

4

= W

P

CONTENTS

Intrw-uction 9 6000000 0 00O SR OO OO OE DSOS VNS
Description of the Method svieeveceeacsoes
Digital Fj-lter Simulation ® 8 0 060 000 00 000 00

oo\n:lgj
fo

"Estimation of Errors in Fourier

Transform Calculations Due

£0 NOLSE sevvereensencencnosonssonanaes 11
Description of the Fourier

Transform Code FOURCO «coeovesssncensees 12

APPendiX © 0 0006008000000 00000000000000s0000 lu

HEED MARTIN ENERGY RESEARCH LIBRARI

~ LOCK ES

3 4456 0513324 5

'
—

1. INTRODUCTION

The similarity between the convolution integrall and the Fourier
transform integrai has probably been recognized by mathematicians for
many years; however, an application of this similarity to the task of
calculating Fourier transforms numerically has apparently not been
widely appreciated. The basic method described in this paper was -
reported by Broome and Cooper2 who implemented it using an analog
computer. In many applications, however, it is more convenient to
work with digitized data and a digital computer analysis code even
though sampling problems might be introduéed.

This method of digital filtering has several advantages over the
- conventional, direct integration method:
| 1. Computing time for the filter method is roughly one-third that
of the direct method, which may be significant either if large
volumes of data are to be processed or if the computatiohlis to be
done "on-line." ' .

2. Linear filtering theory has been developed extensively, while
the problems of numerical integration of products of sampled'daﬁa_
functions are épparently not well understood.3 .Jt appears that
extensions of this method could easily lead to a better understanding
of the errors in numerical Fourier transform calculations due to
noise in the function being transformed, and hence to better ways'of
estimating these errors. _

Subsequent to the development (but not the reporting) of this
technique, a method devised by Cooley and Tukey has been reported to be

lConvolution is alternatively referred to as the superposition
theorem, Green's theorem, and Duhamel's theorem.

2p. W. Broome and G. C. Cooper, "Fourier Spectrﬁm Analysis by

Analog Methods," Instr. Control Sys. 35(5), 155-60 (May 1962).

3S. Lees and R. C. Dougherty, Refinement of the Pulse Testing

Procedure-Computer Limitations, Dartmoufh College Research Report (Oct.'6k)

.

S

[W

A~

-

p)

orders of magnitude faster than direct :i.ntegra’t::‘l.on.LL _Consequently, _
for applications requiring significant reductions in computing time,

the Cooley-Tukey algorithm would be the likely choice.
2. DESCRIPTION OF THE METHOD

The Fourier transform of a time-varying function f(t) is a

frequency-domain function F(w) given by

o0

Fo) = [£(t) ¢ at, (1)
-0 .
where
w = radian frequency,

j = J1.

Equation (1) can be divided into its real and imaginary parts:

Flow) = Tf(t) cos wt dt - J Tf(t) sin at dt. (2)

Thus to calculate the Fourier transform directly, the products of
two time-vérying functions must be integrated. ’

The convolution integral gives the oﬁtput of a linear system, or
filter, at any time t as a function of an ihput applied at previous

times, f(1):

t
g(t) = [() © n(t-1) ar (3)
_ ~ oo
output of input to response of filter
filter at _ filter at at time t to an
time t time T ‘impulse applied

at time T

where the function h(t), the response of a linear filter to an impulse
applied at t = O, is known as the impulse response or weighting
function of the filter. Thus the convolution integral is also an

integration of the product of two time-varying functions similar to

-each term of Eq. (2). Furthermore, a few'manipulations'of Egs.

(2) and (3) will make them equivalent. Hence, to apply convolution
J. W. Cooley and J. W. Tukey, "An Algorithm for the Machine
Calculation of Fourier Series," J. Math. Comp., 19, 297,(April 1965)

b

6 o
{
to the problem of calculating Fourier transforms, the output time o

responses of filters with the appropriate weighting functions (i.e.
cos wt and sin wt) are calculated fér an input perturbation f. Then
- the outputs of the filters at a particular time will correspond to the
real and imaginary parts of the Fourier transform of f(t).

