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1. INTRODUCTION 

I 

The s imilar i ty  between the convolution integral' and the  Fourier 

transform in tegra l  has probably been recognized by mathematicians fo r  

many years; however, an application of t h i s  s imilar i ty  t o  the  task of 
calculating Fourier transforms numerically has apparently not been 

widely appreciated. The basic method described i n  t h i s  paper w a s  

reported by Broome and Cooper2 who implemented it using an analog 
computer. I n  many applications, however, it i s  more convenient t o  

work with digi t ized data and a d i g i t a l  computer analysis code even 

though sampling problems might be introduced. 
This method of d i g i t a l  f i l t e r i n g  has several  advantages over t h e  

conventional, d i rec t  integration method: 

1. Computing time fo r  the f i l t e r  method i s  roughly one-third tha t  

of the d i rec t  method, which may be significant e i ther  i f  large 

volumes of data a re  t o  be processed or  i f  t he  computation i s  t o  be 

done " on- l i ne  . " 
2. Linear f i l t e r i n g  theory has been developed extensively, while 

t he  problems of numerical integration of products of sampled data 

functions a re  apparently not well u n d e r ~ t o o d . ~  It appears t ha t  

f 

extensions of t h i s  method could easi ly  lead t o  a be t te r  understanding 

of the errors  i n  numerical Fourier transform calculations due t o  

noise i n  the function being transformed, and hence t o  be t t e r  ways of 

estimating these errors .  

Subsequent t o  the  development (but not the  reporting) of t h i s  

technique, a method devised by Cooley and Tukey has been reported t o  be 

'Convolution i s  al ternat ively referred t o  as the superposition 

theorem, Green's theorem, and Duhamel's theorem. 

2P. W .  Broome and G .  C .  Cooper, "Fourier Spectrum Analysis by 

Analog Methods, " I n s t r .  Control Sys. a( 5 ) ,  155-60 (May 1962). - 
'S. Lees and R.  C .  Dougherty, Refinement of t he  Pulse Testing ,* 

Procedure-Computer Limitations, Dartmouth College Research Report (Oct . '64) 
i 
5.- 
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4 orders of magnitude faster than d i rec t  integration. Consequently, 

for  applications requiring significant reductions i n  computing time, 

the  Cooley-Tukey algorithm would be the  l ike ly  choice. 

2 .  DESCRIPTION OF THE MGTHOD 

The Fourier transform of a time-varying function f ( t )  i s  a 

frequency-domain function F(cu) given by 

00 
-jut 

F(w) = J f ( t )  E d t  , 
where 

LU = radian frequency, 

j = J-1. 
Equation (1) can be divided in to  i t s  r e a l  and imaginary parts:  

PD OQ 

F(w) = $ f ( t )  cos ut d t  - j $ f ( t )  s in  ut d t .  (2 1 
-a -00 

Thus t o  calculate t h e  Fourier transform direct ly ,  the products of 

two time-varying functions must be integrated.  

The convolution in tegra l  gives the output of a l inear  system, or 
f i l ter ,  a t  any t i m e  t as a function of an input applied at  previous 

times, f ( T ) :  
t 

g ( t )  = J f(d h(t-T) do ( 3 )  
-00 

out put of input t o  response of f i l t e r  
f i l t e r  at  f i l t e r  a t  a t  time t t o  an 
t i m e  t t i m e  T impulse applied 

a t  t i m e  T 

where t h e  function h ( t ) ,  the  response of a l inear  f i l t e r  t o  an impulse 

applied at  t = 0, i s  known as t h e  impulse response or weighting 

function of the  f i l t e r .  

integration of t he  product of two time-varying functions similar t o  

each term of Eq. ( 2 ) .  

(2)  and (3) w i l l  make them equivalent. 

Thus the  convolution in tegra l  i s  a l so  an 

Furthermore, a f e w  manipulations of Eqs. 

