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AN ELLIPTIC INTEGRAL COMPUTER PACKAGE
FOR MAGNETIC FIELDS, FORCES, AND MUTUAL INDUCTANCES

OF AXISYMMETRIC SYSTEMS, AND A VERSATILE LINE-TRACING ROUTINE

M. W. Garrett!

ABSTRACT

This report describes a set of high-precision routines for the IBM 7090 that perform efficiently
the calculations most often required on axially symmetric magnetic systems. These routines compute
the vector potential, field components, and the mixed gradient 38,/3z for current systems and for
certain idealized distributions of magnetized matter; they compute the force and mutual inductance
between coaxial units of a systenr; and they can trace the lines of foree, lines of constant total B,
B,, cic., for such systems. The tracing routine with slight changes should be able to find loci of con-
stant values for any single-valued function of two variables, when a program exists to evaluate the
function.

Coaxial units of any combination may be circular loops, thin solenoids, or thick cylindrical coils;
also uniformly magnetized rings, cylindrical sheets, or thick-walled cylinders. The six types may be
intermixed. The programs compute ficlds and trace lines accurately even within the windings, and
calculate force and mutual inductance between coils in contact, as well as the self-inductance ot ideal
solenoids and of thick cylindrical coils.

‘The programs for current systems were developed from a set of six equations in elliptic integrals,
which suthce when correlations are fully exploited for all the relevant properties of loops and
solenoids. The axial solenoid field is calculated by a superior new method.

Thick coils are analyzed with the solenoid rather than the loop as the elementary unit. Magneric
properties are then integrated in radial depth by Gaussian numerical quadrature of vaviable order.
The method can deal with coils whose sections are not rectangular and whose carvent densities are a
function of the cylindrical radius, though the existing codes do not yet cover such cases.

The procedure is simpler and faster than the commonly used methods which require a more
extensive use of numerical integration. Errors are routinely less than one part per million, in extreme
cases less than one part per thousand.

The sequence of calculations is controlled by switch entries on the data cavds so that a widely varying
series of related or independent problems, which raay require all the listed operations in any order,
may be solved with a single set of data cards.

INTRODUCTION

The programs described here evolved in stages,
so that the overall coding structure shows perhaps
a certain afhnity to that of a New England farm-
house. Nevertheless, the final package performs
with high efficiency all calculations that ordinarily
are required on axially symmetric systems, The
speed and precision of the system and its relatively

'Consultant, Swarthmore College, Swarthmore, Pa. This
work was supported by Oak Ridge National Laboratory and in
part by the US. Army Research Office (Durham). For the
mathematical section, without details of the machine programs,
see M. W, Garrett, Rev. Sci. Instr. 34, 2567 (1963).

compact coding depend on a recodification of the
available elliptic integral expressions, which is
the subject of Sect. 1. This section concludes with
some remarks on the use of the equations in prac-
tice.

Section 2 contains all the details needed to serve
as a working guide to the use of the existing rou-
tines. It also describes the organization and inter-
dependence of the various subroutines and dis-
cusses significant features of individual routines.
It does not include a listing of actual source pro-
grams.
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The magnetic quantities that are computed by
the programs reported here are the vector poten-
tial, the rotal scalar field magnitude B with its
axial and radial components B, and B,, the mixed
gradient aB,/dz. and the force and mutual in-
ductance between elements of a magnetic system,
including self-inductance as a special case.

1t 1s often desired to trace contotrs that are loci
of the constant values of some scalar field func-
tion, for example, the contours of constant total
of force which pass
through points of constant pA. The problem of

field ywagnitude 8 or the lines

finding such loci is essentially the same for any
single-valued function of two orthogonal coordi-
nates. The present package contains a highly
developed tracing routine which, with slight
changes of hinkage, should be usable for any such
function whose values can be supplied by some
available program. Since its specific relation to the
magnetic field is slight, a discussion of the tracing
problem is deferred unul Sect. 2.

Elements of the cuwrrent systems with which
these programs deal may be circular loops, cylin-
drical current sheets (ideal solenoids), or thick-
walled cylindrical coils with uniform current den-
sity.  Uniformly magnetized rings. cylindrical
sheets, or thick cylindrical shells may also be in-
cluded, and a single system may contain all thesc
element types intermixed.

The elementary unit from which the propertics
of thick coils are derived is not the loop, but the
cylindrical current sheet. The integration in
radial depth over the clementary solenoids is
carried out by Gaussian numerical quadrature.
It is evident that a thick, axially symmeiric coil
whaose current density is a function of p ouly and
whose ends are conical or even curved may still
be analvzed into ideal solenoid elements. In such
cases, the desired magnetic properties may be in-
tegrated with little difhiculty over the section by

the machine and debugging the line-tracing rou-
tine. § am indebted to Arthur Downing for helptul
discussions of the ervors of Gaussian numerical
quadrature.

MATHEMATICAL FORMULATION

making appropriate changes in the weight factors
or the contours that are assigned to the Gaussian
quadrature routine, but this option is not included
in the completed coding.

