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ANATYTICAL SOLUTIONS TO EDDY-CURRENT PROBE COIL PROBLEMS

C. V. Dodd and W. E. Deeds®

ABSTRACT

Solutions have been obtained for axially symmetric eddy-
current problems in two configurations of wide applicability.
In both cases the eddy currents are assumed to be produced by
a circular coil of rectangular cross section, driven by a
constant amplitude alternating current. One solution is for
a coil above a semi-infinite conducting slab with a plane sur-
face, covered with a uniform layer of another conductor. This
solution includes the special cases of a coil above a single
infinite plane conductor or above a sheet of finite thickness,
as well as the case of one metal c¢lad on another. The other
solution is for a coil surrounding an infinitely long circular
conducting rod with a uniformly thick coating of another con-
ductor. This includes the special cases of a coil around a
conducting tube or rod, as well as one metal clad on a rod of
another metal. The solutions are in the form of integrals of
first-order Bessel functions giving the vector potential, from
which the other electromagnetic quantities of interest can be
obtained. The coil impedance has been calculated for the case
of a coil above a two-conductor plane. The agreement between
the calculated and experimental values is excellent.

INTRODUCTION

Electromagnetic problems are usually divided into three categories:
low fregquency, intermediate frequency, and high frequency. At low fre-
quencies, static conditions are assumed; at high frequencies, wave equa-
tions are used. Both of these regions have been studied extensively.
However, in the intermediate frequency range, where diffusion equations
are used, very few problems have actually been solved., Eddy-current
coil problems fall into this intermediate frequency region. This report
presents an accurate technique for analyzing the problems of eddy-current

testing.

lconsultant from the University of Tennessee.



Eddy~-current testing has been used in industry for many years. As
early as 1879, D. E. Hughes? used an induction coil to sort metals.
There have been numerous articles on the testing of materials with eddy
currents. Some of the first papers dealing with both the theory and the
practical aspects of eddy-current testing are by Fb'rster,3 Fdrster and

Stambke,* and Forster.’®

In this series of papers, analyses are made of
a coil above a conducting surface, assuming the coil to be a magnetic
dipole, and of an infinite coil encireling an infinite rod. Hochschild®
also gives an analysis of an infinite coil including some eddy-current
distributions in the metal. Waidelich and Renken’ made an analysis of
the coill lmpedance using an image approach. Their theoretical results
agreed well with theory for relatively high frequencies. Libby8 pre-
sented a theory in which he assumed the coil was a transformer with a
network tied to the secondary. This network representation gave good
results when compared to experiment. The diffusion of eddy-current
pulses (Atwood and Libby?) can be represented in this manner. Russell,
Schuster and Waidelich'® gave an analysis of a cup core coil where they
assumed the flux was entirely coupled into the conductor. The semi-

empirical results agreed fairly well with the experimental measurements.

°D. E. Hughes, Phil. Mag. 8(5), 50 (1879).
3Friedrich Forster, Z. Metallk. 43, 163-171 (1952).

“Friedrich Forster and Kurt Stambke, 7. Metallk. 45(4), 166-179 (1954).

Friedrich Forster, Z. Metallk. 45(4), 197-199 (1954).

SR. Hochschild, "Electromegnetic Methods of Testing Metals," Progress
in Nondestructive Testing, Vol. 1, Macmillan Company, New York, 1959.

"D. L. Waidelich and C. J. Renken, Proc. Natl. Electron Conf. 12,
188-196 (1956). ==

8H. L. Libby, Broadband Electromagnetic Testing Methods, HW-59614
(1959).

°K. W. Atwood and H. L. Libby, Diffusion of Eddy Currents, HW-79844
(1963).

107, J. Russell, V. E. Schuster, and D. L. Waidelich, J. Electron.
Control 13, 232-237 (1962).
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Vein,ll Cheng,l2 and Burrows®>

gave treatments based on delta function
coils, and Burrows continued with the development of an eddy-current flaw
theory. Dodd and Deeds,14 Dodd,15 and Dodd'® gave a relaxation theory to
calculate the vector potential of a coil with a finite cross section.
Here we extend a "closed form" solution to such coils.

The vector potential is used as opposed to the electric and magnetic
fields. The differential equations for the vector potential will be
derived from Maxwell's equations, with the assumption of cylindrical sym-
metry. This differential equation will then be solved to obtain a "closed
form" solution.

For the "closed form" solution, sinusoidal driving currents and
linear, isotropic, and homogeneous media will be assumed. Solutions will
be obtained for two different conductor geometries: a rectangular cross-
section coil above a plane with one conductor clad on another and a
rectangular cross-section coil encirecling a two-conductor rod. The solu-
tions for both geometries will be given in terms of integrals of Bessel
functions. Once the vector potential has been determined, it can be used
to calculate any physically observable electromagnetic quantity.

Eguations to calculate eddy-current density, induced voltage, coil
impedance, and effect of defects will be given. Measured values of coil

impedance as compared with calculated values show excellent agreement.

11p. R. Vein, J. Blectron. Control 13, 471494 (1962).

12pavid H.S. Cheng, "The Reflected Impedance of a Circular Coil in
the Proximity of a Semi-Infinite Medium," Ph.D. Dissertation, University
of Missouri, 1964.

13Michael Leonard Burrows, A Theory of Eddy Current Flaw Detection,
University Microfilms, Inc., Ann Arbor, Michigan, 1964.

140, V. Dodd and W. E. Deeds, "Eddy Current Impedance Calculated by
a Relaxation Method,”" pp. 300-314 in Proceedings of the Symposium on
Physics and Nondestructive Testing, Southwest Research Institute, San
Antonio, Texas, 1963.

15c. v. Dodd, A Solution to Electromagnetic Induction Problems,
ORNL-TM-1185 (1965) and M.S. Thesis, the University of Tennessee, 1965.

160, V. Dodd, Solutions to Electromagnetic Induction Problems,
ORNL-TM-1842 (1967) and Ph.D. Dissertation, the University of Tennessee,
1967.




