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7. Theoretical Studies for High-Energy Radiation Shielding 

7.1 HIGH-ENERGY NUCLEON TRANSPORT AND 
SPACE VEHICLE SHIELDING' 

R. G. Alsmiller, J r .  

Recent work on the  transport of high-energy mas- 
sive par t ic les ,  protons, neutrons, a lpha  par t ic les ,  
etc. ,  through d e n s e  matter a s  th i s  work app l i e s  to 
t h e  sh ie ld ing  of manned s p a c e  vehic les  is re- 
viewed. T h e  transport of heavy par t ic les  through 
t i s s u e  and  t h e  resultant phys ica l  d o s e  (rads) a r e  
considered, but t h e  important question of t h e  bio- 
logical e f fec ts  of radiation i s  not d i scussed .  
Throughout t he  d iscuss ion  a n  attempt is made to 
ind ica te  t h e  a r e a s  of uncertainty where further 
research  is required and particularly to ind ica te  
the  a r e a s  where experimental confirmation of theo- 
re t ica l  resu l t s  is needed. 

References 

'Abstract of ORNL-TM-1518 (1966); work funded 
by National Aeronautics and Space  Administration 
under NASA order R-104(1). 

7.2 CALCULATIONS OF' RADIATION HAZARD 
DUE TO EXPOSURE O f  SUPERSONIC JET 

AIRCRAFT TO SOLAR FLARES' 

M. Leimdorfer R. G. Alsmiller, Jr. 
R. T. Boughner2 

Trave lers  and  operating personnel i n  the  pro- 
posed supersonic  j e t  aircraft  will,  at least when 
traveling polar routes,  b e  subjec t  to a radiation 
hazard from so la r  protons and t h e  secondary  par- 
t i c l e s  produced in  the  atmosphere by t h e s e  pro- 
t o n ~ . ~ ~ ~  To determine the  magnitude of t h i s  

hazard,  a s e r i e s  of Monte Carlo ca lcu la t ions  have  
been carried out giving es t imates  of the  d o s e  l eve l s  
from a typica l  f lare spectrum at various dep ths  in  
t h e  atmosphere. 

T h e  ca lcu la t ions  were carried out us ing  t h e  nu- 
cleon transport  code  NTC, which u s e s  a n  intra- 
nuclear c a s c a d e  model to predict t he  energy and 
angular distributions of the  nuc leons  emitted in  
high-energy nucleon-nucleus coll isions.  T h e  
quali ty fac tors  used  to convert from rads  to rems 
were taken to  be the same a s  those used  in the 
work of Zerby and Kinney.6 T h e  geometry w a s  
simplified to the case of multilayer s l a b s  with the  
following composition (start ing at  the  top of t he  
atmosphere): X g of a i r  per cm2, 1 g of iron per 
cm2, 30 g of t i s sue  per cm2 ,  1 g of iron per cm', 
and a n  infinite layer of air. T h e  three middle 
layers  were used  to simulate t h e  aircraft  and the  
passengers.  

The so lar  protons were assumed to b e  incident 
isotropically a t  t h e  top  of the  atmosphere and  were 
taken  to  have  a n  integral  spectrum exponential  in 
rigidity; t ha t  is, the  incident spectrum w a s  taken  
to be  of t h e  form 

where 

1 
P = - [E(E + 2 m ~ ' ) ] ' / ~  , 

z 7 charge  number, 

e = e lec t ronic  charge,  

E = kinetic energy, 

m = mass ,  

c = velocity of light. 

ze  

In the  ca lcu la t ions  P o  was  taken to b e  100 MV, 
and the  incident flux was  normalized to 1 par- 
t i c le /cm2 with energy greater than  30 MeV. Only 
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inciderit protons with energies between 50 and 
150 MeV were considered. T h e  incident protons 
with energy l e s s  than 50 MeV ate stopped in the  
a i r ,  and the  few secondary particles from thesc  
low-energy protons may be  n e g l e ~ t e d . ~  T h e  par- 
t i c l e s  above 450 MeV were not considered because  
of the  lack  of particle pioduction data a t  the higher 
energ ies .  T h i s  is, of course,  a limitation on the 
ca lcu la t ions  and doer; not mean that the  contribu- 
tion of the  higher-energy incident particles is 

thought to be  entirely negligible. 
'The r e m  d o s e  a s  a function of depth in the  t i s sue  

a t  three atmospheric depths,  X - 22 g/cnn2 (-85,000 
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ft), X 36 g/cm2 ('b75,000 fi) ,  and X = 58 g/cm2 
(-65,000 ft), i s  shown in F igs .  7.2.1, 7.2.2, and 
7.2.3 respectively.  A variety of curves  a re  given 
showing the  various individual contributions to 
the dose .  The  total  dose  a t  each  depth i s  ob- 
tained by adding a l l  the individual contributions 
on a given graph. The  various secondary f luxes  
a re  defined to  b e  those  that would e x i s t  a t  the 
upper sh ie ld- t i ssue  interface if the  t i s sue  and 
everything below it were  replaced by vacuum. The 
curves labeled "primary proton nuclear dose" and 

secondary proton nuclear dose" represent the  
dose  from a l l  particles produced by nuclear co l -  

( 1  
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l i s ions  in the t i s sue  of primary and secondary 
particles respectively. The  upper backscattered 
d o s e  is the dose  from a l l  particles and their prog- 
eny which c ross  from the t i s sue  in to  the upper 
layer of iron. The  lower backscattered dose  is the  
dose  from all particles and their  progeny which 
c ross  from the  lower iron layer into the  t i s sue .  

The  secondaty particles contribute appreciably 
to  t h e  dose  a t  a l l  depths considered. 
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7.3 CALCULATED FLUXES OF LESS THAN 
50-MeV NEUTRONS DIFFUSING BENEATH 

THE SHIELD OF A MESON 
PRODUCTION FACILITY’ 

W. E. Kinney 

F luxes  of neutrons of energy less than 50 MeV 
which diffuse beneath an  idealized sh ie ld  for a 
meson production facility were estimated by Monte 
Carlo methods. Neutrons f rom a 400-MeV point 
isotroplc source  impinged on the  sh ie ld  configura- 
tion, where lower-energy neutrons w e r e  produced 
by intranuclear cascades .  Neutrons below 50 MeV 
were then treated,  and t h e  fluxes were computed 
by s t a t i s t i ca l  estimation. The  fluxes a t  0, 5, and 
1 0  ft behind the  sh ie ld  were calculated to be (2.7 t 
0.8) x lo-’’, (3.6 t 1.1) r l o -” ,  and (1.4 t 0.4) Y 

101’ neutron cm-2 (source neutron)-’ respec- 
tively. T h e  flux a t  0 ft produces a n  average whole- 
body dose  rate of 3.6 R/h. 

References 

‘Abstract of ORNL-TM-1423 (Feb. 23, 1966). 

7.4 ELECTRON-PHOTON CASCADE 
CALCULATIONS AND NEUTRON YIELDS FROM 

ELECTRONS IN THICK TARGETS’ 

K. G. Alsmiller, Jr. W. S. Moran 

The  electron-photon cascades  induced in cylin- 
drical  t a rge ts  of various s i z e s  and materials by 
e lec t rons  in the  energy range 30 to 200 MeV were 
studied, and calculations of the result ing neutron 
y ie lds  a re  presented. T h e s e  calculated y ie lds  a re  
compared with experimental yields,  and approxi- 
mate agreement is obtained. 

References 

‘Submitted to Nuclear  Instruments a n d  Methods; 
also published a s  ORNL-TM-1502 (1966). Work 
partially funded by National Aeronautics and Space 
Administration under NASA order R-104(1). 
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7.5 SHIELDBNG CALCLILATIONS FOR 
HIGH-ENERGY ACCELERATORS’ 

R. G. Alsmiller, J r .  

Th i s  i s  a reviesv paper on ex is t ing  high-energy- 
acce lera tor  shielding calculations that w a s  pre- 
sen ted  a s  an  invited paper a t  the F i i s t  Symposium 
on Accelerator Radiation Dosimetry and Experience,  
Brookhavcn National Laboratory, November 3-5, 
1965. 

Ref e r c n c c s 

‘Abstiact  of OWL-TM-1298 (Oct. 14,  1965). 

R. G. Alsmiller, Jr. M. Leimdorfer 
H. S. Moran 

One of the  many sh ie ld ing  problems a s soc ia t ed  
with high-energy acce lera tors ,  such  a s  the pro- 
posed 200-GeV accelerator,  i s  the  shielding aga ins t  
mu mesons produced in the experimental a rea . ‘  
The  general si tuation i s  that  of a proton beam 
which in te rac ts  with a target to produce a variety 
of particles,  including n iiiesons and K mesons. 

After leaving the target, t he  produced par t ic les  
travel through a drift s p a c e  and then enter a sh ie ld ,  
In traveling through t h e  drift space ,  a n  appreciable 
fraction of t he  m- and K mesons decay  into muons. 
T h e  sh ie ld ing  th ickness  in the forward direction 
with rcspect to the  proton beam i s  usually deter- 
iuined by the  muons fornied in the drift space ;  that  
i s ,  t he  other particles which enter the sh ie ld  may 
be  neglected.  Muons do not undergo s t rong  inter- 
action, and for energies of less than 50 to 100  GeV 
the  primary mechanism of energy lo s s  i s  the ioniza- 
tion and excitation of atorns.’r3 Thus the shield- 
i ng  problem in the  forward direction reduces to t h e  
transport of high-energy muons, taking into account 
only Coulomb interactions.  

A Monte Carlo transport code for protons which 
inc ludes  only Coulomb interactions but t akes  into 
account range straggling and small-angle multiple 
sca t te r ing  h a s  recently been written by Johansson 
and Leimdorfer. 4 * 5  By making the appropriate 
changes in m a s s  a n d  stopping power, th i s  code  
h a s  been adapted to muon transport calculations.  

In F igs .  7.6.1 and 7.6.2 the calculated la te ra l  
distributiori of muons at depths  of 30 and 55 m, 
respectively,  for the case of 100-GeV muons nor- 
mally incident on a cylindrical  sh ie ld  of iron 80 
c m  in radius is shown. The solid histograms show 
t h e  lateral  distribution of muons given by the  
Monte Carlo code ,  while the dashed histogram in 
F ig .  7.6.2 shows the  lateral  distribution of muons 
given by the  code when range straggling is ne- 
glected. The so l id  curve marked “Eyges” shows 
the Gauss ian  distribution given by the  approximate 
analytic theory of Eyges.  The so l id  curve marked 
“Moliere” is obtained using t h e  approximate theory 
of Eyges  but with a W 2  given by the multiple- 
sca t te r ing  angular distribution of M ~ l i e r e . ~  At a 

depth of 30 m, which is wel l  below the  range of 
t h e  incident particles,  range straggling h a s  n o  
appreciable effect  on the  la te ra l  distribution. At 

a depth of 55 m, the lateral  distribution i s  affected 
by range straggling. T h e  nuinber of muons per 
incident muon which reaches th i s  depth in the 
target is 0.671 when range straggling i s  included 
and 0.643 when range straggling is neglected. 

In addition to  changing the number of particles 
which reach large depths ,  range straggling a l s o  
changes markedly the  energy distribution of the  
par t ic les  a t  a given depth.  In F ig .  7.6.3 the  energy 
distribution of the  muons a t  a depth of 55 m is 
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Fig.  7.6.1. La tera l  Distr ibut ion of Muons a t  a Depth  
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Fig. 7.6.3. Muon Energy Distr ibut ion a t  a 

shown.  Without range straggling, all t h e  muons 
would arrive at t h i s  depth with a n  energy of ap- 
proximately 1 GeV. One can spec i fy  only approxi- 
mately t h e  energy with which the par t ic les  would 
arrive at t h i s  depth, because even  without 
straggling there is a s l igh t  spread  in the  energy 

distribution due  to t h e  different path lengths  
traveled by the  various par t ic les .  

