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FIRST-ORDER PERTURBATION THEORY AS USED IN THE MULTIGROUP
DIFFUSION CODE EXTERMINATOR-~2

Melvin Tobias, T. B. Fowler, and D. R. Vondy

TI. INTRODUCTION

The EXTERMINATOR-2 code' now affords the option of a first-order
perturbation theory calculation. (The method of calculation is
basically that used in the code EQUIPOISE-3A% with extensions and
improvements. In particular, the application to diffusion constants is
different.) This calculation will provide the user with the fractional
change in k per unit change in each of the macroscopic material input
constants. In addition, the fractional change in k per unit change in
nuclide density mway be computed for any nuclides specified. That is,
if 2 is any material parameter, whether a macroscopic constént such as
D, B%, £, or a control rod constant, in any group or region, or a
nuclide density, the code can calculate the quantity % g% in first-
order perturbation theory. The succeeding sections describe the theory
and equations used in this calculation as well as the results of tests
made to compare predicted with caleculated increments of multiplication

constant.
II. THEORY OF THE FIRST-ORDER PERTURBATION APPROXTMATION

As a result of so-called forward calculation, the EXTERMINATOR code

produces a solution to the eigenvalue problem

1T, B. Fowler, M. L. Tobias, and D. R. Vondy, EXTERMINATOR-2: A
Fortran IV Code for Solving Multigroup Neutron Diffusion Equations in
Two Dimensions, USAEC Report ORNL-4078, 0Oak Ridge National Laboratory
(to be published).

2C. W. Nestor, Jr., EQUIPOISE-3A, USAEC Report ORNL-3199 Addendum,
Oak Ridge National Laboratory, June 6, 1962.



KAb = M . (1)

The multiplication constant k is the largest eigenvalue of the problem.
A is a matrix whose elements are leakage, absorption, and group-to-
group removal constants; M is a matrix whose elements are fission source
constants. The vector ¢o is the solution vector of the problem.
Let us consider the related eigenvalue problem

(kA - M) ¢, = wd, , (2)
where k is the same value determined in Eq. (1). (Clearly, one of the
¢i must be the ¢O in Eq. (1) and the corresponding w, mst be Zero. )

The adjoint problem is

T T * *
kKA” -~ M ¢ = w, P¥
where the superscript T denotes transposition and $* is the adjoint
flux corresponding to eigenvalue wj. The transpose of Eq. (3) is

o

#0a - 1) = 0,93 (1)

If we premultiply Eq. (2) by ¢§T and postmultiply both sides of Eq. (L&)

by ¢i, we obtain the pair of equations

xT _ _ *T
#Te — ) 8, = w0170, (5)
-)GT *T
¢j (kA — M) ¢i = mj¢j ¢i . (6)
Subtracting, we obtain
(0 = w,) 9376, =0 . (7)

We see that if i # J, the adjoint fluxes are orthogonal to the forward
fluxes.
If we make a perturbation in A or M or both, what is the change in

k which results?



(x + 8k) (A + &) (¢O + ) = (M + M) (¢O + &) . (8)

Multiplying out both sides gives:

kAdJo + k5A¢o + amﬁo + kA + kSASD + akaAqSO + SkASP + SkOASP
zM(bo + 6M¢O+M81>+ Mep . (9)

By definition, kA¢0 = M¢O. Let us now neglect products of small

quantities so that we have the first~order approximation
kBAG  + BkAG  + KA = QM + Mep (10)

or, rearranged,

BAP =

Sk
0 k

M¢O=(m-kaA) ¢o-(kA-—M) & . (11)

If we premultiply Eg. (11) by ¢gT, vhere ¢§ is the eigenvector of Eq.