DERIVATION OF VECTOR POTENTIAL

The differential equationsl7 for the vector potential will be

derived from Maxwell's equations which are;:

UxF=F+D (1)
dt
VXEzna;B- (2)
ot
V.B = 0 (3)
V.B_—_—p (4)

The medium is taken to be linear and isotropic, but not homogeneous. In
a linear and isotropic medium, the following relations between D and E

- ->
and B and H hold:

B = ul (5)
D= ¢k (6)

The current deunsity 3 can be expressed in terms of Ohm's law:
T = oF (7)

Equations (6) and (7) may be substituted into Equation (1) to obtain the

curl of ﬁ in terms of E:

OcE (8)

VX H = oF +
ot

175 1ist of symbols is given in Appendix A.
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The term dﬁ is much greater than g%E, so the latter may be neglected for

frequencies below about 10 Mc/sec (ref. 18). The magnetic induction
fieldlg may be expressed as the curl of a vector potential X:

E=VXK (9)

Substituting this into Equation (2) gives

= OA (10)

VXE=—-6-—'><A=—VX—--
3t v 3t

or

> _ B _ o 3 + 7 (11)

- 3t T Tinduced applied

-

GE=—0 oA (12)
ot

The term ¥ is interpreted as an applied scalar potential. The coil may
be driven by a voltage generator with an applied voltage ¥ and an internal
resistivity, %. However, for the purpose of this problem, the driving
function is expressed as an alternating current density of constant
amplitude, ;o rather than an applied potential, where

Limit (— o%A) = TO

g~ 0.
queoo

(13)

This provides a current which is not affected by induced voltages or the

presence of other coils. Making this substitution gives:

OE = — 0 = 4 1 (14)

Substituting Equations (5) and (9) into the left side of Equation (8)
and Equation (14) into the right side gives:

> ~>

L18For sinusoidal waves, %%E = %%E = jedﬁ. The term oE is much
greater than cuwE or 0 >> cw. o0 = 107 mhos/meter for metals, ¢ ~ 10711,
For frequencies on the order of 107 cps, w =~ 108, 107 >> 108 x 10711,

or ¢ ~ 100 cw.



-

Uxl=vxBa OxE] = o OB 15
VxH—VxH_.Vx[(l/p)VXA] Oat+1o (15)

The vector identities (Morse and Feshbach'?®)

Vx (W) = (W) XF +yWxFand Vx (VX F) = V(T-F) ~ VF,

can be used to expand the left side of Equation (15):

Vx (/)Y x &) = V(1/u) x (Vx &) +%Iv>< (v x &)
=V(1/u) x (Vx &) + IlI HV-R) ~ i: VA . (16)

In the definition of the vector potential the divergence of the vector
potential was not defined, so it can be defined to be anything convenient.
For induction problems V-k is set to zero. (This corresponds to the
Coulomb gage.) FEquation (16) will then yield the following results when
substituted into Equation (15).

V2R =—p?.o + Lo %% + u(1/u) x (v x &) -

This is the equation for the vector potential in an isotropic, linear,
inhomogeneous medium. For most coil problems it is possible to assume
axial symmetry as shown in Fig. 1. The vector potential will be sym-
metric about the axis of the coil. Since this assumption is valid for
most problems and the alternative to this assumption is a much more
complicated and impractical problem, axial symmetry 1s assumed. With
axial symmetry, there is only a 0 component of f and therefore of K.
Expanding the 6 component of Egquation (17) gives:

OFA 134 0% A

. OA
S e e = o g+ po e
3r?  r dr dz°® 2 © ot

r dr Z

(a(u&) 1 6rA> +<a(:aL/u) _g_;ﬂ (1)

19Philip M. Morse and Herman Feshbach, Methods of Theoretical
Physics, McGraw~Hill Book Company, New York, 1953.
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Fig. 1. Delta Function Coil above a Two-Conductor Plane.
Assume that i is a sinusoidal function of time, i_ = 1! e, Then the
vector potential is likewise a sinusoidal function of time,
A = A ej(wt +0)

= A" e‘jwt.

Substituting into Equation (18) gives:



2 . . 2 . . . ot
g %”vat 1 gA” eJmt + 2 %" egum h_%% met S i’ egwt F Sopoh” LJw

r r r Z

(1@2 1 arA" Jwt) 3(1/u)y B _jwt}
z.; / aZ
Canceling out the term_e‘]uyG and dropping the prime gives:
%A L 138, 9% A 1 IBA ( NES
5”5*"‘”‘"*“‘5”3=~ui+jmm— L““ = 1/u) ) oA
r r dr Jz r °© r ar oz oz
(19)

This is the general differential equation for the vector potential
in a linear, inhomogeneous medium with a sinusoidal driving current. We

shall now obtain a "closed form'" solution of Equation (19).

CLOSED FORM SOLUTTONS OF THE VECTOR POTENTIAL

We shall assume the medium to be linear, isotropic, and homogeneocus.
When I is the total driving current in a delta function coil at (ro,zo),
the general Equation (19) then becomes:
§E§.+ 1A, %A _ A _ JuucA + pI 8(r ~r ) d(z — 2z ) =0 (20)
3r?  r dr dz% r? © ©

Once we have solved this linear differential equation for a particu-
lar counductor configuraticn, we can then superimpose any number of delta
function coils to build any desired shape of coil (provided that the
current in each coil is known).

We shall solve the problem for two different conductor configura-
tions: a coil above a two-conductor plane and a coil encircling a two-
conductor rod. These two configurations apply to a large number of

practical problems.

Coil above a Two~Conductor Plane

The coil above a two-conductor plane is shown in Fig. 1. We have
divided the problem into four regions. The differential equation in air

(regions I and IT) is:



d%A 134 . 3% A
L LN AR R 21
dr®  r dr * dz2  rR (21)

The differential equation in a conductor (regions IITI and IV) is:
2 2
O%A ,10A  o%A A . (22)
dr?  rdr dz% 2

Setting A(r,z) = R(r) Z(z) and dividing by R(r) Z(z) gives:

1 9%R(r) + 1 OR(r) . 1 d%%(z) 1 (23)
R(r) or? rR(r) Or 7(z) dz? 2 1

We write for the z dependence:

1 32%2(z)
——— 2/ = Tconstant" = 0% + jwuo,
7(z) dz? J i (24)
or

24 _ 5. =
Z(z) = A eT VOTHIWO 2y g T Q50,2 (25)

We define:

=/ +qu0 (26)

Equation (23) then becomes:

1
Ey (27)

‘”E

R(

This is a first-order Bessel equation and has the solutions:
R(r) = ¢ Jy(ar) + D Y, (ar) (28)

