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T. Introduction

A siubstantial amount of effort is necessarily being devoted to the
perfecting of means for descyibing partlcle and photon transport phenomens
to the point that, for instance, meaningful shield optimization studies

are possible. It 1

[83]

in general true, however, that the results generated
by any caleculational method, no matter how sophisticated, are only as
valid as the information upon which the calculation is based, be it in the

form of boundary conditions in the analytical context, or correspondingly,

"input" in the numerical sense.

For gamma-ray transport purposes, part of the problem of providing
suitable input information for shield caleculations rests with an adequate
escription of secondary gamma~ray spectra, i.e., spectra resulting from

neutron capture by shield materials. erhaps the priucipal source of
error in representations of neubtron-capture gamma-~-ray spectra lies in the
assumption that has to date been virtually inescapable owing to lack of
information: +that neutron-capture gamms-ray spectra are invariant to
incident neutron energy, or, more specifically, that thermal-neutron
capture spectra are valid for epithermal-neutron capture spectra. In
point of fact, this assumption is warranted only under rather well-
defined circumstances: specifically, in materials for which the epi-~
thermal-neutron~capture cross sectlion 1s negligible, or in cases in which
neutron capture excites the compound nucleus to its conlbinuum energy
range where, by definitiom, the nearest neighbor mean level spacing 1s

so small and consequent overlap of states so pronounced that incident
neutrons of virtually all feasible energles and angular momenta find

a variety of capture chamnels open to thew. It then follows that the
incident energy of a neutron abhsorbed into the compound continuum

does not define a unique or even significantly probable capture state
spin and parity which, in conjunction with spins and parities of lower

lying states, would define radiative transition rates and in turn a

o) g5 Eal Rkt - P s .
characteristic gamma-ray spectrum. Continuum capture is expected to be

predominant for nuclei whose mass mmbers (A) are above 70, with the
exception of those whose number of protons (Z) and/or number of neutrons

(N) are magic or near-magic.
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Several methods have been advanced for the calculation of neutron-
capture gamma-ray spectra resulting from capture into the compound nucleus
continuum. The first, proposed by E. S. Trou'betzkoy,l incorporates dipole
transition probabilities [the relative probability for the excitation of
a state of energy Ef, given a dipole transition from a state of energy
Ei’ varies as (Ei - Ef)s] and the ummodified nuclear evaporation model
expression for nuclear level density. The compound nucleus' level spectrum
is divided into continuum and resolved energy ranges, the latter obtaining
from the compound nucleus ground state to an arbitrarily defined energy

above its highest known (resolved) state.

The second method, proposed by Lundberg and Starfelt,2 is similar
in nature to the Troubetzkoy method except that radiative transition prob-
abllities are derived from an approximation to the so-called giant dipole
resonance by way of the well-known theorem of detailed balance. The
theorem in this instance relates the photon absorption cross section to the
ground~state radiative transition rate. An assumption 1s then made to the
effect that the energy dependence of the ground-state transition prob-
ability from an excited state of energy Ei obtains between any two states

in the nuclear level spectrum separated by the energy Ei.

It should be emphasized that radiative transition probabilities
employed in the foregolng two methods are functions of energy only. Thus,
neither of the methods is capable of describing capture gamma-ray spectra
where transition probabilities are functions not only of energy but also

of spin and parity as prescribed by the nuclear selection rules. This

1E. 8. Troubetzkoy, "Statistical Theory of Gamma-Ray Spectra Following
Nuclear Reactions," Phys. Rev. 122, 212 (1961).

2p. Iumdberg and N. Starfelt, "Gamma Rays from the Capture in Ta and
Au of Neutrons from 1 to 4 MeV," Nucl. Phys. 67, 321 (1965).
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will generally be true fTor nuclel with mass numbers less than 70 and/or
for those with N and/or 7 sufficiently proximate to the magic numbers. In
contradistinction to the continuum situation, mean level spacings are of
such magnitude that neutron capture is for the most part effected into
states well defined with respect to incident neutron energy. The change
in shape of neutron-capture gamma-~ray spectra with neutron energy is then
a consequence of the capture of neutrons of various angular momenta,
generally s wave (zero angular momentum) and p wave (one unit of angular
momentum). A striking example of this is given by Gibbons et al. in an
investigation of eplthermal~neutron-caplture gamua-ray spectra in 2s-1d

shell nuclei.®

This paper is devoted to the development of a methodology for
the calculation of neutron-caphure gamma-ray spectra which accounts

explicitly for spin and parity effects in the determination of radia-

&

sive bransition probabilities. The nature of the problem is such that
both the analytical and subsequent mmerical formulations of the
methodology are thought to be of sufficient interest to merit rather

detailed exposition.