.To equate the convolution integral to the Fourier transform
integral, we first make the upper limit of integration in Egq. (3)

zero, which can be done if f(T) can be made zero for all positive time:

0
g(0) = [£(r) h(~7) dr | (%)

- 00
Equation (4) shows that the filter output at time t = O would
be equivalent to tﬁe real (or imaginary) part of the Fourier transform
of f(t), Ea. (3), if h(-t) were equal to cos wt (or -sin wt).
For the real part, since cos wt is an even function, then cos wt =
cos(-wt) and h(-t) = h(t); so Eq. (h)_becomes |

o}

Re {F()] = g(0) = [2(x) n(x) as = [() cos(x) at . (5) e

-0
On the other hand, since sin wt is an odd function, then -sin wt =

sin(-wt) and h(-7v) = -h(7); so the solution for the imaginary part is

. (o)) (o]
Im{F(w)} = gI(O) = -f () h(x) a1 = -f f("r) sin(t) 4t . (6)

-0 .
Usually the response of the system to be analyzed, f(t), will be
a function which has nonzero values for O <t <T, and zero values for
negative t and for times greater than T shown in Fig. la. There are
two methods that we can use to make the function that we analyze zero
for all positive time: we can either reverse the direction of f(t),
i.e. £(-t) shown in Fig. 1b, or shift it by a time T, i.e. f(t+T)‘

shown in Fig. lc.

\ . | T

f(t)
a. f£(t)
£(7) = £(-t)—
R S | |C% t
A b. f(-t)

et

(1) = £(t+T)

T o, £(t+1) ~— 10
Fig. 1. Original Time Function with Time Reversal and Shift.

2.1 Method I,Reversing f(t) : f(-t)

If the actual function transformed is f(-t), rather than £(t),
the relationship between this result and the desired transform of f(t)

must be determined:

oF [f(..t)] = [fe(-t)e™I at = };(t)e*j‘*’t at , (1)

- ob

which is just the compléx conjugate of F(w).

.y

.
T

8 ’ IF-P

2.2 Method II,Shiftingig(t) ¢ £(t+T) b
-0t ¢ (£~T)
The equation is Sod§d:+'r) o ! &t -=S-H’c) e dt
-—&0) :
T o T . ' . oo . .
F [%(t#T{} = j'f(t)eJ“m ¢TI gy = (IO ff(t)e'J‘“t it . (8)
-0 o

In this case, the desired result is obtained by corrécfing for a

phase shift of off radians.
3. DIGITAL FILTER SIMULATION

A key factor in the method is the accurate digital simulation of
the response of a cosine — sine filter (e.g. an undamped spring-mass
system) to an arbitrary forcing function. This is accomplished by
5,6

means of the matrix exponential technique.

The differential equation for a system which oscillates with a

frequency w is

2 .
: Q;% + Px=0. (9)
dt

e~

Alternatively, Eq. (9) can be put in the form of two first-order
equations and made to include a forcing function'zl(t):

dxl

T = Wy toz(t),

.dxe (10)
R T

The solution of Eq. (10) when xl(O) = x2(0) = 0 and z(t)

is a unit impulse function applied at t = 0% is:

5H. M. Paynter and J. Suez, "Automatic Digital Setup and Scaling

of Analog Computers," Trans. Instr. Soc. Am. 3, 55-64 (Jan. 196L).
) 2

S. J. Ball and R. K. Adams, "MATEXP" - A General Purpose Digital

- ..P_k

Computer Program for Solving Ordinary Differential Equations by the ‘
Matrix Exponential Method, ORNL-TM- (in preparation) : ?i<

d : xl(t) = cos wt,
' (11)

-sin wt

n°
P
ct
g
1}

This corresponds precisely to the impulse responses of the sine and
cosine filters which were required to satisfy Eq. (L4).
To obtain the general solution to Eq. (10), it is convenient to

convert Eq. (10) to matrix form:

ax
a?—AX+Z, (12)
where xl
X = x)
2

A= 0 w)
(.—w 0/’
Z =(zl(t)) s
K 0

The exact "incrementel" solution of Eq. (12), which updates X

br

by & time 1, is

X(t + 1) = &7 x(t) + (AT - mattozt) (13)

if we assume that Z is constant between t and (t + t). Hence, by
evaluating the AT oand (eAT- I)A-l
be -successively updated by two matrix multiplications. The series

form of ¥ 1is

matrices once (for each w), X can

A _ o, Ao, (A7 (a0)3

€ T 5T 3T ceeona (14)