In the  genera l  accelerator sh ie ld ing  problem t h e  
muons incident on the  sh ie ld  have both a n  energy 
distribution and an angular distribution. T h e  
ex i s t ing  program is being modified so tha t  calcula- 
t ions  in  t h i s  more genera l  case may b e  carried out. 
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Treating Proton Slowing-Down Due to Atomic 
Collisions, Forsvare ts  Forskningsans ta l t ,  Stock- 
holm, FOA 4, Rapport A4436-411 (1965). 
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'L. Eyges ,  Phys.  Rev. 74, 1534 (1948). 
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7.7 PROTON SPECTRUM FROM HUCLEAR 
COLLISIONS OF 1.?-BeV/c N E G A T I V E  

PIONS IN EMULSIONS 

I). T. King' 

Observations have  been made on the  t racks  of 
charged particles emergent from 800 nuclear 
co l l i s ions  made in a s t a c k  of Ilford K5 emulsions 

by a beam of 1.7-BeV/c negative pions from the  
Lawrence Radiation Laboratory bevatron. The  
nuclear co l l i s ions  may b e  distinguished pro- 
visionally as  occurring in heavy (Ag, Ur> or light 

(C, N,  0) nuclei, dependent on the  number N ,  
of evaporation prongs; for Ag and Br, N ,  = 6. 
From a calibration of ionization on the  t racks  of 
par t ic les  of known energy in the  s t ack ,  t he  
relation between grain density,  g ,  and velocity, 
v - PC, in t he  range 0.5 = p = 0.8 h a s  been es- 
tablished. For emergent par t ic les  with track 
lengths i n  t h e  emulsion exceeding 3.0 mm and 
ve loc i t ies  i n  th i s  range, the  protons c a n  then b e  
distinguished f r o m  pions through an evaluation of 
the  multiple Coulomb scattering.* The  energies 
and polar angles  of emission of 30 protons pro- 
jec ted  f r o m  T-  col l i s ions  with Ag arid B r  nuclei  
have been measured, and the  da ta  a re  presented i n  
the  form of an  energy v s  angle sca t t e r  diagram i n  
F ig .  7.7.1. T h e s e  da t a  may be compared with the  
predictions of nucleon emission derived from 
Monte Carlo calculations of the intranuclear 
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f i g .  7.7.1. Enuiyy of Protons  Proiected from 7 ~ -  Col- 
l i s i o n s  with A g  and  Br N u c l e i  a s  a Function of the  

Polar A n g l e  of E m i s s i o n .  

c a s c a d e  produced in  intermediate nuclei  by 
energe t ic  pions . 3  

Reference zi 

'Consultant, University of Tennessee .  
*C .  F. Powell ,  P. H.  Fowler, and D. 11. Perltins, 

The Study of Elementary Particles by  the Photo- 
graphic ,Method, p. 114, Pergamon, New York, 
1959. 

3 ~ .  W. Bertini, private communication. 

7.8 RADIOCHEMICAL CROSS SECTIONS AND 

INCIDENT PROTONS AND 
THE EFFECTS OF A F E  

IN THE 200-MeV 
ENERGY R EGIQN ' 

H. W. Bertini 

Theoretical  predictions were made for the  c ros s  
sec t ions  of a few (p,xpyn) reactions on C,  AI, Cu, 
and U ta rge ts  i n  the  energy range 50 to  400 MeV 
and compared with experimental resu l t s ,  A two- 
s t ep  cascade-evaporation calculation was used  in 
which the  diffuse nuclear sur face  w a s  taken  in to  
account.  T h e  resu l t s  indicated that agreement to 
within about 40% c a n  b e  expected when the  re- 
action cross sec t ion  is about 100 mb, but tha t  t he  
agreement can  be  no better than by a factor of 3 
when the c ross  sec t ion  is about 10 mb. A 
comparison with experiment for t he  (n.-, ii-"n) re- 
action on  carbon was  made over t he  energy range 
50 to 300 MeV, and the  agreement was found to b e  
fair when the  diffuse nuclear sur face  was  in- 
cluded. A method is sugges ted  which differs from 
the usual method for measuring the  real  part  of the 
optical-model potential  for p ions  on carbon by 
making u s e  of the posit ion of the  peak in the  
c ros s  sec t ion  for the  (n-,n-n) reaction vs  energy. 

It i s  shown that the  effect of increas ing  the  
radius used  in  the  calculation of the  @,pn) c r o s s  
sec t ion  on  carbon is more prominent than the  
effect  of changing the  nucleon density distribution 
for a given radius.  Finally,  r e su l t s  are given for 
the  dependence of the @,xpyn) c r o s s  sec t ions  on  
the  transit ion eneigy used in the  calculation 
between the  c a s c a d e  and evaporation processes ,  
which led to the  conclusion tha t  the lowes t  
transition energy g ives  the  resu l t s  most con- 
s i s t en t  with experiment. 
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ORNL-DWG 66-5219 eferences 

'Abstract  of paper  to be  submit ted to the  
Physical Review; work partially funded by National 
Aeronautios and Space Administration under 
NASA order R-104(1). 

H.  W. Bertini 

The intranuclear cascade  calculation for incident 
particle energ ies  froin 25 MeV to 2 GeV pre- 
viously reported' is continuing to undergo de- 
bugging. T h e  program is in operation, however, 
and a few very preliminary r e su l t s  have  been com- 
p a r d  witb experiment, as il lustrated in Figs. 
7.9.1-7.9.3. They indicate a fair agreement with 
experiment, which is encouraging. 

The ftee-particle cross sec t ions  of all. types 
tha t  are needed i n  t.he program a re  being brought 
up t o  da te .  Concurrently the  separa te  isobar 
program is nearing completioti. This program con- 
s i s t s  of that part  of the c a s c a d e  calculation which 
descr ibes  the  production of p ions3  in the  particle- 
particle co l l i s ions  tha t  occur in s ide  the  nucleus.  
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Fig .  7.9.1. Proton Energy Spectsum a t  18O from 660- 
MeV Protons on Copper,  Dashed l ines:  experimental  

resul ts  [L. S. Azhgirey e t  at . ,  Nm: l .  Phys.  13, 258 
( 1  959) ] ;  sol id- l ine  histogram: ca lcu la ted  spectrum for 

protons emi t ted  into  the  angular  i n t e r v a l  13 t o  23". 

I 
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Fig. 7.9.2. Secondary nTt Energy S p e c f r u m  a t  0.349O from 725-MeV Protons on Carbon. Points  show experi -  
mental  resul ts  [ R .  P. Haddock (UCLA), M. Z e l l e r  (UCLA), and K. M. C r o w e  ( U C R L ) ,  Production of Charged pions 

from Complex Nucle i  in the ForwardDiraction, unpublished; rece ived  Jan. 4, 19651; sol id- l ine  histogram: ca lcu la ted  

spectrum for r ' e m i t t e d  i n to  the angular  i n t e r v a l  0 t o  loo from 700-MeV protons o n  carbon. 
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Fig .  7.9.3. Secondary 7i- Energy Spectrum a t  0.349@ from 725-MeV Protons on Carbon. Po in ts  show experi -  
mental  resul ts  [ R .  P.  Haddock (UCLA), M. Z e l l e r  (UCLA), and K .  M. Crowe (UCRL),  Production of Charged Pions 

f rom Complex Nucle i  in the Forward Direct ion,  unpublished; received Jan. 4, 19651; sol id- l ine  histogram: ca lcu la ted  

spectrum for 7- emitted into  the angular in terva!  0 to l o o  from 700-MeV protons on carbon. 

'The program will b e  used  to determine the  accu -  
racy of the  model used  to descr ibe  the  production 
p rocesses  and to help in  determining the  angular 
distribution of the   isobar^.^ 
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9.10 ANALYTIC REPRESENTATION OF 
N O N E L A S T I C  CROSS SECTIONS A N D  

PARTICLE EMISSION SPECTRA 
FROM NUCLEON-NUCLEUS COLLlSIOEdS IN 

THE ENERGY RANGE 25 TO 400 MeV' 

R.  G. Alsmiller, Jr .  M .  Leimdorfer 
J. Barish' 

Using a n  intranuclear c a s c a d e  model, Hertini 
h a s  generated a large amount of da t a  on the  non- 

e l a s t i c  cross sec t ion  and the  energy and angular 
distribution of emitted neutrons and protons when 
neutrons and protons in the  energy range 25 to 
400 MeV are  incident on a variety of 
T h e  ca lcu la t ions  are carried out by Monte Carlo 
methods, and the  da t a  a r e  presented in  the  forin of 
histograms which, of course,  contain s t a t i s t i ca l  
f luctuations.  In order to make th i s  la rge  amount 
of da t a  more  access ib l e  and, insofar as  poss ib le ,  
to remove the s t a t i s t i ca l  fluctuations, t he  da ta  
have been fi t ted by the  method of l inear l e a s t  
squares .  

For both protons and neutrons in the  energy 
range 25 to 400 MeV incident on the  elements C, 
0, Al, Cr, Cu, Ru, Ce, W, Pb ,  and U ,  analytic 
express ions  are given for 

1. the nonelas t ic  c r o s s  sec t ion  as a function of 
energy, 

2. the  cascade '  neutron and proton emission 
spec t ra  in t h e  angular intervals 0 to  30°, 30 to 
60°, 60 t o  90°, and 90 to 180°, 

3.  the  evaporation' rieutron and proton emiss ion  
spec t ra  (assumed isotropic), 

4. the  c a s c a d e  neutron and proton emission 
spec t ra  integrated over all angles .  

T h e  c a s c a d e  emission spec t r a  integrated over a l l  
angles  c a n  be  obtained by summing the  emiss ion  
spec t r a  in t h e  individual angular intervals.  T h i s  
procedure, however, l eads  to  functions which 
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involve many more  parameters than are  necessary;  and the  coeff ic ients  have been obtained by 

so s e p a r a t e  fits for the angle-integrated spec t ra  minimizing the sum of the squares  of the  diffet- 
have  been obtained. e n c e  between the  logarithm of the Monte Carlo 

Both the nonelast ic  cross sec t ion  and all part ic le  da ta  points  and the  expression 
spec t ra  have been represented by functions of the  
form 

I/ 

z] s j E i  . 
j = o  

In fitting the c r o s s  sect ion,  v = 4 was,  in ge t ie rd ,  
used. In fitting the  emission spec t ra ,  v w a s  taken 

f i g ,  7.10.1. C a s c a d e  Neutrons (Averaged o v e r  0 to 30°) from 400-MeV Protons Incident on Aluminum: Corn- 
parison of Monte Carlo Histogram and Least-Squares Fit. 
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to  be  5 or to b c  the  number of Monte Carlo Coinparisons between the  Monte Carlo histograms 

histogram in te rva ls  minus 2 when there were l e s s  and the  fitted cilrves a r c  show1  in F i g s .  7.10.1--- 
thaii s even  interva1seg In many c a s e s ,  however, 7.10.3. T h e  c a s c a d e  neutrons from 400-MeV 
t h i s  large number  of parameters led to unphysical protons on aluminitin averaged over an  angular 
osc i l la t ions  in  the m a l y t i c  functions,  When t h i s  interval of 0 to 30" and integrated over a l l  angles  
occurred; t he  value of v was systematically re- are shown in  Figs. 7.10.1 and '7.10.2 respectively.  
duced until a function which did not o sc i i l a t e  The  evaporation neutrons from 400-MeV protons on 
excess ive ly  was obtained aluriiinum are  shown i n  Fig. 7.10.3. 
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3 

Fig. 7.10.2. Cascade  N c u P r o n s  ( Intcg,r:ed over A l l  Angles )  from 400-MeV Protons incident  on 4lum;nurn: Com- 

parison o f  Monte C a r l o  klistogrom and Least-Squares Fit .  
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Fig. 7.10-3. Evaporut ion Neutrons f r o m  400-MeV Protons on Aluminum: Comparison of Mante Carlo Histagrani 
and Lenst -Squares  Fir. 
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‘See ref. 3 for a d i scuss ion  o f ’ t h e  distinction 
between cascade  and evaporation par t ic les .  