IIl. Cascade Dynamics

Discrete State Formulation

In the formulatlion of nuclear gamma-ray cascade dynamics it is use~-
ful to introduce the concepts of nuclear level population, W(Ei)’ and
gamma partial width, Fy(En’E

1,), where Ei denotes the energy of the ith

nuclear level and En denotes the energy of the level from which a gamma
transition originates. In all cases, of course, En > Ei' The partial
width for = gamma transition from a level En to a lower lying level Ei
can be thought of as a measure of the freguency with which a nucleus
excited to its nth level de-excites by emitting a gamma ray of energy
En - Ei’ neglecting nuclear recoil accompanying photon emission. With
Proper normalization the partial widths correspond to the probabilities

for gamma transitions to all statistically (spin, parity) and energetically

3T Bergquist, J. A. Biggerstaff, J. H. Gibbons, and W. M. Good, "Neutron
Resonance Capture in 2s-1d Shell Nuclei,"” Phys. Rev. iﬁb 32% (1965) .
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accessible levels. Clearly, these probabilities must sum to unity for
each step in the gamma cascade. Level populations, when normalized to a
single neutron capture, render the expected number of excltations of a

given level per gamms cascade.

let us first consider a gamma cascade in some hypothetical nucleus,
all of whose levels are known. Pubting aside for the moment the gquestion
of level spin and parity and the associated nuclear selection rules, the
gamma, spectrum would be completely defined by specilfications of transition
probabilities obtaining between the various known levels, Ei’ In this
instance the cascade can be formulated in terms of the following relation-
ships:

F(En) (1.a)

1}
ﬁ
~
—
=
jn
-
=
=
~
-

MW(E LE.) W(E ) (1.pb)

n’"i’ T T _(E) n

r(B,E;)

—T—(——)-——' W(En) 3 (l.C)

AL(En’Ei) E
¥

1

where L(En,Ei), the line frequency, denotes the frequency wlth which the
gamma line (En - Ei) occurs in the gamma spectrum per cascade, and the
operator A denotes an expected increment in the indicated quantities
associated with a transition from the level En' Equations (1) exemplify,
in the order of thelr occurrence, the following consequences: (a) the
total radiation width of a level is the sum of the partial radlation
widths to accessible lower lying energy levels, (b) an increment in the
level population of the ith level corresponding to a gamma transition
originating with the nth level is given by the product of the probability
that the ith state be excited in the transition and the level population
of the initial state, and (c) the gamma~ray line frequency per cascade
corresponding to the energy En - Ei is enhanced by the same amount as is

the ith level population.
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It should perhaps be emphasized that the gamma width has definite
physical significance in terms of the mean lifetime, t(E), of a state
and, when more than one mode of de-excitation is possible, in terms of the
relative probability of de-excitation by radiative transition, By(E).

In particular,

where I'(E) denotes the sum over widths corresponding to possible modes of
de~excitation of the excited state at energy E. TFor calculations in which
other than the relative magnitudes of partial widths corresponding to gamma
transitions to various energy states are desired, widths may be normalized
by reference to a transition of known strength. In the calculation of
neutron-capture gamma-ray spectra one 1s generally concerned with ratios

of partial to totsl gamme widths as in Egs. (1), in which case such normal-
ization cancels out. 1In this context the absolute magnitude of the gamma,
width is not of interest unless it is so small as to effect for all

practical purposes the end of a cascade.
It follows directly from the above definitions that
-N' r ( k’F )
TI( ] — ,_...... ............
N(Ei) = E (Ek7 W(Ek) (2.2)
k=1i+1

and

I(E,E, )
L(}L F)w 2 \ k (Ek) S[EknEk, -~ (E mEi)] s (2.p)