Combining the solutions we have:

—X.Z -
A(r,z) = [A e 1% + B ¢ “1"][C J (ar) + D Y, (ar)] (29)
We now need to determine the constants A, B, C, and D. They are
functions of the separation "constant" @ and are usually different for

each value of . Our complete solution would be a sum of all the indi-

vidual solutions, if & were a discrete variable; but, since o is a
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continuous variable, the complete solution is an integral over the entire

range of . Thus, the general solution is:

e Tz

Alr,z) = f:[A(a) eM” 4 Bla) e Mi%[c(a) Ty(ar) + D(@) Yylar)] da . (30)

We must take A{x) = O in region I, where z goes to plus infinity.
Due to the divergence of Yi at the origin, D{(x) = O in all regions. In
region IV, where z goes to minus infinity, B(x) must vanish. The solu-

tions in each region then become:

A0 2 . [, (@) gy (ar) & (31)
2P g f:[cz(a) o'+ 8,(a) €771 7 (ar) A (32)
A(3)(r,z) = j:’[cB(a) 1 4 By(a) €5 gy (or) o (33)
2 (r,2) - [le (@) 2% gy(or) @ (34)

The boundary conditions between the different regions are:

A(l)(r,ﬂ) - A(z)(r,ﬂ) e
() ) (26)
%% (T,Z)J = %% (T:Z)J ~ kI o(r - I‘o)
sy Z=sf
A(g)(r)o) } A(3)(r,o) (37)
(2) E (3) i (28)
dA oA
5] -3 (r,zg
2BV oy = ) (r ) >
() (+) (40)
éﬁ r,z = éé r,z
SENC >j Rt (v, )L .
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Equation (35) gives:

ngl(oc) e 5y (ar) qa = [fey() 4 B, () €] 5y(ar) @ (1)

If we miltiply both sides of Equation (41) by [ J1(o/ r)r dr and then
)

reverse the order of integration, we obtain:

% -l
f@_,_(g%_e__ [fO.Jl(ozr) J (o

I') or dI’] ax = fwé [C2<Q) eaz
O

+ B,(a) e“o‘ﬂJfé“Jl(ar) I () ar ar] aa  (42)

We can simplify Equation (42) by use of the Fourier-Bessel equation,

which is:

Flo') = ﬁ(a) ﬁl(ar) Jl(a’r) ar dr do (43)

Equation (42) then becomes:

4ty )
B ’ C ! B ’ (+
e N - I N I |

o of o

We can evaluate the other integral equations in a similar manner.

We get (after dropping the primes on the a):

- al ~b A5
-B, e =C,e  —B,e wlr Jl(al‘o) (45)
B C B
S2, 2.3, 2 (46)
04 (6 [0 0
(04 (0
1 i N 47
C, = By = =+ Cy — =% B, (47)
EZ e 4 EB'-~e+o£1c = Ei e %2 (48)
(04 04 (04

x (04
Ao e g N . 2 c, ¢ 2 (49)
0
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We now have six equations with six unknowns. Their solution is:

(e, ) (g 1,) + (om0 ) (a9 ) €07
ZOch

1 _ ea’E
By = 5 WIT Jl(aro) {A + [(a—al)(al~a2) . Olﬁul)(a2+al> e

1 7
C,=3 uir, Jy(ar) e

200 C
) ) {(O‘*‘al)(al”az) ARG o R ey’
== Ulr J_(ar 204 C
By= = wlry Lo, (a-0n ) (g ~y) + (ovcy ) (a0 ) @ 29
£ + 20, C 5
(ar) { alagty) € 7 T
0. = plr J {ar ) - 201 ¢
3 0 "1 0" oo Yoy -a,) + (ot )@ty ) e
—0h ’
@) ( ooy ~cp) € }
B, = ulr dJ (ar 204 C
3 o 1o 1(awal)(o‘l”ﬂz) +‘(0*@1)(a2+a1> et
20, X e(g2+al)c s |
C, = E,LII‘O Jl(OéI'O) ‘J\i ZOch'j

(a-ary ) oy -ap) + (o Yoo ) e

We can now write the expressions for the vector potential in

each region:

ulr

A(l>(r)z) - 0 éle(aro) Jl(Oér) ewow»ocz

2

|

(50)

(51)

(52)

(53)

{GM [<m1><al_a2> + (o) (gi0r) & M } o (56)
X e +

(Q‘a1>(a1“ag> + (a«ml)(a2+al) ezalcJ

puir
2 o & ok
A )(r,z) 5 é Jl(aro)Jl(Gf) e

li

204 ¢

Qe Clw ~CL ) + (g~ )(OC +C ) = N
o (ot ) (o -0y (or-0ry ) (040l I
X je + 20y O

(-0t )} (ctq 0ty ) + (atory ) (k) @

(57)
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A(3)(r,z) = HIrO,(fle(aro)Jl(ocr) ey

laytay) e®1° % 4 (o) -q,) "

c} do (58)

(o-0n ) (o -0p) + (ot ) ety ) e®M1

2 ) - uIroémJl(aro)Jl(ozr) ol

2C¥1 e(ag‘lﬁil)c e“!‘Qng
% dor (59)
2004

(ot ) {0y =t ) + (o ) (ot ) e

These are the eguations for the vector potential of a delta function
coil above a two-conductor plane. Next we shall consider the derivation
of the vector potential of a delta funection coil encireling a two-

conductor rod.

Coil Encireling a Two-Conductor Rod

We shall assume a delta function coil encircling an infinitely long,
two-conductor rod, as shown in Fig. 2.
The general differential equation is the same as Equation (23) for

a coil above a conducting plane.

> 2
1 O%R(x) 1 OR(r) 1 d%(z) 1 _ oo = 0 (60)
R(r) or? rR(r) Or z(z) 9z* r®

Now, however, we shall assume the separation constant to be negative:

2 ,
1 9%(z) = "constant" = — o (61)
z(z) d2z?
Then
z(z) = F sina(z—zo) + G co&a(z-zo) (62)

and Equation (60) becomes:

L2 3%R(r) . rR(r)
dr? or

[(a? + jouo)r® + 1] R(r) = O (63)
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Fig. 2. Delta Function Coil Encirecling a Two-Conductor Rod.