Hence, t o  apply convolution 

8 

4J. W .  Cooley and J. W .  Tukey, "An Algorithm fo r  t he  Machine 

Calculation of Fourier Series," J. Math. Comp., 297,(April 1965) - 
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t o  the problem of calculating Fourier transforms, the  output time 

responses of f i l t e r s  w i t h  t he  appropriate weighting functions (i .e. 

cos ut and s i n  c u t )  a re  calculated fo r  an input perturbation f .  

the  outputs of the  f i l t e r s  a t  a par t icular  time w i l l  correspond t o  the  

r e a l  and imaginary par ts  of the Fourier transform of f ( t )  . 
Then 

To equate the  convolution in tegra l  t o  the  Fourier transform 

integral ,  we first make the upper l i m i t  of integration i n  Eq. (3) 
zero, which can be done i f  f ( 7 )  can be made zero f o r  a l l  posi t ive time: 

0 
g(0) = J f ( 7 )  h ( - T )  d T  (4) 

-00 

Equation (4) shows tha t  the  f i l t e r  output at  time t = 0 would 

be equivalent t o  the r e a l  (or imaginary) par t  of the Fourier transform 

of f (7 ) ,  Eq. ( 3 ) ,  i f  h(-7) were equal t o  cos ut (or -s in  u t ) .  

For the  r e a l  part ,  since cos ut i s  an even function, then cos cut = 

cos(-cut) and h(-7) = h(7); so Eq. (4)  becomes 

0 0 

R e  [F(cu)] = %(O) = $f(.r) h(7) d7 = J f ( 7 )  cos(7) d t  ( 5 )  
-00 -0c) 

On the other hand, since s i n  Cvt i s  an odd function, then -sin ut, = 

s in(&)  and hl-7) = - h ( T ) ;  so t h e  solution f o r  the imaginary par t  i s  

0 0 
ImfF(cu)] = gI(0) = - J f ( T )  h ( T )  d,T = - J f ( T )  s in(7)  d7 . (6) 

Usually t h e  response of t he  system t o  be analyzed, f ( t ) ,  w i l l  be 

- w  --o 

a function which has nonzero values fo r  0 < t < T, and zero values fo r  

negative t and for  times greater than T shown i n  Fig. la. 

two methods t h a t  we can use t o  make the function tha t  w e  analyze zero 
fo r  a l l  posit ive time: 

i . e .  f ( - t )  shown i n  Fig. lb, or s h i f t  it by a t i m e  T, i . e .  f ( t + T )  

shown i n  Fig. IC. 

- -  
There are 

w e  can e i ther  reverse the  direct ion of f ( t ) ,  

P 

c 
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a. f ( t )  

f(7) = f ( - t ) / -  / 

b. f ( - t )  

f (7 )  = f ( t + T )  / 

Fig. 1. Original Time Function w i t h  Time Reversal and S h i f t .  

2.1 Method 1,Reversing f ( t )  : f ( - t )  

If the actual  function transformed i s  f ( - t ) ,  rather than f ( t ) ,  

the relationship between t h i s  resu l t  and the desired transform of f ( t )  

must be determined: 

L J --OO -00 

which i s  jus t  the  complex conjugate of F(o). 
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-&J (t - T) dt 

d t  . (8) -jut 

The equation i s  
00 

I n  t h i s  case, the  desired resu l t  i s  obtained by correcting f o r  a 

phase s h i f t  of LcQ7 radians. 

3. DIGITAL FILTER SIMULATION 

A key fac tor  i n  the  method i s  t h e  accurate d i g i t a l  simulation of 

t he  response of a cosine - sine f i l t e r  (e.g. an undamped spring-mass 

system) t o  an a rb i t r a ry  forcing function. This i s  accomplished by 
means of t he  matrix exponential technique. 5,6 

The d i f f e r e n t i a l  equation f o r  a system which osc i l l a t e s  with a 

frequency w i s  

2 2 

dt2 
- d x  + c u x = o .  ( 9 )  

Alternatively, Eq. ( 9 )  can be put i n  the  form of two f i r s t -order  

equations and made t o  include a forcing flmction z,(t): 

The solut ion of Eq. (10) when 

i s  a unit impulse function applied 

xl(0) = x2(0) = 0 and z ( t )  

at t = O+ i s :  

s 

6. 