P E n
el k=1 K

with N denoting the number of states in the energy reglon bounded by the

compound nucleus neutron~capture and ground states.
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Gamma~-ray spectrum calculations typically involve nuclel whose low-
lying levels have been identified as to energy and statistics, but whose
intermediate~ ( > 2 MeV) and high-energy states remain undefined. Further,
for nuclei with mass numbers greater than, say, 7O (and for which the
proximity of Z or N to the magic numbers is negligible), compound nucleus
exciltation energies following neutron capture are well within the nuclear
energy level "continuum" where level spacing is so small and the consequent
overlap of states so great as to make impossible the positive identifica-
tion of a neutron-capture state solely on the basis of a knowledge of the
capture energy. Consequently, the formulation of gamma-ray cascade
dynamics for virtually all materials requires a "statistical" model of
the nucleus. For present purposes, a particularly applicable review of

the statistical approach to nuclear structure has been given by Goldstein.?

Continuum or Unresolved Level Formulation

For compound nucleus excitation energles for which either the mean
level spacing is so small that the level can be said to form a continuum
of states, or where the states are reasonably discrete but unresolved as
to energy, spin, and parity, 1t is convenient to formulate gemma cascade
dynamics in terms of a level deusity, p(E). Here, the sum over discrete
states in Eq. (l.2) becomes an integral of the product of the partial
width for the excitation of a group of levels contained in a unit energy
interval about some energy E and the level density at E. In particular:

B

N
r(e) = L/\F(E,E') p(E') dB' + j{
E, k=1

r(E,E) , (3)

the latter term accounting for N resolved levels below the continum whose
lover energy bound is denoted by EC. In the continuum or unresolved level
context, level populations and line frequencies become, respectively, the

composite populations of all levels contained in some unit energy interval
(population density) and the collective frequency with which gamma transi-

tions involving initial and final states separated by energies common to

%H. Goldstein, "Statistical Model Theory of Neutron Reactions and Scatter-
ing," in Fast Neutron Physics, Part II, Chapter V.J., Interscience Pub-
lishers, 1963.
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some unit energy interval (spectral density) occur. Both quantities are
presumed normalized to a single gamma cascade.

Tn what follows it will be convenient to define excitation prob-

abilities, T(E,E'), given by

DB, B = e £, (1)

The population density obtaining at some cnergy E following a neutron
capture that has resulted In a compound nucleus excitation energy, En’

has the form

i
n
W(E) = S(E) + [ w(E') T(E',E) aB' , (5)
with
e _,E)
il n ——
s(m) = FTE) .

The function S(E) accounts for level excitation at E resulting from an
initial gamma transition originating with the capture state. The integral
expression in Eq. (5) then accounts for excitations resulting from
secondary transitions initiated from excited levels between T and the

"

capture state at En. Discrete level populations in the "resolved" energy

region below the continuum (O <E< Ec) are given by

I N
n
WE,) = S(E, [ W(E') T(E',E) B+ ; we ) (B ,E) , (6)
Ec k'=k+1

with N again denoting the nuwber of levels with known energies and statis-

s

ctics, e spectral density for this case is as follows:
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El

n
L(E) = f aw* ae" w(g') ™E',E") h(E,E',E")
E E
Cc c

N E
n
+ Z f Ww(E*) T(E',Ek) h(E,E',Ek) ag!

k=1 E
c
N k
£ ) ) WE) MEE) MERED L (D
k=1 k'=1

where h(E,E',E") is defined to be the product of two Heaviside functlons,
n(E,E',E") = H[(E' -E") - (E -] H(E+3) -E -EY)] ,

wlth

0, x <0
H(X) = o
1, x>0

Finally, the normalization specified in Eq. (%) assures that

E

n
f L(E") dE":En 3
0

i.e., energy has been "conserved" in the formulation of the gemma cascade

process.

Nuclear Spin and Parity

It was pointed out in an earlier portion of this paper that the
primary motivation for developing the subject methodology had to do with
the inclusion of level spin and parlty in the determination of radiative
transition probabllities. Radiative itransitions between states of an
excited nucleus are governed by the nuclear selectlon rules relatlve to

allowed or (more or less) probable changes in nuclear spin and parity
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accompanying the transitions. These selection rules are in turn a direct
function of the multipolarity and type (electric or magnetic) of the emit-

ted radiation.

