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Introduction.

Techniques for determinihg the frequency response of multi-variable
dynamic systems are well knowﬁ; and ‘several COmputef COdes have been
prepared which are useful for ealeUlating ﬁucleaf'power reactor frequency
:res'po'nse;l;2 The frequency .reésponse is usﬁaily determined for the sysﬁem
at the design condition and at several off-désign conditions to determine
the sensitivity of the results to Ehenées_ih'system ﬁafemeters: This
sensitivity information cad be‘useful ih feresign of dynamieally unsatis-
factory systems and in determlnatlon of necessary tolerances in de51gn
specifications to 1nsure suitable dynamlc behav1or at lowest cost
Sensitivity 1nformatlon can also prov1de a deépetr understanding of system
dynamic characteristics to the system analyst and can help in mafching
experimental and theoretical results.

This report presents a technlque for determlnlng the frequericy
response of multi-variable systerns. In addition; the sensitivities to
system parameters can be determinied directly. -A computer code for
carrying out theé calculation is described and numerical results are
shown for sample problems. |

' Frequency . Response -

The system equation for a linear; autonomous, lumped parameter

system may be written:

an . - ’
ToMEPES (1)
where

z = the response vector,

t = time,

A = the system matrix (the elements are the. usual coefficients in

the differential equatlons)
. £ = the disturbance vector

Eq. (l) is usually called the state varlable representatlon of the system.
In Eq. (1), it is assumed that<the dependent,variables-are wrltten as

perturbations arcund an equilibrium point: This implies that all the



initial conditions are zero when the‘equation'is‘Laplace transformed.

The Laplace transform of (l) is then given by the following equation:

[A-sI]Z=-F , | : (2)
where A | -
I = wnit diagonal matrix,
s = Laplace transform'béfameter,
Z = Laplace transform of Z, -
T = Laplace transform of f.

Cramer's rule can be used to write the formal solution of (2):

— - By : .
2, = ———— (3)
|A - sI] E
where |
Ei =% éomponent'of z,
Bi'=,determinant of [A - sI] with the ith column replaced by -f.

In general, a transfer function expresses the relationship between
an independent variable and some dependent variable., The independent
variable appeérs as a factor in the disturbance vector, f, on the right
hand side of thé system equatioh. Thﬁs; T may be written as follows:

T =pg - ’ (4)
.where
S = Laplace transform of the selebted independent variable - a scalar,
g = a vector of coefficients.

Use Eq. (4) with (3) to give

Z. C,

G == = = (5)
0 |A - s
where |
G = transfer function between the independent variable, p, and the
dependent variable, z,,- v '
Ci = determinant of [A - sI] with the i es1umn replaced by -g.

Q




For nuclear reactor applications, the selected independent variable is
most often reactivity; and the selected dependent variable is most often
the neutron flux or a temperature at some point in the system.u

The transfer function in Eq. (5) may be used to give the frequency
response, TFor this, the Laplace transform variable, s, is replaced by
Jw, where J =~/:f‘ and  w = the frequency of the perturbation. Thus, the

transfer function becomes a complex quantity:
G=a+jp . , . (6)

The appearance of G in the complex plane is shown in Fig. 1. It is common

to characterize G by a magnitude, M, and a phase angle, 8. These are given

by: C .
M=./()'2 +B2 3 (7)
6 = tan-l % . (8)

The variation of M and 6 as a function of the frequency, w, is called the
frequency response of the system. '

