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STRUCTURAL ANALYSIS OF SHIPPING CASKS
VOL 1. ANALYSIS OF A SHIPPING CASK SUBJECTED TO INTERNAL PRESSURE

Abstract

Formulas to be used by the design engineer to calculate
the maximum stress produced in a cask used to ship radioactive
materials when it is subjected to internal pressure are pre-
sented in this report. These formulas were developed for use
as a gulde to indicate compliance with the proposed Atomic
Energy Commission regulation pertaining to the design require-
ment for resistance to internal pressure; however, use of these
formulas does not guarantee compliance with this tegulation.
Formulas, which take ioto account the elastic nature of the
lead shielding, are derived to determine the thickness of the
cavity wall for casks of both prismatic and cylindrical config-
uration, the formulas are tabulated, and example problems are
given. Creep of the lead shield is evaluated, and it is con-
cluded from this evaluation that the creep problem tends to be
self-alleviating.

1. TINTRODUCTION

This report provides the design engineer with formulas for use in
calculating the maximum stresses produced in a cask when it is subjected
to internal pressure. These formulas are oriented primarily toward the
requirements of the proposed Atomic Energy Commission regulation 10 CFR 71
related to internal pressure.’

The proposed regulations pertaining to the shipment of radiocactive
materials and the shipping casks used to contain radiocactive material
during transport govern licensees of the Atomic Energy Commission, One
of these regulations pertains to the design requirements for resistance

to internal pressure, and it states that:

Packaging (the cask) shall be capable of withstanding an
internal gauge pressure within the containment vessel of 20
pounds per square inch or twice the operating gauge pressure,
whichever is greater, without generating stress in any material
of the packaging in excess of its yield strength.

1Code of Federal Regulations, Title 10 Part 71, "Protection Against
Radiation in the Shipment of Irradiation Fuel Elements," Federal Register
Document 61-9151, September 1961.



At the present time, essentially all large casks designed and used in
the United States are made of lead encased in steel and have a cylindrical
or prismatic configuration. The materials most generally used in cask con-~
struction are chemical lead and the 300~series stainless steel, but tungsten,
depleted uranium, carbon steel, iron, and concrete are sometimes used for
shielding purposes. Some typical properties of chemical lead are given in
Tables 1 through 3, and some properties of type-347 stainless steel arve

given in Table 4.

Table 1. Properties of Chemical Lead?®

Melting point,OF 618

Tensile strength (cast), psi 3000
Modulus of elasticity in tension, psi 2,0 x 10°
Poisson's ratio 0.4 to 0.45
Elastic limit, psi 200

Creep in % per hour ai temperatures from room
to 150°F for

200 psi stress 0.000004 to 0.0006
300 psi stress 0.000015 to 0.0050
400 psi stress 0.000030 to 0.0230
Coefficient of expansion
Linear (48 to 212°F, mean) 0.0000163 per °F
Cubical (48 to 212°F) 0.0000488 per °OF
Cubical (liquid at melting 0.0000717 per OF
to 675°F)
Increase in volume on melting 4%

a . .
All properties given for room temperature
unless noted otherwise.

Table 2., Effect of Temperature on Tensile Properties
of Chemical Lead Annealed at 2120F

Tensile Reduction

Temperature Strength Elongation in Area
(°F) (psi) (%) (%)
68 1920 31 100
180 1140 24 100
302 710 33 100
383 570 20 100

509 280 20 100




Table 3., Maximum Allowable Fiber Stress

in Extruded Chemical Lead Pipe

Maximum Allowable

Temperature Fiber Stress
(°F) (psi)
68 200
104 180
140 162
176 144
212 127
230 118
266 100
302 80

Table 4. Properties of Type 347 Stainless Steel?

Modulus of elasticity, psi 28,000,000

Mean coefficient of thermal 0.0000095 per O
expansion (32 to 600°F)

Tensile strength of annealed 90,000
plate, psi

Yield strength of annealed plate 35,000

(0.2% offset), psi

Poisson's ratio 0.3

a ) .
All properties given for room temperature unless

noted otherwise.

Cavities in casks for spent fuel elements are quite large, and the

trend seems to be toward larger casks., Some sizes characteristic of typ-

ical irradiated fuel containers are given in Table 5.

It should be noted

that the inner shell of all casks listed in the table is stainless steel.

Therefore, it would be economically wise to make this inner shell as thin

as possible to safely resist the internal pressure,

One way to reduce the

thickness of the inner shell is to consider the shield as a load bearing

member. This may be of particular advantage when the actual operating

pressure of the cask is less than the minimum design
prescribed by CFR Title 10 Part 71 and when the cask

configuration.

pressure of 20 psig

is of prismatic



Table 5.

Typical Characteristics of Irradiated Fuel Containers

Thickness Nominal Thickness
of Thickness of
Empty Inside Inner of Outer, Design
Cask Weight Dimensions Shel1? Lead Shell® Pregsure
Designation Supplier Owner (tons) {in.) {in.) {in.) (in.) (psig}
Chalk River 0. G. Kelley USAEC 45 30 by 132 1/2 6 3/4 1/2 20
35 high cladding cladding
Yankee Edlow Lead Westinghouse 70 38 diameter 3/8 10 1 3/8 100
119 high
Dresden Stearns Roger Stanray 71 41 diemeter 3/4 9 1/2 3/4 120
142 high cladding
GE - Universal Knapp Mills GE 21 13 diameter 1/2 8 3/8 3/4 100
129 high cladding
Pigua - Elk River Knapp Mills USAEC 28 30 diameter 3/4 8 1 ¢ 100
83 high
M-130 Knapp Mills J. 8. Navy 110 55 diameter 1 10 1/2 1c 300
132 high
MIR Fuels National Lead Mational Lead 12 23 diameter 1/2 8 1/2 1/2 ¢ 20

30 high

a . 5
Stainless steel.

Stainless steel unless noted otherwise.

C
Carbon steel.



The shielding material itself is usually very weak. However, because
of its large thickness (6 to 12 in.), it may have a reasonable load carry-
ing capacity. If lead is the shielding material, its creep under load at

elevated temperatures should be evaluated.



2, SUMMARY

To define the state of stress in a structure, the magnitudes and
directions of the three principal stresses must be determined. When at
least two of these three stresses are different from zero, a strength
theory must be used to determine the proximity to yielding. The maximum
shear stress theory discussed in Chapter 3 is used in this report.

In the calculations for casks with a prismatic configuration, the
walls of the cask are analyzed as a frame consisting of the liner and
shield loaded internally by the pressure. For this configuration, there
are two cases that must be investigated: one is for the liner and shield
bonded together and the other is for the liner and shield not bonded. The
procedures for developing the formulas for calculating the stresses in the
first case are:

1, determination of the maximum bending moment in the frame,

2. determination and distribution of membrane forces in the frame,

3. determination of the principal stresses in the shield, and

4, determination of the principal stresses in the liner.

The procedures for developing the formulas for calculating the stresses

for the second case are:

1. determination of bending moments and membrane forces in shield and liner,
2. determination of principal stresses in the shield, and

3. determination of principal stresses in the liner.

The formulas for these two cases are derived in Chapter 4 of this
report, and for convenience, they are tabulated in Table 6.

In the calculations for casks with a cylindrical configuration, the
liner and shield are divided into four regions. These four regions are:
region 1, the liner and shield remote from discontinuities; region 2, the
junction of the cylindrical portion of the liner to the offset for the 1lid;
region 3, the junction of the bottom head to the cylindrical portion of
the liner; and region 4, the bottom head remote from discontinuities.

The stresses that exist in these four regions are calculated in Chapter 5,

and for convenience, they are tabulated in Table 7.