The solution to Equation (63) in terms of modified Bessel functions

is:

1
R(r) = CI,[(a® + jwuc)%r] + DKy [(o® + juno)?r] (64)

We can now write the vector potential in each region. We shall use
the fact that it is symmetric (with respect to Z—ZO) to eliminate the
sine terms, and the fact that Ki(o) and Tj(») both diverge to eliminate

their coefficients in regions I and IV, respectively. Thus we have:

A(l)(r,z-zo) ég;@z)ll[(az + jupdl)%r] cosa(z-zo) do (65)

1
2 (r,20 ) IWCAOINICE RS

+ Dy(a)Ky [ (@® + jwudz)%r]} cosoc(z-zo) dor (66)

A(3)(r,z-—zo) = ﬁcB(oc)Il(ar) + Dy (0)Ky (ar)] cosaz-z_) do (67)

A(4)(r,Z—ZO) = £%4(Q)Kl(ar) cosa(z-zo) do (62)

The boundary conditions between the different regions are:

A(l)(a,z-zo) = A(z)(a,z-zo) (69)

%;-A(l>(r,2«zo)} = %; A(z)(r,z—zo)‘ (70)
r=a I=g,

A(Z)(b,Z-ZO) = A(3>(b,Z—ZO) (71)

3 22 sy . o a0 (r,0mz ) (72)
~ AN (x, Oiib Sr r Orlb

A(B)(rorz'zo) = A(4)(1‘0’2”20) (72)
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o A(B)(r z2-2 )

S a0y, Z-7
St P A (f: )

ar o

r
O l"I‘O

+ pIs(z-z ) (74)

=

i —

If we multiply both sides of Equation (69) by cosa’(z~zo) and integrate

from zero to infinity, we obtain:

éw{Tbl(a)Il[(az + jmucl)%r] cosa(z—zo) cosa’(z-zo) do
o o L 1
= é é[cz(a)ll[az + Juno,)2r] + Dy(a)Ky[ (0 + jupcz)ér)]
X [cosa(z-zo) cosa’(z-zo)] dox d(z-zo) (75)

We can reverse the order of integration and use the orthogonality

properties of the cosine integral or use the Fourier integral theorem:

% éwf(a)[éfcosa(z-zo) cosa’(z-zo) d(z—zo)] do = £ ) (76)

Thus, we can solve the integral equations (69) through (74). We shall use
1 1

a1 and o, to designate (0 + jwpoy)? and (0 + juwio,). We shall use primes

to designate derivatives with respect to the argument. We get from the

integral equations (69) through (74):

CyIy(oga) = C,I;(aya) + DK, (aya) (77)
CranIi(oga) = Ca,T) (a,a) + Dok (a,2) (78)
CoTy (eb) + DKy (apb) = C4I;(ob) + DK, (0b) (79)
CoopTy (@pb) + DyrKy (b)) = o0 (ab) + DLoK] (ob) (80)
C,T, (ary) + Dk (ox)) = DX (or ) (81)

, LT
€01y (o ) + Dok (ar ) = Dok’ (ar ) + &= (82)
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Now we have six equations with six unknown constants. The equations

may be solved to give the constants. We define:

= [oczKo(oazb)Kl(ozb) - aKo(ab)Kl(azb)][alIl(QZa)Io(ala)

I, (0y2)I (@,8)] + [0 K (o,2)T, (o, a)

+ olel(ocza)IO(ocla)][ole(ozzb)Ko(ozb) + ocZIO(oczb)Kl(ocb)]

The constants are

urOIKl(aro)
Cp = ——F———
abnD

urOIKl(ozro)

D, = ——5—— [{opTy(2)T (2p2) — Ty ()1 (22)]
uIroKl(aro)

C, = — [azKo(aza)Il(ala) + alKl(aza)Io(ala)]
c - uIroKl(aro)
3T T x

wr I Kl(aro) NCAY

Dy = —— K, (ob) L b [0 Ty (p2) T (08) — apTy (033)T (p2)]

1, (a,b)

[azKo(ozza)Il(ocla) + oclKl(a?_a)Io(oala)] + Il(ocb)}

uIrOKl(ocrO) 1<a2b)[a211(o‘1a)10(052&) - 05111(0423)10(@1&)]
B K, (ob)bD

D, =

Ty (@,b) I, (ab) 1, (or,

+ K, (oo )bD (o, (o 2)K (ap8) + agky(0a)I (0q2)] —

Ky (ab) K (ocr

(83)

(84)

(85)

(g6)

(87)

(88)

)}( 89)
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We can now write for the vector potential in each region:

A(l)(r,z—zo) - BL = (90)

] fg Kl(aro)
T 5 ab D

}

ll(alr) cosa(z-zo) dor

w K (ar )
A<2>(r,z-zo) - “—f— / -9-%1)——-9- {[ (oIy (4 a)I (oa) — onTy(,e)I (a)]

X K, (a,r) + [azKo(%a)Il(ocla) + Olel(ozza)Io(ocla)]Il(cxzr)} cosa(z-zo) Gle

(91)

. @ K (Oﬂ b)
A(B)(r,z—.zo) = H;[I— é roKl(ozro) {Il(o:r) - \:%%-é—(—a—g)- alIl(O‘za)Ic)(O‘la)

I b)

- O‘zll(o‘la)lo(%a)> - %—5}-{({%5 (ocZKO(aza)Il(ocla) + alKl(ocza)Io(ocla))

I, (o) ’
+ Kl(ab)} Kl(ar)} cosa(z-zo) ao (92)
o {o,b)[a,I, (o a)IO(oc a) — oI, (,a)T (oga)]

A(4) . g% {)TOKl(@rO)Kl(ar) {%1 2 211\ Kl(az) - 14 @8 )L\
I, (@,b)

m [OCZIl(Otla)KO(Oéga) + OClKl(Olza)Io(Oéla)]

L (ab) . I, (ar

i} cosa(z—zo) dx (93)

Ki(ab) K, (ozro

Equations (90) through (93) are the equations for the vector poten-
tial of a delta function coil encircling a two-conductor rod. We will

now consider the superposition of the delta function coils to form '"real"

coils.
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Coils of Finite Cross Section

We have the equations for the vector potential produced by a single
delta function coil. We can now approximate any coil such as the ones
shown in Figs. 3 and 4 by the superposition of a number of delta function

coils.