While it is not the purpose of this paper to delve into the physics
of nuclear radiative transitions in any detail, some cursory consideration
of the essentials of the theory would be appropriate at this point.* Garmma
rays emitted in radiative transitions between nuclear states can be cate-~
gorized in terms of an index, £, which determines their angular momentum
relative to the emitting nucleus. The index £, together with the designa-
tion of the radiation as either electric or magnetic, determines its
parity. Assuming conservation of angular momentum and parity in the
residual nucleus-photon system, one can deduce the spin and parity of the
post-transition state from the knowledge of the respective pre-transition
state and emitted photon angular momenta and parities. Or, considering
the process from a slightly different standpoint, given a state of known
statistics (spin and parity) from vhich a radiative transition is to take
place, one may determine the photon angular momentum and parity which
will yield a certain set of residual nuclear level statistics. ZEnergy
considerations aside then, the probability for exciting a particular post-
transition state is proportional to the probability for the emission of a

photon of appropriate description.

In the context of this paper only dipole and quadrupole radiative

transitions will be of interest. Table 1 gives the nuclear selection

Table 1. Nuclear Selection Rules for Dipole and
Quadrupole Radiative Transitions

Transition Type Allowed Spin Change*  Parity Change
Electric dipole 0, +1 Yes
Magnetic dipole 0, +1 No
Electric quadrupole 0, +1, +2 No
Magnetic quadrupole 0, +1, +2 Yes

*0 - O transitions are forbidden.

*H. Goldstein "Statistical Model Theory of Neubtron Reactions and Scatter-
ing,"in Fast Neutron Physics, Part II, Chapter V.J., Interscience Pub-
lishers, 1963,
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rules pertinent to gamma radiation of this description. In the formula-~
tion of gamma cascade dynamics one must be concerned not only with the
totality of "allowed" transitions, but more particularly with the relative
probabilities of spin and parlty changes within the set of possible transi-
tions. In addition to the statistical aspects of radlative transition
probabilities there are, of course, energy considerations. The relative
probability for excitation of a level of energy Ef in a transition
originating with a level of energy Ei is given by (Ei - Ef)8 for dipole
transitions and (Ei - Ef)5 for guadrupole transitions. Thus, other con-
siderations aside, quadrupole transitions result in a "harder” gamma-ray

spectrum than do dipole transitions.

With nuclear selection rules and the energy dependence of dipole
and quadrupole transition probabilities in hand, it is possible to define
nmgthematically the spin- and parity-dependent gamma cascade process. The
following definitions will be found useful:

Ps n(E) = density of spin J parity = states at energy E.
2
Wj n(E) = population density of spin J parity = states at energy E.
2
~ 28+1 ' . 22+1
rz’J,n(E) = f(E E) pJ’ﬂ(E ) dB' + z (E-E,,) &(st-1t ) B(TT,)
E k=1
c
22+1
1y _mt '

T["J’ﬁ(E,E ) = (E-E') pJ’ﬁ(E ) Fz’J’K(E).

b(e/m)s (J-J',E) = probability for nuclear spin increment (J-J'), glven
an electric/magnetic radlative transition of polarity, £,
originating from an intial spin J state at E. The
selection rules require that:

J=J'=0

b(e/m)4 (J~J',E) <o

it
O
a

2= 1,2,

1l
o

ble/m)l (J-J,E) , |a-gv) >,

ble/m)2 (J-J',E) |g-3t] > 2;

i
@]
.
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v(e/m) £(J,E) = probability that a radiative transition from spin state J

at E will be electric/magnetic of polarity Z.

A final bit of notation: («ﬂ)ﬂ will denote a change of parity relative
to n if £ is odd, and no change 1f £ is even.
It follows directly from the foregoing definitions that

M]

i "™ il
— 1 a ot Tt 1 1 t '—J‘
WJ’ﬂ(E) ,Z \ f dE {va(J JEY) bel(J'-J,E") TZ,J,(_ﬂ)g(E SE)

A
J' ¢ T
+ pmf(J',EY) tme (3 'J,E') T, ., \sp41(E',E) (8.a)
«eJJ ("‘T[)

E B!

0

L(E) = > Z ag! f ag" wJ,ﬂ(E') h(E,E',E") {peﬁ(J,E‘)
Jyn J' 8 E, F,

. . Tt 1 _ Wi E”
bef(J~T',E") Tz’d,(_ﬂ)z(h LE")

+ pmf(J,E') bms (J-T',E') T, J,(_ﬂ);’xl(E‘,E")} (8.9
2

The sum over £ implies that dipole and gquadrupole radiation has been taken

into account.