Table 6. Formulas for Determination of Stresses in Cask with Prismatic Configuration
Three Principal Stresses Stress Intensitya
o o s =1 -
l 2 ‘s HTnax Crmin:|
Shield and liner bonded
Stress in shield at
Liner-shield interface oL = 0 + o m On = 0F2 Oz = O, 5 =0, - gq
s s s s - =
b N 3, 43X -t
from Eqs. 27 and 29 from Eq. 30% from Eg. 31° 5 = %[<¥;—%—%— —gi——%>
o = 2?{W3 SO e + (f 2 E—W %2 = <1 ? a>/w i d 2: 9% =P / a 1
PT2Nwed po6eT ) Ml v a)e ] : \ /ot e }-+21
. 04 s |
OQuter surface o1 = Jp = 0y Oz = Op_ 0 See footnote e.
) S a ]
from Eqs. 26 and 29 from Eq. 30b
. 3 + [ d \ pw
_pil_¢ w_ o /ﬁ + d L a. =3 T{L—-——
O ZL\l + o tS \ w + d p=4 L+ QAW+ d/ 2ts
Stress in liner o, =0, T og G2 = 9g, 03 = 0. S =0, -0g4
L L L b c S - ol n/w> + & E
from Eqs. 32 and 33 from Eq. 34 from Eq. 35 T 2{6\ w+ d T
_pn (Y 7 N\w ] o oL Y4 Vpw 05 = P St Nwo ]
T2 wrd /T ML) g 2 AL+ afw o+ dA2E L+aje ]
Shield and liner nct bonded
Stress in shield at
. 41 . — - =G = = -
Liner-shield interface o, = cbs + GFlS o, CFZ Ca O, S Gmﬁ Og
b b ® . g.Rllu-g
from Eqs. 45 and 46 from Eq. 47 from Eq., 48 T2 L ts
_ ) VAR N _ wd Oy = P 3 3
a =R(W g_lgz_‘;w d _]\;—1 0'2 Zt (w+d) +[/W__+_d__\/_l_ 4 2T
1 2 t:s Cw o+ d Ve s \w+d/\;3
s / tS
= - = c \ £
Outer surface o, UFl oy I, °p. C See footnote e.
s s s
d b
from Egs. 45 and 46 from Eq. 47
. _a;’<w-g>_r’wa+d3\(1_>‘ s - __pwd
17 | R : - 2 = ]
24 £t LW+ d /\ti J Zts(w + d)
o
= in 13 = = = = = -
Stress in liner oy Gbr OFLL g, UFgL Oz = 0, S=0¢ - 05
i o 1
from Egs. 4% and SOb from Eg, 51 from Eq. 52°¢ S = % l*%?— + %— + ZJ
- - - t{ L
D o | s
5 =27'~_-_5£_+&J g, =0 Oz = P
22 tr,
L
8plgebraic difference (i.e., if 0, > o, > 0., then ¢ - =g, - 0-). Tensile stresses are considered positive, compressive stresses
3 4 1 2 S max 1 3 4 P

negative.
b -
A tensile stress.

C s
A compressive stress,

[ P . ; . . .
Positive sign for tensile stress, negative sign for compressive stress.

e . ; . A ;
These differences cannot be determined until the actual of ¢,, o0y, and o5 are calculated. For these cases it is not necessarily true that

> > .
Gl 02 O



Table 7,

Formulas for Determination of Stresses in Cask of Cylindrical Configuration

Three Principal Stresses

Stress Im:ensit:ya

9y Oz O3 5 = (Umax . c'mi.n)
Stress in region 1 1 o _\|
Liner o = gy Uy =0, 0y = L0 p[A—* (?1—> + 1J
from Eq. 64b from Eq. BSb from Eq. 66° “where A = 1 + B or 2
P a pa_ whichever is less
Ul:l»;g(?) U2=2tL 9% =P
; - . . _Bo_ (b2 + 8?
Shield 0 =0y Oy =0, gy = Zo 1 (\bz s + 1
from Eq. Glb from Eq. 63 from Eq. 62°
- Bp [Pt o Pe
Olkﬁ+1b2- o, =0 UB—B+1
Stress at region 2 in liner
Outside surface o, = Lo g, = Lo gy = Zo See footnote d.
] 2 X 3 r
from Eqs. 64, 75, 77, and 782 from Eqs. 65 aund 76 from Eq. 62°
_ _P (_:_A_ = 2Ereg. z\La _pa_ _ 6Mreg. 2 __Bp
% T T B\ t % =7t % =B+ 1
. L L ti
-
. 2Mreg. 2)\? R 6DLMreg. 2
€ 2
L tL
Inside surface o = Zoy oy = Lo 0y = Lo, See footnote d.
from Eqs. 64, 75, 77, and 78° from Eqs. 65 and 76° from Eq. 66°
2F 27\ a 6M
P (_a__ reg. Z'L _pa_, _reg.?
gy = - O, = O3 = P
1+B\t t 2 2t 3
L L r:‘i“
2 :
. ZMrel;g. 2}\L'3 _ 6"’LMreg. 2
t
L tL
Stress at region 3 in liner
Cylindrical wall a = Ig 0, = Ea gy = Zo See footnote d.
6 2 X 3
outside surface a N
from Eqs. 64, 90, 91, and 93 from Eqs. 65 and 92 from Eq. 62°
g = —P /a_\ . ZFreg. 3 2 _pa_ _ 6Mreg. 3 _ _Po
1“1+B\t1/ € A %2 = 7% 2 -
L L tL
2
Mreg. 3 A2a - 61‘)LMress;. 3
tL L 2
L
C}.rlifmdrical wall op = X.ne o, = Zax 0y = Zar See footnote d.
inside surface b
from Eqs. 64, 90, 91, and 93% from Eqs. 65 and 92 from Eq. 66
p a\ ZFreg 3 pa 6M‘:eg 3
= =1 . = = + : =
S STty t A2 Rl T 2 9 =P
L tL
™ 3 GULM .3
4 o—rege Ioo. reg.
tL L t2
L
Head inside 0 = 2o o, = Lo 6y = X0, F M
surface r b & [:} b 3 x reg. 3 4 Lef. 3 +p
from Eqs. 94 and 95 from Eqs. 96 and 97 from Eq. 98¢ th ti
F 6M v F 6M
o = reg. 3 “reg, 3 o = L reg., 3 * reg.3 9y =P
t > 2 t 2
h th h th
Head outside oy = Zo g, = Lo Gy = Lo See footnote d.
r 2 ] 3 X
surface a a
from Egqs. 94 and 95 from Eqs. 96 aud 97 oy =0
F 6M v, F 6M
o = reg. 3 _ _ reg. 3 o = Lreg, 3 _ _reg.3
- t 2 t. 2
h 2 h Y
Stress at region 4 head
Inside surface g = Ear ay = ZZUB gy = Eax See footnote d.
from Eqs. 99, 101, and 1032 from Eqs, 100, 102, from BEq. 105°
and 1042
6 F
o = —teg: 3, xeg. 3 oM F Oy = P
=
ti t o = reg. 3 . rig. 3
54 h
3pa2(3 + v.) h
L
- ——— L 3p22
8t2 >
h 2
OQutside surface o, = Zur o, = Zoe gy = Zux See footnote d.
from Eqs. 99, 101, and 1032 from Eqs, 100, 102, o = 0
and 1042
31 3 F 3
o = - —ohes g SRS T
2 h g, = - —Xe8.3 , _XeR. o
h 2 & th
3pa? (3 + UL) h
+ —— 5
82 4 3R
h 22
h
aAlgebraic difference (i.e., if o) > 05 > gy, then O x = Imin = 1 " Us)' Tensile stresses are considered positive,

compressive stresses uegative.
b
A tensile stress,
c
A compressive stress.

d : : : .
Thege differences cannot be determined until the actual values of o, o,, and gy are calculated. For these cases it

is not necesgsarily true that ¢ > o, > LA



If the shielding material is lead and the pressure load is to be
applied for extended periods of time (weeks), the creep of the lead must
be evaluated. An evaluation of cxeep for a lead shield is given in
Chapter 6, and it is concluded from the results of this evaluation that

creep is not really a problem because it tends to be self-alleviating.
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3. STRENGTH THEORY

The state of stress inm a structure is completely defined when the
magnitudes and directions of the three principal stresses have been de-
termined. If at least two of these stresses are different from zero, a
strength theory must be employed to determine the proximity to yielding.
For ductile materials, the distortion energy theory more accurately pre-
dicts yielding than the maximum shear stress theory, but both are better
predictors than the maximum normal stress theory commonly used until fairly
recent times. Section III of the ASME Code' is based on the maximum shear
stress theory because it is slightly more conservative and easier to apply
than the distortion energy theory. For this reason, the maximum shear
stress theory is used in this report.

The maximum shear stress theory states that yielding occurs when the
maximum shear stress in a structural member becomes equal to the maximum
shear stress in a tensile specimen subject to its yield point stress. The
maximum shear stress in a structural member equals half the algebraic dif-
ference between the maximum and the minimum principal stresses. Therefore,
if it is understood that ¢; > o, > 03 where oy, 05, and gz are the three
principal stresses, the maximum shear stress, Tax’ in a structural member
equals (g; - 0g)/2. In a simple tenmsile test, o, = og = 0; therefore, at
yielding, the maximum shear stress = (Syp - 0)/2 = Syp/z’ where Syp is the
tensile stress in the specimen at yielding. Hence, (gq - 03)/2 = Syp/2 or
gy - Oz = Syp is the failure criterion.

A new term, "'stress intensity,h is used in Section TIIT of the ASME
Code and will be used in this report. Stress intensity, S, is defined
as twice the maximum shear stress and is therefore equal to the absolute
value of ¢, = og. It is directly comparable to Syp' Thus, if failure is
not to occur, the absolute value of the algebraic difference between the
maximum and the minimum principal stresses must not exceed the yield point
of the structural material at the operating temperature; that is,

S = 07 = O3 S_ Syp.