ORNL-DWG 67-2523

Fig. 3. Rectangular Cross-Section Coil above a Two-Conductor Plane.
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ORNL-DWG 67-2525

Fig. 4. Rectangular Cross-Section Coil Encircling a Two-Conductor Rod.

In general, we have:

i

Alr,z)(total) = 5

g

l"LT
A, (r:Z) = E(T,Z,Ei,'fi)
i=y

e
1]
[}

(9

4

)
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This equation is good for coils of any cross section. If we let the

current distribution in the delta function coils approach a continuous

current distribution, we obtain:

(95)
A(r,z)(total) = Jf A(r,z,ro,ﬂ) d(area)
coll
cross section

where A(r,z,ﬂ,ro) is the vector potential produced by an applied current
density io(z,ro). If the coil has a rectangular cross section, as in

Figs. 3 and 4, we have:

To 4o

Mz 2)(tota1) - | [ a(r,z,r,0) aras (56)

4
We will now assume that the applied current density io(ﬂ,ro) is a
constant over the dimensions of the coil; that is, the current in each
loop has the same phase and amplitude. We shall apply these results to
Equation (56), the case of a probe coil above a two-conductor plane.

After reversing the order of integration, we write:

o T2 t2
A(l)(r,z) =L/ \/ \} Eigfg Jl(aro)Jl(ar) g0l 4+z) {ézaz
O ry £y

(oo ) (o -0,) + (a-aq ) (it ) ezoclc_l
T (97)
+ [(a-al)(al_a2) + (o ) (@40t ) eaxlcji} doy dr  df

We shall express the integral over T, as:

T ar, ar,
;‘r J, (ar )dar_ = 2 k/ ar J,(ar )dor = L ;/ xJ, (x) dx = L I(r ,r. )
o 1 o] o g° o+ o o g? 1 o2 22Ty

r =T, Or_=qry X=0ry

(98)
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The integral over £ is:

£

E:El

Upon
potential

become:

2B (r,2)

a2 ()

A(é)(r,z)

42
e—oc(£+z) {ezow . 1} il - e—azv/ {eow . e«o:z} s

=4
1

e Kquz ~ e@fh) 5 (e—azz ~ e—owl)] (99)

a y

applying Equations (98) and (99), the equations for the vector

in the various regions for a rectangular cross-section coil

Wiy y ¢ ~ail
= Ok/ i£-1(r2,rl) Jy (ar) e {}aﬂz SRS <§-a 2 e 7}
o

{(an)(al—%) + (omaq) (optoq) "% (100)
o e ey

o
wi o
) —__O— j i— I(rg,rl)Jl(ar) <e—06131 _ e-——Oéﬂ2> X {eaz
2 woaor F
) 20, C
) _ Jl g
. i(a+a1)(al a,) + (omay ) (o) e J “a%} do (101)
5
Hamag ) (ag-az) + (oo ) (aptay ) S
cbi, | 3 Trgey)a(an) (¥ - e
= ui_ | & r,,ry)dy(ar) (e e
20,¢c (0% e
ja(a2+al) e e+ ooy -ay) e Tt
Ty (102)

X L(oc—ocl)(ozl-ocz) + (a0 ) (a,t0) e

[o9]

T N
= “iok/ aS'I(rz’rl)Jl(ar) <e—aﬂl _ e—aﬂz)
o

e(oza+<:x1)c Oa? !

2
% { . 20 roda (103)
(a0 Moy ~0r,) + (ortay ) (arptay ) e €
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Equation (100) for A(l) is valid in the region above the coil and
Equation (101) for A(z) is valid for the region below the coil. We have
to give special treatment to region I-II, between the top and bottom of
the coil. For a point (r,z) in region I-II, we can use the equation
A(l)(r,z) for the portion of the coil from z down to £1 and the equation
A 2 (r,z) for the portion of the coil from z up to £,. If we substitute
£> = z in Equation (100) and £; = z in Equation (101) and add the two

equations, we get:

Qg C-

CJ*} - (104)

We now have the equations for the vector potential in all the

pi .

A(l’z)(r,z) I \jﬁ;% I(r,,ry)d (ar) {é - ea(z—ﬂ2) - é*x<z—ﬁl) + e
0
)

o
[(o:wl_) (ag-ay) + (a-aq Y(otoy) e

(@-aq Y@y -0tp) + (oo ) (orptoy ) €™

regions.

CALCULATION OF PHYSICAL PHENOMENA

Once we have determined the vector potential, we can calculate any
physically observable electromagnetic induction phenomenon. We shall now
give the equations and perform the calculations for scome of the phenomena

of interest in eddy-current testing.

Induced Eddy Currents

We have, from Ohm's law:

-

-3’:'- GE:-—-G-@—‘AL::-—’(»UK (105)
ot

From the axial symmetry, Equation (105) becomes:
J = — jwoA(r,z) (106)

where A(r,z) is given by either Equation (102) or (103), depending on the

region of interest.
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Induced Voltage

We have, for the voltage induced in a length of wire,:
V = jufA-ds (107)

For an axially symmetric coil with a single loop of radius r,

Equation (107) becomes:
V = jw 2nr A(r,z) (108)

The total voltage induced in a coil of n turns is then:

n
—

\

V = 3 21w ZfiA(ri,zi) (109)

i=0

We can approximate the above summation by an integral over a turn

density of N turns per unit cross-sectional area;

VoA J 2w L/b/ rA(r,z) Ndrdz (110
coil
cross section

For coils with a constant number of turns per unit cross-sectional area;

j 2nw n
v = Sl J\j rA(r,z) drdz (111)

coll cross section b
coil

cross section
This is the equation for the voltage induced in a coil by any
coaxial coil.
When the two coils are one and the same, with cross-sectional area
equal to (£, — £;)(r, — r;), the self-induced voltage is:
£o ¥y

j 2 n ‘ \
V = g L/ \/ rA(l’R’(r,z) drdz (112)
(£2'31>(r2'rl) zl T,
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Colil Impedance

From the self-induced voltage, we can calculate the coil impedance

V=2, or Z = (113)

<

The current in a single loop is related to the applied current density,

io, by:
I
i = - (114)
O (8t (rymry)
The coil impedance becomes:
. 2 ~
Jwr p n 1 1
Z = > 2k/ - 2(ry,ry) (2(2,-2y) + =
(£5-21)°(x =2 )% %
[28"@(,@2-,21) -2 x (e-zaﬁz + e-2ocﬁl__ 26—01(22-{-,61))
(oc-!a)(aa)+(ococ)(a+a)e2alc}} (1159
dar 115
20
(-0 ) -0tp) + (a0 ) (aptey ) e 1©

This equation can be made more general by normalizing all the dimensions

in terms of a mean coil radius, r.

o= = (116)

All lengths are divided by T and all a's are multiplied by r.