'H. M. Paynter and J. Suez, "Automatic Dig i ta l  Setup and Scaling 

of Analog Computers," Trans. I n s t r .  SOC. Am. 3, 55-64 (Jan. 1964). - 
$3. J. Ball and R.  K .  Adams, "MA!TMP" - A General Purpose Dig i t a l  

Computer Program f o r  Solving Ordinary Dif fe ren t ia l  Equations by t h e  

Matrix Exponential Method, ORNL-TM- ( i n  preparation) . .  

!., 
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x,(t) = cos ut, 

%(t) = -sin cut . 
This corresponds precisely t o  the impulse responses of the sine and 

cosine f i l t e r s  which were required t o  sa t i s fy  Eq. ( 4 ) .  
To obtain the  general solution t o  Eq. (lo), it i s  convenient t o  

convert Eq. (10) t o  matrix form: 

- =  A x + z ,  
d t  

where 

x =(l;) ) 

The exact "incremental" solution of Eq. (Q), which updates X 

by a time 7, i s  

X ( t  + T) = eAT X(t) + (cAT - 1 ) A - l  Z ( t )  , (13) 

i f  we assume t h a t  Z i s  constant between t and (t  + 7 ) .  

evaluating the eAT and ( E  

Hence, by 
AT - 1 ) A - l  matrices once ( f o r  each a), X can 

be successively updated by two matrix multiplications. The ser ies  

form of €AT is 

AT ~+ (A.,)j+ ...... 
3: 

EAT = I + - +  
1: 2! 
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I b$? + k2.f - .... 
1 -  g + .$. - .... 

4 
5: CUT - 3. .@ + ,o - e . . . .  

4! 

3: 5: ..... JCUT)3 - ( a 4 5  + 

-['- 
a+ 

Thus 

EAT = [cos ut s i n  ut] 
(15) 

-sin ut cos ut 

Expanding (cAT - 1 ) A - l  i n  the same manner, we eventually get 

s i n  CUT 1 - cos CUT 

(16) 
s i n  CUT 

Substi tuting Eqs. (15) and (16) i n t o  (13) and expanding, w e  get  

. .  . .  

s i n  OM xl(t + T) = cos UT xl ( t )  + s in  CUT x 2 (t) + 
CU z J t )  , 

15 

(17) J 

q t >  ". ' 
cos cu7 - x2(t  + T)  = -s in  UT x,(t) + cos COT %(t) + 

CU 

Since t h i s  solution is  "exact" only when z 

it might appear tha t  greater accuracy could be achieved by using a 

trapezoidal (or  higher order) approximation t o  z,(t) . However, as 

Fourier transform calculation of the  form 

i s  a s ta i r - s tep  function, 1 

Lees 3 has pointed out, t h i s  resu l t s  i n  a correction term for t he  

Ftrue x ('stairstep, (u)) (correction term (a) 

However, the  Fourier transforms are usually used t o  calculate  the  

t ransfer  function G(cu) of a system from the  r a t i o  of output-to-input 

Fourier transforms: 

G(cu) = -4 Fout ut  . 
Fi nput 

-7. 
With the assumption tha t  the same sampling in te rva l  T i s  used fo r  

both input and output, the  correction terms fo r  both the  input and 

output transforms w i l l  be the same and w i l l  cancel out. Hence nothing '6; 
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Noise- 
Shaping 

F i l t e r  - 

, $ j '  . i s  gained by using higher-order approximations t o  the  forcing functions. 
4 

c 2 
q 

Integrator 4 
Squaring 
Device 

I 

, 
4. ESTIMKL'ION OF ERRORS I N  FOURIER TRANSFORM CALCULATIONS DUE TO NOISE 

, I  An elegant method fo r  determining the mean-square response of 

l inear,  constant-coefficient f i l t e r s  t o  random noise inputs has been 
a part  of the  analog computer l i t e r a tu re  fo r  many years. 7r8 This 

method ( i . l lust ra ted i n  Fig. 2 )  i s  based on the equivalence of the  

correlation function of white noise and a uni t  impulse function 6 ( t ) .  

