I, h, e3-1) 

- (e+1) A(a-l,c,e+l; 61+1, ?p, h-1) . (4.44) 
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Thus, i f  a harmonic function i s  given i n  terms of i t s  coef- 

f i c i e n t s  A(a,c,e; h, &,%), then the coeff ic ients  of two new harmonic 

functions a re  defined by Equation (4.43) and Equation (4.44) respectively.  

The coeff ic ients  defined by Equation (4.2'7) a re  assumed t o  vanish 

except for a unique set of values f o r  the t r i p l e t  (h,S,,h). 

associated harrmnics produced by the "rai.sing" and "lowering" operators 

from the hamnonic of  Equation (4.27) each have two s e t s  of values f o r  

the . t r i p l e t  (SI,&,,&), as may be seen from Equation (4.43) and Equation 

(4.44).  

The 

These two equations a l so  show, however, thaL the sum 

i s  invariant  under the  ro ta t ion  group. The second equal i ty  follows 

from Equation (4.17) and defines n. 

Furthermore, Equations (4.43) and (4.44) show t h a t  each harmonic 

may be characterized by a constant difference 

m = S , - € & .  
0 

(4.46) 

The e f fec t  of the "raising" operator i s  t o  increase m 

e f f e c t  of the "lowering" operakor i s  t o  decrease m by unity.  

fore  seems reasonable t h a t  m i s  the azimuthal quantum number f o r  the 

o r b i t a l  angular momentum, and it w i l l  be secn t h a t  t h i s  in te rpre ta t ion  

i s  correct.  

by uni ty  and the 
0 

It there- 
0 

0 

The c l a s s i f i ca t ion  of the harmonics i s  usually desired w i t h  

respect t o  the rotat ion subgroup. This c l a s s i f i ca t ion  w i l l  be charac- 

te r ized  by L and 1-1 since they a re  invariants .  

t r i p l e t  (Fix,?i2,h) i s  confined t o  the i n t e r i o r  of the equi la te ra l  

octahedron 

For a given the 
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(4.47) 

according to Equation (4.31). 

is the intersection of this octahedron with the plane of Equation (4.45) 

characterized by constant p, 

the lines of constant mo and the lines formed by the planes of the co- 

ordinate axes. 

This is shown in Figure 3. Also shown 

On this plane of intersection may be seen 

At each point in the plane of constant IJ. the number of harmonics 

is given by Equation (4.33). 

face of the octahedron there is exactly one harmonic. Inside the 

octahedron, the form of the absolute magnitudes of Equation (4.33) de- 

pends on the octant. 

cross section characterized by k. 

given by Equation (4.37) according to the octant is given in Table I. 

In particular, at each point on the sur- 

Not more than seven octants appear in any one 

The number of harmonic solutions as 

For the particular case that l p l  is equal to R ,  the cross  section 

of Figure 3 reduces to a triangle. 

surface of the octahedron, there is one harmonic at each point. There 

is accordingly one multiplet of (2R 

the orbital angular momentum quantum number with the following allowed 

values, 

Since all these points lie on the 

+ 1) harmonics for each value of 
0 

R = 1, R - 2, a - 4, ... . 
0 

(4.48) 

For the other cases in which is not equal to the order 2 ,  

the number of harmonics for each value of p and m may be found by 

summing arithmetic series. The difference between the number of hsr- 

monies associated with a given value m and the rimber associated with 

mo -k 1 gives the number of multiplets f o r  the orbital angular momentum 

0 

0 



Figure 3.  The equilateral octahedr-on 16, I + 1 62 I f S, I = R and i t s  
cross sec t ion  in the plane t 8, -I- S, = R - 2n. 



TAFiLE I 

HUME$ER O F  HARMONICS AT U C H  POINT I N  
THE P W E  S, + ?& f 6, = 1 - 2n 

ACCORDING TO THE OCTANT 

Octant Number of Harmonics 

+ t +  

+ + -  

+ - t  

- t- + 
- 3 . -  

l + n  

1 + n + &  

l + n + 6 ,  

l + R - n - %  

l + n + h  

1 + J - n - &  

1 + a - n - &  

l t a - n  
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quantum number equal t o  the value in . The re su l t s  of such calcu- 

l a t ions  are given i n  Table 11. These r e s u l t s  agree with those of 

Zickendraht (1965), who, however, was unable t o  prove h i s  r e s u l t s .  

0 0 

j 0 J  
The harmonic functions associated with a given value of ; I ,  

and m may be calculated by s t a r t i n g  out with the  stretched case f o r  

whi.ch R j u s t  equals the order of the harmonic a .  By successively 

applying the "lowering7' operator through. the use of Equation (4.lC4) and 

by choosing the r i g h t  l i n e a r  combinations a t  each step,  one may eventu- 

a l l y  f ind the  harmonic desired. 

0 

0 

'This method i s  no t  yet  p rac t i ca l .  

The surface harmonics may be found exp l i c i t l y  by another method. 

If the expressions f o r  the  spherical  components given i n  Equation (4.6) 

and Equation (4.'7) are inser ted in to  the  expression for  the harmonic 

polynomial on the  r igh t  of Equation (4.9), then, a f t e r  l i b e r a l  use of 

the binomial expansion, the r e s u l t  i s  

m' 
0 

( k? cmos21s ) 1 ( a-m0-2s ) 
( cos  - p )  1 

2 2 CC ( s i n  - p)  
S 

(4.49) 

1% i s  thus revealxd t h a t  the  paraniel,er p i s  an eigenvalue associ-  

ated with the  in t e rna l  angular coordinate 7' and that m 

azimuthal quantum number. The other two eigenvalues, which may be taken 

t o  be & and a a re  hidden i n  t h e  coeff ic ients  C ,  which a re  given by 

the s"ol1owing: 

r ea l ly  i s  the 
0 

0' 
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TABLE I1 

THE NUMBER OF MULTIPLETS FOR A GIVEN SET 
OF EIGEXVVALUES 4 ,  p, AND R o  

Region Even R - R o  Odd d - Ro 

a - R  l + a - a o  
0 

2 2 
R - n S R o  G R 

n S R  < R - n  
0 

a)  Even n l+p-] [3 
b)  Odd n 

NOTE: The square brackets mean the  
in t eg ra l  p a r t  o f  the quantity inside i s  t o  be 
taken. This t a b l e  i s  f o r  p, = d - 2n 3 0. To 
obtain the number of mult iplets  f o r  negative 
p,, replace n by 1 - n i n  the above t ab le .  



This multiple sum i n  Equation (4.50) is  taken over a l l  pos i t i ve  

values of the indices  subject -to the  cons t ra in ts  shown under the  sum- 

mation sigma. The reduction t o  a sum over f i v e  indices  i s  t r i v i a l .  It 

i s  l i k e l y  Ylat even fu r the r  reduction of t he  indices  may be made. 

The harmonic thus developed i s  not characterized by a fixed 

value of t he  o r b i t a l  angular momen'Lum R . It can, however, be ex- 

pand.ed i n t o  a sum of such terms, each of which i s  characterized by a 

value of  R . This i s  done by taking from each term on t h e  r i g h t  of 

Equation (4.30) t h a t  f ac to r  which depends on the m e r  angle f3 and 

0 

0 

% expanding it as a s e r i e s  i n  the ro t a t ion  functions d (p) .  The 
mom 

resu!.ting coef f ic ien ts  which appear i n  t h e  harmonic a r e  even more com- 

plex -than those given by Equation (4.30). It may w e l l  be possible t h a t  

these multiple sums can be reduced t o  simpler forms. 

The r e s u l t s  presented i n  t h i s  chapter of these inves t iga t ions  

into t h e  proper t ies  of the harmonic functions a re  not needed i n  the 

following chapters. 