In spite of the long-standing use of elliptic inte-
gral formulas for loops and solenoids, a search of
the scattered literature of fields, mutual induct-
ance, and the “geometsy” of particle counters®*
failed 1o reveal an efhiciently ordered scheme to
calculate economicaily the most essential magnetic
propertics of such elements. Special cases have
been solved in various ways. Inadequate correla-
tion multiplies the number of formulas that arc
needed, and some are inferior and should be
replaced.

Inn particular, the axial field B,(S) of an idecal
solenoid has been formulated in remarkably
diverse ways, none of which offers a reasonably
simple method of calculation. This quantity, which
is proportional to the solid angle subtended by a
circle at a point off the axis, is deceptively simple in
appearance. It must be evaluated at each field
point for both ends of each elementary Gaussian
solenoid of a thick coil. Fortunately, a better
method of solution is available in Eq. (12), below,
derived in 1898 by Viriamu Jones, to express the
differential coefficient aM/dp of the mutual induct-
ance of a loop and solenoid! The companion for-
mula (9) for M is well known,” but though several
workers have applied Eq. (12) as originally in-
tended to refine the calculation of absolute M
standards, it does not seem to have been previously
noticed that it also yields B,(S). For the relation
between the two quantities see Eq. (6).
“7'-"1‘Fc"Zg:C()1xx(>11-i(';ll problem of calculating the efficiency with
which a round window collects particles or quanta from a point
source is the same as that of calculating the axial field of an ideal
solenoid. An extensive literature has grown up around each
application independently of the other (sec ret. 3).

M. W, Garrett, Rev. Sei. Instr. 25, 1208 (1954).

'], V. Jones, Proc. Rey. Soc. (London) 63, 192 (1898).



Both of these formulas contain complete ellipfic
integrals of all three kinds. Most users of these and
similar expressions have elected to use incomplete
K and E integrals to avoid calculation of the I1
integral. Such methods involve iterations through
an arduous sequence, or interpolation in bivariate
tables, which usually have an angle as one argu-

ment. At least when one uses machines, including

desk calculators, it is easier to-employ the iterative
methods of King® and Bartky® in computing the
three complete integrals. Equation (12) then proves
t be far superior to other available expressions for

B.(S).
Outline

After a comparison with the method of zonal
harmonics and a section on notation and defini-
tions, details of the elliptic integral method are
developed. Correlations rather than derivations
are presented, since most equations are drawn
from the literature with some new interpretations
and changes of form. Table 1 exhibits, in a two-
dimensional array, the systematic relations ex-
pressed by Eqs. (1)y—(7). It shows that only six dis-
tinct equations [(8)-(13)] are needed to compute
14 quantities of interest. The entire set of six may
in principle be derived from its first member by
successive  differendiations.  Equations  (14)—(21)
describe the definitions and iterations that are used
to compute the complete elliptic integrals K, F,
and I1. Working equations are then expressed in
terms of the stable end values {rom the iterations.
After listing some equations for the fields of mag-
netostatic elements, the section ends with a dis-
cussion of the use of the method in practice.

Comparison with the Method of
Zonal Harmonics

The present attempt to codify the elliptic inte-
gral procedures grew out of the author’s parallel
work on zonal harmonics.™® Recently completed

*1.. V. King, On the Direct Numerical Caloulation of Elliptic
Functions and Integrals, Cambridge University Press, Cambridge,
England, 1924.

SWalter Bartky, Rev. Mod. Phys. 10, 264 (1938).

™. W. Garreu, J. Appl. Phys. 22, 1091 (1951).

M. W. Garrett, Tables of the Internal Magnetic Source Functions
U, for Thick Solenoids and Disk Coils, Edwards Brothers, Inc.,
Arnn Arbor, Mich., 1953, These tables are available upon
request from the Thermonuclear Division of Oak Ridge
National Laboratory.

zonal harmonic computer programs® are in some
respects more versatile, in sowme respects less so,
than are the elliptic integral programs. By carrying
the harmonic series to the 33d order (even hand
calculations may mclude the 17th, if the tables of
ref. 8 are used), they extend the range of practical
convergence into regions so close to the windings
that most cases of experimental importance are
covered. Exceptions are the calculation of feld
components within the windings or in the gaps
between windings, internal forces, and the force or
mutual inductance between coils close together
or in actual contact. Precisely these cases are cur-
rently increasing in importance because of the
large forces inn modern high-current systems and
the quenching of superconductivity by high fields.
The use of elliptic integrals for such calculations
removes the limitations on convergence.