A number of approaches are possible for solving Eq. (5). The most
obvious is to form the numerator and denominator determinants and to
numerically evaluate these determinants in complex arithmetic. Another
approach is to transform the determinants into polynomials in s.l’e This
has the advantage that evaluation for numerous frequencies (w = — js)
does not require re-evaluation of the determinants. The choice, then, is
whether to perform the bulk of the computation in finding the polynomial
or in evaluating the determinants. The preference seems to have been for
the polynomial method in most previous calculatidns. This was done because
the polynomial methods were sufficiently faster than direct determinant
solutions to offset twb difficulties characteristic of polynomial methods:
the accurate calculation of the coefficients of the polynomial is a dif-
ficult numerical problem, and the complex relation between the basic system
parameters and the coefficients of the polynomials complicates calculation

of the effect of changes in the parameters.
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In this study the desire to determine the effect of changes in
system parameters on the frequency response dictated the use of direct
calculation of the determinants. In coﬁtrast'to the polynomial methods,
it is easy to keep track of the system parameters and to determine their
effect on the frequency response. It was also found thét direct calculation
of the determinants for calcuiating the frequency response alone is
inexpensive on large digital computers unless the matrix;is'quite large.

3

The running time for a FORTRAN IV Gaussian elimination scheme” on the

IBM 7090 has been found to be given by:

T = 0,028 nl°9 )
‘where

T

running time (seconds/ffequehcy calculated),

n

Ii

order of the matrix.
If it is assumed that about 25 points are needed to define the
frequency response, then the running time is given approximately in

Table 1.

Table 1. Approximate IBM 7090 Running Time for
Direct Frequency Response Calculation

Order of , Running Time
Matrix : o . (min)

10 - ‘ 1

20 . ’ 3.k

30 1.3

40 | ‘1.5

50 : » 19.5

60 S : 27.9.

Frequency Response Sensitivity

It is frequently valuable to know what changes in the frequency
response will occur if certain of the system paraméters should change.

It would be desirable to get this information without recalculating the
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whole frequency response repeatedly. A technique for accomplishing this
is given in this section. '

First, rewrite Eq. (5) as shown below:

N

N , . .
C=TA-=I] "D IS

Now differentiate Eq. (9) with respect to an element, a4 of the.system

matrix, A,

oN 8D

Oa, . L
ij _ ij

i
ol
]
o=

(10)

Equation (10) gives the sensitivity of the frequency response to changes
in the elements of the system matrix. The derivatives on the right sidé
of Eq. (10) are easily calculated. It can be shownu that the derivative
of a determinant of a matrix with respect to one of its elements is the

cofactor of that element in the matrix, Thus we get:

oG 1
5a =D My " ¥iy) o (11)
i
where
nij = cofactor of aij"in the numerator matrix, N,
7ij = cofactor of aij in the denominator matrix, D.

It is also necessary to convert the G sensitivity into magnitude

sensitivity and phase sensitivity. PFirst, since aij is real, we can write:

oG du
da. . 0a..
1iJ 1J

B
oa, .
1J

Thus the real and imaginary parts of thevsoluﬁion given by Eq. (11) are

+J (12)

actually 80/8aij and as/aaij. From the definitions of M and 6, it is

clear that the following relations exist:

- oa. . + P

z |
M _ 1 %55 ’ o (13)
.Baij q/d? +-62 R

i)
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B (3[04
® Ba_. "B Ea. |
- 98 - 1] Ld : (14)
'oa. ., - 2 .2 '
i o +B

Equations (11) through (14) are adequate for finding the sensitivities

to matrix element changes. However, these matrix elements are made up

of algebraic combinations of basic System parameters. The same system
parameters frequently occur in several matrix elements. It is desirable

to find the sensitivities to system parameter changes as well as the sensi-
tivities to matrix element changes. This can easily be done using Egs. (15)

and (16):

‘ ' da. , - :

oM oM i

ox, Z; da,.. Ox . (15)
£ = P £ :

. ‘aa ’ :

906 - oL ij ,

ox, ZD da., ox - (26)
2. ij ij £

where
th '
X, = the £ system parameter.

The quantities 8a /ax are known since the algebraic relations between
matrix elements and system parameters must be known from the analytlcal
description of the system.