So 1 0 0 wr ‘ -gm)z 0
At + + |21 3 T 3%

= -(w1) (1)
0 1f lwr o 0 = _I 3T o

m
I

AR
[

0 -Sw¢23
21+

XY X

lo . . I

2 A N3 (5 L
l-ﬁg,f-L +S_‘i1!)_- senes Wt - (ar) + (u.)-'r) - teee ' L

31 ' .
(o) (@) 2 ; |
_(m+(<§>'§) _(c;'zr) Founun 1_(‘;:)‘ +(‘f’:) S

Thus

Ar | cos wt sin wt o
A | ()

=-sin wt cos wt

Expanding (<—:A'r - I)A":L in the seme manner, we eventually get

sin wrt 1l - cos wt
(Aot | N (16)
cos(wr) = 1 sin w7
w w

Substituting Eqs. (15) and (16) into (13) and expanding, we get
' . sin wt
xl(t + T) = cos WT xl(t) + sin wr x2(t) + == zl(t) s

: () S
cos wt - 1 ' :
o Zl(t) *

A

_x2(t + 1) -siﬁ wT xl(t) + cos wrt x2(t) +

Since this solution is "exact" only when z. is a stair-step function,

1
it might appear that greater accuracy could be achieved by using a
trapezoidal (or higher order) approximation to zl(t) . However, as

3

Lees” has pointed out, this results in a correction term for the

Fourier transform calculation of the form

Py e (w) ~ <Fstairstep' (a))> (éorrection term (a))) (18)

However, the Fourier transforms are usually used to calculate the
transfer function G(a)) of a system from the ratio of output-to-input

PFourier transforms:

F (w) '
a(w) = F—“%% . (19)

input

With the assumption that the same sampling intervel T is used for

-

both input and output, the correction terms for both the input and

output transforms will be the seme and will cancel out. Hence nothing A%

#

A\

11

is gained by using higher-order approximations to the forcing functions.
4, ESTIMATION OF ERRORS IN FOURIER TRANSFORM CALCULATIONS DUE TO NOISE

An elegant method for determining the mean-square response of
linear, constant-coefficient filters to random noise inputs has been
a part of the analog computer literature for many yéars.7’8 This
method (illustrated in Fig. 2) is based on the equivalence of the

correlation function of white noise and a unit impulse function S(t).

Filter Impulse Response

Line Noise- q?
g(t) | minear | Shaping Squaring N -
et o)
Filter : 1 Filter Lo Device — Integrator

Fig. 2 Impulse-Response Method for Mean-Square Output Response.

A noise-shaping filter (Fig. 2) is used to account for differences
between pure white noise and the actual input noise seen by the linear
filter, which in this case would be noise in the signal to be Fourier
transformed. The gain factor N_ is the éower-spectral density (PSD)
of the white noise input (before being shaped). 'Analysis shows that
the steady-state output of the integrator equals the mean-square out-
put of the filter due to the Gaussian noise input. The problem with
abplying this method to the sine or cosine filter, however, is that
the integrator output would never reach a steady state, but would
continue to increase with time, indicating that the error components

of the real and imaginary part estimations would increase with

i 7A. E. Rogers and T, W, Connolly, Analog Computation in Engineering
Design, McGraw-Hill, New York, 1960, Chapter 7.
8

J. H. Laning and R. H. Battin, Random Processes in Automatic

Control, McGraw-Hill, New York, 1956, pp 90-1luk.

integrating time.,

A detailed analysis of the effects of noise is beyond the intent
of this report, but it is hoped that thesé observationé-might serve
as a starting point for further investigations..