The method of zonal harmonics, where it can be
used, has advantages of its own that are more fully
discussed in the references. The advantages de-
pend on exploiting a distinctive feature of the
method, namely, that it permits a clean separation
of the field geometry from that of the generating
system. Field coordinates and source coordinates
can and should be restricted to separate equations
used in separate steps of the calculations,

The zonal harmonic method is superior for de-
sign problems because it describes fields, forces,
and mutual inductances as continuous scalar
functions of the field coordinates, with coefhicients
that depend only on the source coordinates. Thus
it is an efficient tool to design systems that generate
a uniform field or gradient, search coils that mea-
sure field or gradient at a point, mutual inductors
in which on rotation M varies accurately as
cos 8, etc. The use of elliptic integrals develops no
continuum, but only a series of spot checks at
isolated points. Again, if many ficld points are to
be computed, especially for a complicated system,
the zonal harmonic method may be faster by a
factor of 10.

The harmonic method is also more versatile in
computing the rates of change of the magnetic
properties, with respect to the field or the source
coordinates. For example, it can be used to cal-
culate the mutual inductance, hence also forces
and torques, between systems whose axes are

M. W. Garrett, Computer Programs Using Zonal Harmonics for
Magnetic Properties of Current Systems, ORNI-3318 (1962).



separated but parallel, or which interscct at an
angle.

The harmonic coeflicients that relate the mag-
netic properties of Joops and ideal solenoids to the
system geometry, unlike the equations in elliptic
integrals, can be directly integrated in radial depth
to compute the corresponding coeflicients of pan-
cake coils and thick cylindrical coils. It has already
been secen that this limitation of the elliptic integral
expressions can be removed by resorting to
Gaussian numerical quadrature. The same device,
though itis not needed in the case of homogeneous
cylindrical coils, can be used to find the zonal hai-
monic coefficients for coils that do not have plane
ends or whose current density depends upon p.
All the inherent advantages of the method are
preserved by the use of coethcients so calculated.

Units and Netation. Signed Seurces.
The Gaussian Quadrature

Units are mks, but w, is represented in all equa-
tions by 47 X 1077 henee, if 1t 1s desired to use the
gauss, gauss-cm, etc., only decimal factors need be
introduced. The cquations refer to a field ring of
cylindrical radius p passing through a field point,
and a coaxial source ring of radius «, lying in
planes whose axial separation is z. When the source
is to the right, z is positive; that is, the origin lies in
the plane of the field point. The simplest source
is a circular current filament or loop.

When an equation for the field, force, mutual
inductance, etc., of a current loop is integrated
along the axis to find the corresponding properiy
of an ideal solenoid, only the coordinates of the
end circles of the solenoid appear in the definite
integral, which thus contains two terms of opposite
sign. It is convenient to ignore the physical dis-
tributed currents ot the winding and to attribute
the entire field to the two source rings, or more
briefly, sources of identical absolute strengih
N't but with opposite signs. N’ is the linear turn
density, and N’ is the surface current density.
The positive sign belongs o the right end of a
positive current sheet. The source strength of a
loop is Ni, where & is the turn count and the sign
depends only on the current i. The source concept
is more fully treated in the references.”

All equations are written for single positive
sources of unit turn-count ¥ or N', with the tacit
assumption that ficld components are to be com-
puted by algebraic surnumnation over all sources of a
systern, while {orces and mutual inductances are to
be summed over all pussible pairs consisting of a
primary and a secondary source. Each contribu-
tion to the sum is to be multiplied by the signed
source strength or by the product of the iwo signed
source strengths. In the case of force or mutual
inductance the radius a is arbitrarily assigned to a
primary and p to a secondary source, though it is
obvious from the symmetry of the equations or
from physical reasoning that one may interchange

Table 1. Differential Relations
aM/az M/ 27p ~-aA4ldz (1/27p) (aM/op)
Equation Reference Derivation (1) 3) (6)

(8) 10 M(8.5)

()] 3 M(S.L) F.(8.5) A(S) — (12) —Vil) R,(S) Qp.a)
(10 11 ML)  F.S.L) AL) B,(S) . (1% B.(L)
(1 11 F.(L.L) B By (S)az

Derivation —F [27p B,(L)




the complete set of p’s with the corresponding a’s
for any pair, whether the paired elements are
loops, solenoids, or loop and solenoid. This theo-
rem is perhaps trivial for elliptic integral cal-
culations, but it can often be used to accelerate
the rate of convergence of a zonal harmonic series,
by reducing the ratio R of maximum secondary
polar radius to minimum primary radius.

The properties of single solenoid sources (cir-
cular end planes) may be visualized in terms of the
equivalent disks uniformly charged with positive
or negative magnetic pole distributions.

The constants of a zonal harmonic series can be
integrated in closed form over the radial depth of
the winding. This leads to the symbolic replace-
ment of a disk winding, or of each end plane of a
thick cylindrical coil, by two sources of the same
strength but of positive sign at the outer edge of a
positive end plane, negative atthe inner edge. The
corresponding integration in depth of the elliptic
integral equations has not been accomplished, so
that here only loop and solenoid sources occur,
never disk or thick coil sources. The resort to
Caussian numerical quadrature simulates the disk
by a set of concentric loop sources, and the thick
coil end plane by a set of concentric solenoid soutrce
rings, whose strengths are proportional to the
Gaussian weight coeflicients. Calculations are com-
pleted as before by scalar summation over all the
SOUTCES.