’The particle emission spec t ra  presented by 
Kertini are in  the  form of histograms with equal  
energy in te rva ls .  The equal energy intervals were 
found to b e  inconvenient for fitting purposes; so 
before the  fitting was  carried out,  t he  Monte Carlo 
history tapes  were reanalyzed to  produce a 
histogram with unequal energy in te rva ls  bu t  with 
an equal  number of emitted par t ic les  i n  each  
energy interval ~ 

7.71 TISSUE CURRENT-TB-DOSE C$NVEWSIBK 
FACTORS FOR NEUTRONS WITH ENEWGlES 

FROM n .5 TO 60 MeV’ 

L). c. Irving R.  G .  Alsli1iller, J r .  

:-I. S. Moran 

To a s s i s t  in the  evaluation of t he  hazard 
a s soc ia t ed  with exposure to  high-energy neutrons,  
a Monte Carlo computer program w a s  used  t o  
ca l cu la t e  the energy deposit ion a s  a function of 
depth in a 3@cni-thick slab of t i s sue  result ing 
from neutrons incident on the  s l ab  a t  energ ies  up 
to 6 0  MeV. ‘The program treated nonelas t ic  and 
e lns t ic  interactions,  including evaporation proc- 
esses and nuclear recoils.  C a s e s  of both normal 
and isotropic inc idence  were ca lcu la ted  for 
neutrons of 0.5, 2, 10, 18, 30, and 60  MeV. Froiil 

t hese  data,  current-to-dose conversion fac tors  
were extracted for the  average whole-body dose ,  
t he  dose  a t  a 5 - c m  depth,  and the  maximum d o s e s .  
A s e t  of quality factors was  adopted for trans- 
forming rad dose  to r e m  dose .  

Reference5 

‘Abstract of ORNL,-‘LV-1522 (to be  published); 
work partially funded by National Aeronautics and 
Space  Administration under NASA order K-l04(1). 

7.12 METHOQ OF REPRESENTING TWO- 
DihrdENSiBN1Ak DlSTRlBUTlONS FOR 

USE !N MONTE C A R L 6  CALCULATIONS’ 

M. Leinidorfcr J .  Barish’ 

In an  attempt to inc rease  t h e  efficiency of an  
ex is t ing  Monte Carlo program, t h e  Nucleon 
Transport  Code (NTC), for treating the  transport 
of high-energy nucleons in matter, a method h a s  
been developed which is intended to improve the  
procedure for se lec t ing  combinations of the  energy 
and angle  of par t ic les  re leased  in  nuclear jnter-  

actions.  In the  present form of NTC, the  p rocess  
of par t ic le  emission from nucleon-nucleus co l -  
lisioiis is simulated by a Monte Carlo treatment of 
the  intranuclear cascade .  In t h e  proposed method, 
the par t ic le  emiss ion  da ta  obtained from the  intra- 
nuclear c a s c a d e  ca lcu la t ions  are represented i n  
the  form of t ab le s  which are  su i tab le  for sampling 
purposes.  The  p w e r  of the  method lies in  the  
fac t  that  the  t ab le s  are constructed directly from 
t h e  intranuclear c a s c a d e  (Monte Carlo) h i s tor ies ,  
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R.  W .  P e e l l e  P. M .  Aebersold 

T h e  Monte Carlo nuclear evaporation system 
(EVAP) employed to  es t imate  par t ic le  spec t r a  
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and radiochemical y ie lds  following calculated 
intranuclear c a s c a d e  reactions h a s  been  modified, 
largely to improve t h e  energy parameters  for 
nuc l ides  l ighter than sodium. Additional nuclear 
m a s s e s  have  been added to the m a s s  table for 
l ight nuclides,  and the  Cameron mass  function is 
employed to give the  m a s s  difference between the  
unknown m a s s  and a nearby known one. For  
nuclides having neutron or proton numbers less 
than 10, originally omitted correction parameters  
were added in  the  mass  function for she l l  and 
pairing effects, Pa i r ing  energy corrections were 
similarly supplied i n  these  cases for the  leve l  
density estimation. Nuclei  that  a r e  unstable to 
par t ic le  emission a re  not allowed to b e  residual 
nuclei ,  and when a nominal residual nucleus is 
a l s o  one  of the  poss ib l e  evaporated particles,  it  
is included in the  spectrum of tha t  par t ic le  without 
any residual excitation. T h e  kinetic energy of 
e a c h  r e ~ ~ i l  nuc leus  is accumulated with t h e  
approximation of evaporation at 90O in the  center- 
of-mass sys tem.  T h e  effects of t h e s e  changes  are 
d iscussed ,  with typical resu l t s  used as il lustration. 
Exccpt  for the recoil calculation the  changes  had 
more impact on estimated radiochemical y i e lds  
than on predicted par t ic le  spec t ra .  Some radio- 
chemical  yield es t imates  were altered by a factor 
of more than 10. 
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7.14 MONTE CARLO STUDY OF METHOD 
FOR LUNAR (SURFACE) ANALYSIS 

BASED ON SPECTROSCOPY OF GAMMA RAYS 
FQL LO WING 14-MeV PU LSED-N EU T RON 

BOMBARDMENT' 

M. Leimdorfer R .  T. Boughner' 

In an investigation of the  feasibil i ty of analyzing 
{lie sur face  of t he  moon by gamma-ray spectroscopy 
techniques,  Monte Carlo ca lcu la t ions  were per- 
formed to es t imate  the  spec t ra l  i n t ens i t i e s  of 
neutron-induced photons leaking from the  moon 

sur face  during various time intervals following a 
burst of 14-MeV neutrons onto the surface.  Four  
s e t s  of ca lcu la t ions  were done, all  based  on  the 
lunar sur face  composition given by Urey and 
Craig,3 with varying amounts of carbon and 
hydrogen (or deuterium) added. T h e  four spec t ra  
for t h e  time interval 0 t o  10-' sec following the  
burst  a r e  a l l  essent ia l ly  the  same,  clearly showing 
the ine l a s t i c  de-excitation gamma rays f rom 0, Si, 
Mg, and Fe, and a l s o  from C when that element 
w a s  present.  T h e  spec t r a  €or later t i m e  intervals 

t o  s e c )  are predominantly capture spec t r a  
dominated by iron capture gamma l ines  at 6.0 and 
7.63 MeV and by the  2.23-MeV hydrogen capture 
gamma l ine  when hydrogen w a s  present.  An 
examination of a l l  t he  spec t ra  ind ica tes  that,  
providing proper calibrations a re  made, the  
abundances of the  various isotopes present on the 
lunar sur face  can  be  determined by gamma-ray 
spectroscopy techniques.  

to l o w 5  sec, l o m 5  to  sec, and  
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7.15 SPACE AND ACCELERATOR SHIELDING 
INFORMATION COLLECTED B Y  RADIATION 

SHlE LDiNG IN FORMATION CENTER' 

R. G. Alsmil ler ,  J r .  F. S. Alsrniller 
J . Gurney* 

The collection of l i terature on  sh ie ld ing  from 
radiation occurring in space and near accelerators 
was  continued, and a bibliography was i ssued  
(ORNL-RSIC-11).3 A collection of the abs t rac ts  
of t he  l i terature covered in t h e  bibliography was  
publ ished as ORNL-RSIC-12.4 A new serv ice  con- 
s i s t i ng  of t he  automatic and se l ec t ive  dis- 
semination of t he  l i terature was  init iated,  so that  
persons  who provided RSIC with their field-of- 
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in te res t  profiles were alerted as relevant l i terature 
of s p a c e  and accelerator sh ie ld ing  was  placed in 
the  system. 
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8.. Experimental Studies for High-Energy Radiation Shielding 

8.1 STATUS OF THE 60-MeV CHARGED 
REACTION PARTICLE EXPERIMENT 

F. E. Bertrand’ 

T. A. Love  B. Rus t4  

W. R .  Burrus 
R.  W.  Peelle N.. w. cii113 

An experiment h a s  been proposed to  s tudy  the  
m a s s  and energy spectrum of charged par t ic les  
produced by bombardment of ta rge ts  by “,60-MeV 
 proton^.^ I t  is t h e  purpose o f  t h i s  summary to 
descr ibe  the  current s t a t u s  of t he  experiment. 

In general ,  nearly all physical ,  electronic,  and 
detector sys tems are complete, and i t  is expec ted  
that preliminary da t a  leading to  charged-particle 
cross sec t ions  will  be  obtained by late summer. 
Several days  of cyclotron time have  been used to 
t e s t  the  detector and electronic sys tems.  A 
description of t he  s t a t u s  of the various components 
follows. 

An existing 48-in.-diam sca t te r ing  chamber h a s  
been extensively modified to su i t  the needs  of th i s  
experiment. T h e  chamber, now in use ,  contains 
the  following features:  two remotely rotatable 
detector tab les ,  a multiple target holder with 
remotely ad jus tab le  angle,  a beam leve l  port a t  
+ 20° used for continuous sca t te red  beam monitoring 
with an NaI(T1) detector and a beam level port at 
-20° used for cont inuous beam energy monitoring 
using a range wheel,6 a collimator design such  
that approximately 6’ minimum sca t te r ing  ang le  
may b e  safely studied, a Faraday cup  for beam 
intensity monitoring, and a coaxia l  beam pickoff 
for beam pu l se  monitoring and for timing s igals .  

A s  was  previously reported, t he  detector system 
cons i s t s  of two thin s i l i con  AE detec tors  and a 
germanium total-absorption detector.  An energy 
resolution of 0.2 to  0.3% and a peak-to-total ratio 
o f  -0.94 for 60-MeV protons have  been obtained 
using two different lithium-drifted germanium de- 

tec tors .  T h e  de ta i l s  of t he  use  of such  detectors 
for intermediate-energy protons are reported else- 
where.7 T h e  detector is held i n  a “co!d finger’’ 
mount which coo l s  t he  detector to -85OK and 
allows a covering over the  detector of only 2 
m g / c m 2  of n icke l .  The  nickel is the  only dead 
layer i n  t he  beam other than 2 mg/cm2 of germanium 
dead  layer ,  Two AE counters,  a 500- and a 200-IJ. 
s i l icon  surface-barrier detector,  have  been  ob- 
tained which give resolution of less than 40 keV 
for 5-MeV a lpha  par t ic les  when operating a t  over 
twice  depletion voltage.  

Collimation for t he  del ector sys tem is provided 
by a 0.375- by 0.120-in. s l i t  i n  a 1-mm-thick p iece  
of NE-102 organic scinti l lator which s e r v e s  as an  
anticoincidence detector.  The  en t i re  detector 
system is mounted on a rotating tab le  such  that a 
50-cm flight path is available and such  t.hat the  
spac ing  between de tec tors  i s  a minirnum t o  reduce 
multiple sca t te r ing  l o s s e s .  