A special feature of the numerator determinant, N, should be noted.
The column whose elements consist of the disturbance vector, g, clearly
do not depend on the matrix elements,, aij' Thus 8N/8aij does not contain
a contribution from the column replaced by g.  However, g can depend on
the system parameters. Thus BN/axZ may have a non-zero contribution from
the column of the matrix whose components are the components of g. Thus

the complete equations are:

M _y oM 8aij+E§M_?i

axz ij Baij axz i agk axz



12.

20 0 %%y 0 %%
=l e it Ll e (18)
2 13 Piy e k & 9%y
The procedures for finding BM/Bgk and ae/agk are similar to those for
finding BM/Baij and BQ/aij. Since = aPpears only in N,
oG_ 1 oN .
ng D gk 4 o (19)
where
_ gg— = negative of the cofactor of the element in.N containing g, -
k
From the definitions of M and 9, it is clear that
M B 98 (20)
5a = ‘
“x Vo2 + 82
0 0
90 & X (21)

o :
| &y V& + "

where
o . real part of 8G/dg ,
g k
Tk
B . imaéinary part of-BG/agk.' o
%8, .

The Computer Program

A computer program called SFR-1 (Sensitivity of the Frequency
Response) was prepared for the IBM 7090. The cbmputer code is provided
with the system matrix, A (59 x 59 or.smaller), and the disturbance
vector, g. For specified values of w, the code calculates the frequency

response using Eq. (5) and s = jw. Equations (7) and (8) are used to

Y]
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give the magnitude aﬁd phase. The determinarits in Eq. (5) are calculated
in complex arlthmetlc using a Gaussian elimination scheme with partial
plvotlng5 (obtained from R. E. Funderllc of Oak Ridge Gaseous Diffusion
Plant). The code also can calculate the sensitivities to matrix element
changes using Eqs. (11), (13), and (14). The sensitivities to the system
parameters are calculated using Egs. (17) and (18). The method for
providihg the algebraic‘relationships between the matrix elements and

the system parameters are given below in the section on input.

Input

The input to SFR-1 is short and simple. The only section requiring
extensive explanation is the algebra table.. The algebra table serves to
establish the relationship between matrix ‘elements and system parameters
and  the relationship between elements of the disturbance vector and
system parameters; In-general, each matrix element or disturbance vector
element is made up of a sum of terms, each of Wthh is an algebralc h

combination of various system parameters

a =72 xpl sz xpn + 2 qu xq2 an +
ig - 171 T2 """ m 271 T2 """ Tn
or.
g ﬁ Pin |
a,, = Z x ’ (22)
Yoo M oga ¢
where
Z = a constant,
m -
qu = exponent of the qth factor in the mth term,

= the number of the term,
= index on the systém parameter,

the number of terms,

H = a B
1§

= the number of factors in term m. -
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For instance if

2 .8 -1 -
218‘,9 =.2 X x3 x4 ) #l ‘x

in tabular form as:

»9

we could express a8

Coefficient of

i o J m z 1 2 3 L
8 9 1 2.0 2.0 0.8 -1.0
8 9 2 4.2 -2.0 3.0 1.8

A table of this type appears in the SFR input. The information in tﬁis

table is also used by SFR-1 to calculate the derivatives shown in Eqs:

(15-18). The general rule for differentiating terms of this type leads
to A
M I qu
8a 4 y i ! q
= Z P ) (23)
3X£ oy m Zm g=1 X, J
where
82‘= 1if X, appears in the mth term
0 if‘xﬁ does not appear in the mth term
The detailed description of the input is given below:
Type 1: '
Title card.
Type 2:
Column 1-5 6-10 11-15 16-20 21-25 26-30
Format I5 I5 I5 I5 15 I5-
Input N NOW NCTS NOXI KIPD NOFV




where
N = order of the system matrix,
NOW = number of frequencies to be calculated;

NCTS = number of different columns to be replaced by the disturbance

vector,

NOXI = number of system parameters being considered,

KIPD = derivative option.  If KIPD is positive, SFR calculates the
frequency response only. If KIPD is zero or negative, SFR
calculates the frequency response and the sensitivities,

NOFV = row number of the last non-zero entry in the disturbance
vector if the disturbance vector is specified in Type 3 input.
If the disturbance vector is specified in the algebra table
(Type 5 input), NOFV is omitted.