The weight factors may be scaled if necessary to
take into account the variations with p alone of the
current density, while the sources may be spaced in
proportion to the Gaussian abscissas along a slant
or curved line bounding an arbitrary axially sym-
metric coil section.

Differential Relations

In the following equations, the source type is
designated by L for loop, S for solenoid, or & for
an undefined gencrating source ring. G may in-
clude, besides L. or S, the case of a disk or thick
coil source, since the equations asswme only axial
symmetry and are not restricted to a formulation
in elliptic integrals. B is written for the magnetic
field, A Tor magnetic vector potential, ¥ for scalar
potential, M for mutual inductance, F tor force,
and @ for a generalized scalar function of the
source coordinates and source strength. The first

1

five equations are well known. Equation (6)
follows from (3) and (5), while (7) is physically
obvious, since the effect of a sinall increment dz
to a solenoid is the same as if a loop source N,
were added, where N, = N'dz.

F(G,6y) = 010, dM(G,,Gy) [0z (1)
B,(G) =—04(C)[iz , (2)
M(G.L) = 2wp, A (G)[ig (3)
Fo(G.L) = -2mi p B (6) , (4)
B(G) = (1p)(3/op) [p4(G) ] , (5)
B.(G) = (ig/2mp,) [M (G .L)[op.] ,  (6)
aQ(S)foz = Q(L) . (7

With the aid of Eqs. (1) to (7), it is easy to visu-
alize the relations amony the quantities of interest
by ordering them in the two-dimensional array of
Table 1. Here the entries in cach column may in
principle be derived from the top down by suc-
cessive z dilferendations, according to Eq. (7).
Quantities within each row are identical except
for the inclusion of simple numerical factors that
are constant for each column. (The second and
third rows’ each count as two separate rows, as
divided by the arrows.) The “derivation” at the
head or foot of each column relates it to a pre-
ceding column by listing the relevant numerical
factor, together with the number of the equation
that defines the relation precisely. In the divided
rows, quantities to the right of the arrows are
derived from those to the left by p differentiation
according to Eq. (6). At the left ot each row are
shown the number of the equation from which all
quantities in the row may be calculated and the
corresponding reference number. Only the six
equations [ (8)—(13)] are needed for the 15 quan-
tities tabulated.

The history of these equations by no means parallels the
idealized sequence of the table. Here the complete set is
formally regarded as derivable from Chester Snow’s tormula
[Eq. (8)], when the expression M (S,L) has been replaced by the
right side of Eq. (9). Snow’s paper, in so far as it touches the
present discussion, is concerned only with Eqs. (8) and (9)
(see ref. 11). Snow credits both equations to Viriamu Joncs,
but the writer has not found Eq (8) in Jones’s work.



The Six Basic Equations. Geometrical Definitions

(Snow™), M(S.S) = zM(S.L) +§ % 10 7apr, [K - (1% - 1)(1< E)} : (8)
(Jones*), M(S,L) =27 X 1077z [rl(l\’ —F) — M (I — K)] R 9)
1
(Maxwell'?), M(L,Ly=2mr X 1077r[2(K — E) — k*K] , (10}
2 - , . 2pa .
{(Maxwell'?), = —4q X 1077 = (K—F) — D E
1 2
= 2w X 1077 [BK - (B 20 (K~ E)] . (1)
1
aed ﬂ/ . ~ B ' — i . )
(Jones?, WM 1) = 20 % 10~ Tzck [1& TR lx)] — 2pB.(S) iy . (19)
ap 2a ’
')ﬂ . ‘4., r 5
;—pf (L) =47 x 1077 f [(K —E) + fi;w - p)E] = 27pB.(L) /i, . (1%)
1 2

Table I and all equations apply to single posi-
tive sources of strength { (or of unit strength in M
equations). That is, the loops are single turns; the
solenoids have one turn per meter, and the alge-
braic sign must be changed for the left-hand
sources. K, E, and Il are complete elliptic integrals
to modulus &, of the first, second, and third kinds
respectively. The parameter of 1 is —¢2, or, in the
notation of some writers, ¢. The lengths r| and r,
are respectively the maximum and minimum dis-
tances from « point on the source ring of radius a
to a point on the field ring of radius p. Delfmitions
of the auxiliary geometrical quantities and some
uscful relations among them are given in Egs.
(Iyto (17).

rd=la—pyr+28, ri=(a+p)P+22.

. (14)

2= dapir? . Er=1—k=(n/r)*. (15)
= dap/(atp)?.

c?=1=c*= (a—p)la+p)*, (16)

2(pa)'® =kry = clatp). Apa=Frik™* . (17)

Y Chester Snow, J. Res. Natl. Bur. Std. 22, 239 (1939), RP 1178,

], C. Maxwell, Electricity and Magnetism, Clarendon Prcss,
Oxtord, England, 1873; sect. 694 in 3d ed. (1891) reprinted by
Dover Publications, Inc., New York, 1954.