Upon normalization, Equation (115) becomes:
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[ve]

2 7 ~

Juwt p n® r
7 = J _}_5_. 12(1‘2,1‘1) {2(32—,31) +§
([/2"@1)2(112” I‘l)2 o @

[2e—a(i,2-ﬁ,l) — o4 <e—2ocﬁ,2 + STy ge"a(;zz'”l))

(OH-O&I)(OCl—-az) + (CZ—CX1>(():2-{-O£1) eZOLle

X do (117)
(o-cty (g ~0r,) + (o ) (ot ) ezalc)}

The impedance may be normalized by dividing it by the magnitude of

the air impedance. For the air impedance Q== and:

0

2

G R {ee,m2p

air (gz,gl)Z(rz_rl)Z o)

27w 1 0

Z

+ é— \:e_au?"ﬂl) - 1J } o (118)

Flaw Impedance

Once the eddy-current density is known, we can simulate a flaw by
superimposing a small current flowing in the opposite direction. The
normalized impedance change due to a small, spherical defect not too
20)

close to the surface (Burrows iss

= ?
A .g_. o voll __iii%?,ﬁ) (119)

N

where Adefect is the vector potential at the defect, given by the equa-

tions for either A(B) and A(é) and "vol" is the volume of the defect.

Coill Inductance

The coil inductance is related to the magnitude of the air impedance

by:

“OMichael Leonard Burrows, A Theory of Eddy Current Flaw Detection,
University Microfilms, Inc., Ann Arbor, Michigan, 1964,
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oL = (2. | (120)

or

L n? ¥ j.@.l o) {(ﬂz-ﬂl) L1 [e_a(zz-zl) _ 1]} o
(2,8, )2(rpxp )2 O “ (121)

Mutual Inductance

N » . . . . 4 ’ ’
The voltage generated in a "pickup" coil with dimensions ry, ri, £z,

’ ] 3 ) . . .
£1 by a current I flowing in a "driver" coil with dimensions rp, ri, £,

Zl is;
Vo= M E = jar (122)
at
or
M = ._V_I (123)
Jw.

Using Equation (111) to calculate the voltage we have:

S )
= A(r,z) drdz 122
M {coil cross section)’( rA(r,z2) ( )
coil
eross section)’

The equation for A will vary, depending on the region where the
pickup coil is located. If the pickup coil is located in region I-II,

the mutual inductance is;:
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wrt n n’ r a 1 , , , ,
M = J = I(r,,ry)I(ry, r1) X 12085 — £7)
(Z;—Ei)(ré-r&)(ﬂ2~£l)(r2—rl) e

4 ’
+é [e*a(ﬂz'/el) _ e‘"Oé(ﬁz‘ﬂz) + e"a(ﬂlz—ﬁl) _ e“@(ﬂi-,@l) + <e—(x(z;+ﬂ2)

_alelny) a0y | e——a(z’lwl))

(o ) (0 -a) + (om0 ) (arptay ) ™A
X >J } do (125)

20 ¢
eal

(o-ay Yoy -ay) + (osery ) (e )

This is the mutual inductance between the driver coil and the pickup
coil in the presence of a clad conductor. By the reciprocity theorem,
this is equal to the mutual inductance between the pickup coil and the

driver coll.

Evaluation of Integrals

The normalized impedance has been calculated using a C-E-I-R time-
sharing computer to evaluate integral equations (117) and (118). The
solutions have been programmed for any rectangular coil dimensions and
lift-off as well as for a metal of any conductivity clad (in varying
thickness) onto a base metal of any conductivity. The programs, in
"BASIC" language, and their descriptions are given in Appendix B.

Figure 5 shows how the normalized impedance varies as a function

of clad thickness.

EXPERIMENTAL VERIFICATION

A family of four coils was constructed with different mean radii
but all with the same normalized dimensions. The coil impedance was
measured at various values of normalized lift-off and at various values

of T?wuo., The values of the experimental normalized coil impedance and
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Fig. 5. Variation of Normalized Impedance with Clad Thickness.

the calculated normalized coil impedance are plotted in Fig. 6. The
agreement between the calculated and measured values is excellent at the
higher frequencies. At the lower frequencies the measurements are very
difficult to make, and the accuracy of the measured values becomes very
poor. (Because of this, few eddy-current tests are made at these freg-
uencies.) Thus the theory is in excellent agreement with experimental

values at the frequencies of interest in eddy-current testing.

ACCURACY OF CALCULATIONS

This technique, like most others used in engineering, is "exact,

except for a few assumptions we have to make in order to work the

i

problem.”" We will now discuss the probable errors in some of these

assumptions.
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2466
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Fig. 6. Variation of Experimental and Calculated Values of Normal-
ized Tmpedance with Frequency and Lift-Off.

Axial Symmetry

This is a very good assumption, but we cannot easily wind coils that
have perfect axial symmetry. This error will vary with the winding tech-
nique and will decrease as the number of turns on the coil and the coil-
to-conductor spacing increases. This error will be effectively reduced
when normalized impedance is calculated. For a typical coil it should

be less than 0.01%.

Current Sheet Approximation

This error arises because we have assumed a current sheet, while we

actually have a coil wound with round, insulated wire. Some correction
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formulas are given by Rosa and Grover?l for the inductance of a coil in
air. From Equations (87) and (93) by Rosa and Grover, we have calculated

the following correction formula:

0.5058r, — 0.2742r. + 0.44 (£,-0,)]
% L 2 X Uamty <En '?{ + o.155> (126)
n

where all dimensions are normalized by the mean coil radius. The symbols
D and 4 are the wire diameters with and without insulation, respectively.
For a typical coil with 100 turns the change in inductance is 0.19%. The
change in normalized impedance will be a small fraction of the change in

inductance.