Ll 

Fig 2 Impulse-Response Method fo r  Mean-Square Output Response. 

A noise-shaping f i l t e r  (Fig. 2 )  i s  used t o  account for  differences 

between pure white noise and the  ac tua l  input noise seen by the l inear  

f i l t e r ,  which i n  t h i s  case would be noise i n  the  signal t o  be Fourier 

transformed. 

of the  white noise input (before being shaped). 

t he  steady-state output of t he  integrator equals the  mean-square out - 
put of the f i l t e r  due t o  the Gaussian noise input. 
applying t h i s  method t o  the  s ine or cosine f i l t e r ,  however, i s  t h a t  

t he  integrator output would never reach a steady s ta te ,  but would 

continue t o  increase w i t h  time, indicating tha t  the error  components 

of t he  r e a l  and imaginary part  estimations would increase w i t h  

The gain factor  No i s  the power-spectral density (PSD) 

Analysis shows tha t  

The problem with 

7A. E. Rogers and T.  W .  Connolly, Analog Computation i n  Engineering 

Design, McGraw-Hill, New York, 1960, Chapter 7. 

J. H .  Laning and R .  H. Battin, Random Processes i n  Automatic 8 

Control, McGraw-Hill, New York, 1956, pp 90-144. 
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integrating time 

A detai led analysis of t h e  e f fec ts  of noise i s  beyond t h e  in ten t  

of t h i s  report, but it i s  hoped t h a t  these observations might serve 

gs a s t a r t i ng  point f o r  fur ther  investigations.  

5 .  DESCRIFTION OF THE FOURIER TFANSFoIiM CODE FOUFK!O 

FOURCO has been set up as a general purpose Fortran IV code f o r  

calculating the  Fourier transform of sampled input data (KI) and output 

data (FO), and f o r  pr int ing frequency response functions for up t o  

100 selected radian frequencies ( W ) .  

subroutine DATAIN, which can easily be a l te red  t o  s u i t  t he  format of 

t h e  par t icu lar  data. There i s  no nominal l i m i t  on the  number of data 

points t h a t  can be processed, because t h e  code w i l l  read i n  successive 

The data i s  read i n  by t h e  

batches of 10,000 time samples as required, process each one as it 
goes u n t i l  it reaches t h e  end of a run, and then w i l l  compute the  

frequency response. Because of the batch data option, the second 

method of sh i f t ing  f ( t )  i s  used i n  preference t o  t h e  reversed input 

f (  -t) The sh i f t i ng  method i s  a l so  be t t e r  sui ted t o  on-line calculat ions.  

A variety of options i s  provided by FOURCO; t h e  choice of which 

option t o  use sametime depends on the  type of s igna l  being analyzed 

(i .e. periodic or aperiodic) or on personal preferences. 

of t h e  choices by t h e  user i s  made by se t t i ng  the  option f l ags  M ( 1 )  
through M ( 5 ) ,  as follows: 

Specification 

1. Data Read-in and Processing Option, M ( 1 )  

M( 1) > 0: 

points (FI).  

\ 

Read i n  (and process) only M( 1) input function data 
Read  i n  FO u n t i l  a blank card i s  

encountered. 

M ( 1 )  = 0 :  Read i n  both FI and FO unt i l  a blank card i s  
encountered . 

M ( 1 )  0 :  Read i n  (and process) a single input function ( 3 0 )  only. 

\ 

I 

,?- 

\ I  
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$1 2. Frequency Option, M(2) 

M(2) > 0: 
M(2) = 0: 

Read i n  a l l  M(2) frequencies, W( 1) up t o  W( 100). 

Frequencies t o  be harmonics of the  fundamental 

I 

(WO), up t o  a l i m i t  WFIN, wi th  a minimum spacing 

of DW; i .e.,  i f  W ( I + l ) ) W ( I )  C DW, the  next harmonic 

frequency would be substi tuted fo r  W (  I+1), e t c  . , 
u n t i l  w +& I+1 Dw. 

M(2) < 0 :  Frequencies t o  be equally spaced on a logarithmic 

plot between WO and WEN, where W ( 1 )  = 

IM * w(1-1 ) ;  lm > 1.0. 