(3) with wy = 0, we have

20T w9 ) = ¢X (o - xon) 6 - 0xT(ka - ) 8 (22)
But

‘ T
¢§T(kA - M) = [(kAT - MT) ¢*O‘] =0 . (13)

We have then the first-order perturbation theory approximation to ak/k

as

T
i ¢§ (8 — keh) ¢O

. (1)

T

*

(6% w6,)

ITI. APPLICATION OF PERTURBATION THEORY IN EXTERMINATOR-2

In EXTERMINATOR, the forward calculation is done first, establishing
¢o and k. The adjoint flux distribution is computed by inserting the



value of k into the equations, transposing A and M and iterating Jjust
as in the forward calculation (except that k is fixed) to find ¢§. With
this information it is possible to compute the fractional change in k

per unit change in any parameter 7Z as follows:

TR By g
EEZ _.0 &7 BZ 0 . (15)

*T
6" )

The gquantity 7 might be any reactor parameter. In particular, the code
outputs %—gz for Z equal to Z,, Zp, ZR(K-s»L), DB=, vZ.s CR, D, and B2 for
each group and region. X, DB=, vig, D, and B2 have their usual def-

initions., By Z_ we mean the out-scattering cross section from a group;

ER(KHL) is the ?ﬁ-scattering cross section from one group K into
another, L. The coefficient calculated for ZR does not include any
compensation for changes in ZR(KﬂL). Conversely, the coefficilents
computed for the ZR(K*L) do not include compensation by ZR. CR is the
control rod constant. In the case of DB®, the change is really in B2
only and D is not perturbed. In the case of D, the effect of D in DB®
terms is not included. Note that in Eq. (15) no actual changes are
considered ~ only rates of change of matrix elements with respect fo
parameters, In addition to this standard output, the user may obtain
the coefficient for a particular nuclide density. This is computed by
summation using the macroscopic reactivity coefficients which have

already been described:

The computation of Eq. (15) is enormously simplified in practice
by the fact that &M and 8A have zero elements except over a region or
group being considered. Thus, if Z is a macroscopic non~fission cross

section in a particular region, the numerator of Bg. (15) would be

—[ 23 e smen atnn]
I J ‘M



where the double sum extends over the gquadrant elements AV covering
region M. I is the row number and J is the column number of a point in
the mesh; K is the group number. If Z is a macroscopic fission cross

section, the numerator would be
Y, X(KK) [Z 2, $%(1,3,KK) ¢_(1,3,K) AV(I,J):} :
KK M

In other words, Eq. (15) is a summaetion of the derivative of
neutron balance items with respect to Z weighted by the adjoint flux
at each point. For a D it is the weighted sum of the leakages per
unit D; this is the most awkward calculation. (It is to be noted that
the perturbation calculation methods used in EXTERMINATOR are, for the
most part, similar to those used in a prior code EQUIPOISE-3A; the
effects of D perturbations are computed differently, however, as the
method used for this purpose in the older code is not satisfactory.)

The EXTERMINATOR code will also calculate the importance~weighted
mean neutron lifetime and the effective delayed neutron fraction as
defined by Gross and Marable.”® The reader is referred to their paper
for details concerning the derivations of the formulas for these
quantities. The formulas used in the code are given in Ref. 1.

A simple numerical illustration of the use of Eq. (15) is given

in the Appendix.

IV. COMPARISON OF THE RESULTS OF FERTURBATION
THEORY WITH DIRECT COMPUTATION

The following table compares Ak increments predicted by pertur-
bation theory for changes in D values and for particular isotope
concentration changes with directly computed Ak values, The latter
were obtained by taking the difference in k values computed by two
EXTERMINATOR cases, one with and one without the specified changes.

E. E. Gross and J. H. Marable, Static and Dynamic Multiplication
Factors and Their Relation to the Inhour Equation, Nuecl. Sci. Eng.,
7(4): 281-291 (1960).
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The computations were made for reasonably realistic EXTERMINATOR cases,

details of which have been omitted for brevity.