5. DESCRIPTION OF THE FOURIER TRANSFORM CODE.FOURCO

FOURCO has been set up‘as'a general purpose Fortran IV code for
calculating the Fourier tra.nsform of sampled input data (FI) and output
data (FO), and for printing frequency response functions for up to
lQO selected radian frequencies (W). The data is réad in by the
subroutine DATAIN, which can easily be altered to suilt the format of
the particular data. There is no nominal limit on the number of data
polnts that can be processed, because the code will read in successive
batches of 10,000 time éamples as required, process each one as it _
goes until it reaches the end of a run, and then will compute the : ~
frequency response. Because of the batch date optibn, the second
method of shifting f(t) is used in preference to the reversed input ' v
f(-t). The shifting method is also better suited to on-line calculations.

A variety of options 1s provided by FOURCO; the choice of which
option to use sometime depends on the type of signal being analyzed
(1.e. periodic or aperiodic) or on personal preferences. Specification
of the choices by the user is made by setting the option flags M(1)
through M(5), as follows:

1. Data Read-in and Processing Option, M(1)

M(1) > 0: Read in (and process) only M(1l) input function data
points (FI). Read in FO until a blank card is
~ . encountered. |
M(1) = 0: Read in both FI and FO until a blank card is
| encountered.
M(1) < 0: Read in (and process) a single input function (FO) only.

.
v _/

13

2. Frequency Option, M(2)
M(2) > 0: Read in all M(2) frequencies, W(1) up to W(100).
M(2) = O: Frequencies to be harmonics of the fundamental
(WO), up to a limit WFIN, with a minimum spacing
of DW; i.e., if w(1+1)7w(1) < DW, the next harmonic
frequency would be substituted for W(I+l), etc.,

W{I+1
until —"(Jrfylz W,

M(2) < O: Frequencies to be equally spaced on a logarithmic
plot between WO and WFIN, where W(I) =
DW % W(I-1); DWw > 1.0.
3. Input Data Printout Option M(3)
M(3) > 0: Print FI and FO data as read in.
M(3) = 0: Print FI and FO data after subtracting bias.
M(3) < 0: ©No printout.
4, Bias Selection Option, M(k4)
M(4) > 0: Subtract average values of FI and FO before processing.
M(4) = O: Subtract first-point values of FI and FO before
processing.,
5. Ensemble Average Option, M(5)
M(5) > 0: Average and print M(5) data set transforms.
M(5) < 0: Omit option.

A magnitude ratio correction factor COR is also read in so that
different scale factors for FI and FO can be accounted for. The
magnitude ratio printed is the ratio of output-to-input from raw
data calculations multiplied by COR.

The computation times for FOURCO are roughly proportional to the
number of input data points multiplied by the number of frequencies
calculated. The basic (and most time consuming) calculation is

updating the filter outputs; this requires six floating multiplies

and four floating adds per step. Approximate running times on the

IEM~T7090 are given by

T % K % NT * W,

e

where
- T = running time, min,
K =5.0x 107, |
NT = total number of data points and analyzed,
NW = number of frequencies.

K is somewhat larger if the input data printout option is selected.
A typical analysis of 12,500 input and output data points at L7
frequencies took 4 min with input data printout.

6. APPENDIX

6.1 FOURCO Input Instructions

The input data arrangement for a typical case is shown in Fig. 3.

@

(TITIE cARD
{ BLANK CASE
2 '.EI‘C.'.-" K

FI, FO DATA

(W DATA CARD(s]

{ OPTION CARD '
TITLE CARD

Fig. 3. FOURCO Input Data Layout .

The fitle, option, and frequency cards are set up with the
following format:
1. Title Card (1246) : -~

Any T2 alphanumeric characters

P

“

]
-

the Osk Ridge Computing Technology Center.

15
2. Option Card (615, 2F10.0)

M(1) M(2) M(3) M(L) M(5) (SPARE) DT COR
I5 I5 I5 IS I5 I5 F10.0 Fl0.0
M(1) to M(5) = Optioh flags (see Sect. 5).

DI' = Seampling interval
COR = Magnitude ratio correction factor
3. Frequency Card(s)
a. If M(2) <0: (3F10.0)
WO W | - WFIN
F10.0 Fl10.0 F10.0
WO = minimum radian frequency
DW = frequency spacing factor (see Sect. 5)
WFIN = high frequency limit
b. If M(2) > 0: (8F10.0)
W(1) w(2) " weesees Up tO 8 per card

F10.0 - F10.0

Total number of W's read in = M(2)
W(I) = radian frequency.