3. Input Data Printout Option M(3) 
M(3) > 0: 
M(3) = 0: 
M(3) < 0: No printout.  

4. Bias Selection Option, M ( 4 )  

Print  FI and FO data as read in .  

Print  FI and Fo data a f t e r  subtracting bias .  

M(4) > 0: 
M(4) = 0: 

Subtract average values of FI and Fo before processing. 

Subtract f i rs t -point  values of FI and Fo before 

processing 

5. Ensemble Average Option, M(5) 
M(5) > 0: 
M(5) 5 0: O m i t  option. 

Average and p r in t  M(5) data set transforms. 

A magnitude r a t i o  correction factor  COR i s  a l so  read i n  so that 

different  scale factors  for  FI and FO can be accounted fo r .  The 

magnitude r a t i o  printed i s  the r a t i o  of output-to-input from raw 
data calculations multiplied by COR. 

The computation times for  FOURCO are  roughly proportional t o  the  

number of input data points multiplied by the  number of frequencies 

calculated. The basic (and most time consuming) calculation i s  
uGdating the f i l t e r  outputs; t h i s  requires s ix  f loa t ing  multiplies 

and four f loat ing adds per step.  Approximate running times on the 

IM-7090 are  given by 
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where 

:* !. 

T = running time, min, 
-6 K = 5.0 x i o  , 

NT = total  number of data points and analyzed, 
NW = number of frequencies. 

K i s  somewhat larger  i f  the  input data printout option i s  selected.  

A typ ica l  analysis of 12,500 input and output data points a t  47 
frequencies took 4 min w i t h  input data printout.  

6. APPENDIX 

6.1 FOURCO Input Instructions 

The input data arrangement fo r  a typ ica l  case i s  sham i n  Fig. 3 .  

TITLF: CARD 

Flg. 3 .  FOURCO Input Data Layout 

The t i t l e ,  option, and frequency cards a re  se t  up w i t h  the  

following f o m t  : 

1. T i t l e  Card (12A6) 
Any 72 a l p h a m e r i c  characters 

h 



2.  Option Card (6x5, 2F10.0) 

M ( 1 )  t o  M ( 5 )  = Option f lags  (see Sect. 5 ) .  
IYll = Sampling in te rva l  

COR = Magnitude r a t i o  correction factor  

3. Frequency Card(s) 

a. If M(2) LO: (3FlO.O) 

W F I N  

F10.0 F1O.O F1O.O 

WO = minimum radian frequency 

DW = frequency spacing fac,tor (see Sect. 5 )  
W F I N  = high frequency l i m i t  

.. 

b. If M(2) > 0: (8F10.0) 
I 1* 

w ( 1 )  I w(2) I ....... up t o  8 per card 
F10 .O F10 .O 

Total number of W ' s  read i n  = M ( 2 )  

W(I)  =I radian frequency. 

6.2 Fy>URCO Fortran Listing 

FOURCO i s  writ ten i n  Fortran I V  f o r  the  IEM-7090 computers at  
t h e  Oak Ridge Computing Technology Center. 

binary decks &re available from the  author on request. 

Copies of the source or  
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B I B F T C  M A I N  DECY, 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PR0GRAE.I FOURCO 
D I G I T A L  F I L T E R  FOURIER TRANSFORM CODE 

OPTION CCDE 
M ( I )  

PCS b NO. DATA PTS. FOR INPUT F I  ( P I J L S E )  
0 # NO. DC.TA P T S  FOR F I  AND FQ EQUAL 
NFC b SINGLE INPUT ( FO)  ONLY 

POS P READ I N  ALL V ( 2 )  W-s 
0 # vJO + HAPVONICSs DW#KIN. SPACING 
NEG # W (  1 + 1  ) # W (  I )*DW 

M ( 7 )  

M ( 3 )  
POS # PRINT F I I  FO DATA A S  READ 
0 k' P R I N T  AFTER SUBTRACTING B I A S  
NEG # NO PRINTOUT 

POS # SUBTRACT AVERAGES T O  PROCESS F I ,  FO 
0 # SUBTRACT F I R S T  POINTS 

Y ( 4 )  