The Axdal Fiald B,(S5). Solid Angle
Subtended by a Cirle

The relation between these two quantties has
already been noted. Maxwell, who stated' that the
solid-angle calculation requires elliptic integrals of
all three kinds, preferred o derive a zonal har-

monic serics for it. Such series converge fast
enough, over a fairly wide range, to be practical

it recurrence formulas™® or tables are used.

The many elliptic integral tormulas that have
been proposed are not reviewed here. They are so
difficult to use when precision is demanded over a
wide range that the principal tables™"™ have been
computed by mecthods of numerical integraiion.

None of these methods s so simple or eflicient
as the use of Jones’s Eq. (12}, when combined as it
is here with the concept of summation over the
individual signed sources of a systemn and com-
puted by the iterative methods of King and Bartky.

No special algebraic device is necded to mtroduce

ALV HL Masket, R L. Macklin, and H. W. Schmitt, (a)
Tables of Solid Angles and Activatations, ORNL-2170 (149506):
TID-14975 (1962): (b) Rew. Sei. Instr. 28, 189 (1957).

HNL B Alexander and AL C. Downing, Tables jor a Semi-
Infinite Curvent Sheet, ORNL-2828 (1959). The tables include
B..

B, and the vecior potential,



the discontinnity that B,(S) suffers in passing
through the current sheet.” The computed values
are correct on both sides.

Calculation of the Integrals

Quantities in the last two rows of Table 1 re-
quire only the integrals K and E. These may be
computed within 2 or 3 paits in 10* from the
Hastings approximations,' which require only the
evaluation of In &' and four five-term series in
k"2, If an iterative method is preferred, only Egs.
{18) and (19) are needed, and on the average four
iterations suffice. For hand calculations, the second
method is much better, bui with a computer the
series expansion is faster and simpler to program.

Quantities in the first and second rows of the
table also require I1. For such cases no practicable
expansion in series is available, and the method
described by Thomas et al'™ has been adopted
with very little change. It requires on the average
four passes through the six steps of Eqs. (19) and
(20), followed by one or two more through Egs.
(20) alone. The number increases as k' = ry/r
decreases, that is, as the field aod source rings
approach each other more closely, while eventually
I1 increases to very large values. The series ex-
pansion is never used if Iis required, since K and
E then emerge as by-products.

Initial values of the parameters are defined by
Egs. (18), and the two iterative cycles are de-

¥The relation between B,(S) and the solid angle, including
the discontinuity, is most simply visualized in terms of the fol-
lowing very general theorem. Covsider a homogeneous cylin-
drical sheet whose currents circulate in planes normal to the

generators (the section may be any arbitrary closed curve).
Then B, at any point in space is proportional to the total solid
angle ) subtended by the cylindrical surtace, evaluated
precisely as if the flux through the surface were to be computed
{rom a positive charge at the point. ‘That is, for a positive sheet
the element d€) is counted plus when the line of sight passes
outward through the surface, minus if inward, and zero:if it
passes through an open end or cuts the surface twice.

8. Hastings, Approximations for Digital Computers, Princeton
University Press, Princeton, N.J., 1955, sheets 48 and 51. As
k approaches zevo, K and £ approach the common limit /2,
and significant {igures are lost from K - E. Since Hastings’
error curves for K and £ are nearly identical, while both scts of
coefficients are given to 11 decimals, it was decided to compute
K — E directly, in addition to K, using the coeflicients obtained
by subtraction. '

scribed by (19) and (20), while Eqs. (21} express
the three complete integrals in terms of the final
stable vatues. The procedure differs from that of
ref. 17 mainly in the exclusion of £ from the sum-
mation S. Though only &% .S occurs in Egs. (21)
and (23), the separate values are needed [or other
equations. Since the magnitudes are often quite
different, precision may be lost if 4% and S are
added muually. The equations follow.

Clo = 1 L) ﬁ() = k‘l ? 80 = "2/k’ ?
€ = cc't, (p=0. (18)
1 12
g = 5 (; +B) , Bur = (a8,
So= X2 (0 B2 (19)

i=0

Sivy = ”[3—1“_ (2+8,+87"), €=

N Aoy ’
oo
iy = z (e; + &) . (20)

The iterations [(19), (20)] are continued until
a is indistinguishable from 8, and § from unity.
Then,

K=m/2a., I1—-K=K¢.,

K-F~Lxets).

5 (21)

The first five working equations can now be
written with the integrals replaced by the end
results of the werations.

1. L. Thomas et al, J. Res. Nt Bur. Std. 43, 311 (1949),
RP 2029. The method is that of the third example (p. 314). It
combines procedures due to King® and to Bartky,® which in
wurn are based on Landen’s transtormation.