CHAPTER V 

THE APPLICATION OF THE METHOD 

I n  order t o  apply the method developed i n  the foregoing chapters 

and t o  tes t  i t s  userulness as a ca lcu la t iona l  tool ,  a FORTRAN program 

has been wri t ten for the  CCC-1604 computer 

The program has been l imited i n  two respects.  F i r s t ,  the  

o r b i t a l  angular momentum i s  restricted so as t o  include S s t a t e s  only. 

There are a number of reasons for t h i s  r e s t r i c t ion ,  the  foremost being 

t h a t  of simplicity.  ( A t  present,  the forms of the  harmonics have been 

worked out by Zickendraht ( 1 9 5 )  f o r  the  S, P, and D s t a t e s  only, so 

tha t ,  a t  most, only three values of the angular momentum could be used.) 

With t h i s  r e s t r i c t ion ,  the program i s  able  t o  calculate  the ground 

state and some of the excited states of a three-par t ic le  atomic system 

and the most important contribution t o  the  ground state of a nuclear 

sys t e m .  

The second r e s t r i c t i o n  concerns the  po ten t i a l  f'unction. It may 

be qui te  general i n  the form of  i t s  s p a t i a l  dependence (it  i s  specif ied 

i n  a subroutine), but i n  the  i n i t i a l  version of the program there  may 

be no dependence on in t e rna l  degrees of freedom, such a s  spin.  The 

r e s t r i c t i o n  i s  of l i t t l e  concern for the atomic systems, but i s  a 

serious l imi ta t ion  on the calculat ion of nuclear systems. The po ten t i a l  

does not need t o  be a sum of two-body poten t ia l s .  

In  addition t o  these two r e s t r i c t ions ,  the program i s  directed 

t o m r d  the calculat ion of bound-state wave f h c t i o n s  and the corresponding 

55 
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energy- eigenvalues. The program w i l l  a l so  ca lcu la te  the wave f’unction 

a t  an a r b i t r a r y  energy, a t  l e a s t  i n  the neighborhood of the or1gi.n. 

Generally, however, a la rge  number of harriimics i.s needed f o r  a vali..d 

expalision of the wave f’unc-Lion of an unbound sys-kem a t  l a rge  dis tances  

from the  cen-ter of mass of t he  system. 

O f  course, the  principal motl.va-Lion for the  development of the 

method i s  t o  ca lcu la te  s ca t t e r ing  phenomena. However, the b o n d  system 

has been chosen here became it can more readi ly  dertronstrate the  capa- 

b i l i t i e s  of the method. 

The helium atom has been chosen i n  p a r t i c u l a r  because it pro- 

The Coulomb po ten t i a l  i s  not vides a good f i rs t  t e s t  of  the  method. 

complicated by spin dependence, and, moreover, the well--known r e s u l t s  

f o r  the helium atom provide a r e l i a b l e  check on the answers calculated 

by the method. 

In  the following, t he  vave function and the  po ten t i a l  energy w i l l  

each be expanded i n  a s e r i e s  of harmonics. Tfle Clebsch-Gordan s e r i e s  

wi1.3- be applied t o  f ind  the  corresponding series expansion fo r  the  

product of the p o t e n t i a l  energy and t.he wave function. 

equation reduces t o  a s e t  of ordinary second-order d i f f e r e n t i a l  equations 

coupling the  harmonic. coef f ic ien ts  of the  wave function. 

may be integrated by simple nunierical techniques. 

The Schroedinger 

This equation 

A complete s e t  o f  solut,lons sa t i s fy ing  the  inner  b0undar.y condi.- 

t i ons  i s  integrated outward t o  a match point .  Si.niila:rly, a coriplele 

set of  solut ions sa t i s fy ing  boundary conditions a t  a d i s t a n t  po in t  

(representing inf ini- ty)  i s  i.ntegr.ated inward t o  Lhe match poin t  ~ 

cording to  the discrepancy i n  the two s e t s  of solut ions a t  the match 

Ac- 
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point,  a new solut ion made up of l i n e a r  combinations of the old i s  

chosen so  as t o  be as smooth as possible.  By in tegra t ing  the  square 

of t h i s  new wave function, a new estimate of the eigenenergy may 

The Schroedinger wave equation f o r  the three p a r t i c l e s  i s  

be made. 

( 5  .I> 

The t o t a l  mass of t he  system i s  assumed t o  be uni ty  throughout t h i s  

chapter. The symbol v"- represents the  Laplacian operator i n  s i x  

dimensions and, for S states, i s  given by 

a2 
ap2 

02 = p / 2  - p+ + p - 2 ( ~  - 15/1t) , 

where 

a2 
I_ 

2 
i- 

a sin 4X - 16 a A =  
s i n  4~ a(4x) a(4x) 1 + COS 4x ayt2  

The coordinates are those described i n  Appendix B. 

t he  range (0, m); the  var iable  X has the  range (0, 

able  y' has the range (0, Jr) . 

(5.3) 

The var iable  p has 

n/4), and the var i -  

The wave function i s  now expanded i n  the surface harmonics of 

Chapter I V .  The expansion i s  

Only the  S-state  surface harmonics appear i n  the series. From Table 

11, page 53,  it i s  seen tha t  there  i s  one S-state  harmonic of even order 

1 for  values of p di f fe r ing  from a by four.  

The harmonics a r e  most e a s i l y  found, perhaps, by finding the 

eigenfunctions of the operator of Equation (5.3). The solut ion is  



separable i n  the following form 

The boundary conditions may be obtained from considerations of 

the eight  three-par t ic le  configurations which a re  mutually re la ted  t o  

one another by a ro ta t ion  tha t  ca r r i e s  the pr inc ipa l  axes in to  them- 

selves.  

in te rna l  variable y' becomes 

For an S-state  the boundary condition w i t h  regard t o  the  

The separabi l i ty  assumption of Equation ( 5 . 5 )  inser ted  i n t o  the 

eigenvalue equation a r i s ing  from the operator of Equation (3.3) with 

the boundary condition Equation (5 .6 )  leads t o  the solut ion 

f(y') = exp(i2vy') for v = 0,  a l ,  +2, . .. . (5.7) 

miis  i s  j u s t  what w a s  predicted, of course, from Table 11, page 53. 

The v appearing i n  Equation (5.7) is  just  half  the value of IJ-, which 

must be even. 

In a similar way, the  f'unctions A ( X )  may be found. For S s t a t e s  
JP 

the  boundary conditions are 

and 

- a A (x/ '+)  = 0 f o r  even v , ( 5 . 9 )  d X  Ru 

or 
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The equation t o  be s a t i s f i e d  f o r  a harmonic of order B i s  

8v = 0 . (lj.11) s i n  4~ - - d L s i r 4 X  d(4X) d(4X) 1 cos 4X 

The solut ion i s  found t o  be 

1 1 - cos 4x 
2 

A (X) = ( C O S  2X)” ZFl(-N, N i- v f 1; 1; aIJ 

= (cos a)” P p )  (cos 4x) 

= d  A I 2  (4x) . 
v/2,v/;? 

The function Pn (a’p)(x) i s  t h e  Jacobi polynomial of degree n as defined 

by Magnus, Oberhettinger, and Soni (1966). 

the  reduced ro ta t ion  matrix defined by Rose (1957). 

appearing i n  Equation (5.12) must, of course, be a non-negative integer .  

It i s  re la ted  t o  the order a of the harmonic by the following r e l a t ion  

The function d j  , (p)  i s  
m, m 

The value N 

N = ( a  - p)/4 = ( A  - Y ) / 2  * (5.13) 

The A appearing i n  Equation (3.15) and i n  Equation (5.12) is  

half the  value of the order R ,  which i s  even. Putting N equal t o  a 

non-negative integer  i s  just  another way of saying t h a t  the  order A of 

the  harmonic must be greater  than p by multiples of four. Another way 

of expressing the same idea i s  t o  say t h a t  the indices appearing on 

the ro ta t ion  matrix of Equation (5.12) must s a t i s f y  t h e i r  usual  

re la t ions .  