M ( 5 )  # NO. OF DATA SETS I N  ENSEMBLE TO BE AVERAGED 

** PROGRAM 5FTS M l 6 )  # - I  IF MORE THAN 10000 DATA PTS 

DIMENSION FI(l0000)~FO(IOOOU)rM(6)~W(100) 
DIMENSION T I T L E ( 1 2 ) ~ C I A ( l O ~ ) ~ C O A o  

COMPLEX CI,CO,CIA,COA 
COMMON F I , F O * M , W , X I S I I X I S O I X ~ S I I X ~ ~ ~  

I R E A D ( ~ ~ ~ O O ) T I T L E I M I D T W C O R  
100 F O R M A T ( 1 2 A 6 / 6 1 5 ~ 2 F I O ~ O )  

DIMENSIGN X I S I ( I O O ) ~ X I S O (  l r ~ o ) , x z s ~ (  ~ o o ~ , x z s o ( ~ o o )  

W R I T E ( 6 , 1 0 1 ) T I T L F ~ M , D T , C O R  
I O I O F O R Y A T ( I H l ~ l Z A 6 / 6 H O M  1 - 6 r 6 1 6 ~ 6 H  DT # , F I O o 4 r  

13X,14HCORR. FACTOR #,E20.8) 
I S E T # O  
I F ( M 6 2 ) 3 1 5 9 1 5 9 1 6  

15 READ(5,103)WO,DW,WFIN 
103 FORMAT(8FIO.O) 

W (  I )#WO 
NW# I 
I F ( Y ( 2 ) ) 1 7 r 1 8 r l 6  

W ( I ) # W ( I - I ) + D W  
I F ( W F I N - W ( 1 1 I 2 ~ , 1 9 r l 9  

GO T O  2 0  

DO 21 1 # 2 ~ 1 0 0  
2 2  W ( I ) # W ( I ) * D W S  

17 DO 19 I # 2 9 1 0 0  

19 NWtfNW+I 

18 DWS#2.0 

DWS#CWS+IoO 
W I M # W ( I I / W ( I - I I  
I F ( W I M-DW 1 2 2  9 2 3  2 3  

2 3  I F ( W F I N - W ( 1 ) ) 2 0 r 2 1 , 2 I  
2 1  NW#NW+I 

16  NW#M(2)  

20 DO 5 1  J # l r N W  

G O  T O  2 0  

R E A D ( 5 , 1 0 3 ) ( W ( I  ) t I # I , N W )  

CIA(J)#CMPLX(O.O,O.O) 
5 1  COA(J)#CMPLX(O.O,O.O) 

L 
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TTOAi#O.O 
52 N T O # O  

NGROUP# I 
DO 40 J # l r N W  
X I S I ( J ) # O . O  
X I  S O (  J )#O*O 
X 2 S I  ( J  )#O.O 

4 0  X 2 S O ( J ) # O . O  
8 C A L L  D A T A I N ( N T )  

N T O P # N T O  
N T f l I N T O + N T  
N T T # N G R O U P * 1 0 0 0 0  
I F ( N T O - N T T  17 96 96 

GO T O  24 

M ( 6  ) # -  I 
I R E T #  I 

7 I R E T H O  

6 N G R O U P # N G R O U P + I  

2 4  N T I # O  
I F ( M ( I ) . E Q . O ) N T I # N T  
I F ( ~ ( I ) . G T . f l . A N D . N G R O U P ~ E Q . I ~ N T I # ~ ( I )  
C A L L  F O U R T ( N T 1 , N T v D T g N W )  
I F ( I R E T ) 2 9 2 9 8  

2 W R I T E ( 6 , 1 0 2 )  
1 0 2 i l F O R M A T ( I H 0 ~ 1 6 X ~ 5 H F R E Q ~ ~ I 3 X ~ I 5 H M A G N I T U D E  R A T I O 9  