Type  3:
Column 1-10
Format 7ELO. 4 Repeat, 7.per card
Input Ci
where
Ci = components of the disturbance vector

Note: Type 3 cards are omitted if all components of the disturbance

vector are calculated from the algebra table (Type 5 input).

Type L:
Column 1-10
Format 7E10.4 Repeat, 7 per card
Input xz
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where @

X, = value of the system parameter, values are listed sequentially

starting with Xy
Note: Omit Type 4 cards if NOXI = O.

Type 5:

Colum| 1-2|3-4|5-6]7-16 17-25!24450 31-37]38-44| 45-51] 52-58|59-65| 66-72

Format|l I2 | I2| I2|E10.5 8F7.2
Input I J | mn|2 P
where -

I = row number of matrix element i1f I < 59,  If I = 60, a component
of the disturbance vector .is being specified,

J = column number of matrix element if I < 59, .If I = 60, J is
the row of the component of the disturbance vector being
specified,

m = number of the term,

Z = constant multiplier of this term,

exponent of the system parameter. v
Note: End Type 5 cards with a blank card. Omit Type 5 cards if NOXI = O.
No blank card is used to end Type 5 input if NOXI = O.

Type 6:
|
Column 1-2
. | Format ’ 2 Repeat
Input . CR
where

CR = column number to be replaced by the disturbance vector, NCTS

entries should be made.
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Type 7T:
Column 1-5 | 6-10 | 11-20 |
Format I5: 5. F10..4 Repeat, three per card
Input I J aij
where
= row number,
J = column number
a = value of element, aij’ of the system matrix,
ij .

Note: End Type 7 cards with a blank card.

If a matrix element is specified on a Type 7 card and also is
calculated from the algebra table, the value from the algebra
table will be used.

Type 8:
Column 1-10
Format 7E10.4 | Repeat, seven per card
Input w

where !

w = frequency for calculation. ©Specify NOW values,

The FORTRAN listing of the SFR code is available from J. L. Lucius.

Output

The output of SFR is clearly labeled in notation consistent with
the notation in previous sections of this report. The first page is a
review of input data. It consists of a print-out of the following:

1. Title

2. TInput system parameters (x)

3. Algebra table
4. Order of matrix
>

Number of frequencies (w's)
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Columns to be replaced
Frequencies to be calculated

System matrix non-zero elements

O O 3 O

Disturbance vector

The input summary page is followed by the results of the calculation.
The results for each specified frequency are. shown, one freguency to a

page. The print-out is as follows:

1. Frequency )
2. Non-zero elements of E)D/E)aij (see Eq. 10)
3. Magnitude ratio (M) and phase angle (THETA)
L. Column replaced by f vector
5. Values of Q, B, D, and N (see Egs. 6 and 9)
6. Values of ON/da 8D/ 0a Re & | 1, & M ona
: ij’ i3’ da, ., ’ da.. ’ da. .
. 1J id C1d
a0
da, . .
1J

7. Values of 8M/8x£ and 86/8xﬂ (see Egs. 17 and 18).

Sample Problems

Problem 1. The first illustrative problem is a calculation for a

second order system.

“

) | .
= =, (24)
dx2

aTC-— = - Xl - 0.12X2 -k (25)

- =Ax + - (e6)
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The transfer function, El/E, is given by

1 .
= 5 . : (27)
s + 0.12s + 1

WIHNI

This is the form of a quadratic lag with a damping ratio of 0.06. This
familiar problem was analyzed with SFR-1. The frequency response and the
sensitivity of the frequency response to changes in the damping ratio

(2 8sn in the system matrix) were calculated. The sensitivities were used
to predict the frequency response when the’ damping ratio changes from

0.06 to 0.05. Table 2 shows the predicted results and a comparison with
exact values., It is clear that the sensitivities provided very reliable
information about the effect of changes in the damﬁing ratio in this
problem._ A copy of the SFR-1 input required for this problem is shown

in Table 3.