TASME Boiler and Pressure Vessel Code, Section III, Rules for Con-
struction of Nuclear Vessels, American Society of Mechanical Engineers,
New York, 1963.
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4., CALCULATIONS FOR CASKS WITH PRISMATIC CONFIGURATION

The general configuration of a prismatic cask is illustrated in Fig. 1.
The height of the cavity, h, is considered to be much larger than the width,
w, and the width is much larger than the depth, d. The cask is composed of
three components: the liner, the shield, and the jacket. The cask is con-
sidered to have an internal pressure of p.

ORNL Dwg. 63-11822
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Fig. 1. General Configuration of a Prismatic Cask.

In order to simplify the calculations and results and at the same
time obtain a conservative result, it was assumed that:
1. the jacket is not in contact with the shielding material,
2. the thickness of the liner is small when compared with that of the
shielding,
3. the pressure load between the liner and shielding is uniform over the

common surface of contact,
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4. the height, h, is enough larger than the width, w, (h > 2w) so that
end effects on the side walls can be neglected.® This is conservative

because the ends actually help support the load.

Method of Calculations

Since the end effects are assumed negligible, the cask walls can be
analyzed as a frame consisting of the liner and shield loaded intermally
by the pressure p. There are two cases that must be investigated: omne is
the case where the liner and shield are bonded together and the other is
the case where no bond exists., The procedures that are followed in develop-
ing the formulas for calculating the stresses for the first case are:
1. determination of the maximum bending woment in the frame,
2. determination and distribution of the membrane forces in the frame,
3. determination of the principal stresses in the shield, and
4, determination of the principal stresses in the liner.
The procedures for developing the formulas for calculating the stresses
for the second case are:
1. determination of bending moments and mewmbrane forces in shield and liner,
2, determination of principal stresses in the shield, and
3. determination of principal stresses in the liner.

The formulas for these two cases are derived in the following calcu-~
lations and summwarized in Table 6 of Chapter 2, Their application is in~

dicated in the example calculations for a prismatic cask in this chapter.

Calculations for Bonded Liner and Shield

Determination of Maximum Frame Moment

The determination of the maximum bending moment in the frame is based

on ref. 2. The load diagram for the frame is illustrated in Fig. 2.

1S. P. Timoshenko, p. 116 in Strength of Materials, Part 1I,
D. Van Nostrand Co., Inc., 3rd ed., 1956.

28, P. Timoshenko, p. 190 in Strength of Materials, Part T,
D. Van Nostrand Co., Inc., 3rd ed,, 1955,
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Fig. 2. Load Diagram for Frame of
Prismatic Cask with Bonded Liner and Shield.

Two conditions must exist at the corners (A, B, C, or D) in order to
maintain continuity., The bending moments in two adjacent spans, such as
spans AB and AD, at their junction must be equal, and the changes in slope
of these two adjacent spans at the junction must be numerically equal but
opposite in sign if the sign convention of Fig. 3 is used. Figure 3 shows

the free-body diagrams of spans AB and AD. From this,

My = MAB , and (1)
eAD + eAB =0, (2)

ORNL Dwg. 65-11824
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Fig. 3. Free-Body Diagrams of Spans AB and AD.
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The slope of span AB at A,

_ _bw_  _AB
eAB T 24ET 2ET (3)

The slope of span AD at A,

s M d
e} - ._R@:M - ....A’_Q.. . (4)
AD  24EI  2EX
By utilizing Egs. 1, 2, 3, and 4,
2 3
= - P wo +. d” 5
Mag = Map 7 12 [ wtd | ° )

The bending moment diagram may be drawn by parts and is shown in Fig. 4.

ORNL Dwg. 65-118253
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Fig. 4. Bending Moment Diagram for Frame of Prismatic Cask with
Bonded Liner and Shield.

The resultant moment at any poiont is the algebraic sum of the ordi-
nates of the two parts under consideration. The maximum moment at the
center of the span will occur when the end moment is a minimum. This will
be when the derivative of the moment with respect to span length equals
zero; that is, when the moment at the center of span AB is a maximum,

i VR

d(d) ’
Dividing the numerator by the denowinator in the right-hand member of
Eq. 5,

o B (w2 - + a2
Mw 5 15 (w wd + d7). (6)
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Taking the derivative of Eq. 6 with respect to d,

dM
ET%? = %5 (-w + 2d) . (7)

Setting Eq. 7 equal to zero and solving for d,

d s V]/z ° (8)
When d = w/2,
=2 =2 2
_ P 2 _ Y- Wy _ PwT
Map =12 -t =T

The moment at the center is then -pw®/16; that is, when d = w/2, the mag-
- nitudes of the moments at the ends and at the center of the beam AB are
equal. As span length d approaches span length w (see Fig. 2), the end
moment approaches its maximum value of pw/lZ and the magnitude of the
moment at midspan approaches pw®/24, Thus, the maximum bending moment
in spans AB, BC, CD, or AD is at the end and is equal to

3 3
P2 L og2 p_ w_ t+ 47
15 (w? - wd + d2) or B ( ] ).

Determination and Distribution of Membrane Forces

Each span is under direct tensile or membrane forces as a result of
the pressure forces on the adjacent spans and ends. A differential element
cut from the inside corner of the frame at joint A in span AD is illustrated

in Fig. 5.

ORNL Dwg. 65-11826

Fig. 5. Differential Element Cut From Inside Corner of Frame
At Joint A in Span AD of Prismatic Cask with Bonded Liner and Shield.
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The mewbrane force F; in span AD is a result of the pressure forces
on spans AB and CD. 1In addition to the membrane force F,, there exists
another membrane force, ¥,, which acts perpendicularly to F,. This is
caused by the pressure load on the ends or heads of the cask. This force
F. is similar to the longitudinal force in a cylinder, and the force Fy
is similar to the circumferential force in a cylinder. The differential
forces AF, (AF, = Fq ZIL) and (AFs = Fo %ga) and moments are noted in
Fig. 5. The values of F; and ¥, are:

h
Fl = %'R ) (9)

i

and
F, = wpd . (10)
The forces F, and F, are carried by the liner and shield. When the
liner and shield are bonded, the part of the force carried by each is de-
termined by utilizing the fact that the increase in the length of the liner
equals the increase in the length of the shield. The increase in length of

a member due to an axial load,
& == (11)

where
P = load, 1b,
x = length of member, in.,
A = the transverse cross sectional area of the member, in.%, and
E = the modulus of elasticity, psi.

Since the liner and shield are assumed bonded,

B, =8y » (12)
or
Fyd | Fyyd (1209
AE T AE @
ALt &8
Since d_ = d. and — = = , Eq. 12a reduces to
s L AL tL
Fls ) Fiy, (13
tE ~ tE ]

s s L L



Solving Eq. 13 for Fls’

E t
. . S({_s
Fig % F <t;> Fio . (13a)
L
Also,
Fig * Fip = Fp (14)
Solving Egs. 13a and 14 for Fls’
(&2)
15
F, = "L (15)
lg — E t :
)
ELtL
If @ is defined as
Ests
& = E t > (16)
LL
Eq. 15 reduces to
03 .
FlS = 1 T a Fl' (17)
From Egs. 14 and 17 it follows that
F - F 18
J.L - 1 + 1 e ( )
In a similar manner it is found that
07
F25:1+aF2) (19)
and
F = —t— (20)
L1+ 2

Determination of Stresses in Shield

Stresses in Shield due to Moment M, .

AD
moment is defined by
_ Mc
°% T 1

where

o = bending stress, psi,

M = bending moment, in.~1b,

C = distance from neutral axis to extreme fiber,

I = moment of inertia, in.*

The stress due to a bending

(21)

in.,
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For the case where the liner and shield are bonded, the liner and
shield constitute a beam of two materials that carries the bending load.
In order to determine the distribution of stress, the composite beam must
be converted to an equivalent section one-material beam.® A cross section
of the composite beam and an equivalent one-material section are illustrated
in Fig. 6.

ORNL Dwg. 65-11827
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SECTION SECTION

Fig. 6. Cross Section of Composite Beam and Equivalent One-~Material
Section of the Same Beam.

The actual section illustrated in Fig. 6 is converted into an equiva-
lent section of shield material where

E
n == —'I_"‘ . (22)

S

The distance Y from the base to the neutral axis,

= A
T 3

where
A = cross-sectional area of the component,
Y = distance from base to centroid of A.

Therefore, for an actual section 1 in. wide converted to an equivalent

section,
t t nt2 t2
L S L s
— + — et r— - rve——
= n(tL>(2 ) ts(tL N 2 ) 2 * tLLs * 2
Y = = . (23a)
nt. + ¢ nt. + t
L s L. S

SP. G. Laurson and W, J. Cox, pp. 322-323 in Mechanics of Materials,
Wiley and Sons, Inc., 3rd ed., New York, 1947.
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Once Y is known, the moment of inertia of the equivalent section with

respect to the neutral axis may be calculated.
T = 1/3[11;.{—3 - (11 - l)(—Y- = tL)S + (tS + tL - -Y-‘S:l‘ (24)

By definition from Fig. 6,

Cl = ;E, (253)
and
Co=tp +t =X . (25b)
Since €, is larger than C; - € the largest bending stress in the shield
. is a distance C, from the neutral axis and this stress (from Eqs. 5, 21,
and 25),
i p_ (vl +d® te - ¥
(t. + t Y)
12\ w + d L s .
0. = (compressive), (26)
Co I

where Y and I are given by Egs. 23a and 24, respectively.