I 7 X 9 1 2 H P H A S E  ( D E G . )  
T T O # F L O A T ( N T O ) * D T  
P I # O . O  
T T I # T T O ,  
I F ( M ( I ) . G T . O )  T T I # F L O A T ( M ( I ) ) * D T  
DO 41 J # I , Y W  
I F ( M ( I ) e L T * O )  GO T O  42 
S J W T I #  T T I * W ( J )  
C I # C M P L X ( X I S I ( J ) r X 2 S I ( J ) ) + C E X P ( C M P L X ( O . O 9 S J W T I ) )  
C A L L  A M P H ( C I , A I * P ! )  

42 S J W T O #  T T O * W ( J )  
C O # C M P L X ( X I 5 0 ( J ) ~ X 2 S O ( J ) ) * C E X P ( C M P L X ( O ~ O ~ S J W T O )  )*COR 
C A L L  A M P H ( C O * A O , P O )  
I F ( M ( I ) . L T e O )  A I # T T O  
A O # A O /  A I 
P O # P I - P O  
I F ( P ( 5 ) o L E . I )  GO T O  41 
C I A ( J ) # C I A ( J ! + C I * T T O  
C O A ( J ) # C O A ( J I + C O * T T O  
T T O A # T T O A + T T O  

41 W R I T E ( h 9 1 0 4 ) J * W ( J ) , A O , P O  
104 F 3 R M A T ( I H  9 1 3 r 6 X 9 3 E 2 0 . 8 )  

I F ( M ( 5 ) o L E e I )  GO T O  I 
I S E T # I S E T + I  

W R I T E ( 6 9 1 0 5 )  M ( 5 )  

W R I T E ( 6 9 1 0 2 )  
DO 50  J # l , N W  
I F ( M ( 1 ) o L T . O )  C I A ( J ) # C M P L X ( T T O A , O * O )  
C O # C O N J G ( C O A ( J ) / C I A ( J ) )  
C A L L  A M P H ( C 0 , A O s P O )  

GO T O  I 
E N D  

I F ( M ( 5 ) . G T . I S E T )  GO T O  52  

105 F O R M A T ( 2 2 H I E N S E M B L E  A V E R A G E S  F O R , I 4 , 1 4 H  S E T S  O F  D A T A . )  

5 0  v / R I T E ( ~ ~ I O ~ ) J ~ W ( J ) ~ A O ~ P O  
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,S IBFTC D I N '  DECK 

C 

C 
I 0 5  

I 0 6  

3 3  
3 4  

50 
C 

I O 9  

5 1  

5 2  
53 

31 
C 

SUBROUTINE D A T A I N t N T )  
DATA INPUT FOR FOURCO 
DIMENSION F I ~ 1 0 0 ~ 0 ~ r F 0 ~ 1 0 0 @ 0 ~ r M o , W 1 1 0 0 ) r D ~ 9 ~  
DIMENSIOh X I S I ~ I ~ O ) ~ X ~ S C ~ I O ~ ~ r X 2 S I ( 1 0 0 ) r X 2 S 0 ~ l O O )  
CCMMON F I I F C , M I ~ , X I S I I X I S O I X ~ ~ ~ * X ~ S O  

F I  A # O  a 0  
F O A # O  0 
I F ( M ( I ) o L E o O o O R o M ( 6 ) o L T o O )  GO TO 5 0  

NT#O 

N T I # M (  I )  
R E A D ~ 5 ~ 1 0 5 ) ( F O ( I ) ~ F I ( I ~ ~ I # l ~ N T 1 ~  
FORMAT FOR MSRE PULSE RESPONSE 1 0 5 9 6  
FORMAT(26X*2F3 .0 )  
I D B # N T I + I  
DO 3 3  I I I D B I ~ O O O O  
R E A D ( 5 ,  I 0 6 ) T I M E , F O ( I  1 
FORYAT(F4o0*22X,F3 .0 )  
I F ( T I M E 1 3 4 r 3 4 r 3 3  