Problem 2. The second problem is the analysis of a reactor with one
group of delayed neutrons and two temperature feedbacks, one prompt and
one delayed. The linearized equations are: .

¢

' 1 )
n QiTl noagT2 nOSK

92' = - é n ¢ 1 ! o + - X .
e B 2 7 + = 7 (28)
1 [ .
ac' _ B n' - AC! nOBalTl + nOBa2T2 + nO‘aﬂ{ex (29)
dt Y/ Y/ Y/
L
iiﬂ:"‘l nt o A pe DA g (30)
dt (MC_) MC_).. 1 MC_) 2
: p’l , p'l . p'l
. ,
2. omA g BA o (51)
dt (M.cpi2 1 ZMCP§2 2
where
n! = deviation in neutron population from the initial condition,
C' = deviation in the precursor concentration from the initial

condition,




Table 2. Results for Problem 1

Predicted Actual
Frequency Amplitude Amplitude Amplitude " Amplitude Percent
(radians/sec) (damping ratio Sensitivity (damping ratio (damping ratio Error
= 0.06) = 0.05) = 0.05)

0.1 1.01003 0.00123646 1.01005 1.01005 0
0.2 '1.04134 0.00542026 1.04145 1.041h4Y 0.001
0.3 1.09804 0.0142982 1.09833 1.09830 0.003
O.k4 1.18854 '0.0322359 . 1.18919 1.18913 0.005 .
0.5 1.32909 0.0704339 1.33050 1.33038 0.009
0.6 1.55271 0.161715 1.55594 1.55568 0.017
0.7 1.93472 0.425824 - 1.9432, 1.94257 0.034
0.8 2.68339 1.48492 2.71310 2.71163 0.054
0.9 L,57562 9.31140 4, 76185 L. 75651 0.112
0.95 6.6663%3 32,0841 7.30801 7.34594 0.516
1.0 8.33333 69. Lkl 9.72219 10.00000 2.778
1.2 2.15999 1.74101 2.19482 2.19265 0.099
1.4 1.02607 0.254081 1.03115 1.03076 0.038
1.6 . 0.636225 0.0791140 0.637807 0.637680 0.020
1.8 0.44h267 0.0341156 0.445049 0. 44lhook 0.012
2.0 0.33%2272 0.0176085 0.332624 0.3%2595 0.009
3.0 - 0.,124874 0.00210298 0.124916 0.124912 0.003
5.0 0.0416537 0.000216811 0.0416580 0.0416576 0.001
10.0 0.0101003 0.0000123646 0.010050 0.010050 0

03



TEN COLUMN INPUT

DATE

- 5/6/65_

KEYPUKCHING WSTRUCTIONS, ’f SFR-1 SAMPLE PRABLEM S
Punch only those cards containing data. Iy W. Kerlin REGUEST WO, oo1o

[ 12x]9 [ $appas PROBLEM] [ [{ [T {11 fllHﬂH BEREERRNENERRRERANERRENRNRERERERNRNERD
HIIZHI—I?IOWHlIHHOllH;HIHQl]l[_klleI_HHJLTH ERERNERE ITTTTITIT [
OOl T T T TR B T T T T T O T O T T O O T T
'LL_LTTHH T O O T T T T T T EEEEEENASENRNEERERE RN INEREEE
ol | [T [T T T T T T TR T T TP O T T T T T HHTU [RERNEE!
EENAERENERIRCRNAARR NN AR R EFRINRARA NN AR N=AE AR N RN ARRRRRNRAN AN SRR REES)
TR T T T T T L O T L T O T IRERENANNNANAERERESE IR ENNREEN
L T R LB O M T T BT LT e T T R LT T T
BT T oL T L o T T e T 8 [ BT TTTeIT T T
IMIUHITQHOHHH_ E R T T RO T LT T T T T PRE T T[T I {T HI'I'ILF.
AENEE! NERRRNRNE! EERRRERNERERERRNAN lLJUJPH LITTTTIT II'J_HHN'J SERREN
NERREREERERRRRENNN H‘U_HlilJJTIITWI_llW_IIIII EEREENNERRRNRNRENRN ANRRRNEEN
L T D O O T O O L T T T T T
[ O O O O O e T T T T T
T O O O I T T T T T o T