T h e  logic sys tem is designed to  use both f a s t  
and s low s igna l s  f rom all de tec tors .  T h e  f a s t  
s igna l s  will b e  used for all coincidence and 
anticoincidence gating. All  f a s t  amplifiers (which 
have  a rise time a s  fast as 1 nsec)  and s low 
transistor preamplifiers a re  mounted in s ide  the 
vacuum chamber. Design of t hese  units is w e l l  
advanced, and models have  been t e s t ed  under ex- 
perimental conditions and found to  have  s t a b l e  
gain in vacuum (drift from s low system <0,1%). 
Nearly all fas t -  and slow-logic components have  
been tes ted .  

The da ta  acquisit ion sys tem cons i s t s  of two  
2048-channel analyzers and one 512-channel and 
one 256channe l  analyzer.  The  over 40 b i t s  of 
information ava i lab le  a re  read through an  appropri- 
a t e  interface into a PDP-8 computer which will do 
preliminary ana lys i s ,  write da t a  on IBM-compatible 
magnetic tape ,  and give various on-line d isp lays .  
The  computer has been  in use  for a f e w  months, 
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and a t  p resent  t he  2048-channel ana lyzers  a re  
interfaced with the  computer and in use .  
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8 . 2  PROPOSED 
SECONDARY NEU 

~ ~ M ~ ~ ~ ~ ~ Q  BY 606-MeV PROTONS’ 

W .  A. Gibson J .  W. Wachter 
V. V. Verbinski 

As  an  extension of the  program a t  OKNL t o  study 
the  secondary nucleon production in the  interaction 
of medium-energy protons with complex nuclei ,  
an experiment t o  measure neutrons produced by 
600-MeV protons on  complex nuclei  i s  be ing  
planned for the  NASA cyclotron a t  Langley, 
Virginia. T h i s  experiment will  b e  divided into two 
parts: measurement of neutron spec t ra  a t  s m a l l  
angles, 0 to So, i n  t he  energy range 100 to 600 MeV 
and of neutron spec t ra  at severa l  angles  between 
0 and 150° in the  energy range 2 to 50 MeV. Since 
t h e  primary purpose of t hese  experiments is to 
provide da ta  to make comparisons with t h e  ORNI, 
Monte Carlo ca lcu la t ions  of cross sec t ions ,  t he  
angle and energy regions were chosen  to  provide 
da ta  in  t h e  a r e a s  where the  calculations,  up to  th i s  

time, have had t h e  l e a s t  verification. Several 
targets,  approximately 1 0  g / c m 2  thick, f r o m  carbon 
to bismuth will b e  used. 

T h e  high-energy neutron measurements will b e  
made as indicated i n  F ig .  8.2.1. T h e  600-MeV 
proton beam will b e  focused on a target and, after 
pas s ing  through the  target, will b e  bent by magnet 
A into a beam dump. T h e  neutrons emitted a t  
s m a l l  angles  will p a s s  into the  hydrogenous 
radiator, and a smal l  fraction will produce recoil  
protons with a n  energy (ignoring mesons) 

where Ep and En a re  the  energy of t he  proton and 
neutron, respectively,  M i s  t h e  m a s s  of t he  
nucleon, and 8 i s  t he  angle between the  path of 
the  incident neutron and recoiling proton. T h e  
protons recoiling a t  small angle  will b e  focused 
by the  quadrupole and bending magnet B o n  
counter 3. ‘The degree  of bending by magnet B 
will  b e  a measure of t he  recoil  proton energy. 
Counter 2 will b e  p laced  i n  coincidence with 
counter 3 to reduce background counts.  Counter 1 
will be  placed in  anticoincidence with counters  2 
and 3 t o  reject  charged par t ic les  entering t h e  
radiator. The  energy resolution of the  sys tem will 
be  about 5%. Pos i t rons  and mesons with the  
same momentum as  the  protons will  also b e  
focused on counter 3. T h e s e  lighter par t ic les  will  
b e  separa ted  from t h e  protons by dE/dx separa t ion  
in  t h e  last counter.  

If t h e  measurements prove to  be  satisfactory,  
measurements a t  larger angles  will  b e  attempted. 

T h e  neutrons in t h e  energy region between 2 and 
50 MeV will b e  studied by recording the  pulse- 
height spec t ra  produced by recoil  protons i n  a 

liquid organic scinti l lator.  T h e  neutron spec t ra  
will b e  obtained from the pulse-height spec t r a  by 
an  unfolding procedure.2 Incident charged par t ic les  
will b e  rejected by an anticoincidence counter 
( s e e  F ig .  8.2.2), and gamma rays  will  b e  rejected 
by pulse-shape  discrimination. I t  is hoped tha t  
t he  time width of the proton burs t s  froiii t he  
cyclotron will permit pu l se s  produced by high- 
energy neutrons in the  scinti l lator to be eliminated 
by time-of-flight. T h e  response of the  spectrometer 
to t h e s e  high-energy neutrons i s  not known, and 
therefore the  result ing pu l ses  must b e  treated as  a 
background. S ince  t h i s  spectrometer will  have 
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Fig.  8.2.2. Exper imenta l  Setup for Measuring Neutron Energy Spectra Between 2 and 50 M e V  from Targets  

Bombarded by 600-MeV Protons. 

relatively high efficiency, it i s  hoped that data 2 W .  H. Burrus and V. V. Verbitislti, p. 148 in 
may be gathered for a la rge  numher of angles  and Proceedings o f  the Special Session on F a s t  
targets .  Neutron Specfroscopy, Presented a t  the 1964 

Winfer Meeting of the American Nuclear Society, 
San Francisco, Dec. I ,  1964, Shielding Division 
Report ANS-SD-2. 
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ARY NUCLEON ENERGY SPECTRA 
FROM TARGETS ~ ~ ~ ~ A ~ ~ & ~  BY 

HIGH-ENERGY PROTONS1 
J .  W .  Wachter W. R. Rurrus 

W .  A .  Gibson 

T h e  ana lys i s  of the  secondary neutron and 
proton spec t ra l  da t a  obtained with a proton recoil  
spectrometer (see Sect.  9.7) viewing ta rge ts  
bombarded by 160-MeV protons i s  nearing com- 
pletion. T h e s e  measurements were made on severa l  
elements and have been d i scussed  previously .' v 3  

Comparisons have been made with the  theoretical  
ca lcu la t ions  of Bertini4 and K i n n e ~ . ~  However, 
severa l  refinements have been made in t h e  ex- 
perimental da ta  ana lys i s  codes ,  and a s  a con- 
sequence  the  agreement between theory and ex- 
periment h a s  been improved. T h e s e  refinements 
included an improvement in the  fit hetween proton 
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Fig.  8.3.1. Theore t ica l  and Experimental  Neutron 

Spectra a t  10 and 45" from 26.89-g/cm2 Aluminum Target  

Bombarded by 160-MeV Protons. T h e  theoret ical  data 

have been adjusted as  out l ined in the text .  

energy and corresponding p u l s e  height from the  
spectrometer and an improvement i n  the ca lcu la ted  
response of the  spectrometer to neutrons. The  
spec t ra  presented  here also are a resu l t  of 
combining da ta  obtained for three different 
t h i cknesses  of recoil proton radiators,  whereas 
the previous da ta  were for one  radiator only.  Some 
of the final resu l t s  are presented  i n  F igs .  8.3.1 
and 8.3.2 for neutrons emitted from t-argets 
sufficiently thick to  s top  the  primary proton beam. 
The da ta  were analyzed us ing  the  SLOP code,6 
and t h e  spec t ra  have an energy resolution of 25% 
assoc ia ted  with them. T h e  bands  represent t he  
67% confidence interval. The  theoretical  resu l t s  
have been ad jus ted  in the  following manner t o  
compare with the  experimental spectra:  

1. The ca lcu la ted  spec t ra  have  been smeared 
with a Gauss ian  energy distribution to correspond 
to an  energy resolution of 25%. 
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2. The  angular resolution of the  ca lcu la t ion  w a s  
chosen to b e  loo so as t o  b e  similar t o  tha t  of the  
s p  ec trometer . 

3. The  source  was  of finite size, and the  angular 
region accepted  by the  spectrometer varied f rom 
point to point.  T h e  calculation was  modified t o  
include the effect of a finite s i z e  source .  

In addition to the  above experimental spec t ra ,  
proton d a t a  obtained for similar configurations a re  
also be ing  analyzed. 

Measurements of t h e  secondary neutron and 
proton spec t ra  from e lements  bombarded by 450- 
MeV protons were reported p r e v i ~ u s l y . ~  Coil- 
s iderable  improvement h a s  been  made in  the 
ana lys i s  techniques,  and final resu l t s  a r e  being 
ca lcu la ted .  
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8.4 SECONDARY GAMMA RAYS FROM PROTON 
AND ALPHA BOMBARDMENT OF LIGHT- TO 

MEDIUM-W EIGHT NUCL El ' 
W. Zobel  G. T.  Chapman 
F. C. Maienschein J .  13. Todd2 

Analys is  of t he  secondary gamma-ray da ta  taken 
at the  Oak Ridge Isochronous Cyclotron with 16-, 

3 3 ,  and 56-MeV protons and %MeV alpha 
par t ic les  on ta rge ts  ranging in  weight from 7Li to  
Fe h a s  been continued. As w a s  mentloned i n  the  
l a s t  annual  report, s o m e  difficult ies were en- 
countered in reducing the  da t a  obtained with the 
spectrometer in the  total absorption mode, but 
they have  been resolved with the  availabil i ty of a 
revised version (FERD) of the  original ana lys i s  
program (SLOP), and reduction of the  da t a  is in 
progress.  

For  t h e  da t a  taken with the  pair  spectrometer, 
the original ana lys i s  program continues t o  give 
satisfactory resu l t s ,  as it did for t he  earlier da t a  
obtained with 160-MeV  proton^.^ * 5  Reduction of 
t h e  da t a  for 16- and 33-MeV protons h a s  been com- 
pleted,  and reduction of the  da t a  for 56-MeV 
protons and 58-MeV alpha par t ic les  is proceeding 
smoothly. 

Cross  sec t ions  obtained from the ana lys i s  of the 
pair spec t ra  for the  production of various gamma 
rays in ta rge ts  of Be, C, 0, and A1 by incident 
protons of 16.1 k 0.2 and 33.1 + 0.3 MeV a re  com- 
pared with those  determined for similar ta rge ts  
bombarded by 160-MeV ptotonss in  T a b l e s  8.4.1- 
8.4.4. In each  case the  angle of emission of t he  
gamma ray i s  135' t o  the incident proton beam. 
T h e  proton energ ies  shown in the  tab les  are the  
average va lues  in the  targets,  and all resu l t s  
shown have  been corrected for self-absorption of 
the  gamma ray in the target.  

For beryllium (Tab le  8.4 .l) the  most prominent 
gamma ray tha t  was  observed for an  incident 
proton energy of ' ~ 1 6 0  MeV was that a r i s ing  f r o m  
the iBe(p,cr):Li reaction and having an energy of 
3560 keV. T h i s  gamma ray was  a l s o  the  most 
i n t ense  at the  lower proton energ ies .  Gamma rays 
with energies of 5350 and 5675 keV (not included 
in the  table) were observed lor t he  160-MeV incident 
protons, but they were not s e e n  a t  t he  lower en- 
e rg i e s .  A weak l ine  at 7700 keV was  observed 
only for the 33-MeV protons. 