Instead o f  t he  indices R and p, the  indices A and v will be used. 

The expansion of  the wave function given i n  Equation (5.4) m a y  now be 
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writ ten 

Av=2 

It; i s  assumed t h a t  the poten t ia l  energy V appearing i n  

Schroedinger * s Equation (5.1) is  given by a s imilar  expansion, namely: 

The expansion f o r  the  Coulomb po ten t i a l  i s  given i n  Appendix C .  

In both Equation (3.15) and Equation (3.14) the  expansion coef- 

f i c i e n t s  must express the f a c t  that the quantity on the  l e f t  of the 

equation i s  real. Thus, fo r  example, the coef f ic ien ts  V ( p )  of 

Equation (5.15) s a t i s f y  the re la t ion  

?w 

where the a s t e r i sk  indicates  t he  complex conjugate. 

holds f o r  the coeff ic ients  JI 

A similar  r e l a t ion  

(p) of Equation (5.14). hv 
Within the  computer program the  r e a l  p a r t s  and the  h a g i n a r y  

p a r t s  of  the coeff ic ients  must be s tored f o r  the  following pos i t ive  

values of u ,  

When v takes the  value zero, only the r e a l  part  of t he  coef f ic ien t  needs 

t o  be stored, since, according t o  Equation (5.16), the imaginary p a r t  

vanishes. 
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The product VI$ of the potential and the wave flmction wh5ch 

appears in the Schroedinger Equation (5.1) may also be expanded in a 

series of harmonics. Application of the Clebsch-Gordan series (Rose 

1957) yields the following expression f o r  the coefficients: 

where 

Mh:'(p) = ( A  -t- (C (A ' /2  A N / 2  A/2; v ' / 2  ~ " / 2 ) ) ~  V h f t V t t ( p )  
Affv If 

v v  

This last form for M follows from Racah's symmetry relations 

(Rose 1957) for the Clebsch-Gordan coefficients. It shows that the M f s  

are symmetric, thereby decreasing the storage requirements inside the 

computer. Specifically, the symmetry relations satisfied by M are 

Equation (5.16) has been used in deriving this last symmetry relation 

in Equation ( 3  .PO) . 
Introducing the coefficients 

and making the simplest approximation to the second derivative (this 

simple approximation is made in order to have adequate storage in the 

fast  memory of the computer), namely, 
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, (3.22) 
dp2 h2 

leads t o  the  following difference equation: 

The quant i t ies  appearing i n  this Equation (3.23) which need defining 

a re  

sA(P) = [ ( ( h ~ ) ~ ( 2  - 2h'E) - 0.25h4)/C,, + CA]/(hr)2 , (5.24) 

and 

Planckls constant ,h i s  assumed t o  be uni ty  i n  these above equations. 

The foregoing Equations ( 5 . 2 3 )  through Equation (5.26) a r e  i n  a 

forcl very su i tab le  for computation purposes, and, i n  f a c t ,  are the 

equations used i n  the program. The symmetric a r ray  M A' , A( p )  does not v u  

depend on the energy. It is  calculated once and fo r  a l l  a t  the be- 

ginning of the program and stored on magnetic tape. 

proceeds, i t  is buffered in to  the memory of the  cowuter .  O f  course, 

t h i s  array as wel l  as the terms appearing i n  both Equation ( 5 . 2 3 )  and 

Equation (3.23) must be separated in to  t h e i r  real and imaginary par t s .  

A s  the  integrat ion 

The above describes the method of integrat ing the  Schroedinger 

equation t o  obtain the wave fwlction a t  a given energy. 

the Qroblem of 'xguessing" the  energy of a bound s t a t e .  

There i s  s t i l l  

The following 
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describes the procedure used to consistently improve the estimate of 

the energy eigenvalue. 

The procedure is a direct generalization of that used by Lovitch 

and Rosati (1$5) to integrate the Schroedinger equation for the 

deuteron. 

to satisfy a second-order equation of the form 

The eigensolution 4, consisting of N components, is assumed 

(5 .2 '7)  

along with two-point homogeneous boundary conditions. The operator V 

is assumed to be a symmetric matrix; E is the eigenvalue desired. The 

eigensolution (b is, of course, continuous and has a continuous de- 

rivative everywhere in its domain of definition. 

At the "guessed" enerm E -+ 6, which is not an eigenvalue of the 

system, the equation 

has N independent solutions v which satisfy the inner boundary condition, 

but no linear combination of these satisfy the outer boundary condition. 

Similarly, Equation (5.28) also has N independent solutions w which 

satisfy the outer boundary condition, but, again, no linear combination 

of these satisfies the inner boundary condition. 

By allowing discontinuities in the components of the solutions 

and their derivatives at an intermediate point a, the match point, one 

may construct; a solution u to Equation (5.28). Thus, the discontinuous 

solution u is a linear combination of the v f s  on the left of the rna-tch 
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point  and i s  a l i n e a r  combination of the was on the r igh t  of the match 

point. 

From Equation (5.27) and Equation (5.28) the following may be 

derived : 

d2u d2$' 

dr2 dr2 
+ - u = @'u , 4' - 

l'he transpose I s  again denoted by the  prime. 

Equation (3.29) first  on the  l e f t  of the match point  and then on the 

righl; of the match point yields  the following: 

Integrat ion of  t h i s  

whe re 

du( a+) du( a-) 
- du 

'G1a = d r  d r  (5.31) 

i s  the discontinuity i n  the der ivat ive of the solution a t  the  match 

point a ,  and 

[u], = u(a+) - u(a-) (5.32) 

i s  the discont inui ty  i n  t'ne solut ion i t se l f  a t  the match point  a. 

If two N-dimensional column vectors, a and f3, are chosen so  t h a t  

and if  then the discontinuous sol.ution u i s  chosen so that  i t s  d i s -  

cont inui t ies  a t  the match point  a r e  

du 
d r  a [--] = ka 

and 



[UI, = k p  ( 5  35) 

for some scalar k, then Equation (5 .30)  for the deviation 6 in the 

eigenvalue becomes 

As yet, there has been made no approximation. However, some 

approximation to the true eigensolution 6 must be made in order to 

calculate the integral appearing on the left of Equation (5.36). 

The only reasonable quantity at hand with which to approximate 

the true solution 9 is the discontinuous solution u. But there is some 

liberty in choosing this. A convenient method is to take f3 to be the 

null vector and to take Q to be the solution u(a) at the match point. 

In this way the solution u is continuous, only its derivative being 

discontinuous. The solution u is then chosen so that the discontinuity 

in the derivative w i l l  be as small as possible in some sense. 

The assumptions of the foregoing paragraph cause Equation (5.33) 

to be a normalization condition on u, namely: 

u'(a).u(a) = 1 . (5 .37 )  

Equation (3.34) becomes under the above assumptions 

!&is last equation may be expressed in terms of the complete sets of 

solutions, v on the left and w on the right. Equation (5.38) becomes 

(5.39) 
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All quanti-ties in this Equation (5 .39 )  are evaluated at the match point 

a. Note that TJ and v are square matrices, made up from complete sets of 

solutions,which satisfy the outer and inner boundary conditions, 

re spec t i vely . 
The problem of minjinizing the discontinuity reduces to that of 

finding the eigenvalue of Equation (5 .39 )  of minim modulus. It 

should be noted that; the matrix difference on the left is independent 

of the particular bases chosen to describe the complete sets of solutions. 