M(S.8) = zM(S.L) + 1077 x 2" 2mpar [z b - 2) (1 + %)] , (29)

FL(S.8) firia = M(S.L) = — 2mpA(S) fiy = 10°7 1 Er,w t§,) - le—p) = ’ gx} , 23)
FoAS.L)fivia = M(L.L) = 27pB, (S)is = — 2mpA (L) iy, = 10~ 7w, S. e . (24)
Fo(LL)iyiy = 2mpBy(L)i, = 2mpaBy(S) fisdz = 10°7 é'f{'/x”’ [K 4 (1~ 2)S,] . (25)
B.(S)is= 1‘0'7--(-;);%;;* [2a+(a—p)La] . (26)

The following velation is sometimes useful, in conjunction with (23) or (31). If j is the local volume

current density,

aB,lap = aByloz — 4w X 1077 .

(27)

For systerns that contain only loop elements, it is better to use the Hastings approximations for K and

£, in the following slightly altered working equations:

g = LML) 21077 oy 2a =
B.(L)]i, = Smp P - [(K F)+ (a—p) e E:‘ . (28
B (Lyji, = 22102 [(ix E)—p 1;] =19 o ey KB — K] (29)

Pr ry prik"
ALY i, =2 X 10 7% [2(K — E) — I2K] | (30)
2 842 Byll) \
OB, (L) fiydz = [2(1{ —E) — k2K ap P] Bo(L) (31)
prrs Iy ziy,

Equation (28) is derived with little change of
form from (13), for close correlation with (29) and
(30). It may be easily converted with the aid of (21)
to use the end values that result from Egs. (20),
as do Eqs. (24) and (25). Equation (31) was derived
from (29). Note [hd[ B,/z is indeterminate for
z= 01t Eq. (29) is used. Hence if 88,/3z is needed,
(29) should be programmed to compute B,/z
initially, then to find B, by introducing z.

Idealized Magnetosiotic Elements

It is not dithcult to take into account the effect
ot small axially symmetric volumes of magnetized
matter it depolarization i1s neglected, that is, it a

known constant polarization vector is assumed.
The basic element is a source ring of static mag-
nctic charge of radius a and line density A, whose
scalar magnetic potential is'®

V(Q)=4xuaK/r, (emu or Gaussian units). (32)
The fields B, and B, of charge rings and of dipole
rings can be found from this equation by differ-

WErnst Weber, Electromagnetic Fields, vol. 1, Wiley, New York,
1950, p. 125, No scarch was made for an carlier occurrence of
this equation. It scems sitapler to switch at this point to Gaussiain
units, since two distinct conventions exist for the magnetic
pole fiction in mks units (when it is used at all), and since the
programs actually calculate fields mn gauss. No distinction s
made between the gauss and the oersted.



entiation. The following reclations are listed for
convenience:

oK 1 E aE 1 ( ) .
------- m= e K =t - K1, (5]
ok Tk (K 1—k2) ook s TR > (33)
ok . _kz ok _ . (atp_ ,,L)
oz rg’ ap ( e 2p (34)
For charge rings,
) dhaz -, .
B.(Q) —“mb (35)

(here B, is + 9V/dz, since differentiation implies
motion of the source), and

_MalK E Ok 36
w©@ =t Ly w oo

The last two equations are again in Gaussian units.

For dipole rings with axial polarization vector
(polar angle 8 = 0), change A to A (= dp/adg,
the linear density of dipole moment), and differen-
tiate with respect to z. [f the polar angle 8 is 90°,
differentiate with respect to a. But since the toral
charge (J is 2mAz and the dipole ring is neutral, Aa
rather than A must be held constant. Details of the
differentiation are omitted. For a dipole ring whose
polarization vector hies on a cone (8 = constant),

B(p,¢d)=8(p,0°) cos B+ B(p,90°) sin B.(37)

Note that a cylindrical sheet with uniform axial
magnetization is equivalent to a pair of charge
rings of opposite sign at the ends of the sheet. Also,
a thick cylindrical shell may be replaced by a pair
of ideal current sheets (solenoids) coinciding with
the cylindrical boundaries and carrying opposite
currents. Finally, the vector potential 4A(p) for a
dipole ring is the same as —8,(Q) for a charge
ring (see Table 1).

All the cases that have been discussed are in-
cluded in the coding. The results of test cases run
with this program and with the zonal harmonic
package of ORNL-3318" agree to seven figures.

W3ee ref. 9. The option to include in any system idealized
magnetostaric elements of the types discussed here has been
added since that report was published.
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Gauvssian Quadrature in Practice

The writer reported the use of Gaussian numer-
ical integration some vyears ago’ in a similar
context, to simulate a thick coil by a set of solenoid
sources. The integration was done with a desk
calculator to check the results of zonal harmonic
field series in which the constants for true cylindri-
cal coil sources were computed from the new
source functions {/,. Arthur Downing recently
used the same device to extend his method for
computing solenoid fields" 1o eylindrical coils.
The overall method takes six to eight times as
long as that reported here, because an independ-
ent Gaussian integration (in azimuth) is used also
for cach ficld component of the elementary
solenoids.