T h e  resu l t s  for carbon are  shown in Tab le  8.4.2. 
A s  was t h e  c a s e  for beryllium, not all  t he  gamma 
rays  were observed at all three incident proton 
energ ies .  Gamma rays of 2870, 3368, 5031, and 
8920 keV were  observed at 160 MeV but not at the  
lower energ ies .  

In the  c a s e  of oxygen (Table  8.4.33, a 2700-keV 
l ine  was  observed a t  the two lower energies,  but 
there is no evidence for i t  a t  160  MeV, which i s  a 
reversal  of t he  trend observed in the other c a s e s .  
The  ta rge ts  used for t he  160- and 33-MeV runs were 
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T a b l e  8.4.1. Measured Energ ies  and Cross Sections of Secondary Gamma R a y s  Produced 

i n  a Bery l l ium Target  Bombarded by Protons 

Poss ib l e  Transit ion Incident Gamma-Ray Production 
Proton Energy Gamma-Ray Energy C r o s s  Section ... 

Energy (keV) Reaction 

.- ....... __ ......... (mb) 
(keV) 

......... __ ....... ..... ~ ____.-- 
(MeV) 

146 3575 t 1.5 

31 3480 f a 5  

14.7 3490 f 7 5  

146 4390 i38 

31 4490 i 9 5  

2.02 fO .91  

3.13 1.81 

6.75 k1.91 

0.72 k 0 . 3 4  

1.98 t 1 . 1 5  

14.7 4110 t 8 . 5  1.70 k0 .74  

146 6250 k 3 5  0.46 1 0 . 2 2  

31 6200 k 1 1 5  2.64 t 1.21 

14.7 6180 k l 0 0  1.77 f 0 . 6 2  

3560 
9 
4Re(P, 

> 6190 4 ~ e ( p ,  9 a);I,iia 

aAsterisk denotes  transition between excited s t a t e s .  

T a b l e  8.4.2. Measured Energies and Cross Sect ions of Secondary Gamma R a y s  Produced 

i n  a Carbon Target  Bombarded by  Protons 
...... ~ .. ..... .... . . ~ _ _ _ _  ..... .____ 

Possible Transit ion Incident Gamma-Ray Production 
Proton Energy Garnilid-Hay Energy Cross  Section __ .. 

Reaction Energy (keV) 
(mb) 

(keV) (MeV) ......... ..... ...... - . ~~~~ ....... __ 

1 as 

30.3 

145 

30.3 

14.6 

145 

30.3 

2011 k 40 

1950 T 70 

4480 i 50 

4370 k 95 

4340 f 1 4 0  

6750a 

6650 

11.40 4.1 

91.50 f l l . l  

265.00 k 2 1  .O 

3.03 i 1.09 

23.6 f 3.7 

1990 

4433 

4460 

aAverage energy for several  gamma rays,  not resolved. 
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T a b l e  8.4.3. Measured E n e r g i e s  a n d  Cross S e c t i o n s  of Secondary Gamma R a y s  Produced in un 

O x y g e n  T a r g e t  Bomborded b y  Protons 
-........ ____..-_I - 

Incident Gamma-Kay Production 
Poss ib l e  Transit ion 

Proton Energy Gamma-Kay Energy Cross  Section 

14.5 

28 :2 

2320 i 25 

2250 .f 70 

6.7 f 3.0 

7.6 k 5.6 

28.2 

12.1 

2700 t 75 

2700 70 

3.7 t 3.6 

16.2 k 7.3 

145 

28.2 

4430 k 30 

4340 t 95 

15.8 k 5.7 

83.4 k13.2 

145 ,5260 k 2.5 12.0 k 4.9 

51.2 -t 8.0 

1 
5.5.6 ?- 19.7 

101.0 1-14 

79.6 511.1 

12.3 k 4.4 

40.8 If 5.8 

46.6 k 6.9 

28.2 5700 j-105 

145 

28.2 

12.1 

5290 .!7 35 

6100 k l 1 5  

6170 * lo0  

6140 

145 

28.2 

12.1 

7100 k 50 

5960 t12 .5  

7050 k 1 0 0  

7120 

"Asterisk denotes transit ion between excited s t a l e s  

Table 8.4.4. Measured E n e r g i e s  and Cross S e c t i o n s  of S e c o n d a r y  Gamma R a y s  Produced in  a n  

Aluminum T a r g e t  Bombarded by P r o t o n s  

Incident Gamma-Ray Production Poss ib le  Transit ion 
C r o s s  Section Gamma-Ray Energy Proton Energy -. 

Reaction Energy ( k e V )  WJ) (keV)  (MeV) 

145 

30.0 

14.4 

2219 

7.3 i- 9.2 

49.7 t 3 3 . 4  

152.0 k33.0 J 

145 

14.4 

2770 k.50 

2750 -1-70 

2950 *SO 

2980 t. 70 

17.0 k19 

88.0 k 2 3  

30.0 

14.4 

145 

30.0 

3400 3 20 

3380 t s s  
--___ I_ 

aAsterisk denotes transition between excited s t a t e s .  
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water, but a H e 0  target w a s  used  for the  16MeV 
run because  of niechanical problems assoc ia ted  
with preparing a sufficiently thin water target.  
T h e  contribution due  to the  beryllium was  sub- 
tracted fro111 the  resu l t s .  

As was  noted in  the  report on t h e  160-MeV data,5 
aluminum was  the  l igh tes t  target in which a con- 
tinuum was observed to underlie t he  d i sc re t e  l ine  
structure.  T h e  c r o s s  sec t ions  quoted in Table  
8.1.4 for t h e  various l i nes  have been cotrected by 
subtracting th i s  continuum. No gamma rays with 

energ ies  greater than 3410 keV were observed for 
33- and 16-MeV incident protons. 
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8.6 EYALUATlON OF QUlKTRAN R E A L  TIME 
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8.5 BEAM E N E R  Y MEASUREMENTS AS THE 
OAK RIDGE 1SBCHWO s CYCLBTWON’ 

R .  T. Santoro 
F. E .  Bertrand? 

‘P. A .  Love  
R .  ”$1. Peelle 

Measurements have been made of the  beam 
energy of the  Oak Ridge Isochronous Cyclotron for 
protons a t  acceleration frequencies of 17.04 and 
21.22 M c ,  1-1, ’ i ons  at 11.32, 11.91, and 12.61 M c ,  
and alpha par t ic les  a t  11.32 M c .  T h e  energy w a s  
determined f rom measurements of the  par t ic le  
pathlength i n  aluminum using a remotely controlled 
range wheel to vary t h e  absorber th ickness .  Ex- 
perimental resu l t s  are given i n  tabular form. A 
curve  of measured proton energy as  a function of 
rf acceleration frequency is included. 

Within the  next few years, individual desk-top 
computer input/output terminals a r e  expected to 
become widely available a t  a price competit ive 
with conventional desk  ca lcu la tors .  Looking 
ahead  to the  time when s u c h  fac i l i t i es  could b e  
made ava i lab le  through a local centralized 
computer center,  we acquired a commercially 
available r ea l  time computer terminal (IRM’s 
QUIKTRAN) i n  June  of 1965. We wanted to  
eva lua te  its ef fec t iveness  on typical Division 
problems and t o  make i t  available t o  a l l  in te res ted  
persons  to develop an awareness  of i t s  l imitations 
and poten t ia l i t i es .  

T h e  operational charac te r i s t ics  of our QUIKTRAN 
terminal are summarized below: 

Input: Typewriter keyboard a t  typing speed  

IBM cards a t  about 10 cards/min 

Punched paper t ape  a t  about 5 

charadters / s e c  

Output: Typew-riter printer a t  about 5 lines/min 

IRM cards a t  about 10 cards/min 

Languaqe: QIJIKTRAN - a subse t  of FORTRAN. 

Its major inconsistency is tha t  arrays 

a re  not permitted a s  subroutine argu- 

ments; compiling is done one l ine a t  a 

time, which al lows powerful debugging 

and error correction to b e  done during 

execution 

Speed: Approximately ten arithmetic operations 

per second 

Storage 

Capability: Approximately 50 modest-size programs 

or approximately 60,000 words of data  
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T h e  terminal, which is now avai lab le  for 4 hr 
during t h e  afternoon, was  init ially used  about 30 
hr pe r  month and is now being used about 4 5  hr  
per month. The  terminal is used  on a n  informal 
(signed for in advance)  b a s i s  and is seldom s igned  
for more than o n e  or two d a y s  in  advance .  

One of the  important resu l t s  of our evaluatioii is 
that we now have a rea l i s t ic  i d e a  of the  ex ten t  of 
in te res t  in  remote terminals.  At ins ta l la t ion ,  
pe tsonnel  from our division, from both computing 
centers ,  and from other d iv is ions  were invited t o  
use  t h e  terminals for evaluation on their  problems. 
To da te ,  about 26 pe r sons  have  used  t h e  terminal 
for an hour or more: 10 from our  own division, 
15 from other d iv is ions ,  and one  from a computing 
center .  Encouraged b y  t h e s e  eva lua t ions ,  th ree  
other groups have init iated proceedings t o  obtain 
s i m i l a r  se rv ice .  

T h e  problems which have been run were usually 
of t he  following types:  

1. Prohlems which would ordinarily be run on a 
desk  calculator a n d  require 4 to 8 hr of time. .- 
T h e s e  a re  usually not s e n t  to one  of the com- 
puter cen te r s  because of t h e  seve ra l  days  of 
delay in gett ing a program debugged and run. 
Such programs were typically debugged and run 
on QUIKTRAN i n  less than an  hour. Approxi- 
mately 20% of t h e  t i m e  h a s  been used  for s u c h  
jobs.  

2. Applications which require quick answers  in 
order to evalua te  the progress of an experi-  
ment. - Several potential  appl ica t ions  have 
been programmed for QUIKTRAN, but i t s  speed  
is too  s low by a factor of a t  l e a s t  10 for many 
appl ica t ions .  Also ,  the  paper-tape reading 
equipment is very inflexible and could not 
accep t  any of our standard formats. 

3 .  Debugging of FORTRAN programs which were 
to be  run la te r  at one  of our computer centers .  - 
It h a s  become common prac t ice  for a program 
tha t  is needed in a hurry to b e  t e s t ed  on 
QUIKTRAN before submiss ion .  QUIKTRAN is 
also useful for leisurely debugging of longer 
programs, but the program res t r ic t ions  proved 
to b e  awkward. It became espec ia l ly  c l ea r  
from t h e  exper ience  of our novice programmers 
that QUIKTRAN is a very e f fec t ive  teacher .  
Approximately 70% of the  time h a s  been used 
in t h i s  way.  

4. Retr ieva l  of frequently used information. - 
Programs were incorporated into t h e  sys t em for  
providing gamma-ray c ross -sec t ion  d a t a  (from 
G. W. Grodstein’s d a t a  by interpolation), for 
neutron c r o s s  sec t ions ,  and charged-particle 
s topping  power. T h e  gamma-ray c ross -sec t ion  
program was seldom used, however, because  
looking up t h e  information i n  Grodstein (and 
interpolating i t  graphically) proved to IC- 

quire less time than the  1 or 2 h r  waiting t ime 
required to obtain a QUIKTRAN terminal. Some 
s u c c e s s  w a s  obtained with charged-particle 
stopping powers (which are not quite so easy  
to  look up i n  a report), but t h e  neutron cross 
sec t ion  proved to b e  intractable because  of the  
limited s torage  abil i ty of QUIKTRAN. 

Some programs that are presently in t h e  sys tem 
s to rage  a r e  the  following: 

1. Range and d E / d x  for protons in  various ma- 
t e r i a l s  (from Bethe  Block formula with em- 
pirical  she l l  corrections).  