6.2 FOURCO Fortran Listing

FOURCO is written in Fortran IV for the IBM-T7090 computers at

binary decks are available from the author on request.

Copies of the source or

16

SIBFTC MAIN " DECK
PROGRAM FQURCO
DIGITAL FILTER FOURIER TRANSFORM CODE

OPTION CODE.
M1
" PCS # NOe DATA PTS. FOR INPUT FI (PULSE)
0 # NO. DATA PTS FOR FI AND FO EQUAL
_ NEG # SINGLE INPUT (FO) ONLY
M(2) S :
POS # READ IN ALL M(2) W=S
0 # WO + HARMONICS, DW#MIN. SPACING
NEG # W(I+1)#W(])#DW
M(3) :
POS # PRINT Fl, FO DATA AS READ
D # PRINT AFTER SUBTRACTING BIAS
NEG # NO PRINTOUT
M4 :
POS # SUBTRACT AVERAGES TO PROCESS Fls FO
‘0 # SUBTRACT FIRST POINTS
M(5) # NO., OF DATA SETS IN ENSEMBLE TO BE AVERAGED

| ¥R PROGRAN SFTS ML6) # -1 IF MORE THAN 10000 DATA PTS

aNalaNaNaEaNaNaNaNaaNalaNaNaYaNaNaYaNaNaNaRal

DIMENSION FI1010000)»FOC10000) M)W 100)
D[MENDION TITLEC(12)sCIACI0D)»COALI100)
DIMENSIOCN del(IUU)!XISO(IDU)’XZSI(IUO)yXZSO(iUO)
COMPLEX Cl»COsCIA»COA
COMMON F13FOsMy WsX1SIsX1S0sX2519X2S0
| READ(S.IDD)TITLF,M.DT'COR
100 FORMAT(|2A6/615’2F|U ag)
WRITE(6+101)TITLEsMsDTsCOR -
IOI0OFORMAT (L IHI 9 | 2A6/6HOM |—=6361696H DT #sFI0eb,
13X 14HCORRs FACTOR #+E2048)
ISET#0
IF(M(2))15515916
15 READ(55103)WOsDWsWFIN
103 FORMAT(BF'D Q)
W)Y #WO
NW#I -
IF(M(2))17518s16
17 DO 19 1#2,100
WII)Y#W(I =})#DW
IF(WFIN=-W(I)1120519419
19 NWENW+I
GO T0O 20
18 DWS#2.0
DO 21 1#2.100
22 WOI)HW(1)%*DWS
DWS#DWS+1 .0
WIMEWCIY/WII=1)
IFIWIM=-DW)22223,23
23 IF(WFIN=W(I))20s21921

21 NWHNW+]
GO TO 20
16 NW#M(2)

READ(55103) (W(I)sI#I sNW)
20 DO 51 J#IlsNW
CIA(J)I#CMPLX(0.05040)
51 COA(J)H#CMPLX(0.0+060)

-~

R

=

[&ad

-

52

24

2

17

TTOA#0.0

NTD#0

NGROUP#|

DO 40 J#I sNW
X1ST(J)I#0.0
X150(J)1#0.0

X251 (J)1#0.0
X250(J1#0.0

CALL DATAININT)
NTOP#NTO

NTOENTO+NT
NTT#NGROUP#* 10000
IF(NTG~-NTT) 76,6
IRET#O

GO TO 24

NGROUP #NGROUP+ |

M6)#—I

IRET#I .

NTI#0 :
IF(M{1)oEQeOINTI#NT
IF(M{1)eGT«0aAND«NGROUP EQ.I)NTI#N(I)
CALL FOURTU(NTISNTsDTsNW)
IFUIRET)2+2+8
WRITE(65102)

IUZGFORMAT(lHGol6Xs5HFREQ.ol3Xo(5HMAGNITUDE RATIO.