Table 1. Comparison of Ak/k Values Calculated for
Specified Parameter Changes with Those
Predicted by Perturbation Theory

A. Diffusion Constant Changes

D AD M/k, Perturbation Theory N¢/k, Direct Calculation
1.52 0.2 2.0198 x 10-3 2,1148 x 1073
1.%2 0.2 3,3895 x 107° 3.66 X 1073
1.3 -0.11 8.2408 x 107° 8.265 X 107®
1.31 ~0.2 1.498) x 104 1.594 x 107%
B. IJTsotope Concentration Changes
Ja} Mk/k, Perturbation Theory ég/k, Direct Calculation

-1075 ~0.087387 -0.088605>

+107° +0.087387 +0.086199%

~5 %X 1072 —0.436937 —-0. 468209

+107% +0.873875 +0. 765291

~10"6 —0.008739 ~0.008753P

+1076 +0.008739 +0.008726P

®The average value of ék/k AN computed from these two numbers is
8.7402 X 10°, to be compared with 8.7387 X 10° calculated from pertur-
bation theory.

bThe average value of Ak/k M computed from these two numbers is

8.7395 x 10°.
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APPENDIX

SIMPLE NUMERICAIL ILLUSTRATION OF THE USE OF EQUATION (15)

Consider a two-group one-dimensional reactor described by four

space points; there is a symmetry axis between points 1 and 2 and at

i
R

Fig. A.1l., Diagram of One-Dimensional Reactor.

point 4 the fluxes are zero. For simplicity, let the mesh spacing be
unity. The different wmaterials of which the reactor is made are A, B,

¢. The constants of the materials are as follows:

A B
Dy 1.0 2.0 3.0
Ds 3.0 2.0 0
Zqsm 0.1 0.2 0.3
Zosy 0 0] 0
ZAl 2.0 0.2 0.3
Zan 0.1 0.2 0.3
Vo, 0.1 0.k 0.5
V2f2 0 0 0.5
X3 1.0 1.0 1.0



With these constants the difference equations for the reactor become

(denoting fast fluxes by ¢ and slow ones by T):

2(¢5 — $2) — 3 [0.1 + 0.2 + 2.0 + 0.2] do + I [2(0.1 + 0.4) ¢2] = 0,

o(9s — $5) + 3(— 65) -% [0.2 + 0.3 + 0.2 + 0.3] ¢5

1 1 1
+Eb®#+06)%+§®5)%]=0,
1 1
2(f5 = f4) =5 [+ 0.1 + 0.2] 4, + 5 [0.1 + 0.2) ¢, =0,

2(fy — f=) + — % [+ 0.2 + 0.3] £5 + % [0.2 + 0,3] 95 = O .

The matrices of the problem are:

3,25 =P 0
~2 5.5 0 0
A=1 015 0 2.15 -2
0 ~0.25 =2 2.25
0.25 0 0
0 0.45 0 .25
L 0 0
0 0 0

The forward and adjoint sclutions to the problems

AP = % Mp and ATGY = % Mgt

are:
X = 0.2
+
¢, = 1 2 = 0.h1
T i
¢5 =1 3 = 0.335
fo =1 £ = 1.0
£y = 1 £3 = 1.075
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We shall now estimate the effect of changing ZAa in region B using

Eg. (17). = is the Z in question, so that
Az,B

&
& =0,
Az, B
0 0
m | 0O 0
a5 0 0 0.5
0 0 0.5
Hence
[0.41 0.335 1.0 1.0151f0 o o o 1]
o o0 o ||z
o o 0.5 o |l1
0. 0 sl
& D 0511
K&, 5 0B -
A2,B [0.41  0.335 1.0 1.075]{0.25 o o 0 1
0 0.45 0 o0.25|]1
0 0 0 0 1
0 0 0 0 1

= - 0.615727 .

IT the change in ZAz B were, say, +0.02 then the change in k which is
2
predicted is

& = — 0.615727 X 0.2 X 0.02 = — 0.0024629 .

The exact change in k is -0.002345109 by direct computation. If the
change in Zpo, g Vere —0.02, the exact change in k would be +0.00259316L.
2

— 3 from these two numbers, we
k&
A2,B

obtain —0.61728L , to be compared with —0.615727 computed from pertur-

If we compute the average value of

bation theory.
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