2. Pulse-height d a t a  manipulation from s tandard  
B S F  card  format. 

3.  Demonstration infotmation retrieval program 
which re t r ieves  t i t l e s  from a l i s t  of 30 pape r s  

by multiple keywords (Metals and Ceramics 
Division).  

4 .  Programs for plott ing resu l t s  on printer.  

5. Leas t - squares  routine which will  accommodate 
up to 20 var iab les  and 1000 knowns (executes  
concurrently with input). 

6. Gamma-ray spectrum unfolding c o d e  (200- 

7 .  Crit ical-path (PERT)  program (supplied by 
IBM) . 

8. Coordinate geometry for engineering problems 
(supplied by IBM). 

program (supplied by IBM). 

channel  spectrum in  about  20 min). 

9. Conversational matrix manipulation language 

10. Solid-angle acceptance  factors for d i sk  and 

In addition, there  a r e  approximately 40 debugged 
QUIKTRAN programs to  interpolate,  integrate,  e t c  ., 
which are ava i lab le  at t he  console on card  decks  
for combining into larger programs. 

Our evaluation h a s  been success fu l  enough so 
tha t  we c a n  now see t h e  next logical s t ep .  I t  

cylinder sources .  
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appears  that  we should seek  a more advanced obtaining a sys tem with a l l  the charac te r i s t ics  
sys tem for further evaluation with t h e  following desired by t h e  end of the  year .  I t  i s  expected 
charac te r i s t ics :  that any hardware obtained would be  either l ea sed  

1. 

2" 

3 .  

4. 

5. 

6.  

7. 

T h e  terminals should b e  sufficiently inex- 
pens ive  that they c a n  be  located wherever 
needed, in the s a m e  manner that desk  calcu- 
la tors  a re  uti l ized. 'l'his pu t s  about a $SO/morlth 
ce i l ing  on t h e  hardware c o s t  of adding a n  
additional terminal to the  sys tem.  

T h e  language should b e  upward and downward 
compatible with one  of the  s tandard  languages 
ava i lab le  a t  our computer centers .  

T h e  arithmetic s p e e d  should b e  at least 100 
opera t ions /sec .  

The system should b e  open-ended, and should 
allow machine language routines to  be entered 
by the  user from h i s  console .  

An optional graphic feature (for d i sp lay ing  
curves  of experimental data,  etc.)  comparable 
in  cost t o  the  bas i c  terminal should be made 
available.  

Each u s e r  should h a v e  about lo6  words of 
s torage  available to him for programs and da ta .  

The  terminals should b e  portable; that  is, they 
should b e  capable  of being disconnected l ike  
an  extension telephone, and moved from one  
experiment or office to  another. 

From the  operational exper ience  with QUIKTRAPJ, 
we c a n  pos tu la te  that  the  present  demand is for 
about 16 terminals within t h e  Neutron Phys ic s  
'Division, and perhaps 20 withi'n other d iv is ions  
and the  computer centers .  In  our division, we 
ant ic ipa te  tha t  the  individual terminals would b e  
used  from a few minutes per day to perhaps 4 hr, 
with t h e  average  be ing  about It/? hr per day  per 
terminal. 

There are many ques t ions  concerning the  po- 
tential  efficiency or inefficiency of computer 
terminals, and they can  be  answered only by ex- 
perimenting with the  terminals i n  the context of 
t he  spec ia l  problems involved. Some advantage 
might result  f r o m  extending the  experimentation to 
a larger group of persons ,  but a larger group cannot 
move a s  f a s t  or with a s  great flexibility a s  a 

smaller group. T h e  deciding factor is whether 
there  is sufficient interest  ou ts ide  the division to 
lead  to  some init iative.  

There  appears  t o  b e  no technical,  economic, or 
equipment constraint  that would prevent u s  from 

or purchased. In the  latter case, i t  must be 
compatible with subsequent  local d e  ,elopments,  
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ENTS OF ( p , n )  NEUTWB 
PRoDlJcTloM CROSS SECTIOHS FOR 
18.5- AND 15.1-MeV PROTONS ON Be, 

Id, AI, Fe, In, Ta, AND Pb A T  
ANGLES OF 0 TO 170°AN 

ENERGIES ABOVE 0.8 MeV' 

V. V. Verbinski W .  R.  Bur rus  
M. Young2 

Measurement of @,n) interactions for a number of 
target materials was  init iated l a s t  year i n  order t o  
provide direct  sh ie ld ing  da ta  for spacecraf t  pas s ing  
through the  Van Allen belt  and, more generally, to 
t e s t  neutron-production calcrrlations a t  lower pro- 
ton  bombarding energ ies ,  where t h e  accuracy of 
the  ca lcu la t ions  h a s  not been determined. Cross- 
sec t ion  measurements for neutrons emitted a t  up 
to seven  angles  hetween 0 and 170Owere obtained 
for neutrons above 0.8 MeV from 18.5- and 15.1- 
MeV protons on Be, N, Al, Fe, In, Ta, and P b .  
T h e s e  neutron measurements were made with a 

proton-recoil scinti l lat ion spectrometer which used  
a 2-in.-diam by 2-in.-high liquid organic sc in t i l -  
lator and an  unfolding technique which converts 
pulse-height spec t r a  to absolu te  neutron spec t ra l  
intensity.  A number of difficult ies have  recently 
been cleared up, and the  spectrometer h a s  sa t i s -  
factorily p a s s e d  a s e r i e s  of t e s t s ,  some of which 
a re  described in  Sec t .  6.4. 

One of the  difficult ies with the  spectronieter 
related to the  nonreprodricibility of resu l t s  when 
either t h e  photomultiplier tube b a s e  or (even) the  
photomultiplier tube was  changed. T h i s  difficulty 
was  traced to  pickup a t  dynode 10 of t h e  much 
larger s igna l s  ex is t ing  at dynode 14 and anode. 
T h e  latter s igna l s  intentionally show a saturation 
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ef fec t  for optimum operation of the gamma- 
rejection pulse-shape discriminator. T h i s  diffi- 
culty was  c leared  up eventually by taking the 
l inear s igna l  f rom dynode 11, improving the 
grounding arrangement, sh ie ld ing  the l inear s igna l  
from the  higher dynodes, and moving the  pulse- 
shape  discriminator circuitry closer to the  ground 
p lane .  Three different tube base  constructions 
with the above improvements included were then 
found to provide resu l t s  that were satisfactorily 
reproducible. 

Unfortunately, the  ( p ,  n )  measurements had been  
made with a n  unsatisfactory tube base .  Hut 
fortunately, a Po-Be pulse-height distribution was  
measured with the  old b a s e  a t  t h e  time tha t  the 
(p,n) measurements were made. Comparison of 
that  pulse-height distribution with one  obtained 
with a c lean  b a s e  provided a small  but significant 
correction to the  ear l ie r  pulse-height distributions,  
a correction for the nonlinearity produced by 
pickup s igna ls .  A s imple correction code  was 
written and h a s  been applied to the  (p,n) data,  and 
the  neutron energy spec t ra  and c r o s s  sec t ions  are 
be ing  computed from t h e  raw da ta  at the  time of 
t h i s  writing. 
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8.8 9 3 e ( ( ~ , n )  N EUTRON-P RODUCTION CROSS 
SECTIONS vs  NEUTRON ENERGY AND ANGLE 

FOR 6- TO 10.5-MeV ALPHA PARTICLES' 

V .  V. Verbinski 
J . K. Dickens 

W .  E. Kinney 
F. C. Perey  

Measurements of t he  'Be(tz,n)' '% cross sec t ions  
for alpha par t ic les  between 6 and 10.5 MeV were 

reported in  part  previously .' Hand-processed da ta  
for 0' c r o s s  sec t ions  and excitation functions w e r e  
shown. T h i s  m s  done for t he  (a ,no)  or ground- 
s t a t e  neutrons, and a l s o  for the ( a , n l )  neutrons, 
because  t h e s e  neutrons were well. separated in  
energy from each  other and from other neutrons, 
and gave rise to  two d is t inc t  p la teaus  i n  the 
pulse-height distribution a t  t he  highest  pulse 
heights.  Some preliminary resu l t s  unfolded with 
the  FERDO code  developed by Burrus showed tha t  
the  ( u , n 2 )  neutrons could easily be unravelled. 
Since t h i s  type of spectrometry had not until 
recently pas sed  a numbcr of stringent tests, the  
FERDO code  could not be  used  with confidence to 
p rocess  the  earlier da ta .  Some of these  difficult ies 
are d i scussed  i n  Sec t .  8.7 and also in Sec t .  6.4. 
T h e  da ta  are being processed  a t  the t i m e  of t h i s  
writing, and the  double differential c ros s  sec t ion  
a t  alpha-particle bombarding energ ies  of 6 to 10.5 
MeV should soon be  completed. T h e s e  c r o s s  
sec t ions  will b e  anglc- and energy-integrated 
(above about 0.8 MeV) and compared with those  
obtained by Gibbons and M a ~ k l i n , ~  who used a 
477 graphite-moderated long counter. A preliminary 
comparison of their resu l t s  with ou r s  indicated 
tha t  a n  abundance of low-energy neutrons I S  given 
off a t  higher alpha-particle energies,  poss ib ly  
lead ing  to  three- or four-body breakup [i .e -, 
g ~ e ( i ~ , i i a ' ) 8 ~ e  + n t 3ml. 
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9. iation 

9.1 MULTIPLE COULOMB SCATTERING lNTO A 
DETECTOR IN C WGED-PARGICL E 
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COlNClDENCE MEASURE ENTS ~~~~~~~ 

R E ACTION PRODUCTS' 

R. W. Peelle 

Assuming tha t  t he  par t ic les  which s t r ike  a cir- 
cu la r  detector have  been d isp laced  by multiple 
Coulomb sca t te r ing  according to a bivariate normal 
density function, t h i s  no te  d isp lays  t h e  fraction of 
the  detected par t ic les  which i f  undeflected would 
have s tn ick  t h e  detector p lane  outs ide  a circle of 
spec i f ied  larger radius. T h e  problem is so lved  
exactly by numerical quadrature and i s  solved ap- 
proximately if t he  rms displaccmcnt caused  by the  
sca t te r ing  i s  much less than the detector radius. 
T h e  l a t t e r  form may be employed for noncircular 
detectors.  Numerical r e su l t s  a r e  compared for a 

wide range of cases. 
The  resu l t s  of t h i s  calculation a r e  applicable to 

experiments in which t h e  output par t ic les  from a 
binary reaction a re  observed i n  coincidence. Multi- 
p le  sca t te r ing  in  the  target o r  i n  an interposed 
material c a u s e s  some of t h e  charged par t ic les  
striking the first  detector t o  have  conjugate par- 
t i c l e s  ou ts ide  t h e  kinematically prescribed cone  
which maps t h e  first  detector i n  the p lane  of the  
second, and SO t h e  second detector must b e  larger 
than would b e  estimated with multiple sca t te r ing  
ignored. T h i s  correction i s  important t o  sc in t i l l a tor  
neutron efficiency measurements by the  D(T,4He)n 
reaction, and  should apply to other experiments 
where coincidence detection is used  to define the  
reaction being studied. 'The r e su l t s  a r e  tentati.ve 
in tha t  t he  normal density function i s  not a very 
accura te  description of the  multiple scattering. 