42

41
104

105

50

[7Xs 1 2HPHASE (DEGe))
TTO#FLOAT(NTQO) #DT

PI#0.0 ‘ :

TTI#TTO

IF(M(1)aGTo0) TTI#FLOAT(M(1))*DT
DO &1 J#1sNW

IFIM{I)eLTeD) GO TO 42

SIWTI# TTI*W(J) o
CI#CMPLX(XISI(J)’XZSI(J))*CEXP(CMPLX(D U’SJWTI))
CALL AMPH(CIsALsPI)

SJIWTO# TTO*W(J)

CORCMPLX({X1SO(J) 9X2S0(J)) *CEXP(CMPLX (D, D,SJWTO))*COR
CALL AMPH(COsAQ,PO)
IF(M(1).LT.0) AI#TTO

AO#AO/AT .

PO#P1-PO '

IFI{M(5)4LEs!) GO TO 4|
CIACII#CIALJ)+CI*TTO
COA(J)HCOA(JI+CO*TTO
TTOA#TTOA+TTO

WRITE (69 104)JsW(J) sAOsPO
FORMAT(IH »1396Xs3E2048)
IF(M(5)eLEe!l} GO TO 1
ISETHISET+I

IF(M{5).GT«ISET) GO TO 52
WRITE(65105) M(5)

FORMAT (22HIENSEMBLE AVERAGES FORy 14y 14H SETS OF DATA.)

WRITE(6.102)

DO 50 J#1 sNW

IF(MU) LT CIA(J)#CMPLX(TTOA;D o)
CO#CONJG(COALIY/CIALUY)

CALL AMPH{CO»AOsPO)
WRITE(6’I04)J9W(J)9AO PO

GO TO |

END

C

105

106

33
34

50

109

51
52
53

31

a7

18

$IBFTC DIN DECK

SUBROUTINE DATAININT)
‘DATA INPUT FOR FQOURCO

DIMENSION FI(IDDDU),FO(IDDDU)oM(6)oW(lDD)oD(9)
DIMENSION XISICIQO}sXtSCCtO)+X251(100)+X250(100)

COMMON FIsFCsMsWsXI1SIsX150sX251+X250
NT#0 ' :

FIA#0.0

FOA#0.0

IF(M(1)sLEsDeORM(6)sLTa0) GO TO 50
NTI#M(1) :
READ(55105)(FO(1)sFI(T1)a1#1sNTI)
FORMAT FOR MSRE PULSE RESPONSE (056
FORMAT (26X s2F3,0)

IDB¥NTI+I

DO 33 I#1DB» 10000
READ(55106)TIMESFO(])
FORMAT(F4.0922XsF3.0)

IF(TIME) 34534533

NT#NT+ I

NTHNT+NTI

GO TO 35

IF(M(l) EQ.0) GO TO 3|

FORMAT FOR ORR NOISE - 109

NS#I(

NF#20

DO 52° 1%#1,500

READ(55109) TIMEs (FO(J)sJ¥NSNF)
FORMAT(I5X»F5.0s20F3e0N)
IF(TIME)IS 1 53451

NS#NS+20

NF#NF+20

NT#NT+20

NTI#0

GO TO 42

DO 36 I#1 IUUUDﬂb

FORMAT FOR MSRE PRBI TESTS - 107
READ(55107) D

FORMAT (FB4 294 (F7, 3.E||.4))

36
37
35

490

42

43
45
100

108
4y

IF(D(1)aLEeOs0) GO TO 3
DO 5 J¥ls4

K#T+J-1

KP#2%)

FL{K)#D(KP)

FO(K)#D(KP+1)

NT#NT+4

NTI#NT

DO 40 I#1sNT1

FIA¥FIA+FI(1])
FIA#FIA/(FLOAT(NTI))

DO 473 1#1sNT

FOA#FOA+FOI(1)

FOA#FOA/FLOATI(NT)

IF(M(3) 14484445

IFINTI«GT.0) WRITE(&6sI00)V(FI(I)IsI#1sNTT)
"FORMAT(3HOFI/{(IH +IPIQEIl«3)) ’
WRITE(O6s108){(FO(T)sI#I1sNT)
FORMAT(3HOFO/(IH +IPIDEI!13)) -
IF(M(6).LT-0) GO TO &
IF(MU{4))T9748