The bending stress in the shield at the liner to shield interface is

3 3

p_(w_ + d7N\ 5
12 w+d>(Y t) .

= T (tensile), (27)

%

where Y and I are given by Eqs. 23a and 24, respectively.

Stresses in Shield due to F1b and Fns. The stress due to a teunsile

load,
o =%, (28)
where
g = stress, psi,
- P = load, 1b,

A = area over which P acts, in.?

Therefore, the stress in the shield due to Fls (see Eqs. 9, 17, and 28),

_ o W .
OFls = <i~:-é> EE; (tensile), (29)

and the stress due to Foq (see Eqs. 10, 19, and 28),

- o d PW .
0F2s = <1 n %)Cw T 2t;> (tensile) . (30)
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Stress in Shield Due to Pressure. The pressure load transmitted to

the shield is assumed to be equal to the pressure. Therefore, the radial

stress on the shield,

o, =P (compressive) . (31)
p

Determination of Stresses in Liner

Stresses in Liner due to Moment MAD' From Egqs. 5, 21, 22, and 28a,

the maximum bending stress in the liner when the liner and shield are

bonded together,

g, = +d (tensile), (32)

where Y and I are given by Eqs. 23a and 24, respectively.

Stresses in Liner due to F‘L and EDL' From Eqs. 9, 18, and 28, the

stress in the liner due to FlL’

o

(1 N\ pw_ -
FlL = Kl = q> ZtL (tensile) . (33)

From Eqs. 10, 20, and 28, the stress in the liner due to FEL’

_ 1 d pw .
0F2T B <1 + CLXW + dXZtT> (tensile) . (34

Stress in Liner due to Pressure., The liner is subjected to the full

pressure, p., Therefore, the radial stress due to pressure,

o, =P (compressive) . (35)

1%

Calculations for Liner and Shielding Not Bonded

Determination of Bending Moments and Membrane Forces in Shield and Liner

A view of a corner of the frame ABCD under pressure loading with the
condition greatly exaggerated is illustrated in Fig. 7, and free~body dia-

grams of a portion of the liner and shield at the corner are shovn in Fig. 8.
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Fig. 7. Corner of Frame ABCD Under Pressure Loading When Liner
and Shield are not Bounded Together.

ORNL Dwg. 65-11829

g
gt
2

Fig. 8. Free-Body Diagrams of Portion of Liner and Shield at the
Corner for the Case Where Liner and Shield are not Bonded Together.

To arrive at formulas for FlL’ Fls’ ng, ML’ and MS, it was assumed

that:
1. the total bending moment given by Eq. 5 must be resisted by the shield,

M - E_(ﬁs + d%\
s 12\w+d /°
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2, the increase in the length of the span, ug, of the shield is produced

by the total pressure, and

_ .pwd | (36)

3. the elongation of the liner due to FlL is negligible;
4. the change in slope of the liner from point O to points k or q is zero;
5. the membrane force FEL is zero.

The deflection, i of the segment Oq or Ok in Fig. 8 may be calculated
by considering it to consist of two cantilevers of length g/2, one supported
at 0 and the other at q, with both carrying a uniformly distributed load
of p 1b/in.? Assuming this and applying ref. 4,

Yy < ’
L 8ELIL
where £ is the length of the cantilever in in.

Therefore, the deflection,

- BE&E
L T e4E T, (38)
L7L
From Fig. 7 it is apparent that
ug = Yo (39)
For a beam 1 in. wide,
I = Ei’ (40)
L 12 °

Simultaneous solution of Eqs. 36, 38, 39, and 40 along with Eq. 16 yields

=

|

al ot
Vs

where g is the unsupported length of the liner, as shown in Fig. 7. When

wd , (41)

wilH
Q

g is known, the forces Fls and FlL and the moment MI can be calculated.

=}

Fy

WEES oy (42)

*p. G. Laurson and W. J. Cox, p. 164 in Mechanics of Materials,
Wiley and Sons, Inc., 3rd ed., New York, 1947.
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Fp,o=5hp . (43)
& 4h
M= g (44)

Determination of Stresses in Shield

Stresses in Shield due to Moment Ms' The bending stress in the shield

for the case where there is no bond between the liner and the shield,

3
oy =k ( - i g (tensile at inner surface) . (45)

S

Stresses in Shield due to Membrane Forces F‘s and Eps. The stress

in the shield due to Fls’

w -8
Fig 2 hp (ﬁ - g\ p_ .
s s - s
The stress in the shield due to ng,
Fo
B s pwd .
Ung vl ZtS(w D (tensile) 47)

Stress in Shield due to Pressure. Assume that all of the pressure is

transmitted through the liner to the shield. Therefore, the radial stress

due to pressure,
o =p (compressive). (48)
p

Determination of Stresses in Liner

Stress in Liner due to Moment M . The bending stress in the liner
1

due to ML’
Mic

9 a2 3/4 (ten51le) . (49)
L L L
Stresses in Liner due to Membrane Forces F1L and FQL. The stress in
the liner due to FlL’
Fy
G .k 8P (tensile) . (50)
Fip Ay ZtL
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The stress in the liner due to FEL’

GF2L =0 . (51)
Stress in Liner due to Pressure. The radial stress in the liner due
to pressure,
o, =P (compressive) . (52)
p

Application of Results of Calculations

The approach to be followed in using the results of the preceding

calculations to determine the minimum thickness of the liner is to:

1.

2
3.

select the required shield thickness based on shielding requirements,
assume a liner thickness of tL’
calculate the maximum principal stresses (o1, 0s, and oz) in the shield
and liner,

compute S (S = g; - o03) and compare with the yield point of the material
in question,

repeat above four steps until the calculated stresses are acceptable

S <SS ).
(—yp

Examples for Casks with Prismatic Configuration

The material properties are obtained from Tables 1 through 4, and

reference is made to Table 6 for the formulas for stress. Assume a cask

of prismatic configuration with the characteristics listed below.

Dimensions: h = 72 in., w = 36 in., d = 24 in., and t, = 10 in.
Design pressure = 20 psi

Design temperature = 212°F

Shielding material: chemical lead, E = 2 x 10° psi, v, = 0.4

Liner material: type 347 stainless steel, E = 28 x 10° psi, v. = 0.3

L L

Assume that tL = 0.5 in.
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Determination of Constants &, ¢, n, Y, and I

Ests 2 x 10° x 10

a = = == 1 429
6 ® .
E t; 28 x 10° x 0.5
4yt 4[4 (0.25
g = ~?—’- a——- wd :\/3‘ —ml (36)(24) = 3,767 in.
T 28 x 10°
L T TR
S
nt t2
—E e o+ o8 1800.25) (0.5)(10) + 100
v--2_ _Ls 2 2 2 - 3.338 in
- nt, + t 14(0.5) + 10 g .
L s
2L orge - Y - 3 - )3
I =3 [nY (n - (Y - £)% + (b, + £ - 7]
= % [14(3.338)° - 13(2.838)3 + (7.162)3] = 196.972 in.*

Determination of Stress Intensities Where Liner and Shield Are Not Bonded

Stresses in Shield at Liner-Shield Interface.

. P iw -8, wo o+ d3
) tg -

20 |36 - 3.767 363 + 243 1 .
2 L 0 " T36+ 24 100} = 133 psi.

~ pwd (20) (36) (24)
92 = 5% (D T 2(10)(36 + 24)

= 14.4 psi,

og = ~20 psi.

The stress intensity = o; - 05 = 153 psi.

Stresses in Shield at Quter Surface.

I 3, 43
W~ g wo + d .
oy = g . p—— = ~68.6 psi.
~ s
0z = 14.4 psi.
(73=O.

The stress intensity = 83 psi,
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Stresses in Liner,

2

5. - B Ll.og®
= te 2 0.5

g | 20 [1.5(3.767)2  3.767)_ gpp .
s tLJ ) [ (0.5)= v pets

o, = 0.

05 = =20 psi.

The stress intensity is 947 psi.

Determination of Stress Intensities where Liner and Shield Are Bonded

Stresses in Shield at Liner-Shield Interface.

B E‘”ws + g° (Y j tL . o (ﬁ_ |
o1 77 L w+d \_ 6I L+alt, J

0362 + 243  3.338 - 0.5  1.429 36
- 4\ r——

N

2 | 36 + 24 6(196.972) = 2.429 10

= 43,52 psi.

1,429 24 20(36) g s .
= 9429 36 26 2(10)  °e0 PSLe

Og = ~20 pSi.

The stress intensity is 63.52 psi.