PTlON DETECTOR FOR 
ING LITHIUM-DRIFTED 

GERPAANIUM' 

F. E. Bertrand' 

'T. A. Love 

R. J. Fox3 

II. A. Todd3 
R. W. P e e l l e  N. W. 

A lithium-drifted gerniaiiium diode  h a s  been used  
for total-absorption detection of 59-MeV protons 
from t h e  Oak Ridge Isochronous Cyclotron. The  
detector is 1.9 c m  i n  diameter, h a s  a depletion 
depth of 6 nim, is cooled to less than 85"K, and i s  
sea l ed  in an aluminum car? with a 0.0026-in.-thick 
window. T h e  diode w a s  oriented so that  t he  protons 
entered in  a direction parallel  to the  detector junc- 
tion. 

T h e  energy resolution attained for 59-MeV protons 
was  150  keV (FWHM), uncorrected for energy strag- 
gling in  windows of 76 keV, for approximately GO 
keV of beam resolution, and for electronic noise.  
T h e  peak-to-total ratio, determined by using an 
anticoincidence collimator, was  a s  high a s  0.94, 
which i s  comparable with 0.96 observed e l sewhere4  
for NaI. When the  collimator was  moved along a 

l ine  parallel  t o  t he  junction and perpendicular to 
the  beam, the  energy resolution and peak-to-total 
rat-ios remained cons tan t  within the experimental 
accuracy over a 10-mm scanned  distance.  A s  t h e  
collimator was  moved in  a direction perpendicular 



97 

to the  junction and  toward t h e  depleted material, 
the pedn-to-total ratio decreased, as w a s  expec ted  
from multiple-scattering calculations.  

When t h e  d iode  w a s  connec ted  by a 125-Q termi- 
nated coaxia l  cab le  to a fast amplifier, a r i s e  t i m e  
of 4 to 5 n s e c  w a s  observed. Since the  protons 
entered t h e  de tec tor  parallel  to t h e  junction, pic- 
tu res  obtained show the  superposit ion of nearly 
rectangular current p u l s e s  a r i s ing  from hole  and 
electron collection. T h e  length of t he  p u l s e s  is 
correlated with the  point of inc idence  of the col- 
l imated beam. The mobili t ies of the  charge car- 
r iers as ca lcu la ted  from the  measured collection 
t imes and a knowledge of t h e  location of proton 
inc idence  a r e  13,000 cm’/Vsec for the e lec t rons  
and 9800 cm2/Vsec  for holes for a detector hias of 
SO0 V. With de tec tor  b i a s e s  of 200 and 700 V, the  
mobili t ies a r e  60% higher and 30% lower respec- 
tively. 
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9.3 TEMPERATURE DEPENDENCE OF THE 
RESPONSE OF LITHIUM-DRIFTED GERMANIUM 

DETECTOR5 TO GAMMA RAYS’  

M. M. El-Shishini’ W. Zobel 

While i t  h a s  generally been stated tha t  iithium- 
drifted germanium de tec tors  must b e  operated a t  
liquid-nit ro gen temperature for optimum perform- 
ance,  no sys t ema t i c  investigation to prove o r  d is -  
prove th i s  s ta tement  h a s  been reported. T h e  c l o s e s t  
experiment is that of Tavendale,  who, however, 
inves t iga ted  t h e  resolution a s  a function of temper- 
ature for only one low-energy gamma ray. 

W e  h a v e  inves t iga ted  the  resolution and effi- 
ciency of two lithium-drifted germanium de tec tors ,  
approximately 20 mm in diameter and 3 mm thick, 

3 

as a function of de tec tor  temperature i n  the  range 
85 to 160%. Gamma-ray energ ies  ranged from 
279 keV (203He) to 1333 keV (“Co). W e  found 
that,  contrary to the  resu l t s  of Tavendale,  t he  
resolution of ;he de tec tors  had a pronounced peak  
at about 105 K. T h e  origin of th i s  peak is at 
present  unknown, but is not due to changes in 
diode capac i t ance  or  l eakage  current. The effi- 
ciency of t he  d iodes  is approximately cons tan t  
for each  energy over t he  temperature range. 

Since both de tec tors  were cu t  from the same 
germanium ingot, i t  is poss ib l e  that t hese  r e su l t s  
a r e  pecul ia r  to t h e s e  detectors. It is therefore 
pmposed to repea t  t he  experiment with a detector 
produced from a different germanium ingot, a s  soon 
as such  a detector becomes available. 
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9.4 SIMULTANEOUS CONNECTION OF FAST- 
AND SLOW-AMPLIFIER SYSTEMS TO 

SEMICONDUCTOR SYSTEMS’ 

N. W. Hi l l2  R. W. P e e l l e  

Experiment des igns  often require the  time infor- 
mation contained i n  t h e  s i g n a l s  from semiconductor 
detec tors  as  well  a s  the  customary information on 
the  amount of deposited energy. For example, t h e  
timing information is important to scinti l lator cali-  
bration us ing  semiconductor detection of helium 
recoils i n  co inc idence  with neutrons from the  
T ( d , r ~ ) ~ H e  o r  D(d,n)311e reactions,  and both types  
of information are needed for charged-particle 
identification and  spectrometry i n  current s tud ie s  
of secondary charged par t ic les  fromi 60-MeV inci- 
dent  proton^.^ 

Measurements of depos i ted  energy i n  semicon- 
ductors usually depend on observation of the  total  
charge release by the  event,  u s ing  charge-sensitive 



preamplifiers des igned  for stabil i ty and low no i se  
rather than for rapid response.  Since the time 
interval required for full collection of the  charge 
carriers depends on the  position of an event i n  the  
detector, t he  l e a s t  ambiguous timing information 
l i e s  i n  the first  movement of charge car r ie rs  in the  
semiconductor. Sensing t h i s  f irst  voltage change 
across the  diode requires amplifiers and s igna l  
connections which allow fa s t  transient response 
with minimum noise, although stabil i ty need not 
b e  perfect. 

We have attempted to determine which amplifier 
and signal connection configurations give good 
overall performance for the  various types  of s e m i -  
conductor de tec tors  in u s e .  Most of our work h a s  
been concerned with either thin (about 20O-p', 100- 
p F )  totally depleted s i l icon  surface-barrier d iodes  
or thick (6-inm, 2GpF'j lithium-drifted germanium 
diodes.  T h e  cri teria for sys tem desigri have been 
c l ean  f a s t  s igna l s  with minimum noise  for the  
s igna l  r i se  time, slow amplifier resolution and 
s tab i l i ty  essent ia l ly  unhampered by the  p re sence  
of the  f a s t  system, and the abil i ty to opera te  a t  
l e a s t  some of the  amplifiers a t  a d is tance  from the  
detector, which often S ~ ~ I ~ I S  to b e  required by the  
geometry of accelerator experiments, 

The  two types  of de tec tors  considered represent 
interesting extreme cases with respec t  to the 
s igna l s  produced a t  t he  detector. A 200-p s i l icon  
detector, particularly if chil led to dry-ice tempeaa- 
lure ,  h a s  an  electron coll.ection time as short a s  

1 nsec ,  shorter than the CoiPesponding discharge 
time of the  "40-pF diode into a 5 0 4  coaxial  c a b l e  
and comparable with the  available r i se  t imes from 

intervening ac t ive  elements. Within t h i s  frame- 
work w e  have considered the  effects of each  am- 
plifier on  the  signal-to-noise ratio of the  other and 
the  e f f ec t s  on the  f a s t  s igna l  s h a p e  and amplitude 
of reflections along coaxial  l i n e s  connecting the 
detector to e i ther  amplifier, of the feedback s igna l  
from t h e  output of the  charge-sensit ive slow am- 
plifier, and of the  resonant circuit  cons is t ing  of 
the diode capac i ty  and ?he connecting lead  induct- 
ance  damped by t h e  fast-amplifier input impedance. 

Figure 9.4.1 i l lus t ra tes  a fairly success fu l  ar- 
rangement for thin s i l i con  detectors,  assuming 
that both s i d e s  of the  mount a re  access ib l e  and 
that t h e  s low amplifier (which cannot terminate 
any cable)  c a n  b e  mounted very close to the de- 
tector. T h e  transformer coupling to the  f a s t  ampli- 
fier, which h a s  al' input impedance of  about 10 R, 
i s  arranged to provide proper damping of the  s e r i e s  
resonant circuit  of t he  diode and i t s  connections,  
to give the  maximum current into the  fas t  amplifier, 
and to  reduce no i se  fed into the slow system. If 
a cab le  connec ts  t he  slow amplifier to the diode, 
the  ratio of priinary to secondary transformer turns 
must b e  chosen to  match th i s  cab le  impedance for 
the f a s t  r i se  time portion of the pulse. Minimum 
r i se  t imes were observed when the  transformer 
could b e  omitted. T h e  f a s t  signal in Fig.  9.4.1 
appears a c r o s s  the  slow amplifier input capac i ty  
and the  s t ray  capacity,  C s ,  in s e r i e s  with the  diode 
capacity;  so  the  f a s t  s igna l  can  be  augmented by 
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ex i s t ing  fast transistor amplifiers with a gain of 
la3  or greater. T h e  germanium detector,  on t h e  
other hand, h a s  collection t imes i n  the neighbor- 
hood of 100 n s e c  for a G m m  compensated region; 
so t h e  r i se  time of the result ing pu l se  depends 
directly upon t h e  impedance of the  discharge path. 
A r i s e  time of about 5 n s e c  h a s  been observed' 
us ing  a terminated 125-R system with no s low 
amplifier connection. 

No sa t i s fac tory  approach for good time and energy 
resolution i s  readily apparent without a f a s t  and a 
slow amplifier channel.  Though other design 
cho ices  are poss ib le ,  6-7 we have  employed charge  

TO 

, -  
* .-. ,.-* L s  
,p ,(O-ohrn C O A X I A L  C A B L E  

amplifier c i r cu i t s  derived from conventional de- - 
sign, l o  current-mode f a s t  amplifiers with low input 
impedance, ' ' - I 3  and connection schemes in  which 
each amplifier is connected to the  diode withoilt Sil icon Diode. 

F ig .  9.4.1. T y p i c a l  Connect ion  Employed for a Thin  
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increas ing  Cs until  t h e  energy resolution s e e n  by 
the  s low sys tem is compromised. A more des i rab le  
way to accomplish th i s  is to  u s e  parallel  field- 
e f fec t  t rans is tors  a t  the  slow-amplifier input. 
This greatly inc reases  the  effective capacity with- 
out appreciably increas ing  the  noise  in the s low 
amplifier. Though w e  have  referred to the charge 
amplifier a s  slow, the  system benefits  from having 
f a s t  response  so tha t  t he  fedback charge does  not 
unduly lengthen t h e  pu l se  s e e n  in the  fas t  ampli- 
fier. Using a room-temperature, 4&p, 1 0 G p F  diode 
i n  an  arrangement such  as tha t  shown in Frg. 9.4.1 
but with no transformer, clean fast s igna l s  (2.2 
tisec rise t ime,  3.5 n s e c  wide) were obtained with- 
ou t  measurable  broadening of the slow-amplifier 
resolution. 

In the case of lithium-drifted germanium detectors,  
only one  s i d e  of the  diode is readily ava i lab le  for 
signal connection, and some lead  length is required 
because  the  detector must res t  i n  a cryostat  a t  
liquid-nitrogen temperature. T h e  most success fu l  
dual connect ion seems to involve transformer cou- 

pling loca ted  ad jacent  to the slow-amplifier input 
as in  Fig. 9.4.2 with parallel  field effect  input 
t rans is tors  on  t h e  s low amplifier to increase  i t s  
e f fec t ive  input capacity. If the cab le  between 
pickoff transformer and s low preamplifier is made 
very shor t  i n  the  system of Williams and Bigger- 
staff,’“ their  system is similar t o  the  one  de- 
scribed here  except  that  the fas t  amplifier and 
the coupling transformers a re  of different types. 
A f a s t  threshold below 200 keV and above noise  
has  been reached with a fast-amplifier r i se  t ime  of 
12 nsec ,  over twice that allowed by the  detector. 
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Fig. 9.4.2. Typical Connection for Lithium-Drif ted  

Germanium Detector. 