A resmme of the pnysics of neutron-capture gamma radiation as it
pertains to the phenomenclogical approach of this paper must necessarily
include a brief discussion of the quantum mechanics of a neutron inter-
action with the nucleus. This is, to a point, the simplest of two-body
problems to treat in that the system potential vanishes outside the
(arbitrarily defined) nuclear boundary. The Hamiltonian is then Just
that of the kinetic energies of the neutron and aucleus in the center-of-
mass coordinate system. The sclution of the wave equation under these
circumstances is a plane wave cof the form eikz, where z denotes the dis-
tance between the nucleus and the incident neutron. The latter can be

expanded into spherical harmonics, or so-called partial waves, of order

£, vhere £ 1s an integer defining the angular momentum associated with
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the partial waves. Purther analysis results in a decomposition of the
neutron~capture cross section into various £ components corresponding to
the relative probabilities of the capture of neutrons with associated
angular momenta. In additlion to bringing to a reaction differing angular
momenta, the partial waves determine, in conjunction with the ground-state
parity of the target nucleus, the parity of the compound nucleus capture
state., In particular, odd-£ angular momenta result in a capture state
parity change relative to the target nucleus ground state, whereas even-
integer momenta preserve the target nucleus ground-state parity in the
compound nucleus capture state. Here, of course, the incident neutron is

presumed to interact with the target nucleus in its grownd state.

The foregoing discussion has, under certain circumstances, profound
implications for the shape of neutron-capture gamma-ray spectra. The
nuclear energy level spectrum is composed of the superposition of spec-
tra of various angular momenta and parity. An excited state de-excites,
usually te lower lying levels accessible through the application of the
selection rules of Table l. For example, consider neutron capture by and
subsequent de-excitation of a target nucleus with ground-state spin and
parity J° = %#. Consider first the capture of an s-wave (£ = 0) neu-
tron. The neutron brings to the reaction an intrinsic spin angular
momentum, 1/2. According to the vector addition rules, compound capture
states of the following description are accessible: JJT = O+, l+. If a
ot state 1s formed, a ground-state transition (0 - 0) is strictly for-
bidden. If, on the other hand, a 1¥ state is formed, a ground-state
transition 1s still relatively improbable since such a transition would
be either magnetic dlpole or electric guadrupole in nature. As discussed
in a subsequent portion of this paper, these are generally, though by
no means always, improbable relative to electric dipole transitions.

Assume next that the target nucleus described gbove captures a p-wave
(£ = 1) neutron. The accessible compound capture states are: Jn = O_,
17, 27, The O capture state camnot result in a grownd-state transition
(0~ 0). However, the J]T = 1  state can de-excite by way of a ground-
state transition by elther an electric dipole or a magnetic quadrupole

transition. The latter is expected to be several orders of magnitude less
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likely then the former. TIn sumabion, then, an s~-wave capture would
result in a capbure gamma spectrun essentially devold of a ground-state
transition, whereas a p-wave capture spectrum might exhiblt a rather
strong ground-state line. Of course, this sort of an argument i1s relevant
to any compound nucleus state and the consequent enhancement or suppres-
sjon of the gamma line corresponding to an initial capture state transi-

tion to it.

The effect of spin and parity on the relative probability of high-
energy gamma brensitions can be appreciable in a slightly less obvious
way. Assume for the moment that the relative probabilities for spin
changes consistent with the selection rules (hereinafter to be referenced
as spin branching probabilities) are equal for dipole and quadrupole
transitlions for all spin states. In this simple context the probabllity
for a gamma transition from some initial state to one of a group of
accessible final states is primarily a function of two quantities:

(1) the energy difference between the two states, and (2) the number of
accessible final states. In general, the more numerous the possible
transitions, the less the probability for any particular one. The density
of nuclear spin states is expected to be spin dependent. In particular,

DJ(E) = DO(E) (8,J), £(B,J) <1, J>0
and

r(e,d") < £(8,J), J'>J ,

where DO(E) and Ib(E) are, respectively, the mean level spacings for spin
zero and spin J states, and f(E,J) is an as yet undefined function of
spin and energy relating the two. Thus, for the stated conditions on the
spin branching paramecters, the higher the spin of an excited state, the
lower the probabllity for a radiative transition to a given statistically

gcecessible state.
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IIT. DNumerical Formulation