High Frequency Effects

These are probably the most serious sources of error in this calcu-
lation technique. As the frequency increases, the current density ceases
to be uniformly distributed over the cross section of the wire but
becomes concentrated near the surface. The resistance of the coil
increases, and the inductance decreases. The current is capacitively
coupled between the turns in the coil, tending to flow across the loops
of wire rather than through them. Both the interwinding capacitance
and the coil-to-metal sample capacitance increase. The coil-to-sample
capacitance can be reduced by winding the coil such that the turns
nearest the sample are electrically near alternating-current ground.

The coil-to-sample capacitance will be much less than the interwinding
capacitance. If the coil is used at fregquencies where the interwinding
capacitance has a small effect, the error in calculated normalized

impedance will be a much smaller effect.

?lEdward B. Rosa and Frederick W. Grover, "Formulas and Tables for
the Calculation of Mutual and Self-Inductance," Nat. Bur. Std. (U.S.),
Tech. News Bull. 8(1), 1-237 (1912).
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CONCLUSIONS

This technique presents a quick and easy way to calculate the
observed effects of actual eddy-current tests to a high degree of

accuracy.

ACKNOWLEDGMENTS

The authors wish to express their appreciation to W. A. Simpson
for performing the experimental measurements, to J. W. Luguire and
W. G. Spoeri for editing and checking the equations and their assistance

in programming the stepwise solution of the integral equations.



33

APPENDIX A
List of Symbols

In the first column the symbol used is given, and in the second
column the name. In the third column the meter-kilogram-second (MKS) units
are given. 1In the last column the dimensions are given in terms of mass (M),

length (L), time (T), and electric charge (Q).

Symbol Name MKS Units  Dimensions
' webers ML
A i LA foed
vector potential Tor Tq
B magnetic induction HEEEE% M
meter TQ
c clad thickness meter L
D electric displacement EQE%Q%E -
meter L?
E electric intensity yolt ML
meter T=qQ
H maghetic intensity ampers 8
meter TL
I applied current ampere %
i applied current density ampere 2
o) meter? TL?
J current density EEQEE% B~3
meter TL
J square root of minus one
1,2
L inductance henries M%—
Q
£ distance from metal to delta function coil meter L
L2 distance from metal to top of the coil meter L

£q distance from metal to bottom of the coil nmeter L



Symbol Name MKS Units Dimensions
turns 1
N turns per unit area — —_
meter 1,2
n number of turns turns
ry coil inner radius meters T
rp coil outer radius meters 1
T mean coil radius meters iy
t time seconds T
2
Vv voltage volt ML”
T2Q
2
Z impedance ohms ML~
TQ?
04 separation constant meter™* %
2 1 1 1
3 2 o - —
oy (x +qu0i) meter =
2n2
€ dielectric constant farad 79
meter ML>
v permeability henry ML
meter Q2
™0 2
o conductivity mho Q7
meter ML?
radians 1
W angular frequency ——— =
second T
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APPENDIX B

This appendix contains two "BASIC" programs which were used to calculate
eddy-current coil impedance using the C-E~I-R time-sharing computer system.
The first program, CLADT5, is the more general program and will calculate the
impedance of a coil of any rectangular cross section positioned any distance
above one conductor of any conductivity clad on another conductor of any
conductivity. The second program is a special case of the first program
where the two metals have the same conductivity. While the integral over ¢
is from 0 to «, the integrals converge to within about 0.03% of their final

value for the integral of o to a=35.
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R
&
I
I3
R

=
IS

Us 0N

~N o

16
o0
37
40
5¢
3%
7
g6
a9
166
11
12¢
306
1 a0
154
166G
176
18¢
196
200
216
cew
230
2 40
256
260
278
CREG
290
J36@
31@
324
33¢
3406
35
360
37¢
384
396
406
L1
420
430

DTS 9:27 CEIK Ge/sebs 67
Evi THIS IS A PROGRAM TO CALCULATE EDDY CURRENT COIL IMPEDANCE
EM FOR A COIL ABOVE A CONDUCTING PLANE. THE COIL INNER AND

EM OUTER RADII,R1 &ND R2s AND THE SPACING OF THE BOTTOM AND
EM TOP OF THE COIL ABOVE THE PLANE, L1 AND L2, MUST EE CGIVEN.

EM THE VALUE OF Rt2*xMU*FRE@xCOND MUST BE GIVEN FOR BOTH THE EBASE

v MATERIALs M1, AND THE CLAD MATERIAL, M2. THE THICKNESS, Co
E¥ OF THE CLAD MATERIAL MUST ALSO EE GIVEN.
LET R1=.8333
LET k2=1.1667

LET Ll=.Qa76
ILET L&=.38%09

LET M1=77.25
LET M2=4n0

LET C=.65

PRINT “RFi1="3R1,"Re="s3K2,"L1=""35L1,"L2=""5L2¢

PRINT "CLAD THICKNESS IS "3C,"Mi="j3ml, "ma="";3M2

PRINT X", “AIFR VALUE", YREAL PART", "IMAG PART"

LET Si=1E-2

LET Ss2=5

LET 1&=0

LET 17=¢

LET I8=%

LET 19 =
LET B1=p0
LET B2 =
FOR X
LET Z

G

+

wn
~
N
)
o]
el
ne
4

TEP 51

LET 12=F2

LET Z=R1%X

LET @1=E1

GOSUR 790

LET I1=r2

LET I13=12-11

LET S3=81%13%13/X

IF 2xXxL1>16 THEN 630

LET Y2=e 70710 7%SERESEROXAXKX AR +MEHM2) =X *X)
LET X1 = «787107*SOQRCSOR CARRARXRK+M 15 1) +K06XK)
LET Y1 = «70T10T*SEROSEROX*XHX*X+i41%M 1) -X*kX)
IF 2%xX1%xC>30 THEN 518

LET X2 = 2707107 *S0R(SOR (XX AN (X +M2% M) + X% XD
LET Y=o 70710 T*SORCSORIXKXFX KX +M2KM2 ) ~XxX)
LET X3=EXPCZxX1%0C)D

LET Y3=COS(2%xY1%(C)

LET Y4=SINCZ*xY 1x()

LET £26=(X-X1)%(X1+X2)+Y1k(Y1+YE)

LET AT=(X-X1)#(Y1+Y2)-Y 16 (X1+X2)