NT#NT+NT I 
GO T O  3 5  ' 
I F ( M ( 1 ) o E Q . O )  GO TO 31 
FORMAT FOR ORR NOISE - 109 
N S #  I 
N F # 2 0 ,  
DO 5 2  I # l r 5 0 0  
R E A D ( 5 9 1 0 9 )  T IME, (FO(J ) , J#NS,NF)  
F O R M A T ( 1 5 X ~ F 5 o 0 ~ 2 0 F 3 . 0 )  
I F ( T l Y E ) 5 1 , 5 3 , 5 1  
NS#VS+ZO 
NF#NF+2O 

N? I # O  
GO TO 42 
DO 3 6  1 # 1 ~ 1 0 0 0 0 1 4  
FORMAT FOR MSRE P R B I  TESTS - 1 0 7  
R E A D ( 5 9 1 0 7 )  D 

NT#NT+ I 

NT#N T+20 

DO 5 J # 1 , 4  
K # I + J - I  
KP#2*J 
F I ( K ) # D ( K P I  

5 F O ( K ) # D ( K P + I  1 
3 6  NT#NT+4 
37 N T I # N T  
3 5  DO 40 l#lrNTI 

4 0  F I A # F I A + F I ( I )  

4 2  DO 43 I # l r N T  
4 3  F O A # F O A + F O ( I )  

F I A # F I A / ( F L O A T ( N T I ) )  

FOA#FOA/FLOAT(NT)  
I F ( M ( 3 ) ) 4 4 r 4 4 r 4 5  

4 5  I F ( N T I . G T . 0 )  W R I T E ( 6 ~ 1 0 0 ) ~ F I ~ I ) ~ I # l ~ N T I )  
100 F O R M A T ( 3 H O F I / ( I H  ~ I P I O E 1 1 o 3 ) )  

108 F O R M A T ( 3 H O F O / ( I H  ~ l P I f l E I l o 3 ) )  
4 4  I F ( M 1 6 ) o L T . O )  GO TO 6 

W R I T E 1 6 ~ 1 0 8 ) ( F O ( I ) t I # l ~ N T )  

I F ( M ( 4 ) ) 7 , 7 r 8  
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B I B F T C  FOUR1 DECK 
SUBROUTINE FOURT(NTIgNT,DT,NW) 
DIMENSION F I ( I O O O O ) ~ F O ~ 1 6 0 0 0 ) ~ M ( 6 ) ~ W ( 1 0 0 )  
DIMENSION XI~I(100)rXISO(IOO)~X2SI(100)rXZS0(100) 
COMMON F I  rFO~M~W,XISI,XISO~X2SI,X2SO 
DO 8 J #  I rNW 
WT#W ( J  ) *DT 
CWT#COS(WT) 
SlrJT#SI N (  WT) 
SLvTW#SwT/W(J) 
CWTMW#(CWT- IoO) /W(J)  
I F ( N T 1 o E O o O ) G O  TO I O  

C INPUT F ( T )  INTO S I N E  F I L T E R  
6 

X I T # X I S I ( J )  
X Z T # X Z S I ( J )  
90 9 I # I , N T I  
X I TT#CWT*X I T+SWT*XZT+SWTW*FI (.I 
X2T#CWT+X2T-SWT*XIT+CWTMW*FI(I) 

X I S I ( J ) # X I T  
X Z S I ( J ) # X Z T  

I O  X I T # X I S O ( J )  
XZT#XZSO(J)  
DO I 1  I b l t N T  
X I T T # C W T * X I T + S W T + X 2 T + S W T W * F O ( I )  

9 X l T # X l T T  

X Z T # C W T * X Z T - S W T * X I T + C N T M W * F O ( I )  
I t  X t T # X I T T  

X I S O ( J ) # X I T  
8 X2SO( J ) # X 2 T  

RETURN 
END 

d 

t 
d 

BIBFTC AYPHI DECK 

C CONVERTS COMPLEX NUMBER C TO MR AND PHASE (DEG)  
SUBROUTINE APPH(CIA,P) 

COBJPLEX C 
AHCABS ( C  1 
I F ( A ) l r 2 , 1  

RETURN 

RETURN 
END 

2 P#UoO 

I P # S ~ O ~ ~ ~ * A T A N ~ ( A I M A C ( C ) ~ R E A L ( C ) )  
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