Equations (8) formally define the spin- and parity-dependent gamma
cascade process. The problem of a tractable numerical formulation of the
methodology, however, still remains. The approach taken in the calcula-
tions exhibited in this paper 1s embodied in a digital computer code,
DUCAL, written in the FORTRAN-63 and FORTRAN-IV languages for use on the
CDC-1604 and IBM-T7090 and -360 machines, respectively. It can perhaps
be best described in terms of FORTRAN-like variables actually used in the
code. Thelr definition, in some cases, will closely resemble variables
defined in the analytical formulation just discussed. One main difference
between the analytical and numerical approaches rests with the fact that
in the latter it will be necessary to index many variables with respect

to the gamma cascade transition number.

As in the analytical formulation, the index £ may take on values of
one and two corresponding to dipole and gquadrupole transitions, respec-

tively. 'The following variables will be useful in the discussion:

T(E/M) £(I,J) = spin branching probability, the probability that an
electric/magnetic radiative transition of polarity £
originating with & spin I state excites a spin J state.
The angular mcmentum selection rules are taken into ac-
count in the calculation of the probability of the

various spin changes.

P(E/M)zr = relative probability for an electric/magnetic radiative
transition of polarity £ to a resolved energy level.
P(E/M) zu(x) = relative probability for an electric/magnetic radiative
transition of polarity £ to an wmresolved level for the
Ith cascade transition. [Note that the cascade transi-
tion index appears in the unresolved level transition
probabilities but not in their resolved counterparts.
The relationship between the two types of probabilities

is discussed 1n conjunction with Eq. (13).]

PPL(I,J) = probability that the Ith cascade transition originates

with an even parity, spin J state.
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PMI(I,J) = probability that the Ith cascade transition originates
with an odd parity, spin J state.
For compound nuclei with integral spins, the first indexed state corresponds
to a spin zero state, while for odd half integral spin nuclel the index

"1" denotes a spin 1/2 state.

From the foregoing definitions it follows that

J+1.

PPL(I,J) = }A {?Elr-TEl(J',J)-PMI(le,J') + Per-TMl(J’,J)-PPL(Ial,J')}
J'=JD
N2
+ {?E2T.TE2(J‘,J).PPL(IHI,J’)
J=JQ
" PMzr-TM2(J',J)-PME(I-l,J')}— (9.a)
and
J+1
PMI(T,J) = }T PEL W TEL(J,J) «PPL(I-1,J') + PML .TML(J',J)
J'-dD
J+2
PMI(I—l,J')} + } {%EET-TEQ(J',J)-PMI(I-l,J')
TI=Iq
+ PMET-TME(J’,J)-PPL(I-l,J')}- , (9.1)

Note that no energy dependence is associated with PPI(I,J) and PMI(I,J).
Equations (9) and Table 2 are presented in the rather detailed form for
illustrative purposes only. Henceforth, an attempt will be made to keep
the notation somewhat more compact. Equation (9.2), for instance, may be

written as
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Tgble 2. Sum Iimits as a Function of Nuclear Spin

Spin State (J) JD JQ

0 2 ’ 2
1
= 1 1
2
1 1 1
2 1 1
2

>2 J-1 J-2
2 -1 T2

25 J

PPL(I,J) =§ Z {Pmr TE4(J',d) [PMI(I-1,J') &(£-1) + PPL(I-1,J') 5(2-2)1]
J' ¢

+ pme” me(3t,d) [PMI(I-1,J7) 8(£-2) + PPL(I-1,J') 5(£-1) ]} ,  (10)

where the J' summation extends over all spins of interest. Idmits on the
J' summation are redundant in view of the fact that angular momentum
selection rules have, by definition, been incorporated into the spin

branching probabilities.

Let En and EC define, as previously, the neutron-capture state
excitation energy and the (arbitrary) energy separating the resolved and
unresolved portions of the compound nucleus level spectrum, rvespectively.
This interval is divided into an arbitrary number of energy subintervals
or bins. Each bin is assigned a population, W(I,J), indexed according
to cascade transition number and relative position (top to bottom) within
the (En’Ec) energy interval. The transition index, I, denotes the step
in the gamma cascade during which the energy levels contained within bin
I are excited W(I,J) "times." Thus, W(I,J) is in fact the total increment
in the bin J bounded level populations associated with Ith gamma transi-

tions from all higher energy bins [see Eq. (18)]. It is perhaps worth
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emphasizing here that Ith transition photons can be emitted from all
bins, where J < I, and from all resolved levels. For instance, the
first transition from the compound capture state will scatter W(I,J)'s
among all energy bins and resolved levels. F¥ach bin and level then

becomes a source for second transition photons.