LETASS(X+X 1Y (X 1=-X2) =Y 1k (Y 1~YE)Y+(AE+YI-ATxY 4) X3
LET BS=Y1*k(X1=-X2¥+(X+X1D%(Y1-Y2)+(ATHYB+AEXY 4)*X3



37

440 LET C6=(X+X1)R(X1+X2)-Y1Ix(Y1+Y2)D

450 LET C7=Y 14 (X1+X2)+(X+X 1)k (Y1+Y2)

460 LET CS5=(X~X1)#(X1=-X2)+Y 1k (Y1-Y2)+(CExYI-CT*Y4I*X3
472 LET DS5=(X-X1)#(Y1=-Y2)-Y1*x(X1-X2)+(CT*xY3+06xY4)*X3
450 LET K1=(aS%xCS5+B5xDSY/(COXC5+D5xB5)

497 LET K2=(CS5*ES5-A5%DOY/ (C5%CH5+D5%D5)

566 GOTQ S&@

516 LET AS =x-¥1

52¢ LET ES5=-Y1

53 LET CS5=X+X1

S4? LET Db=Y1

550 GOTO 486

560 LET G=FEXP(-2%X*L 1) +EXP(-2%X*L2)-2%EXP(-Xx(L1+L2))
570 LET Gl1=06xK1

S8F LET G2 =GxK2

598 LET Al=53%G1/(2%X)

60 LET A2=53%G2/(2%xX)

616 LET Ié6=16+A1

620 LET I8=Ig8+A2

637 LET G3=EXP(-X%(L2-L1))-1

640 LET A3=53%(G3/X+L2-L 1)

65¢ LET 19=19+A3

6677 NEXT X

&7 LET BlI=B1+52

8¢ LET Be2=ge2+52

690 LET @3=X+S51/2

706 LET I7=19+16

116 PRINT @3,1951751%

727, IF X < 3 THEN 198

736 LET S1=5E-2

T4 IF X < 30 THEN 190

75¢ LET Q1=-18/19

760 LET Q2=17/19

TIBPRINT"NORMALIZED IMAG PART™;E2,"NORMALIZED REAL PART"3; 01
TG GOTO 948

796 IFZ>3THEN 8&¢

560 LETLO=sINT(2%Z)+3

210 LETF1=.5%Q1%Q1%Z

g0 LET F2=F1/3

H3C FORN=1TOLS

840 LETF1=-F1%.250%Z%Z/ (N&N+N)

850 LETF2=F2+F 1/ (2*%N+3)

6L NEXTN

870 GOTO 936

880 LET P1=+8069%Z1 497+« 1 T3G*¥EXP(~e2675%7)
890 LFT P2=5SINC(Z-2.340++ 106%EXP(~e BER%7)+4 324EXP( =0 3%ZY) "
9P¢ LET P3=«156%EXP(-.9%Z)%8IN(2.2%7-431)
9210 LET P4=1

92¢ LET F2=(P1%P2+P3+P4)/ (X%X)

93¢ RETURN

G40 END
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CVDB@5 131248 CEIR 28718767

1 REM THIS IS A PROGRAM TO CALCULATE EDDY CURRENT COIL IMPEDANCE
2 REM FOR A COIL ABOVE A CONDUCTING PLANE. THE COIL INNEKR AND

3 REM OUTER RADII»R1 AND R2, AND THE SPACING OF THE BOTTOM AND

4 REM TOP OF THE COIL ABOVE THE PLANE, L1 AND .2, MUST BE GIVEN.
5 REM THE VALUE OF Rt2#%FREQ@xMUxCOND MUST ALSO BE GIVEN.

16 LLET R1=.8333

20 LET R2=1.1667

32 LET L1=,.2952

40 LET L2=.4285

S LET M=T77.65

6 LET Si1=1E-2

T8 LET S2=1

80 PRINTU"RI="3R1,"R2=";R2,"LI=""3L1,"L2="3L2,"M="3M

9B PRINT "'X",*"AIR VALUE","REAL PART",*"IMAG PART"

1206 LET 13=@

1106 LET I4=0

120 LET 17=0

130 LLET 1I8=0

146 LET 19 =g

150 LET BEi1=@
160 LET B
7e OFOR X = Rl +81/2 TO 22 STEP 21
180 LE:T /—r\P‘,\

1946 LET 4

S

265 LET I3=1

‘ LT OSG=S
43% LET Xi=5iC 2oRN AL
440 LET Ki=1o. z1aal> HECRCK T =MD /-1
450 LET KOs (25X-1e41421280FCX 12X ) RK/H
460 LKW1 G=E (-o%y s, 1)+ EXPC~24 sl 2) - 2% X P (=X (L 1+L2))
70 LET G1=06%K1
L850 VLET GE=EXP(-Xx(LZ-L1))~1

490 LET G2 :G#K?
5@t LET 212835061/ 02%X)

510 LET £Z=83% ((”/zkbz—Ll)

520 LIET AS=83xGa2/ (237

536 LFPT I7=17+61+43

S0 LrT I9=219+A83

S50 LT I8=Ig+A2

560 MNEXT X

577 LET Fil=h1i+52

545 LLET 28=T02+50

567 ET C3=x+Z1/E
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609 PRINT Q3571%»717,18
610 IF X < 3 THEN 178
620 LET Sti=5E-2
630 IF X < 3¢ THEN 17¢
640 1LLET §1=-18/19
65 LET Cg=17/19
H6GAPHRINTNORMALIZED IMAG PART"3 02, "NORMALIZED REAL PART:; 01
67 GODTOGRA
682 IF Z>3THENTTG
690G LET LS=INT(2%xZ)+3
TG0 LET Fl=ze5uG1m01%Z
716 LET F2=F1/3
Te FOR M=1TOLS
T36 LET Fle-Fl#e250%7%7/ (NxN+N)D
T4% LET F2=FZ2+F1/7(2%N+2)
756 NEXT N
760 GOTORSH
T70 LET PlzoeBGOI%ZT ¢ 49T+ 1 TI38HEXP(~e2675%7)
TE8H LET P2=SIN(Z-~2e340+4+¢ 106%EXP( - 863%Z)+¢ J2HEXP(~e 3%Z))
T LET P3=e 156%EXP(~e047Z)uSIN(242%7~e 31D
68 LET P4g=1
510 LET F2=(P1:P2+P3+P4)/ (X=X)
g KETURN

A OEND

(s IRaalNe
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