Stresses at Shield Outer Surface

P e <@ wo 4 d° /t " t } Y\
O = 7% 1+ "t“; T ow+ d \, 6I /

20 1.429 §g> 363 + 24% 10 + 0.5 - 3,338

2 2.429 36 + 24 6(196.972) |
= ~39.9 psi.
s = (i =~ Q)(W ry Pw = 8.5 psi (as above).
03:

The stress intensity is 48.5 psi.
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Stresses in Liner.

_pfn w?rad® ¥ 1w

°1 T 216 w+d T L+ ot
20 |14 36° + 242 3,338 1 . 361 _ eos e
T2 |6 36+ 24 196,972 © 1+ 1.429 0.5) ~ pete
B 1 d pw

92 T \1T + aAw + d \2¢
1 24 20(36) .

_ = 37429 36 + 24 2(0.5y ~ 18 psi.
05 = =20 psi.

The stress intensity is 715 psi.

Summary of Example Calculations

The stresses and the stress intensities for the prismatic cask example
are tabulated in Table 8 for easy comparison. It should be noted that the
bonded cask meets the stress requirements in all respects while the 153 psi

stress intensity in the shield of the unbonded cask is not acceptable.

Table 8. Tabulation of Stresses for Example Prismatic Cask
where tS = 10 in.

Allowable
Stresses (psi) Intensity  Stress
. 04 05 Og (psi) (psi)
Shield and liner not bonded
Shield at liner-shield 133 14.4 -20 153 127
interface
Shield outer surface -68.6 14 0 83 127
Liner inner surface 927 0 -20 947 35,000
Shield and liner bonded
Shield at liner-shield 43.5 8.5 -20 63.5 127
interface
Shield outer surface -40 8.5 0 48.5 127

Liner inner surface 695 118 -20 714 35,000
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Portions of the preceding example for a prismatic cask were vepeated
for a shielding thickness of 11.5 in. For this shielding thickness, the
largest stress intensity in the shield of the unbonded cask is 126 psi.
The time required to close the gap between the jacket and shield is 2,085
years or 18,265 hours.

The preceding analysis for a prismatic cask is conservative for a
cask with a rectangular cavity in a cylindrical jacket provided the mini-
mum thickness of the shield is used for tS in the analysis; that is, that

tS is the smaller of ta and t, illustrated in Fig. 9.

b

ORNL Dwg. 65-11830
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—ee— N E R

Fig. 9. Cross Section of Rectangular Cask Cavity in Cylindrical
Jacket.
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5, CALCULATIONS FOR CASKS WITH CYLINDRICAL CONFIGURATTION

The general configuration of a cylindrical cask is illustrated in

Fig. 10.

ORNL Dwg. 65-11831
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Fig. 10. General Configuration of a Cylindrical Cask.

Tn order to simplify the calculations and at the same time obtain

conservative results, it was assumed that:

1. the jacket is not in comntact with the shield,

2, the cylindrical portions of the liner and shield are in contact,

3. the thickness of the limer is such that the thin-wall formulas apply
(a/tL > 10),

4, the thickness of the shield is such that the thick~-wall formulas
apply (b/a > 1.1),

5. the height of the cavity, h, is greater than 2a,

6, the pressure load between the liner and shield is uniform over the

common surface of contact.
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Method of Calculations

Formulas are developed for calculating the principle stresses in the
four regions of the liner and shield illustrated in Fig. 11. The four
regions are: region 1, the liner and shield remote from discontinuities;
region 2, the junction of the cylindrical portion of the liner to the 1lid
offset; region 3, the junction of the bottom head to the cylindrical portion

of the liner; and region 4, the bottom head remote from discontinuities.

ORNL Dwg. 65-11832
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HEAD - ~REGION 4

Fig. 11. Four Regions of Liner and Shield in Cylindrical Cask.

The stresses that exist in the liocer at each region are:
region 1, membrane stresses due to pressure;
region 2, membrane stresses due to pressure and
discontinuity stresses due to the change in section;
region 3, wmembrane stresses due to pressure and
discontinuity stresses due to the change in section;
region 4, bending stresses due to pressure and
discontinuity stresses due to changes in section of region 3.
The stresses that exist in the shield were investigated in region 1 only

because (1) discontinuity stresses do not exist in the shield in regions 2
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and 3 and (2) the shield and liner are assumed not to be in contact in

region 4. The formulas for each region of the cylindrical cask are derived
in the following calculations and tabulated in Table 7 of Chapter 2. Their
application is indicated in the example calculations for a cylindrical cask

in this chapter.

Stresses in Region 1

The liner and shield are in contact in this region, and the cadial
displacement of the outer surface of the liner is equal to the radial dia-
placement of the inner surface of the shield. The total pressure load, p,
is resisted jointly by the liner and the shield. The iunternal pressure on
the shield is denoted by P and the effective internal pressure on the
liner is denoted by Py Therefore,

P, * Py, = P (33)

The radial displacement for a thin-walled cylinder subjected to an

internal pressure and no longitudinal forces,

2
EBr - E%— ’ (54)
where

p = internal pressure, psi,

radius of cylinder, in.,

=i
1

modulus of elasticity, psi,

rt
I

wall thickness, in.
For a thick-walled cylinder subjected to radial pressure and no longitu-

dinal forces, the radial displacement at the inner surface,?’

81‘ :%—a-(b'E _;2+U>; (55)

where
p = pressure, psi,

a = inside radius, in.,

1S. P, Timoshenko, p. 210 in Strength of Materials, Part II,
D. Van Nostrand Company, Inc., 3rd ed., 1956.
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It

b outside radius, in.,
E = modulus of elasticity, psi,

Poission's ratio.

il

(o)
The radial displacement for the liner equals the radial displacement

of the imnmer surface of the shield. Therefore,

2 .
pra B P2 i pa 4 a2 . J (56)
= "%
ELtL ES Lb a s
Solving Eq. 56 for ps/pI,
p E a
R : (57)
PT ELtL b= + a” ©
! b% - a= s
and defining,
E
a__s
P t. K
[ L L
b TR N 5%)
b? ~ a® Dq/
From Eqs. 53 and 58, the effective internal pressure on the liner,
S
PL =1+ 5 (59)
and the effective intermal pressure on the shield,
. _ _bBp
Py “T+7 ° (60)

Once the effective internal pressures have been determined, the stresses
can be calculated.

Stresses in Shield. The stresses for a thick-walled cylinder sub-

jected to internal pressure are:®

1. maximum circumferential stress,

(Bg + a?) _..Bp (59 + 2y (61)
‘b2~a2) B+ 1\b7 - a2/

OG :pS

“R. J. Roark, p. 276 case 27 in Formulas for Stress and Strain,
McGraw-Hill Book Co., 3rd ed., 1954.
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2. maximum radial stress,

o_=p, = S (62)

T s 6+ 1°
3. maximum longitudinal stress,

o, = 0. (63)

Stresses in Liner. The stresses for a thin-walled vessel subjected
3

to internal pressures are:
1. maximum circumferential stress,

g, = — =

a
ot s & (64)

L

2. maximum longitudinal stress assuming no help from shield,

P T

iem ee———— — a .
o, = - B H (65)
x 2tL 2tL
3. maximum radial stress,
0. =P « (66)

Stresses in Region 2

In addition to membrane stresses, discontinuity stresses exist at the
junction of the cylindrical portion of the liner and the offset step for
the 1id, as illustrated in Fig. 12.

ORWL Dwg. 05-11833

e LID
OFFSET

-~ LINER

Fig. 12. Junction of Cylindrical Portion of Liner and Offset for Lid.

Because of the many designs that could possibly be used at the 1id
offset, assume that the attachment between the liner and the offset is

completely rigid; that is, that no deflection or rotation of the joint is

SR. J. Roark, p. 268 case 1 in Formulas for Stress and Strain,
McGraw-Hill Book Co., 3rd ed., 1954,
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permitted. This is a conservative assumption because the joint is never
completely rigid.

A radial force F and a bending moment M of magnitudes such that the
deflection and the slope at the junction are zero must be applied at the

junction, as illustrated in Fig. 13.

ORNL Dwg. 63-11834
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-

Fig. 13. Radial Force and Bending Moment at Junction of Cylindrical
Portion of liner and Offset for Lid.

The deflection of the liner remote from discontinuities,
2
T

Py, pa® 1

= = . (67)
L~ Et, FEt 1+p

o

The moment M and the force F must prevent this deflection and also main-
tain a zero slope at the junction.
Deflections due to F and N, resPectively,4

F

B = F55T (68)
TN

M
8, = - 5755 (69)
T

where

M = moment, in,-1b per inch of circumference,

¥

I

force, 1b per inch of circumference,
E t2
L L

DL B ""“12‘(1 - DE)H 2

g, P, Timoshenko, pp. 12, 126 and 127 in Strength of Materials,
Part 11, D. Van Nostrand Co., 3rd ed., 1956,
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4 - 2
3(1L DL)

Mo Ve

L
Setting Eq. 67 equal to Eq. 68 plus 69,

e B R (70)
ELtL 1+8 27\LDL
The slope produced by ¥ must be counteracted by M;? that is,
F - 2)M = 0, (71)
Substituting for DL in Eq. 70 and rearranging,
P P
F %LM = ZXL(I aryat (72)
Simultaneous solution of Eqs. 71 and 72 yields,
[ A
e PETCR N (73)
and
(74)

N - B
AN+ B) )

Once the discontinuity force and moment have been determined, the
discontinuity stresses in the liner can be determined. The maximum cir-
cumferential stress at the junction of the liner and offset for the lid

due to F,°
2FA_ a

0 = 3 (compressive) . (75)

At the junction, F produces no longitudinal stress.