For the energy range Ec <E< En some assumption must be made about
the level spectrum. The actual energy level spectrum of a nucleus is a
composite of sets of levels characterized by various combinations of spin
and parity. Jevel spacings of each spin parity set are assumed to be
distributed statistically in energy about some spin- and energy-dependent
mean level spacing. The latter were defined Tor the calculations
exhibited in this paper by an expression suggested by Newton® for the
mean level spacings of spin zero states, Dg. The Newton formulation for
Do takes into account pairing energies (even-odd nucleon effects) and
the effect of proximity to the magic numbers and the attendant marked
increase in mean level spacing. The mean level spacing is expected to
vary with spin, J, roughly as (2J + 1) *. Bloch” has proposed a somewhat
more realistic expression to account for the spin dependence of level
spacing as follows:

-J2/2c®  -(J+1)B /207
(J,E) ~ e - e s (11)

o being a slowly varying empirical function of energy. When the parameter

g is available, Eq. (10) spin dependence is used in spectrum calculations.

For each gamma transition from either the capture state or the
energy bins in the compound nucleus excitation interval, Ec <E < En,
a nuclear level spectrum is constructed based upon a composite mean
level spacing which is dependent upon energy and transition nuiber and is

defined by the relation

ST. D. Newton, "Shell Effects on the Spacing of Nuclear Levels," Canadian
J. Phys. 34, 80k (1956).

7C. Bloch, Phys. Rev. 93, 1094 (1954).
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NJ
D(L,E) = E

)

J'=1

{%PL(I,J') + PMI(I,J')}' DO(E) f(E,) , (12)

where NJ denotes the number of spin states to be considered and I and J'
are, respectively, the transition number and spin. The result, by way of
emphasis, is a welghted average of the mean level spacings of accessible

spin and parity states for the Ith gamma cascade transition.

As indicated previously, the superscripts r and u on the symbols
denoting multipole transition probabilities define the probabilities for
the indicated types of transitions to states in the resolved and unresolved
energy ranges, respectively. The P(E/M)rﬁ are the probabilities that are
predicted theoretically, without regard for the avallability of lower
lying states of appropriate statistics to which such transitions are
"allowed." They are not always applicable within the context of the
composite level spectrum formulation embodied in Eq. (12). Specifically,
compound mean level spacings rendered by Eq. (13) are predicated upon the
assumption that the mean level spacings of states of spin J (even and odd
parity) defined in Eq. (12) obtain over the entire unresolved energy
range of the compound nucleus. It may well be, however, that for certain
energy bands within the unresolved region, mean level spacings of states
of particular spin and parity may differ significantly from their expected
values., Such an eventuality may substantially influence the shape of
capture gamma-ray spectra when the.energy band composes, say, the lowest
10 percent of the unresolved range, and in addition the spins and parities
of the affected states render them accessible through capture state

transitions.

Excitation of unresolved states near the resolved-unresolved energy
boundary is heavily favored over the excitation of higher energy states
due to the energy dependence of the radiative transition probabilities.
Thus the total contribution of unresolved states to a particular cascade
transition rests almost exclusively with accessibility of states in the
lower portion of the unresolved level spectrum. In order to account for
the effect of significant local irregularities in mean level spacing

in this region, spin~ and parity-dependent mean level spacing functions,
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+
pj((

of even and odd parity, respectively. The functions are intended to

J), are defined. The superscripts + and -~ refer, as usual, to states

represent ratios of mean level spacings expected on theoretical or ex-
perimental grounds to those predicted in Eq. (12). The relationship
between resolved and unresolved electric dipole transition probabilities

has the form

PEL™(T) EE}» [PPL(L,d) p;(J') + PMI(I,J) p;(J')]oTEl(J,J')-PElr

SR
Similar expressions hold for the other unresolved transition probabilities.