The knowledge of the solution ~ ( a )  at the match point from the 

cigensolution belonging to the minim ei genvalue of Equation (3.39) 

allows the determination of u over the whole range. 

energy correction to be made is then given by the following approxi- 

mation to Equation (3 .36) :  

The- estimate of the 

(5.40) 
J dr u'u 

Equations (5.37) cznd Equation (5.38) have been used to eliminate k from 

the expression appearing in Equation (5.40) . 
Although there seems to be no guarantee that a real minimum 

exists to Lhe Equa.tion (5.39), intuitively it seems that such a real 

value should exist. 

value would correspond to the true solution of the differential, system 

lying nearest to the "guessedff solution. In any case, in practice, tine 

real. minim has always been found to exist. 

From Equation ( 3 . 3 6 )  it is seen that such an eigen- 

?"ne results of the calculations of the energy eigenvalues of the 

helium atom f o r  several values of the order A of the expansion are given 
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i n  Table 111. There a re  two numbers against  which these r e su l t s  m y  be 

checked. The f irst  number i s  the  zero-order energy value predicted by 

the formula 

(3.41) 

where atomic u n i t s  have been used. The bracket contains three terms, 

each of the  form shown and d i f f e r ing  only by a permutation of t he  sub- 

sc r ip t s .  

the paper by Zickendraht (1965). 

This Equation (5.41) follows d i r e c t l y  from Equation (70) of 

Insertion of the masses and charges appropriate t o  the  helium atom 

in to  this Equation (5.41) yie lds  f o r  the zero-order energy the  value 

-2.493364151 atomic units. 

use of  a f i n i t e  mesh and a f i n i t e  boundary condition i s  qui te  small. 

It i s  seen t h a t  t he  e r r o r  introduced by the  

The other  energy value against  which the results given i n  Table 

TI!: may be checked i s  the  value -2.9037243 atomic uni t s ,  obtained from 

the  very accurate calculat ion by Pekeris (1959). 

Zn Table 111 should be iden t i ca l  t o  the energy values given by a 

var ia t iona l  calculat ion using the corresponding harmonics a s  l i n e a r  

vari.at,lonal functions. Note tha t  the  calculated energies l i e  above the 

"true" value. For the l as t  set of values given i n  Table 111, the com- 

puting t i m e  required f o r  one i t e r a t i o n  w a s  about one hundred seconds. 

Only three o r  four i t e r a t ions  a r e  needed. Hence, the r e s u l t s  show tha t  

the rne%hod gives reasonable results f'or a s m a l l  smount of c a l c d h t i o n  

time, The complete coraputer program and a b r i e f  s e t  of ins t ruc t ions  are  

given i n  Appendix D. 

These r e su l t s  shown 
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TABLE I11 

HELIUM ATOM ENERGY VALUES FOR VARIOUS ORDERS OF 
THE HAFMONIC M P A X S I O N  

A E (atomic units) 

+ .498371 
-2.69J-coh8 

-2.836037 



CKAPTER VI 

SUMMARY AND DISCUSSION 

The purpose of the study reported i n  t h i s  thes i s  was t o  develop 

general methods f o r  the calculat ion of quantum-mechanical three-body 

problems. In  pa r t i cu la r ,  methods are needed t o  ca lcu la te  wave f’unctions 

of bound systems and sca t te r ing  systems i n  which the form of the poten t ia l  

i s  as general a s  possible.  

used r e s t r i c t ed  forms of the poten t ia l s .  The var ia t iona l  methods, while 

giving accurate values f o r  the bound-state e n e r a  eigenvalues, a r e  

l imited t o  the ground s t a t e  and a f e w  low-lying excited s t a t e s .  

more, the var ia t iona l  method does not give accurate wave fbnctions. 

Previous nonvariational calculations have 

Further- 

The method developed herein has been shown t o  give good r e su l t s  

fo r  the bound state of the  helium atom. Although this method w i l l  not 

replace the var ia t iona l  method f o r  the calculat ion of the ground-state 

energies, it does present a method of calculat ing wave functions re- 

l i ab ly ,  especial ly  i n  t h a t  region where the three p a r t i c l e s  are i n t e r -  

act ing strongly.  

Pa r t i cu la r  systems fo r  which t h i s  method appears t o  be especial ly  

useful are the sca t te r ing  of nucleons by deuterons, d i r e c t  react ions 

involving deuterons, and nuclear reactions involving three-body f i n a l  

states. 

There are a number of d i rec t ions  i n  which th i s  study may be 

continued. A n  obvious d i rec t ion  i s  t o  generalize t o  systems more corn- 

Flex than the three-body system. The coordinate c l a s s i f i ca t ion  scheme 
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and the  form of  the metric tensor are already generalized t o  an a rb i -  

trary number of par t i c l e s .  It should not be d i f f i c u l t  t o  f i n d  coordi- 

nate  systems su i tab le  f o r  an a rb i t r a ry  number of p a r t i c l e s  similar t o  

the coordinates developed here f o r  the three- and four-body systems. 

Harmonics s i m i l a r  t o  the ones developed herein for the three- 

body problem should be developed for these more complex systems. 

again, the reduction of the Schroedinger equation to  a set of coupled 

ordinary d i f f e r e n t i a l  equations should be possible,  allowing a similar 

numerical integration. O f  course, the increased complexity o f  the 

harmonic expansion w i l l  be a l imi t ing  factor .  

And, 

The continued application t o  the three-body problem of the 

methods developed herein may take a number of turns.  

boundary condition of the bound-state problem should be improved. 

may be done by using the Wentzel-Kramers-Brillowin approximation a t  

la rge  distances from the or igin.  Second, the wave function should be 

given addi t ional  degrees of freedom t o  correspond t o  spin and I-spin 

states. Third, r e a l i s t i c  nuclear po ten t ia l s  should be used f o r  the 

developnent of subroutines which can be inser ted i n t o  the program f o r  

the cslculat ion of the w v e  f'unctions of the  two three-body nuclei  "H 

and 3He. 

nore e f f i c i en t .  

F i r s t ,  the outer  

This 

Of course, the computer program i t s e l f  can be made faster and 

Perhaps the most advantageous use of the method developed i n  t h i s  

t hes i s  would be i n  i t s  appl icat ion t o  co l l i s ion  phenomena. This would 

require the development of harmonic flmctions having grea te r  values of 

tne angular momentum than i s  represented by the S-state f'unctions used 
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functions would 
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The coupling of  these flznctions with the poten t ia l  

have t o  be developed also.  

In  the appl icat ion t o  co l l i s ion  phenomena, the wave function 

should be found by integrat ing coupled ordinary d i f f e r e n t i a l  equations 

over the in t e rna l  region and matched t o  an external  wave fbnction on 

some surface where the  poten t ia l  i s  s m a l l .  This matching t o  an external  

wave f’unction i s  necessary because the truncated harmonic expansion used 

i n  the in t e rna l  region w i l l  not give an adequate representation of the 

two-body bound states a t  l a rge  distances,  a s  has been pointed out.  

The r e su l t s  of the study reported i n  t n i s  thesis indicate  t h a t  

a11 these goals are feasible ones. 
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APPENDICES 



SURFACE HARMONICS IN N DIMENSIONS 

The construction of spherical surface harmonics in N dimensions 

using the invariantly classified coordinates defined in Chapter I1 is 

a difficult problem. 

of finding the surface harmonics associated with an orthogonal coordtnate 

system which is a generalization of the ordinary three-dimensional 

spherical and cylindrical coordinate systems. 

surface harmonics in these coordinates is simple because the structure 

of the subgroups by which the harmonics are classified is obvious. The 

solution of this simpler problem should help in understanding the struc- 

ture and classification of N-dimensional spherical harmonics in general 

as w e l l  as being in itself a usefbl bit of information. 