At the junction, the moment M produces stresses (1) in the longitud-
inal direction, (2) in the circumferential direction due to the increase
in radius affected by it, and (3) in the circumferential direction due to
the deformation of a transverse section of an elemental longitudinal strip.
These stresses are a maximum at the junction, and they are:>
1. !

x E% ) (76)

5R. J. Roark, p. 271 in Formulas for Stress and Strain, McGraw-Hill
Book Co., 3rd ed., 1954.
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2MAZ g
2. o, = (tensile) , 77)
S t
L
_ oM .
3. Oy = 0O = ri . (78)

The stresses given by Eqs. 76 and 78 are tensile on the inner surface of
the liner and are compressive on the outer surface,

The total principal stresses in the liper at region 2 are obtained
by adding the membrane stresses given by Eqs. 64, 65, and 66 to the dis-

continuity stresses given by Eqs. 75, 76, 77, and 78,

Stresses in Region 3

Discontinuity stresses in addition to membrane stresses exist at the
junction of the cylindrical portion of the liner and the bottom head. In
order to satisfy the conditions of continuity at the junction of the cylin-
drical wall and head, the change of slope of an elemental longitudinal strip
in the cylindrical wall must equal the change of slope of the head, and the
radial deflection of the flat head wust be equal to the radial deflection
of the cylindrical wall. In the analysis, it was assumed that:

1. a gap exists between the head and shielding so that the head must
resist the total pressure,

2. the radial deflection of the head is zero.

A sectional view at region 3 is illustvated in Fig. 14, and the forces and

moments acting at the junction are illusirated in Fig. 15.

’ ORNL Dwg. 653-11835
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Fig. 14. Sectional View at Region 3.
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Fig. 15. Forces and Moments Acting at Junction in Region 3.

The change in slope at the edge of the head,®

3pra“( - a 12( - 1Ma
NS, = - mL + L

3 n B
h ZﬂELmLth hLmLth
(mL - Da
Slra— [-1.5 pa® + 12M] . (79)
L. h
The change in slope at the edge of the liner,®
F M
L ZDL%L %LDL
Since both slopes were originally zero,
AOL = A@h . (81)
Substituting Egqs. 79 and 80 into Eq. 81,
(m_I - 1Da v M
~—————w— [1.5 pa® - 12M] + 5 - =0 . (82)
Epm by DAL ALy

®R. J. Roark, pp. 194 and 197 in Formulas for Stress and Strain,
McGraw-Hill Book Co., 3rd ed., 1954.
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E_t
s 1 ) L . ) PR
By definition, mo= 5; and DL = Igzimtﬂggy . Using these definitions and

—w

solving Eq. 82 for M,

3 4 3333
) 4(1 + DL)FtL pa kLtL
- 8(1

M (83)

+

3 o3 .
DL)%Lth b SaXLLL

The other continuity condition that the radial deflection equals zero
is employed to obtain a second equation involving M and F. The radial de-

flection of the liner without the restraint of the head,®

5 PR
Pyt D a2

T (1 + B ELtL :

B = (84)

E
LtL
The force F and the moment M must produce a resultant deflection equal and

opposite to that produced by the pressure. The deflection, ®, due to a

radial load, F,”

¥
O, = wyvw . (85)
F ZDL%L
The deflection, ®, due to a radial moment, M,>
M
M 7T 3DE - (86)
L'L
Setting Eq. 84 equal to Eqs. 85 plus 86,
P a® ¥ M
= NS ) (87)
_— (1 + 8) ELtL ZDLAL ZDL7\L
. L L
Since DL = 15(1 = Di) , Eq. 87 reduces to
P et
M=~
RIS (TR (88)
Simultaneous solution of Eqs. 83 and 88 yields
3 / 3 L 3
. pl(1 + ﬁ)(a%LtL) + ;a%LtL + 4(1 + UL)th] 59)

4(1 + B)%L[Za%LtE + tﬁ]

Once F has been determined, M may be found from Eq. 88.
After M and F have been calculated, the discontinuity stresses at
region 3 in the cylindrical portionm of the liner are determined from the

circumferential stress due to F, the circumferential stress due to M, the
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longitudinal stress due to M, and the secondary circumferential stress due

to M.® The circumferential stress due to F,

2
o, = 2K A a (compressive) . (20)
GF tL L

The circumferential stress due to M,

5. =232, (tensile) . (91)
GM tL L

The longitudinal stress due to M,

6
9] = E . (92)
b4 t
m L

The secondary circumferential stress due to M,

6DLM

o =V 0 = (93)

2
OM L XM tL

The stresses given by Eqs. 92 and 93 are tensile at the inner surface and
compressive at the outer surface.

The total principal stresses in the liner at region 3 are obtained
by adding the membrane stresses given by Egs. 64, 65, and 66 to the dis-
continuity stresses given by Eqs. 90, 91, 92, and 93.

The discontinuity stresses at region 3 in the head of the liner are
the radial stress due to ¥, the rvadial stress due to M, the circumferential
stress due to F, the circumferential stress due to M, and the traverse

stress. The radial stress due to F,

o, = %‘ (tensile) . (94)
F h
The radial stress due to M,
oM
M h
The circumferential stress due to F,
DLF
Oy = T (tensile) . (96)

F h
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The circumferential stress due to M,

g = s, (97)

The traverse stress,

o, =P (compressive) . (98)

The stresses given by Eqs. 95 and 97 are tensile on the inside surface and
compressive on the outside surface. The total principal stresses in the
head at region 3 are found by adding like stresses given by Eqs. 94 through
98.

Stresses in Region 4

A free-body diagram of the head is illustrated in Fig. 16. The
stresses in region 4 are affected by the moment M, the force F, and the

pressure p.

ORNL Dwg. 65-11837
Pa

Pa ?

Fig. 16. Free-Body Diagram of lead in Region 4.

Stresses due to M are the radial stress,®
6M
o, = (99)
M h
and the circumferential stress,
6M
Og =72 - (100)
M h
Stresses due to F are the radial stress,
F .
o T (tensile); (101)

F h
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and the circumferential stress,

Q
1
rr'hj

(tensile) (102)
F h

Stresses due to p are the radial stress,S

3 2
o = §§§~ (3 + o) ; (103)
p h

the circumferential stress,

2
Oy = §§§~ 3+ ) ; (104)
p h
and the traverse stress,
o = p (compressive) . (105)

1%

The stresses given by Eqs. 99 and 100 are tensile on the inside surface
and compressive on the outside surface whereas the stresses given by Egs.
103 and 104 are compressive on the inside and tensile on the outer surface,
The total principal stresses at region 4 are found by adding like stresses

given by Eqs. 99 through 105.

Application of Results of Calculations

The approach that could be followed in using the results of the pre-
ceding calculations consists of:
1. selecting the required shield thickness based on shielding requirements,

2, assuming a liner thickness, t., and a head thickness,

t
L h’
3. calculating the maximum principal stresses (o,, us, and ogg) in the
shield and liner,

4, computing S (S = 0o - ) and comparing with the yield point of

o .
max min
the material in question,

5. repeating the above four steps until the calculated stresses are

acceptable (S < Syp).
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Example for Cask with Cylindrical Configuration

The material properties are obtained from Tables 1 through 4, and
reference is made to Table 7 for the formulas for the stresses., Assume a3
cask of cylindrical configuration with the characteristics listed below,

Dimensions: a = 27.5 in., t, = 10.5 in., b = 38 in,, and h = 132 in.

Design pressure = 100 psi

Design temperature = 212°F (wall temperature of liner)

Shielding material: chemical lead, ES = 2 x 10° psi, S 0.4

Liner material: type 347 stainless steel, EL = 28 x 10° psi, Op, = 0.3
Assume that t; = 1.25 in, and L, = 1.5 in.
Therefore,
E a &
5 = S 1 2 x 10° x 27,5 1
T E t bZ + a”\ © 28 x 10° x 1.25 /382 + 27.5%
PR T 382 - 27.52) T 04
= 0,437,
and 4 N
ﬂw {3(1 DL) i 4/ 3(1 - 0.38) 0.219¢
N, = a?t? "My 27.52 x 1.252 © CeenTte

Determination of Stresses

Stresses in Shield in Region 1.

_bp [(bZ % a® . 0.437 x 100 _ .
S = B+ 1\b% - a2 + £> c 0437 11 (3.199 + 1) = 127 psi.