With the composite mean level spacing in hand, an actual nuclear
level spectrum is constructed by a Monte Carlo technique by which con-
secutive level spacings are determined by repeatedly sampling from a
Porter~Thomas or chi-square distribution with "four degrees of freedom."®
This probability density function has the form

P(x) dx = Lx e X ax , (13)

waere
x = 5/D(LE) ,

S being the variable level spacing. The maximum of the distribution (13%)
occurs at x = 1/2. The mean value of x is unity, which in turn yields
a mean level spacing equal to D(I,E) for the constructed spectrum. In
practice the distribution (13) is repeatedly sampled untll an energy
belOW'Ec is reached at which point the last level is discarded and the
vrocess terminated. OSince the sampling equation
X
fP(x') ax' = p ,

0

8C. E. Porter and R. G. Thomas, Phys. Rev. 104, 183 (1956).
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where p is a random number < 1, is transcendental in x, the actual sampl-

ing 1s effected by means of a rejection technique.9

Finally, a level density 1s formed by imposing a probability
density function in the form of a chi-square distribution with two
degrees of freedome about each statistically determined level energy.

This distribution function is a simple exponential, i.e.,

P(x) ax = 5™ ax (14)

with x defined relative to the statistically determined level energy, Eo,

a.s

x= |E - Bo| /D(I,E) .
The normalization factor 1/2 ensures that

o0 e o)
j‘ P(x') ax' = 2 ] P(x') ax' =1 .

-0 e}

The net result is thus a set of probability density functions of the form
(14) distributed about statistically distributed midpoints.

Iet Ek-l’ Ek’ Ek+l’ and Ek+2 be four consecutive level probability
density function midpoints generated by random sampling as per Eq. (14).
The resulting "level density" fumction for the Tth transition,

Ek >E > Ek+l’ has the form
X -
p(B) = 5 i(oo) exk"l + = - + = s + F(N) R
{ ,Fk_‘lj D(L,E) " D(LE ) ~ D(LE_,) e , (15)

with

X, = (E - Ek)/D(I,Ek) ,

SHerman Kahn, Applicatlons of Monte Carlo, Rand Corporation Report ARCU-
3259 (April 19, 195L).
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F(m) = z em£ 3
£=0

where N denotes the number of statistically generated energy levels in

the interval Ec <E<SE The functions F(n) represent the contributions

k+2°
of levels above and below the energy interval of interest.

Tet EJm define the midpoint energy of energy bin J, i.e.,

1
Bn =5 [Byg + Byl
Then, define
E
K Jm
GMLJ)EZ‘DM%I)+HMWD .Lf (%m-EW%£LMLEWdF
;

E
c

N
+ 2{ }; B, - £(x) 194+ [PPL(I-1,L) + PMI(I-1,L)]

4{ PELT.TEL [1,0(K) ] [s(z -1) 8[1+ n(K)] + 8(£ - 2) B[1 ~ n(K)]]

+ PMeY(L) ML [, T(K) ] [5@ - 1) 3[1 - =(X)]

+5(2 -2) 8[1 - ﬁ(K)]} }- (16)
where m(K) = +1 with Kth energy level of even/odd parity. Further, let
Yam 28+1
Kz[(I,J',J)] = /D (EJm - EV)” o(I,E') daE' / ce(1,J) . (17)
..Jc

In terms of these definitions, the expression for bin populations as a

function of transition number (I) and bin index (J) becomes:
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J+1 W |
W(I,J) = Z W(I-1,J') Z } {Pm“(l) +PM@“(I)} K4(I,L,J) , (18)
Ji=1 4 I=l

and the transition~dependent level population is given by

[ . N
WL(I,K) = Z W(I-1,J") } } [[PEﬁu(I) +e(D)] B - B(K) b+l
Ji=1 r I-1

[E

_ g(x) 14T / GL(I,J')] [PPL(J,L) + PMI(I,L)]

{PEf TEL[L,J(K) ] [5(3 - 1) 31+ x(K)] +8(e -2) 3[1 - n(K)] }

+ PMe” Mg [1,(K) ] [a(z - 1) 8[1 - n(K)] +8(e - 2) 8[1 + n(K)] }}

+ inter-level terms. (19)

Equation (18) for the composite level population of the Jth energy bin 1is
the transition-dependent numerical formulation equivalent of its analytical

counterpart given in Eq. (8.a).
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