A simpler problem is discussed here, namely, that 

The classification of 

Accordingly, an N-dimensional coordinate system consisting of one 

radial variable and N - 1  angular variables will be constructed. The 

method of construction will proceed by means of orthogonal projections 

and thence to an orthogonal system of coordinates. These projections, 

which deflne the coordinates, may be specified most simply, perhaps, by 

means of a projection diagram such as that in Figure l+. The line S in 

the diagram represents the N-dimensional space. 

lines representsa linear subspace of two or more dimensions. The N one- 

dimensional subspaces are represented by the terminal end points on some 

of %he lines. 

0 

Each of the other N-2 
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s -+  
A s - + -  

s +- Ax’ I d -  

Figure 4. A projection diagram defining angular coordinates in a space 
of eleven dimensions. 
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Each subspace of two o r  more dimensions may be decomposed by 

means of project ions onto two orthogonal subspaces. Thus, each l i n e  i s  

terminated by two l i n e s ,  two points ,  o r  a l i n e  and a point .  An arrow 

on the  l i n e  indicates  which project ion i s  considered the primary pro- 

jec t ion  and, hence, ge ts  the cosine of the project ion angle 8. 

secondary project ion ge ts  the sine of the  project ion angle 8. 

The 

A vector of length r ly ing  i n  the space S i s  projected f i r s t  
0 

onto the subspace S+ and then onto the orthogonal subspace S - . 
lengths of the  project ions are r cos 8 

The primary project ion of length r cos 8 

again be projected onto the subspaces S++ and St-, and so fo r th ,  u n t i l  

the vector is  decomposed in to  i t s  one-dimensional rectangular com- 

The 

respectively.  and r s i n  8 
0 0' 

ly ing  i n  subspace S+ may 
0 

ponents. The N - 1  project ion angles and the radius r may be taken as 

orthogonal coordinates. 

The range of the var iable  r i s  from zero t o  i n f i n i t y  ( i f  the 

dimension N i s  grea te r  than un i ty ) .  The range of a project ion angle i s  

as follows: (1) from zero t o  231 i f  the  two subspaces are one-dimen- 

s ional ,  (2)  from zero t o  TC if  only one subspace i s  one-dimensional, and 

(3) from zero t o  ~ / 2  i f  ne i ther  subspace i s  one-dimensional. 

The element of volume dr i s  given by 

where the subscripted notation corresponds w i t h  tha t  of the  subspace i n  

which the angular displacement i s  embedded, and pi i s  the length of the 

project ion of r onto the subspace S An example is 
i' 

e+--++ = r cos 6 s i n  0 s i n  e+- cos e+-- cos €I+--+ p+- .. +++ 0 4- 

(A. =)I 
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Die Laplacian operator i n  this orthogonal system i s  

J 
V 2 = r  -(N-1)  - a ,N-1 - 8 +--ea l a  + ... + ... 

a r  a r  p aei 4 aei 

where p i s  the  product of a l l  the p Is. 

a t ion  Tor a se r i e s  of + ' s  and -'s or 0. 

The subscript  i i s  an abbrevi- i 

Now p .  depends on the angle 8 only if S i s  a subspace of S J i j i' 

Looking a t  the diagram and making the necessary correspondences, one 

sees tha t  the Laplacian may be wri t ten 

+ ... ~2 =1 r -(~-i) - a ,~-i - a 
a r  a r  

+ ... , + pf2(cos ei) -Li+ ( s i n  -(COS e,) ( s i n  ei) q -Li- a Li+ Li- a 

(A.4) 

where Li+ i s  the  number 09 l i n e s  on the primary side of  the  l i n e  Si and 

i s  the  number of l i n e s  on the secondary side.  The number Li i s  

by the r e l a t ion  

Li- 

associated with the  dimension N .  of the subspace S 
1 i 

x - . L i + 1 .  
i ( A . 5 )  

Obviously, 

1 - - ( A . 6  1 L. = Li+ + Li + 1 . 
The terms of Equation (A.4)  may be arranged t o  give the form 

r2 
1 -(cos a eo) -t- ( s i n  so) - a  - L 

a @O 
L - ado 2 !\ 

A (COS eo)  (sin eo) 
+ -  

L+ 
'i 

continued ..... 



Solutions of Laplace's equation 

may be faund eas i ly  since the  equation is  separable. The solut ion is 

of the  form 

(A.9) Y = f(d Y, Y+ Y _  Y++ Y+- Y-, Y-- Y,+, ... , 

where each y s a t i s f i e s  an equation of the form i 

Li- d 1 ---(cos d O i I L i +  (sin ai) - 
i Li+ L i- dei dei 

(cos gi) ( s i n  ei) Oi 
I 

(A.lO) 

The M, s m e  separation constants. 

A change from the dependent var iable  y 

- 
t o  the dependent 

i 

variable ui defined by 
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+L +L 
i+ i- 

( s i n  ei) Y i  
u = (cos ”i) 1 (A.11) 

transforms Equation ( A . l O )  i n t o  the  following: 

1-40? 1 - - 4 p 2  
+ i t- (a. t a. 3- pi + 4 ui = 0 . (a.12) 1 

1 1 

The parameters ai and pi are defined by 

l-4+= 

and 

1 - 4 p ; =  

The parameter 

-&Mi -+ Li-(2 - L.  ) 
1- 

-4Mi+ -+ Li+(2 - Li+) . 
n i s  re la ted  t o  M. according t o  
i 1 

(L4.14) 

(L, - 

“he harmonic flmctions y must be regular f o r  a l l  values of t he  
i 

projection angle ei which have physical meaning. 

polynomials i n  the rectangular components of the N-dimensional vector. 

They must a l so  form 

Either  of these requirements leads t o  nonnegative in tegra l  values f o r  

the 11.1s o f  Equation ( A . 1 2 ) .  

Jacobi polynomials (Magnus, Oberhettinges, and Soni 1966) as follows: 

The solutions u are given i n  terms of 
I” i 

a. +2 1 pi+;- ( x , p  i ) 
(cos  29,) . 

I1 
P 1 

u.  1 = ( s i n  ei) (COS ei) 
i 

The corresponding solutions f o r  the y ‘ s  are i 

(AA) 

ai-?( 1 Li-- l )  Pi-+(Li+-l) 

(COS 2Qi) - n. yi = ( s i n  ei) (cos  oi, P 
1. 



83 

In a subspace S of' dimension E\Ti there exist surface harmonics i 

of the form 

y. = Yi Yi+ Yi- Y-++ Yi+ ... . (~.18) 
1 

The order Bi of these surface harmonics is the degree of the corre- 

sponding polynomial in the components of an N.-dimensional vector. The 

order R is related to t he  separation constant M by the following 

e quat ion : 

1 

i i 

Mi = Ri(Ri -!- N. I - 2) . (A.19) 

Substituting into this the relations of Equation (A,?) and Equation 

(A.15) results in the following: 

1 1. = 2n. + a. + p + $ 3  - L ~ )  3 o . 
1 1 1 i (A.20) 

The combination of Equation (A.l3), Equation (A.l5), and the 

inequality on the right of Equatlon (A.20) Leads to the following 

condition on a :  
1 

1 a = 2n + 1 + a + pi- 2 T(L~- - 1) . i i- i- 

A similar condition on f3 is i 

1 91 .- - 2ni+ + 1 + ai+ + P i +  3 -(L 2 i+ - 1) . 

It is thus seen that a. is an even or odd multiple 

is odd or even. For the particular case 

1 

according as L i- 

(A.21) 

(A.22) 

of one-half 

that L j  - 
vanishes, ai may take on either of the two values: 

other values of L the value of a is uniquely determined by Ec,uation 

(A.21). 