The method described here resorts to the
Gaussian approximation for the fnal p integra-
tion only (in radial depth). The machine program
provides a tree choice of the order n between
the limits 1 and 16.* The n-point Gaussian
formula replaces cach end plane of a cylindrical
coil by a set of n solenoid sources. To calculate
F or M for a pair of thick coils, assign a ser of
2m j-subscripts to the m positive and m negative
solenoid sources that replace one coil, and 2n 4-
subscripts to the other. Then swm the 4mn com-
ponents Ap4,.Fy or AAM;, where the A’s are the
Gaussian weight factors. The proper value of N
for each coil is the total turn count per meter of
the whole coil. To minimize the proximity errors
discussed below, it the coils are in contact or very
close together, m should not equal n, and it is
best to have one even and the other odd.

With the same restricdons on m and n, self-
inductance can be computed as the mutual induc-
tance between coincident coils. In the limiting
case of an ideal solenoid, set m =1 for the primary
and expand the coincident secondary into a thin
coil with 2n Gaussian sources. It may be verified
that the computed value of M approaches the cor-
rect value L. as the order n increases and the thick-
ness of the secondary decredses.

The self-inductance of an
(Lorenz?!)

ideal solenoid is

“For the Gaussian abscissas and weight factors, see A, N
Lowan, N. Davids, and A. Levenson, Natl. Bur. Std. Appl. Math.
Ser. 87, 185 (1954).

2. V. Lovenz, Wied. Annal. 7, 161 (1879).
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Here N is the total turn count, while r; and 4 are
used as in Egs. (14) and (15} with z =/, the length
of the solenoid (i.e., the separation of its two cnd
circles of equal radii p and a). That is, r2=* 1 4a?,
k= 2alr,. This cquation was written mto the pro-
gram for the tests discussed in the last paragraph,
and it remains in the complcied code for routine
use.

In the case of eylindrical coils, the use of Gaus-
sian orders as low as 4 or 5 gives results for field
compoenents that are valid to within a few parts
per million except at points near an end plane of
any coil, and for force and mutual inductance even
when the coil separation is moderately small. But
as the field point approaches the end plane,
whether from inside the coil or outside, very large
errors may occur, cspecially in the case of B,

The errovs are due to the tact that cach Gaussian
solenoid source introduces a fictitious singularity at
which B, is infinite. though the wrue mtegrated
values are finite at every point. Increasing the

redd

order n reduces the ervor but not fast enough. The
remedy is to break up the Gaussian integration
into several ranges, subdividing the coil into parts
by cvlindrical walls. In the machine program, a
point within any coil or near an end planc is auto-
matically assigned to one of six categories, de-
pending on the precise location of the point, and
the coil 1s subdivided accordingly into two to four
coaxial shells, to each of which the n-point formula
15 separately applied.

The coding also provides the option of selecting
a series of orders, completing calculations for each
order in turn, and printing out discrepancies that
exceed a preset limit. The “normal” option is
n = 6. without any check.

For minimum error the field poiit should lie in
one of the cylindrical walls dividing the coil (or on
its projection if the point is just outside the end
plane), and the two immediately adjocent cylin-
drical shells making up the coil should be thin.
I'his brings the nearest Gaussian sources very
close 1o the field point and allows the high feld
values computed from such nearby sources to
contribute appreciably to the summation. It the
coil is so partitioned that rhe field pomt lies half-
way between the inner and outer walls of a shell,
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only even Gaussian orders are permitted, the
nearest Gaussian sources are more remote than
i the previous case, and the convergence with
licreasing order is found to be much worse. The
reason for this can be seen by drawing a rough
graph representing the behavior of the integrand
ncar a singularity and studying it in relation to a
set of superposed Gaussian abscissas.

In practice, with n = 10 or 12 the uncerainties
do not exceed one part in a thousand, even for
ficlds in the end plane and for £ or M between coils
m contact, though in critical cases it is best to rely
on one or more of the available checking options.
Very few cases of experimental interest are in this
critical range, while most are likely to lie within
the range of high-order zonal harmonic series. In
such cases the two methods check routinely to
hetter than one part per million.

Elliptic Integral Iterations

When both ¢ and p are much smaller than z, &
approaches zero, and the number of iterations
through Egs. (19) and (20) increases. Rounding
errors eventually reduce the number of reliable
digits, particularly in the case of M(S8.5), which
contains a term in z*. This quantity cannot be
reliably  calculated  with a standard  eight-digit
FORTRAN program when & is less than about
1077,

As the field point comes close to a fictitious
Gaussian  singularity, the II integral takes on
large values, and the number of iterations through
Eqgs. (20) increases. For points very close to a
coil, the average number of iterations for the
sources in that coil may rise to 8 or 9, as com-
pared to 3.5 or 4 for more remotc
the count is higher siill for the nearest individual

coils. Evidently
sources.

Numerous tests, tor example, comparisons of
computed B,, B,, and A values very ncar to an
ideal solenoid source with  Arthur Downing’s
" and of K and £ values wiih ihe results of
the Hastings series approximation,' confirm that

tables,

the repeated iterations vield an accurate result.
Also, with a modern computer the extra time re-
quired ar near points for the iterations, and to
compute separate contributions from two to four
sections of a partitioned coil, s scldom signifi-
cant. The overall procedure seems still to be the
most efficient yet proposed.