T O O O O O A T O T O T T T

REENEERRNERERE ERERBENN T T O ITTTTTT
[AREEENESEEERRRERR N RN NN R NEEEENANEENNERENERENE RN DN RN SEREEEARERERER] NREEE
ARENEREE! HLHHTI'HIITHH-lIIlIﬂLl AEENENENAARNNNRN AN AR NRRRAAN [TTTTT

UCN-8302
3 12-63)

Table 3. Sample Input for Problem 1

¢
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deviation in fuel temperature from the initial condition,

deviation in moderator temperature from the initial

condition,

delayed neutron fraction = 0.006.4,
neutron lifetime = 0.5 X lO-h,
brecursor decay constant = 0,125,

initial neutron population = 10.0,

fuel temperature coefficient of reactivity = -0.5 X 10_5,

moderator temperature coefficient of reactivity = —0.5 X lO-',

external perturbation in keff’

heat capacity of fuel = 1.5,

(heat transfer coefficient) X (fuel area) = 3.0

heat capacity of moderator = 2.0

The system parameters are identified with specific X; as shown below for

this problem:

NNI_JN

W o

=B = 0.006k

= 4 = 0.00005

= A = 0.125

=n = 10.0

e]

= o = -0.0005
= a, = —0.00005
= (MCp)l =1.5
= hA = 3.0

= (Mcp)2 = 2.0

Substitution of these values into Egs. (28) through (31) yields the

following matrix equation:

where

dz
Frlie Az + g Skex B
) [ 128.0  0.125
A = 128.0 -0.125
0.667 0
0 0

—100.0
-0.64
—2.0

1.5

\.)\
L
(32)
-10.0 ]
-0.064
2.0
-1.5 | .
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The frequency response for problem 2 is shown in Fig. 2. TFigure 3
shows the sensitivity of the magnitude of the;frequency‘responée to
changes in the fuel £emperature coeffiqient of reactivity (Qi) and the
moderator coefficient of reactivity (oé).' Several:observations about the
behavior of the system are immediately obtained from the sensitivity plot.
At frequencies below 0.1 radians/sec, the effect df changes in the fuel
temperature coefficieént and the moderator temperature coefficient are the
same. However, since the fuel temperature coefficient (Oi) has a magnitude
which is 10 times as large as the magnitude of the moderator coefficient
(oé), it is clear that the effects of fractional changes in oy are 10 times
as large as equal fractional changes in Q@' It is also clear that the
frequency response is very sensitive to changes in the temperature coeffi-
¢ients in the frequency range, 0.1 to 0.5 radians/sec. Above 0.5 radians/sec
the graphite effect is much smaller than the fuel effect until they both
diminish to small values at frequencies above 10 radians/sec. These
illustrative results are typical of the results obtained in sensitivity
analysis of reactor systems. The sensitivity data furnish useful infor-
mation about the system which can aid in obtaining the essgential under-
standing of the dynamic structure of the systém that is needed in analysis,
design, and experiment planniné.

A copy of the SFR-1 input sheet for this problem‘is shown in Table
b,

-Conclusions

SFR-1 represents a preliminary attempt to obtain frequency response
sensitivities along with the usual frequency response data. The use of
Cramer's rule was expedient in developing the SFR method and certainly

does not represent the most efficient procedure. Nevertheless, the cdlcu-

lations on SFR-1 have proved useful in practical prOblems5 and the cost of
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the calculation has not been excessive. The only numerical difficulty
observed has occurred at high frequency where inaccurate sensitivities
have been obtained in some problems.