5, -?. For. all 

i- i 

Corresponding statements apply for @ and its relation to L 
i ii-' 
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Thus, the spher icz l  surface harmonics i n  N dimensions may be 

characterized by N s igns (+1) one s ign for each rectangular dimension, 

and N-lnonnegative integers ni, one associated with each pro jec t ion  

angle. The order 1 of the  harmonic i s  
0 

wherein the  sumation over the nits has N-l terms, one f o r  each pro- 

jec t ion  angle FiY and the second summation over the signs has N terms, 

one f o r  each one-dimf?nsi.onal l i n e a r  subspace. 

The number of harmonics of order R i n  a space of N dimensions 

may be found by summing over a l l  the  possible ways i n  which Equation 

(A.23)  may be satisfied. The r e s u l t  i s  

(r + N - 2)! N(N - 1) c 
r r ! ( R  - 2r)! (N - R -i- 2r)! (A.24) 



APPENDIX B 

DETAILS OF THE METRIC TESJSOR 

In t h i s  appendix the  metric tensor and re la ted  quant i t ies ,  as 

discussed i n  Chapter 111, a re  considered i n  d e t a i l .  Results f o r  the  

special  cases of the two-, three-,  and four-body systems are each 

presented separately.  Some general r e su l t s  f o r  N p a r t i c l e s  a re  a l s o  

e x p l i c i t l y  given. 

The nomenclature and symbols a re  the same as i n  Chapter 111. 

The Two-Body System 

The metric tensor f o r  the two-body system i s  w e l l  known. The 

results a re  given here f o r  completeness and f o r  i l l u s t r a t i o n  of t he  

appl icat ion of the method t o  a simple system. 

The s i z e  coordinate frequently chosen i s  the  in t e rpa r t i c l e  

distance r12, which i s  re la ted  t o  the radius of gyration p through the 

following : 

where the t o t a l  mass i s  

m = m l + m 2 ,  

and the reduced mass i s  

The ro ta t iona l  

( B . 2 )  

coordinates frequently chosen are  the polar angle B and 

(95 
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the azimuthal angle 4 ,  which a re  re la ted  t o  the Euler angles a and p 

by the relat,ions : 

e - p  (E3.4) 

and 

Q, = a -  n/2 . 03.5) 

Because of the s implici ty  of the two-body problem, some of  t'ne 

rows and columns of the matrices vanish. These a re  omitted. The co- 

ordinate matrix x" i n  the observer 's  reference frame takes the form 

1 n: 
s i n  p c o s ( a  - 2 )  X 

cos p s i n ( a  - - 3 y l  

cos p 

0 1 zl 
P O  

0 1  

Although only one column of the ro ta t ion  matrix appears i n  

Eq. ( B . 6 ) ,  the complete matrix i s  needed t o  ge t  a11 three  components 

of the angular veloci ty  o. The t h i r d  W e r  angle, which i s  not needed 

i n  the two-body problem, does not appear. ?me matrix i s  

1 
cos a --cos p s i n  a s i n  p s i n  a 

R = sin a cos p cos a -sin p cos Q . 
0 s i n  p cos p I 

%e corresponding time derivat ive i s  given i n  terms of the 

elemcnts of the ro ta t ion  matrix i t s e l f  by 



0 R23 -22 6 1 R13 -R12 

0 R33 4332 

The angular ve loc i t i e s  a r e  then found from 

R33 -R32 

6'R = -R33 0 [ R32 - R ~ I  ' -t- 
0 0 0  

0 0 1  

0 -1 0 

by using the values o f  the  elements of the ro ta t ion  matrix given i n  

Equation ( B . 7 ) .  The angular veloci ty  i n  the body system i s  

accordingly 

L L I =  s i n p a +  I:; j - 0  1 

7 cos f3 0 O I  

(B.10) 

Since one axis i s  associated w i t h  a vanishing moment of i n e r t i a ,  

only t w o  components of the angular veloci ty  appear i n  the k i n e t i c  

energy. The corresponding truncated matrix f o r  i s  

Only one plane moment of i n e r t i a  does no t  vanish, namely: 

4 = mp2 = 1-1112 2 * 

The mat r ix  J containing the ordinary moments of inertia is 

(B.11) 

(B.12) 
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- 

1 

0 

o. 

Toere are no internal coordinates in the two-body problem. 

Accordingly the matrix E, the elements of which vanish anyway, i.s not 

required in 'die formation of the metric tensor. 

Assuming that the translational coordinates are the rectangular 

components of the center of mass, X, Y, and Z, that the size coordinate 

is rL2, and that the rotational coordinates are 8 and 6, the matrices 

qand S which form the metric tensor are 

w = M  

and 

0 

sin 

, 

(B.14) 

respectively. 

The xetric tensor itself is found to be the fo l lowing  well known 

diagonal expression: 
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m 

m 

P. ( B & )  

The order of the var iables  has been taken as the  following: X, 

Y, 2, r12, 4,  and 6. 

The Three-Body System 

The three-body system i s  characterized by having two nonvanishing 

principal. plane moments, AI and A2, and one in t e rna l  coordinate. The 

plane moments a re  described by two coordinates. A convenient choice i s  

the radius of gyration p and the  angle X, which a r e  re la ted  t o  the moments 

through t he  re la t ions :  

1 
2 
- 

(B.17) Ai = 01 0 COS X 

1 -_ 
A$ = o2 = p s i n  x . ( ~ . 1 8 )  

The t o t a l  mss i s  assumed t o  be uni ty .  If the  pr inc ipa l  axes are chosen 

so t h a t  A, 3 i'g, then the angle X varies  between 0 and x/4.  

Since the  t h i r d  pr inc ipa l  plane moment vanishes, the matrix J 

accordingly takes on the forms: 



The re lated matrix E has only one component which does no-t vanish, 

namely : 

1 3 ~ ~  =,/a = 2p1p2 = p2 s i n  2~ . (B.20) 

The matrix tip of p a r t i a l  der ivat ives  appearing in S is 

cos X -p s in  X 

[sin x p cos x]  * 

The corresponding inverse i s  

(B.21) 

(B.22) 

!!!he i n t e rna l  coordinate y' describes the in te rna l  motion through 

the matrix 

s i n  Y' cos 

rcos Y' -sin Y 

Ot' = I 
The t i m e  der ivat ive of t h i s  is 

(B.24) 

It follows t ha t  



(B.25) 

V 

0 

0 

1 
4 

The s ingle  component of  u which enters  i n to  the k ine t i c  energy i s  

accordingly 

u = Y  ‘ I  y (B.26) 

and the corresponding G appearing i n  S i s  

- 
u = l .  (B.27) 

The choice of a graph for  the three-body system must be made. 

There are three such graphs. The one chosen i s  t h a t  appearing i n  

Figure 1, page 20, which has a corresponding matrix 

o =  m 

i: 

0 

(13.58) 
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Again it; siriould be pointed out that  the t o t a l  mass i s  assumed t o  be 

m i  t y  . 
The coordinate matrix f o r  the three-body system viewed from Lhe 

observer’s frame of reference may thus be wri t ten:  

.. 
pcos x 

psin X 

1 
J 

r =  

X 

COS y’ -sin 7’ o 

cos y’ 0 1 s i n  Y ’  

0 0 

wherein only the f i rs t  two columns of the ro ta t ion  matrix R given i n  

Equation (B.54)  appear because the  vanishing t h i r d  plane moment has 

been omitted. 

The matrices’jj2)1 and S, which form the  metric tensor a r e  
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and 

S =  

L 

1 

1 

cos X -psi.n X 

s i n  X pcos X 

s i n  f3 s in  y cos y 0 

s i n  p cos y -sin y 0 

cos 7 0 1 

1 

respectively.  