Stresses in Liner at Liner Lid Offset in Region 2.

B Bp - p
reg. 2 XL(l + B) 0.2194(1 + 0.437)

F

= 3.172p .

k = 7.23p .

_ D )
Mieg. 2 7 2L+ B 2 x 0.21942(1 + 0.437)
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The stress in the liner at the outside surface in region 2,

01

il

O =

03

=
B p (g_) _ reg. 2%L reg. 2>\La 60LMregLZ
= - - )
1L+ Bt t e
/100 Y27.5\ 2(3. 172)(100)(0 2194) (27.5)
1.437 A1.25 1.25
L 2(7.23)(100)(0.21947) (27.5) _ (0.6)(0.3) (7.23)(100)
1.25 1,252
1530 - 3062 + 1531 - 833 = -834 psi,
oM
pa reg. 2 _ 100(27.5) _ 6(7.23)(100) _ ) e .
T 2 2(1.725) 1 552 = 1833 - 2776 = -943 psi,
1, L
Bp 0.437

T = 7557 (100) = -30 psi.

Therefore, the stress intensity on the outside surface of the liner in

region 2 is o - g , = 943 psi.
min

max

The stress in the liner at the inside surface of region 2,

o1

8=

03 -~

1l

i

2
p (__) 2Freg. sza . ZMreg. 27\La N 6DLMreg. 2

L+5 L by, t

1530 -~ 3062 + 1531 + 833 = +832 psi,

a 6Mr 2
B2y SBt £ _ 1833 + 2776 = +4609 psi,
2 tL tz

p = -100 psi.

Therefore, the stress intensity on the inside surface of the liner im

region 2 is 4709 psi.

Stress in Liner in Region 3.

3 3 3
. _ pL(L + p)(ah £)7 + 4ah tf + 4(1 + v )ep]
reg. 3 4(1 + 5)%L[2a%Lt§ + tﬁ] ’

100[1.437(27.5 x 0.2194 x 1.25)2 + 4(27.5)(0.2194)(1.25%) + 4(1.3)(1.5%)

= 1453.3,

4(1.437)(0.2194)[2(27.5)(0.2194)(1.25%) + 1.5%]



Lty

27242
M B Freg. 3 pa %LtL
reg. 3 A 6(1 + P)(L - vf)
_1453.3 100(27.52)(0.2194%) (1.257) 5899
T 0.2194 6(1.437)(0.91) h
The stress in the liner at the outside surface of the cylindrical wall,
; 2
P a 2I‘reg. 3 2Mreg, 3%La 6DLMreg. 3
T ETYRY Tt hat t ) t2
L L L L
_ (100 N\ /27.5 2(1453.3) 2(5899) (0.2194%) (27.5)
- (1.432)(1.25) 125~ (0.2194)(27.5) + 1.25
_ 6(0.3)(5899)
1.25%
= 1530 - 14030 + 12493 - 6796 = -06803,
a oM 3
o = gr - rfg' .- 1833 - 22652 = -20,819 psi,
L L
03 = P = .30,

B+ 1
Therefore, the stress intensity on the outside surface of the cylinder
portion of the liner at region 3 is 20,789 psi.

The stress in the liner at the inside surface of the cylindrical wall,

i

a 2Fr 3 ZMreo 3 6DLM e 3
a1 __Em_.(jm) . _ﬂw%g;m_ xLa b L8822 24 4 LB 2

=
1 +p LL L tL L tL
= 1530 - 14030 + 12493 + 6796 = +6789,
a 6Mre 3
o = B+ —F2B - 1833 + 22652 = 424,485,

2ty L

gz = p = ~100.
Therefore, the stress intensity on the inside surface of the cylindrical
portion of the liner at region 3 is 24,585 psi.
The stress in the liner at the inside surface of the head,
6M

 Freg. 3 reg. 3 1453.3  6(5899)

o = + = t )
th th 1.5 1.5

= 962 + 15730 = +16,692,



v, F 6M
on = —L-XCBe e 3 97 9 4 15730 - 16,009,
- th tﬁ

o3 = p = =100,
Therefore, the stress intensity on the inside surface of the head in
region 3 is 16,792 psi.

The stress in the liner at the outside surface of the head,

F 6M
g, - L8233 _TeB 3 96 | 15730 . -14,768,

2
th 9
o F M
o, = —+XeBe 3 TR 3 . 579 _ 15730 = -15,451,
t t
h h
0‘8 o4 O.

Therefore, the stress intensity on the outside surface of the head in
region 3 is 15,451 psi.

Stress in Region 4. The stress in the liner at the inside surface

of the head,

=
o 6Mreg. 3 Freg. 3 3pa(3 + DL)
i~ 2 ! - 2
th th 8 th
2
- 15730 + 962 - 3(1Og)§21:gg)(3'3) - -24,902 psi,

6Mreg. 3, DLFreg. 3 3pa®
U = 2 } - 5= (3 + v ) = 15730 + 279 - 41594 = -25,585
£ ty StE L ’

gz = p = ~100.
Therefore, the stress intensity on the inside surface of the head in
region 4 is 24,585 psi.

The stress in the liner at the outside surface of the head,

o
o 6Mr€g. 3 Frog. 3 P2 (3 + )
i 2 B g 2
e £, 8t2
= -15730 + 962 + 41594 = +26,826 psi,
6Mre 3 DLFre 3 3pa®
Go == tg- + tif + 812 (3 + vp) = -15730 + 279 + 4159
h h

26,143,

b
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03 :O.
Therefore, the stress intensity on the outside surface of the head in

region 4 1s 26,826 psi.

Summary of Example Calculations

As the above calculations show, the head thickness can be reduced
slightly with a resulting stress intensity closer to the limit of 35,000
psi. The thickness of the cylindrical portion of the limer cannot be
reduced because the allowable stress in the shield would be exceeded.
The stress intensities calculated for the cylindrical cask example are

given in Table 9.

Table 9. Tabulation of Stresses for Example Cylindrical Cask

Calculated
Stress Allowable
Intensity Stress
(psi) (psi)
Stress in Shield in region 1 127 1272
Stress in liner in region 2
Outside surface 934 35,000
Inside surface 4,709 35,000
Stress in liner in vegion 3
Qutside surface of cylindrical 20,789 35,000
wall
Inside surface of cylindrical 24,585 35,000
wall
Inside surface of head 16,792 35,000
Outside surface of head 15,451 35,000
Stress in liner in region 4
Inside surface of head 24,585 35,000
Outside surface of head 26,826 35,000

a . ..
Elastic limit stress.
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6. CREEP EVALUATION FOR LEAD SHIELD

If the shielding material is lead and the pressure load is to be
applied for extended periods of time (weeks), the creep of the lead must
be evaluated. The design limit for creep in pressure vessels set by
Section VIII of the ASME Boiler and Pressure Vessel Code' is 1% in
10,000 hours. If this 1% creep limit is used, the allowable operation
time can be determined as given below.

The secondary creep rate increases with increasing stress, and for a

constant temperature, the relationship between them is most commonly ex-

pressed by the empirical equation:®
¢, =B (n > 1), (106)
where
¢ = creep strain rate in./in.
€. = creep stra te, o s

: stress in psi,
. . (in.2/1b)"
B = temperature dependent constant with units of o B
1 = temperature dependent constant.,

In logarithmic form Eq. 106 becomes
log éc = log B + nlog o.

Given two sets of data for éc and ¢ at a specified temperature, one can
write

log (éc)l = log B + n log oq,
and

log (éc)2 = log B + n log 0.,

Subtracting the first from the second gives

log (éc)g - log (éc)l =1 log g5 - v log oy,

1ASME Boiler and Pressure Vessel Code, Section VIII, Rules for Con-
struction of Unfired Pressure Vessels, American Society of Mechanical
Engineers, New York.

2C., W. Richards, pp. 28, 291, and 292 in Engineering Materials Science,
Wadsworth Publishing Co., San Francisco, 1961,
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or

(ép)g
1 ..........':.H....
°8 (ec)
N =,
log -2
01

Once n is determined, substitution of consistent data for éc and ¢ into
Eq. 106 will yield B.

The data shown in Fig. 17 may be used to establish an equation like
Eq. 106 but with éc having units of iﬂ;éiEL and B having units of £i2¢§£lhli .
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Fig. 17. Creep Data for Rolled Lead (from American Smelting and
Refining Company).
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If the shielding material is assumed to be chemical lead, use of the
encircled data on Fig. 17 yields B = 10 *1*® and n = 4.5, Therefore, the

creep rate equation for chemical lead at a temperature of 212°F is assumed

to be
¢, = 107115 %5 (107)
where
¢ = creep rate EE*ZEEL
c p rate, vr 2
g = stress, psi.