The success with SFR-1 has led to the development of a new computer
code which performs the SFR calculation more efficiently. This code has
been prepared and is now being tested. Thé SFR method is also being used
to furnish sensiti?itigs to a foutine for automatically adjusting the
parameters in a theoretical model to fit experimental frequency response
data. The method being used is simil@r‘to the "learning model" approach

used by Margolis and Leondes6 in adaptive control applications.
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Type 1
‘Type 2°
Type 8

4

S
Type 5

6

TEN COLUMN INPUT

o Sleles
Panch anty thowa sards samaning dote. E?Fﬂ" SAMPLE PROBLEM S .
T - Keelin 22/2

et Tsaloel TeT Telelaflueld 11T 11T L T T T O T T T LT

L T A T AT T T T L T O T T T T O T T T T T T [HTTTI0T
LIololigl [ 11 I-Iolololqisil] [T DB TT T Tl Tl TTT FlTollolsl TT | = lebblolsl [ | T LIS LTI | LT TTTT1]
(BTl LT T Rl ol T T T O T L T T T T T T
oL/JoI/Iollll-I/I-oHlllfl/liloH‘II-I/I.IoH\IHHITIl IHTTIHI ?IHIHT[ Hlll1|ll [ITTTTTI]
folelofalolsl [ Iob fl TTTTTTT T TTTTITIT T QoL o TT T T T T T T I T TT0] HIHHU ] TITTTT]
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Teble 4. Sample Input for Problem 2
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TEN COLUMN INPUT

UCN-5393
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Table 4. (continued)

IBENERERE

EEEREREN

e , o Slefes
KEYPUNCHING INSTRUCTIONS: SFR-! SAMPLE _PROBLEM o 2
Punch only those cards containing dota. coou» T. W« |<e\" \\.VI REQUEST NO. ,22, IZ_
ASENFNENnACENNSRNARY N ERRENASE N AR NN NATA AN NN AR R AR NN NARR AN AR A R ANARREN
AEOCn NI N ANRRRIAD RN RETEEN ENRNENANASANNNAENE N ANARANN N ERR N RN AN AN AN NEAS
39 R3Y RN ARRR AR RN RN AR AN RN AR NN NS RA NN IR AN ANNEAN|
NN ENNN RN AN RN RN ANN NN AN N RN N RN RN N RN AN NN ARNARE RN NN ANN AN URRRNAE
W;72%Y A0V, 9%4RNRRN N RERRANNRRR D NRRN RN NN R NN IR AR NANSRANSNARN AN ARNARRN
LGl 7 T T | TaloTol T 1| Todelel [T 1| 18 T T Tael3 [T [ Eelelel TTT | Tl [T T T TTITTT]
T T | el T L T CB R LT el T T A T T T TILL
- [ TEToT T T 1Tl T T ll-lol T T LT Tl Tl [T 1| el Bl T T T T T T T T T
SN ERNNNSNNNNNNNANNANARANNARARRRADARRRAE NRNERNNNERNRNNENRRANANRAR
NEARERERRRNNRNSRRERENNNNERRRNRNNRERRNNNNRANNENRNNNENRRRANNRRRDANNERE AN AR RRARE)
O O O O T O O T T O T
RENNERANNEANNNR NN AN A AN A A RN RN RN RN A N NN RERANN N A RN NN AN AN AN RN NRN AN ARNARN
O O O O T T T O T T
T DO T T T T O T T T T
ENNERNEERARNNNNNRNNENNAR NN A RNNNERARN A RNN RN RANNENNRRRN NN AN AR NN
SENRRRNNINSEESRNRN RN RRN NN RN NN RE NN A NN RN A AN AR AN A ARRE!
T O O O O O T T T T
O C O O T O T T O T T
EEENEERNEERRENNENANNNNERENRNNRENNERANEEANRRRNEN! [T
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