The  slow preamplifier, cu t  for proper operation 
with random 60-MeV input, h a s  a gamma-ray resolu- 
tion of about 13 keV, not definitely changed by 
turning on  the  f a s t  amplifier. Thus  the  effect of 
the f a s t  amplifier w a s  to  introduce a noise  com- 
ponent to less than 5 keV, p lus  the effect of the  
stray transformer capacity.  On the other hand, 
the s low Preamplifier made an  important no ise  
contribution to  the  fast system via high-frequency 
noise  components from the field-effect transistor. 

In all cases f a s t  signal performance can  b e  im- 
proved i f  no slow signal IS required or if experi- 
ment requirements permit the  s low amplifier’s 
energy resolution to b e  degraded appreciably. Of 
the  criteria set above, the most difficult criterion 
h a s  been the  remote location from the detector of 
the  s low amplifier, although the  sys t ems  are de- 
graded only slightly by remote location of the  f a s t  
amplifiers. 
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SE FUNCTION FOR NEUTRON 
TIME-OF-FLIGHT WECTWQSCOPY~ 

R. T. Santoro R. W. Peelle 

Experiments have been performed us ing  time-of- 
flight techniques  to measure the differential c r o s s  
sec t ions  for t h e  production of neutrons result ing 
from the  in te rac t ions  of 160-MeV protons with 
target nuclei .2 As part  of the  ana lys i s  of t h e s e  
da ta ,  a study h a s  been s ta r ted  to determine the  
time response  function for monoenergetic neutrons 
in the  experimental geometry. 

Figure 9.5.1 s h o w s  t h e  arrangement of the target 
and de tec tor  i n  a typical experimental configura- 
tion. A Cartesian coordinate sys tem,  xyz, is con- 

s tmc ted  such  that t h e  x a x i s  is along the  direction 
of t he  beam. T h e  xy plane  conta ins  the center of 
the  de tec tor  and the  target normal, T h e  target 
posit ion is descr ibed  by a rotation angle, ,Y, be- 
tween the  beam a x i s  and t h e  target normal, & T h e  
target coordinate sys tem (-7 i s  constructed so that 
t he  vertex of the  (-7 sys tem is i n  conjunction with 
t he  origiri of xyz, with [and q constrained to ro ta te  
in  the  xy plane, T h e  target th ickness  T is meas- 
ured along c s u c h  that r2 - r1 = T and 

for a l l  va lues  of ( i n  the  target. T h e  p:sition of 
t h e  neutron detector i s  given by 8 and ll,l, where 
L i s  a vector i n  the  xy plane from x = y = z = 0 to 
the face of t h e  detector and norm$ to i t ,  and  8 is 
the  angle  between the  x ax i s  and L. 

Protons  incident on  the  target parallel  to the x 
ax i s  in te rac t  i n  an  element of target volume dx dy 
dz, producing secondary neutrons of velocity vn. 
T h e  flight t imes  of neutrons which a re  born i n  the  
target and in te rac t  i n  the detector arc measured, 
T h e  apparent flight time t is given by 

d 

t =  t + tn + tc , P 
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Fig .  9.5.1. Schematic Arrangement of t h e  Target  and D e t e c b r  for the Measurement of the 

Secondary Nucleons. 
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where f is t h e  interval between the  p a s s a g e  of t h e  
proton p a s t  an arbitrary zero-time reference point 
and t h e  t ime of interaction i n  the  target, f, is the  
flight t ime of t he  neutron between i t s  birth and 
detection, and f C  is the  lime required for l ight t o  
travel through the  de tec tor  from the point of inter- 
action to t h e  photocathode of the  multiplier tube. 
I t  is assumed tha t  phototube de lays  a re  independ- 
e n t  of t h e  posit ion at which the  l ight s t r ikes  t h e  
photocathode. 

T h e  probability per  MeV of neutron energy tha t  a 
neutron of speed  vt, has a n  apparent flight time 
within df at t i s  given by 

P 

x E&f,X,x,r’,) dx dy dz , (3 )  

B(X , f i )  dx is t h e  probability per unit so l id  angle  
per MeV of neutron energy tha t  t h e  proton in t e rac t s  
i n  the  ta rge t  within dx a t  a penetration X :. x 4- y 
t an  Y - sec y! to produce a neutron which is 
emitted in the  direction Q: 

the  angle  of neutron emiss ion  relative to the beam 
axis.  

N(y,z) dy dz is the  probability that a beam par- 
t i c l e  h a s  a displacement from t h e  beam a x i s  within 
dy at y and within c H  a t  z; N ( y , z )  is approxi- 
mated in t h i s  ana lys i s  by a bivariate normal fre- 
quency function. From previous ca lcu la t ions3  it 
h a s  been shown that the  z component of the beam 
introduces negl ig ib le  flight-path variations. Based  
on  t h e s e  resu l t s ,  E,(t,X,x,vn) is considered to be  
independent of z, and, s i n c e  N(y,z) is the only 
term in  which z is contained explicit ly,  it  is inte- 
grated immediately over  all va lues  of z with the  
result  that  

E&t,X,x ,vn)  df is t h e  probability that a neutron 
of velocity vn born a t  x,y  in t he  target and emitted 
i n  a unit  so l id  angle  toward the  detector is de tec ted  
within d t  a t  t: 

= 2 (v ;v  ,6) exp (-x”,i X) dx for x,y within t h e  target , 
P P ~  

B ( X , 6 )  dx (4) 
for x,y  outs ide  t h e  t a r g e t ,  

where 

zp(vp;vt,,fi) = t he  differential c r o s s  sec t ion  per 
MeV p e t  unit  so l id  angle  in  t h e  
direction fi for the  production of 

neutrons of speed  v,, face 
2;; = t h e  effective c r o s s  sec t ion  for 

absorption of protons i n  the  target. 

Edt,X,x,vn) df 

- - de If te c to r !(t,X,~,v,~,d) dst dt, (6) 

where 

= exp  ( - x T N  eff Zr) x ( y , )  vn exp  [--XErf l , ( f ) l  for Z,(t) i n  t he  d e t e c t o r ,  

(7) 

for Z,(t) outs ide  the  detector , 
i n  which 

1 - 0  

Z(t, X, -u, v, ,& 

I: F: = ef fec t ive  macroscopic absorption c r o s s  
sec t ion  for neutrons in  the  target, 

Z(v,> = macroscopic “efficiency” c r o s s  sec t ion  
for neutron detection, 

Since the  direction of emiss ion  of the  neutron is 
taken t o  b e  independent of the azimuthal angle, 
2 P (v p’ ‘v 11’ h) reduces  to Z,(vp;vn,~), where e is 
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xiff = effective macroscopic absorption c r o s s  
sec t ion  for neutrons i n  the  detector,  

v = neutron e n e r u y ,  
1, = path length traveled by t h e  neutron in  the  

target, 
ID(t)  = path length traveled by the neutron in  

t h e  detector,  expressed  in  terms of t h e  
apparent flight time. 

The  t e r n  

is the  element of so l id  angle  subtended by an el+ 
ment of detector front sur face  at  the  interaction 
i n  the  target Pls(x,y).  T h e  d is tance  from P ,  to a 
point on the  face of the  detector is If. 

For given neutron energies,  v, and x(v,)  a re  
constants.  If Z (v  ‘v ,B) does  not vary too rapidly 

P P’ n 
with e o r  v i t  may a l s o  b e  considered to be  con- 

P’ 
stant.  Experiments a r e  normally designed to make 
t h e s e  assumptions valid. 

T h e  d i s t ance  traveled by the  neutron from its 
birth point i n  the  target, P, . (x ,y ) ,  to the  point of 
detection, P D ,  is tnvn. With the a id  of Eq. ( 2 ) ,  

Considering only l ight rays which a re  normal to  the  
photocathode, 

t --[D K - I (i’ A .si)] , 
C 

D (9) 

when 

K = index of refraction of the detector, 
c = speed  of light, 

D = t h i ckness  of the detector. 

Substituting Eq. (9) into Eq. (8) and solving for 
I ,  yie lds  

T h e  incident proton loses energy in  the  target 
through numerous atomic collisions.  If  the time 
reference is taken a t  x = 0 with the target imagined 
to be  absent ,  

where 

v P = proton velocity, 
E .= proton energy, 

- dE/& = incremental energy loss per unit  pa th  
length for protons in  the  target material 
(- dE/dx is a posit ive number). 

For neutron velocit ies which approach 160 MeV, 
the  response  function i s  sharply peaked. To iiiore 
eas i ly  define the  overall  shape  of the  distribution, 
a convolution of the  timing j i t ter  distribution is 
performed with II:(ij‘tpX,x,vrn). (Otherwise th i s  j i t ter  
must b e  introduced la te r  i n  the  calculation.)  T h e  
j i t ter  distribution J ( t . )  i s  assumed to b e  normal. 
Then in Eq. (3) ,  E&t,X,x,v,) i s  j u s t  replaced by 
F,(ti,X,x,vn), where 

I 

and C(t,v,) is correspondingly replaced by G(tl,vn). 
Computer programs are  now being written to 

eva lua te  G(t,,v,). Upon completion of t h i s  evalua- 
tion, t he  result  will b e  combined with a pulse- 
height spectiurn i n  order to es t imate  the  time dis- 
persion from the  pulse-height-dependent time 
slewing. When the time analyzer response is also 
included, t h i s  will yield the overall  time response 
function for t he  spectrometer. 

R d % P W 8 C e S  

‘Partially funded by the  National Aeronautics 
and Space Administration under NASA order R-104(1). 

2R.  W. Pee l le ,  T. A. Love, and G. A. IlZuce, 
Neutron Phys. Div. Ann, Pro&. Rept. Sept. 1, 1962, 

3R.  T. Santoro, Neutron Phys. Div. Ann. Progx. 
ORNL-3360, p. 286. 

Rept. Ang, 1, 1965, ORNL-3858, vol. IT, p. 86. 

9.5 PROTON R E C O e l  SPECTROMETER FOR 

50 AND 450 MeV’ 
NEUTRON SPECTRA 

W. A. Gibson 
W. R. Buirus  

J. W. Wachter 
C. F. Johnson2 

A proton recoil spectrometer h a s  been constructed 
and used  to obtain energy spec t r a  of neutrons 
emitted froin ta rge ts  bombarded by 160- and 450- 
MeV protons. T h e  instrument employs a polyethyl- 
e n e  radiator as the  source  of the  recoil protons 
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and measures  the  energy of the  protons from the  
pulse  he ight  obtained when the proton p a s s e s  
through a thin NaI(T1) crystal .  The  paper dis-  
c u s s e s  t h e  de t a i l s  of constructing the spectrom- 
e te r  and t h e  circuitry used  during operation. A 
Monte Carlo program for ca lcu la t ing  the efficiency 
and resolution of the  spectrometer is described. 
T h e  effect of the  Landau spread i n  the energy de- 
posited i n  the  NaI(T1) energy detector is included 
in the resolution calculation. Typical  energy 
spec t ra  for secondary neutrons and protons are 

presented, and the unfolding program used  to 
compensate  for the skewed energy resolution func- 
tion of the  spectrometer is discussed .  
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