AT

o

C SUBTRACT A
Y- FIS#FIA ~
- FOS#FOA -

ST 60 TO 6 C
":'JUBTRACT I—ST POINT

ISKFICI) -

OSHFO (1) . '., =

UBTRACT SAME AST IN. DATA GROUP
(NTI.EQ.Q) GO TO |3

9 1#1sNTI

FI.FOR MSRE PRBS

1)EFIS~FI(])

1 eNT

4H;F0§.16.5H PTS.)
uRJJg(e,tDZ)FOA.NT

e e

20

P

$IBFTC FOURI DECK

"SUBROUTINE FOURT(NTIsNT»DTsNW)

DIMENSION FI(10000)sFO(13000)sM(6),w(100)

DIMENSION XIS1({g0)s»X1SO(100)-X2S1(100)sX25C(100)

COMMON FIsFOsM,aiWsX1SIsX150,X251,X250
DO 8 J#IsNW
WT#W(J)%#DT

CWT#COS(WT)

SWT#SIN(WT)

SWTWHSWT /W)
CWTMWH(CWT—1e0)/W(J)
IFINTIEG.0)G0O TO 10

INPUT F(T) INTO SINE FILTER
XIT#XI1SI() .
X2T#X2S1 ()

DO 9 I1#IsNT]
XITT#CWT*XIT+SWT*X?T+SWTW*FI(I)
X2THCWTHX2T—SWT#X | T+CWTMW*F]I (1)
XITH#XITT

XESTtJI#XIT .

X2S1(J)#x2T

XIT#X150(J)

X2T#X250(J)

DO .11 I#!1sNT
XITTHCWT®X I T+SWT%X2T+SWTW*FO(1)
X2THCWT#X2T=SWT#X | T+CWTMW*FO (1)
XIT#XITT

X1SO{JI#XIT

X2S0(J)#x2T

RETURN
END

$IBFTC AMPHI DECK

C

SUBROUTINE AMPH(C»s»AsP)

CONVERTS COMPLEX NUMBER C TO MR AND PHASE
COMPLEX C

A¥CABSI(C)

IF(A)YI 9201

P#0.0

RETURN

P#574296%ATAN2 LAIMAG(C) »REAL(C))

RETURN

END

(DEG)

[

o

21

ORNL-TM-1778
INTERNAL DISTRIBUTION
1. R. K. Adams 34. D. P. Roux

2-11. S. J. Ball 35. G. S. Sadowski
12, C. J. Borkowski 36. B. Squires
13. J. B. Bullock 37. R. 8. Stone
14, 0. W. Burke 38. J. R. Trinko
15. F. H. Clark 39. R. E. Whitt
16. R. A. Dandl _ 4o, J. V. Wilson
17. H. P. Danforth 41-42, Central Research Library
18. S. J. Ditto 43, Document Reference Section
19. E. P. Epler L4 -48. Laboratory Records Dept.
20. D. N. Fry ' k9. Laboratory Records, ORNL R.C.
21. E. W. Hagen 50. ORNL Patent Office '
22. C. S. Harrill 51-65. Division of Technical In-
23. W. H. Jordan formation Extension
24k, R. C. Kryter 66. Research and Development

25. C. G. Lawson Division, ORO
26. J. B. Mankin, Jr. (K-25) ,

27. C. D. Martin

28. R. V. Miskell (Y-12)

29, C. H. Nowlin

30. H. G. O'Brien

31. C. L. Partain

32, R. W. Peelle

33. B. E. Prince

EXTERNATL, DISTRIBUTION

67. S. J. Gage, Univ. of Texas
68. R. P. Gardner, N. C. State Univ.
69. T. W. Kerlin, Univ. of Tenn.
70. J. W. Prados, Univ. of Tenn.
Tl., J. C. Robinson, Univ. of Tenn.
7. R. F. Saxe, N. C. State Univ.
73. S. E. Stephenson, Univ. of Ark.
4. Otis Updike, Univ. of Va.
5. W. C. Wright, Univ. of Tenn.