From Table 3, the allowable stress for chemical lead corresponding to an

operating temperature of 2129F is 127 psi. Therefore,

éc = 10"11e5(127)%-5

in. /in.
= 0,00888 5760 hr ’

= 1.014 x 107© iﬂﬁflﬁé

= 1.014% in 10,000 hr.

b

Upon observing this result of 1.014% in 10,000 hr, one suspects that the
allowable stress of 127 psi for chemical lead at a temperature of 212°F
was established by using the aforementioned ASME specification.’

In the development of the formulas that are presented for determining
the stresses in the shield, it was assumed that a gap exists between the
jacket and the shield. If the shield creeps for a sufficient length of
time, this gap is closed so that contact between the shield and jacket is
established. Creep is affected by this contact in two ways. First, the
contact results in a redistribution of the locad among the liner, shield,
and jacket. This causes a reduction in the maximum stress in the shield,
which in turn reduces the creep rate. Second, the contact improves the
heat transfer characteristics of the cask. This reduces the temperature of
the shield and this also reduces the creep rate. Therefore, one may conclude
that creep in the shield tends to be self alleviating.

A free~body diagram of a span of length w is illustrated in Fig. 18,

From Eq. 8, the minimum end moment was found to be pw?/16. The time
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Fig. 18. Free-Body Diagram of Span of Length w.

required to close the gap between the jacket and the shield will be calcu-
lated, and the elastic deflection will be calculated by using the minimum
moment pw2/16 at the end of the span. The deflection due to creep will
also be calculated by assuming the span to be simply supported. Use of
the end moment permits the following equation to be written to establish
the points of zero moment in the span.

M= - %%i + gﬂ X - R%i =0; x7 - wx + %E = -

(x - 0.5w)@ = +0.3535w; x = 0.1465 w.

Segments 1-2 and 2~3 shown in Fig. 18 may be treated as cauntilever
beams supported at point 1 and fixed at point 3. The deflection of point
2 with respect to point 1 consists of two parts: (1) the deflection of
point 2 due to the votation of the joint at point 1, and (2) the deflection
due to the deformation of segment 1-2., Use of the end moment pw2/16 and
of Eq. 8 in Eq. 3 gives an angle of rotation of the joint at point 1 of
pw3/96EI. This rotation contributes g%%f (0.1465w) in. to the deflection
N ». The magnitude of the end deflection of a cantilever beam of length

£ fixed (no rotation) at one end and carrying a uniformly distributed

load of p 1b/in. is pf*/8EI (ref. 3). Thus, the deformation of segment 1-2

P, G. Laurson and W. J. Cox, p. 164 in Mechanics of Materials, Wiley
and Sons, Inc.,, 3rd ed., New York, 1947,




. 9(0.1465w)4
contributes SET

Nip =

It

Similarly, Ass (0.

= B
8EI
elastic deflection,

Az = (1.5836

In calculating the
sections before bending

as in the elastic range.

51

to the deflection A5 Hence,

pw® B

SEET (0.1465w) + SR

(0.1465w) %

-5 pw¥
1.5836 x 10 T

4
1.9519 x 107% E- , and therefore the

4 _
3535w)* = 51

4 4
" = -2 pw_ -3 DW
F1.9519) 10 BT 3.5355 x 10 ST

(108)
deflection due to creep, it was assumed that plane
remain plane after bending in the plastic as well

This usual assumption permits the derivation

related to the deflection of the free end of a cantilever beam subject to

creep that follows.

The deflection of a cantilever beam is illustrated

in Fig. 19.
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Fig. 19. The Deflection of a Cantilever Beam.
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In Fig. 19, the lines AB, A'B, and A''B represent the neutral sur-
faces of the beam subjected to no deflection, elastic deflection, and
elastic plus creep deflection, respectively. Likewise, CD and EF are
sections of the nondeflected beam dx units apart and x units from the
free end. C'D' and E'F' are for the beam subjected only to elastic
deflection and C''D'' represents the orientation of section CD with respect
to C'D' after the occurrence of creep. From Fig. 19, it is evident that

cdd = gcdx and that xd¢ = dAc. Hence, the differential creep deflection,

€
A s e xdx. (109)
c d
Eq. 106 may be written
€. .
éc =T Bo ',
where
€ creep, in /ln s
T = time, yr
2
Substituting éc = BonT and ¢ = %S = E%?E‘into Eq. 109,
PRI 4+
dﬁc _ BTp ¢ Xgﬂ 1 dx,
20"
whence,
n -1 L
AC _ BT ? _ L2l dx,
2l 0
and the end deflection due to creep,
N1 202
B L
A, = Dt T. (110)

2112 + 2)

For chemical lead at a temperature of 212°F, Eq. 110 becomes

-11.5 4.5(~3.5y7 L1
_ (o )p_2(e7 2L

. ZXC 24.5(14.5) % 11 TI. (111)
Since I = %%M where b is assumed to be 1 in., Eq. 111 reduces to
4,57 11
£ = 8.066 x 10771 T (112)
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For purposes of illustrating the use of Eqs. 108 and 112 in evaluating
the severity of creep, suppese a prismatic cask has an internal pressure
of 20 psi, a lead shield 10 in. thick, a span length w = 36 in,, and an
operating temperature of 212°F.

By referring to Table 1, it may be seen that shrinkage on casting
is taken in practice to be 7/64 to 5/16 in. per foot. Certainly the lead
shield with its large thickness relative to the liner thickness will sub-
ject the liner walls to compressive forces sufficient to shorten if not
buckle them. In the light of these two considerations, let it be assumed
that a gap of tS/GO in. will develop between the shield and the jacket
during fabrication of the cask. Note that tS is the thickness of the
shield in inches. 1If this gap is to be closed, the sum of the elastic
deflection plus the deflection due to creep must be no less than ts/60.

Since I = t2/12 and E for lead = 2 x 10°, from Eq, 108,

pwi(12)  2.1213 x 10™ Spw?
(2 x 10 )2 ~ £ )

Ms - 3.5355 x 1072

Since half a simply supported beam may be treated as a cantilever, from

Eq. 112,

4,5
o, = 8.066 x 10734 5 (/)12 1
S

. 4, SW,llr[-
= 3.9385 x 10'1“2"-;r6** .
S
Therefore,
tS o pwt : c14 plrSytl
Zo = 21213 x 10 %gm + 3.9385 x 10 E";iﬁ““ T. (113)
S S

Substituting p = 20, ty = 10, and w = 36 into Eq. 113,

4 Lo 11
& - 2.1213 x 10°° 201036 - 3.9385 x 1071% (20)101536) T,

for which it is found that T = 0.5055 yr or 4428 hr. It will therefore
require almost 4500 hr of operation of the cask at design pressure to

close the gap between the shield and the jacket.
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NOMENCLATURE

cross sectional area, in.?

incremental area, in.?
outside radius of liner and inside radius of shield, in.

N ¥
o (in.2/1b)
temperature dependent constant with units of

hr
(in.2/1p)"
T

b23
outside radius of shield, in.

distance from neutral axis of cross section to outermost fiber

3
Et 1b/in.2

depth of prismatic cavity, in.
modulus of elasticity, psi

modulus of elasticity of liner, psi
modulus of elasticity of shield, psi
force, 1b per in. of length
incremental membrane force, 1b
unsupported length of liner, in.
height of prismatic cask cavity, in,

moment of inertia, in.*

subscript referring to liner
length of cantilever

bending moment, in.-1b per inch of length

bending moment in beam AB at joint A

bending moment in beam AD at joint A

the reciprocal of v

EL/ES

load on a tensile member, 1b

internal design pressure, psi

internal design pressure on shield, psi

effective internal design pressure (p - ps) on the liner, psi
radius of liner, in.

stress intensity equal to o, - o5 where oy > ds > Oz
tensile stress of a material at yielding

subscript referring to shield

= time, yr
= material thickness, in.
= increase in length of span of shield, in.

= width of prismatic. cask cavity, in.
= longitudinal coordinate or length of a tensile member, in.
= distance from base to centroid of A in Fig. 6, in.

= distance from inner surface of liner to
section of composite beam consisting of

the neutral axis of
liner and shield, in,
= deflection of liner as shown in Fig. 9, in.
E t
s_s

Bt

) P ) Esa 1

S
=P TE t. /b2 + a°
L LL (;5—;—§§> o

/

= elongation of member due to temnsile load, in.
= radial displacement (deflection) of cylindrical liner, in.
= radial displacement (deflection) of cylindrical shield, in.

in. /in. in. /in.
hr yTr
= temperature dependent constant

= creep strain rate,

g = angle of rotation or slope

D

AB

= the slope or angle of rotation of beam AB at joint A

= the slope or angle of rotation of beam AD at joint A

- 4 3§1 - U22

- -r2 t2
= Poisson's ratio for the liner material

= Poisson's ratio for the shielding material

g = stress, psi

= three principal stresses in structural member, psi

= bending stress in psi

= radial stress in psi

= longitudinal stress in psi

= hoop or circumferential stress in psi

= stress in shield due to membrane force F; on shield, psi
= stress in shield due to membrane force F, on shield, psi
= maximum shear stress

= angle of rotation

= summation
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