The metric tensor which results decomposes as follows: 

where gr is t he  diagonal matrix 

1 

1 

1 

1 

P2 

J 

and g2 3-s given by 
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sin2p(l+cos 2X cos 27) 

' sin p sin 2~ sin 2 y  

- - sin p sin 2~ sin 2y cos 7 s i n  PX cos ; 2 2 

1 
2 -(l-cos 2x cos 27) 0 0 I- 

2 

cos y 0 1 sin 2X 

sin 2X cos 7 0 sin 2X 1 

(B. 3)-t) 

The corresponding deteiminants are 

= (1/16) pDsin2 4~ , 
IS/ := -p s i n  p , 

afld 

lg,. I J  . )  = (1/16) p1'sin24x sin2@ . (3 .37)  

The contravariant components o f  the metric are given by the in -  

For this the following matrices are veme of the metric tensor above. 

2 
P1 

1 
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L 

1 

1 

1 

1 

1 

? 1 
0 

0 

- 2x sec"2x 

1 

1 

1 

p2sin2X 

1 

p"cos2x 

1 -sin 2X 

p2cos*2x p2cos22X 

-sin 2X 1 

p2cos22X p%os'2X 

cos X s in  X 

-sin X cos X 

P2 P2 
sin y cos y 
sin f3 sin p 
- -  
cos 7 -sin Y 

-sin Y -cos y 
tan p tan p 

1 

(B.41) 



9-j 
The inverse of the metric tensor decomposes as follows: 

where g;' is given by 

1 

1 

1 

P -2 

(B.42) 

The as yet undefined matrix elements appearing i n  the above 

symme+ric rnatr3.x g;l a r e  given by: 

G~~ = 2 s i n  ~y cos 2x csc g csc2 2x , (B. 146) 

"%e order of the variables has been assumed throughout t o  be 

X,Y,Z, r , X , Q , $ ,  y ,  a n d y ' .  
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The Four-Body System 

The four-body system i s  the simplest system f o r  which a l l  three 

moments are nonvanishing. Hence, a l l  three columns of the ro ta t ion  

matrix a r e  needed. 

There are three in t e rna l  coordinates which must describe the 

These in te rna l  coordinates may three-by-three orthogonal matrix 0 

be chosen i n  analogy t o  the Euler angles which appear i n  the rotat ion 

matrix R .  

t' 

I n  f ac t ,  i f  R ( a , p , y )  i s  the ro ta t ion  matrix as a f'unction of the  

t' Euler angles a, p, and y ,  then the matrix 0 may be defined by 

This, together with the following def in i t ion  of 0 

may be taken a s  the def in i t ion  of the  in t e rna l  coordinates, d , @' , and 

i n  Equation (B.32), m 

7' * 

Equation (B.36) may be used t o  calculate  t he  in t e rna l  angular 

ve loc i t ies  which are given by 

SubstitutLng the in t e rna l  coordinates a", p', and y' f o r  the  N e r  

angles results i n  

(B.49) 

, (B.50) 

where I s  the matrix 



- 
u =  

98 
- 
-sin p’ s i n  y ’  --cos y’ 

-sin p’ cos y’ s i n  y’ :] . 
-cos $’ 0 -1 

(B.31) 

‘There are f i f t e e n  four-body graphs, The graph shown i n  Figure 1, 

page 20, corresponds t o  the matrix 

0 

0 

0 0 

0 0 

/- -1- 

continued... .  . 
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s;i- ml +m2 

J m1+m2 

0 

0 0 

J m 3  

It has been assumed t h a t  the t o t a l  mass of the  system 

0 

-]E *3 +% 

A l l  the  quant i t ies  required t o  calculate  the coordinate matrix 

of 3quation (2 .29)  f o r  the four-body system a re  thus provided above o r  

Fn a following section containing general r e su l t s .  

For the four-body metric tensor, the general r e s u l t  of Equation 

(B .73)  may be used t o  give the submatrix u' Ju as w e l l  as W'JG simply 

by replacing the M e r  angles a, p, and y ,  by the in t e rna l  angles Q' 

B ' ,  and Y ' .  

The submatrix Z'JZ f o r  the four-body system i s  the sum of three 

terms : 

B s i n  y s i n  p' s i n  y' s i n  p s i n  y cos y' 

Y s i n  p' s i n  y' W'JG = MG" s i n  27 s i n  x cos y cos y' 

0 0 

- 

cont:inued.. . . . 
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p cos 7 s i n  p' cos y' -sin p cos 7 s i n  7' 

+ ~p~ s i n  2q cos x y s i n  p' cos 7' s i n  7 s i n  7' 

0 0 

+ Mp2 sin2q s in  2 X  03.53) 

The Rotation Matrix 

The rotat ion matrix i s  given i n  terms of the M e r  angles ( the  

line of nodes i s  measured o f f  through the angle a from the x-axis i n  a 

right-handed system ( Goldstein 1953)) by the following: 

cos 7.~0s a - s i n  7.cos f3 s i n  a -sin 7-cos  a-cos  r*cos pasin a s ing - s ina  r 
cos y .  sin a + s f n  y .  cos p cos  a -sin 7. s i n  (x +.cos 7 .cos f3 .cos a -sing. cos( I 

s in  7. s i n  p L cos y .  s i n  f3 cosp 

(B.54)  

The columns of R are the observer's coordinates f o r  the u n i t  

bas i s  vectors along the pr inc ipa l  axes, 

The t i m e  der ivat ive of R i s  given by three matrix terms i n  the 

following manner: 
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R13 sin y R13 cos y -Rll sin y -R12 cos 

sin y R~~ COS y - R ~ ~  sin y - R ~ ~  COS 

RIsJ sin y R33 cos 7 -K3L s i n  y -R32 cos 

03.53) 

The corresponding result for the matrix product R ’ i ,  which gives the 

components of the angular velocity in the body system, is 

--cos p sin p cos y1 

0 

cos 7 sin p sin y 0 

0 

0 .+ [si: y cos y 0 

The angular velocities in the body system are then given by 0 

in the form 

- 
where w j.s the matrix appearing in the matrix S and is given by 
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cos 7 

Associated with this matrix w are its determinant 

and its inverse 

sin 7 csc f3 cos 7 csc i3 

cos 7 -sin 7 4 . 
7 c o t  p -cos y c o t  p 1 

- 
u-1 = ( B . ~ o )  

The Size Coordinates 

A spherical coordinate system is useful for specifying the pl, 

p2, and the p3 of Equation (2.27). 

defined by the following: 

The spherical coordinates may be 

= p sin 9 cos X , (~.61) P3. 

p2 = p sin 9 sin X , 
m d  

p3 = p cos 11 . 
The corresponding matrix (ap ) ,  which appears in S, i s  

(~.64) 

and the inverse is 



Sin '1 cos x s i n  sin x cos 4 
cos rl cos x cos q sin x -sin 

El P 

-sin X 
p sin 7 

cos x 
p sin r, 

1 -  
* . J  

%?-e following appears in the metric tensor: 

p2sin2q 1 .  (B .66) 

Appearing i n  a similar way i n  the reciprocal of the metric tensor is 

(ap)-"(ap)' = 

1 

( p  sin 

p-2 

The forms of the matrices J, E, 7, and E i n  the various size 

coordinates are given herewith: 

= M  

continued..... 



= Mp2 

E =  

104 

1 - sin2T C O S ~ X  

1 - sin2,q sin% 

1 - cos 

$KG 1 P l P 2  I 

2 2  F, +Pl 

9 (B.68) 

cant h u e d .  , . , . 



1. - - -  
a" 

- 
E =  

1 
M 

5 -  

(cos 27 + sin2q sin2X)" 

1 

continued.. . . . 
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sin 2q sin X 

(cos 27 + sin2v COS'X)~ 

J sin 2X 

sin2q c o s " 2 ~  

The Metric Tensor 

The forms for S and 3)1given by Equation ( 3 . 3 3 )  and Equation 

(3.31), respectively, lead to the following general form for the metric 

tensor: 

- I U'EW 

The total mass has been assumed to be unity in this expression. 

The two third-order matrices, ( axc)' ( axc) and ( 8 p ) '  (ap), are 

easily calculated. 

flirst is the unit matrix. 

For rectangular center-of-mass coordinates the 

The second matrix is given by Equation (B.66). 

The matrix E'Jz may be calculated from Equation ( ~ . 5 8 )  and 

Equatj-on ( B. 68) to yield the following : 



1-07 

i 

cos 2y sin'@ cos 2 y  sin B 0 

s i n  '27 s i n  f3 cos 2y 0 

0 0 0 



APPENDIX C 

EXPANSION OF THE COULOMB POTENTIAL 

The Coulomb po ten t i a l  may be expanded i n t o  a s e r i e s  of harmonic 

terms. For t h i s ,  the  expressions for the i n t e r p a r t i c l e  dis tances  are 

required. 

(B.29)  it may be shown tha t  the distance between p a r t i c l e  i and p a r t i c l e  

j i s  given by: 

From Equation (2.29) or, more exp l i c i t l y ,  from Equation 

1 
r = p f ?  (1 + COS 2X C O S  2(7' + 8. .))" . 
i j  2m. m 1J  

The tjiJYs which appear i n  Equation ( C . 1 )  mst s a t i s f y  the  con- 

d i t i on  

wherein i, j ,  and k a r e  an even pemutat ion of 1, 2, and 3. Equation 

( C . 2 )  defines only t h e  differences between the angles. This r e f l e c t s  

the  f a c t  tinat the r e l a t ion  i s  invariant  w i t h  respect t o  orthogonal 

kinematic transformations. For .the par t i cu la r  c lus t e r  graph chosen i n  

Appendix B the  angle EX2 vanishes. 

other  two angles uniquely. 

Equation ( C . 2 )  then defines the 

The expansion of the Coulomb po ten t i a l  of a s ing le  in te rac t ing  

p a i r  i n t o  a harmonic series reduces t o  the expansion o f  the  l a s t  fac-tor 

on the right of Equation ( C . 1 ) .  

t o  obtain the following: 

The binomial expansion may be applied 

108 
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1 
2 

I'(5) S 
cos 2x cosS2(y' f 6) . 

00 1 
(1 + cos 2x cos 2(y '  t 6 ) ) F  = c 

S=@ S!T(- - s )  

(c.3) 

This i s  a l so  expanded 

(1 c cos 2x cos 2(7 '+  

i n  a harmonic s e r i e s  of the  following form 

The expansion coef f ic ien ts  4u, a re  then found by equating the 

right hand s ide of Equation ( C . 3 )  w i t h  t h a t  of Equation ( C . 4 )  and 

in tegra t ing  over the ranges of def in i t ion .  

The resu l t ing  form of the expansion coef f ic ien ts  i s  

A = A exp(i2v6), A v A  

where the coef f ic ien t  i s  given by the following series 4\ 

This series may be shown to converge by using Gauss's tes t  

(Bromich 1949). The convergence i s  very slow, however. The s e r i e s  

has been summed on a d i g i t a l  computer. The results a r e  given i n  Table 

IV. The value of the f i r s t  term i s  known (Zickendraht l$3) t o  be 

This value w a s  used t o  get  some estimate of t he  accuracy of the ser ies ,  

a t  least  f o r  the f i rs t  few coeff ic ients .  

The Coulomb po ten t i a l  due t o  three in te rac t ing  p a r t i c l e s  charac- 

t e r l zed  by Z,, Z,, and 2, may now be wr i t t en  i n  the form of a se r i e s  of 

harmonics, such as on the  r i g h t  of Equation ( C . 4 ) .  The coef f ic ien ts  
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TABLE LV 

VALUES OF THE COULOMB EXPANSION COEFFICIEXVT Ah 

h 

0 
1 
2 
3 
l+ 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

1.20041 8 
-0.48016 6 
0.30867 7 

0.18188 
-0.1~110 

-0.11298 

0.08201 
-0 * 07515 

0.06935 
-0.06438 
o.otoo8 
-0.05632 
0.05300 

-0.22%4 9 

0.12927 

0.10034 
-0.09025 

-0.05005 
0.04741 
-0.04504 
0.04289 
-0.04094 

NOTE: The accuracy of the  above 
values fo r  Ah a f t e r  the f i r s t  one i s  not 
known, but it i s  believed t o  be of an order 
consistent w i t h  the  number of places shown. 



111 

a r e  then of the form 

The sum i n  t h i s  Equation ( c .8 )  i s  over the three terms obtained 

from one another by permuting the indices.  The energy i s  given i n  

mass units. The t o t a l  mass i s  assumed t o  be unity and p i s  the re- 
ij 

duced mass of p a r t i c l e s  i and j .  The f ine s t ruc ture  constant i s  denoted 

by a. 



APPENDIX D 

THE COMPUTER P R O G W  QM3BODY 

The coniputer program QF13BODY and i t s  subroutines follow i n  

F0RJXA.N language after a br ie f  description of the required input cards. 

Standard l i b r a r y  subroutines have been omitted. 

are f i v e  i n  number. 

The input data cards 

CARD 1 contains the  masses ML, M2, M3 of the three pa r t i c l e s .  

An optional input quantity i s  MASSUNIT which i s  an e i g h t - l e t t e r  name 

which spec i f ies  the u n i t  of mass used. The format statement i s  

FORMAT( 3IQO. 0, A8) . 
CARD 2 contains the  charges Z1, 22, Z 3  of the three p a r t i c l e s  

In  u n i t s  of the electronic  charge. Following these three  i s  the  

maximum order MAXLAM used i n  the  expansion of the poten t ia l .  

nar i ly ,  this i s  twice the order MAXLAMU. used i n  the expansion of the  

mve  fwnction and given on CARD 4 below. 

Ordi- 

The format statement i s  

FOPMAT( 3~20.0,  110) . 
CARD 3 contains the  inner boundary point  RO (usually zero),  the 

match point RMATCH, and the outer boundary point RFINAL. 

1enLgth is  the  Compton length associated w i t h  t he  un i t  of m a s s  chosen 

above on CARD 1. 

The u n i t  of 

The corresponding format statement i s  FOWT(3E20 .0 ) .  

CA3D 4 contains the  maximum order MAXLAMRA used i n  the harmonic 

expansion of the wave f'unction, the number MESH1 of in te rva ls  between 

RO and WATCH, the number MESH2 of in te rva ls  between RMATCH and RFINAL, 

and an instruct ion ITAPEltO, which i s  zero o r  blank i f  t h i s  i s  an i n i t i a l  
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run, and nonzero i f  a tape f o r  tape unit 40 has been saved from a 

previous run. The format statement i s  FORMAT(4110). 

CARD 3 contalins the  i n i t i a l  "guessed" e n e r a  E2JERGYO i n  the uni t  

o f  mass used on CARD 1, a r e l a t i v e  convergence c r i t e r i o n  EPSI, the 

number of zeroes NZEROES t o  be expected i n  the  wave f b c t i o n ,  and the 

m a x i m  number of  i t e r a t i o n s  MAXIT t o  be allowed i n  converging toward 

the energy eigenvalue. The program stops a f t e r  the  m a x i m  number of 

i t e r a t i o n s  has been reached o r  a f t e r  the r e l a t i v e  energy correct ion 

becomes l e s s  than EPSI. The format statement i s  FORMAT( 2 ~ l 5 . 8 ,  2110). 
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T O R E  6 N  T A  E ,  



7 2  J = J + l  
C C A L C U L A T E  h ANL) b T U 9 E  Ilh TAPE,  
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4 1  
K = O  
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