Nevertheless, for very near points the method
smacks of a brute-force approach. The author has
failed to find an asymptotic series for I, to replace
the iterative method when &' is small. If such a

series, once found, could be integrated with re-
spect to p, the Gaussian quadrature also might be

bypassed for the nearby section of the coil end
plane.

2. ELLIPTIC INTEGRAL PROGRAMS FOR THE IBM 7090

This section assumes a minimal acquaintance
with 7090 FORTRAN. The frst part, ending with
subroutine TABLES, contains the information
needed to use the existing programs ctlectively.
After a brief résumé ol the general plan of the
coding and of the data cards, each type of card is
treated in a separate section that describes in
detail the uses of the individual data helds.

The second part, beginning with the FAP
secrion, presents a few details of the internal logic
and procedures of certain subroutines. It may
interest those who wish to understand the working
method in greater detail, in order to be more
confident (or more critical) of the resulis, to
modify the programs to their own ends, or to write
related codes for the same or other machines.

The completed elliptic integral package paral-
lels in organization and scope the zonal harmonic
prograros of ORNL-3318.7 wirh the addition of
a line-tracing routine. It covers a wider variety of
problems than other general-purpose programs
that the author has seen, and it is several times as
fast. Nevertheless, for many problems that fall
within the range of satistactory convergence of
the zonal harmonic method, the latter is sull
faster, perhaps in about the same ratio. Extensive
comparisons of the results of the two methods,
over the wide range of magnetic quantities and
of geomnetries for which they overlap, inspire
confidence in the validity of both sets. Usually
there 13 agreement to seven significant figures.

Control and Sequence of Program and Subroutines

The existing 7090 codes consist of one rnain
program aond seven subroutines, exclusive of the
clock routine TAD which records the time and
date. One subroutine package is written in the FAP
language, using mainly Hoating-point opera-
tions, while all the rest use single-precision
FORTRAN. All interchange of data between
sections is effected through a COMMON storage
section of 682 cells, which is mapped in Table 2.

The complete package can calculate magnetic-
field componeats B,, B,, and total [B|, vector
potential 4, the Hux function pA, and 8B,/0z for a
complete magnetic system, at all points of a pre-
scribed field net, and can compute axial force F
and mutual inductance M between pairs of ele-
ments of the system, including as a special case the
self-inductance of thick coils or ideal solenoids.

It includes also an eflicient line-tracing routine,
which was originally written to map the lines of
force of a magnetic system, but which has been
generalized to trace out lines that are the loci of
constant values ot any other of the magnetic quan-
tities, in particular the contours of constant total
scalar field |RB}. This subroutine is self-contained,
except that at each point it demands the local
value of the selected field function. {t should
theretore be readily adaptable for use with any
unrefated program that can compute a single-
valued scalar function of two coordinates, to map
the behavior of the function:

A magnetic system 1s defined as any set of MXK
coaxial elements (the DIMENSION 40 is currently
assigned o MXK). For F, M, or L. computations
the “systern” need have no physical validity, but
is often a mere list from which pairs are selected
by one or more SEQ cards. Curvent elements may
be circular loops, ideal solénoids, or thick cylin-
drical coils. Also, the uniformly polarized dipole
rings, cylindrical sheets, and thick cylinders
described in Sect. 1 may be introduced. {Sce Eqgs.
(52y—(37) and the section on entry IS in subroutine
KCARDS, below.] Elements of all types may be
intermixed in any system, except that subroutine
FORCE does not presently deal with loops or with
magnetostatic elements. Since the equations of
Sect. 1 are valid inside as well us outside the wind-
ings, the cutrent space (whose geometry is entered
on K cards) and the field space (as specified on
NET or MAP cards) may overlap without concern
to the user.

A problem is defined as any series of calculations
macde with one set of K cards, that is, on a single



system of specified geometry. It may consist of

a number of sections, each of which is controlled
by one or two data cards, once the K cards have
been entered. A section may call for the evaluation
of magnetic quantitics over a field net, for the

tracing of a field map, or tor one or more scts of

calculations of force and mutual inductance be-
tween pairs of elements.

Each section of a problem begins at the START
position of the main program (MP) by reading the
clock and calling for a new card. Since an EXIT
occurs only when the data card deck is exhausted,
several unreclated problems, each with multiple
sections, may be run at a single loading. Once only,
on the first pass, MP causes subroutine GAUSS in
the FAP section to transfer the 16 sets of Gaussian
coefhicients to COMMON storage. Cards read at
START have 14 locations, or in computer jargon,
“helds.” Several of the integer fields arc used for
switch options that control the sequence ol opera-
tions, including the sclection of subroutines.
Additional integer and decimal data fields (the
net locations) can prescribe cither a net of field
poinis (on NET cards) or the interval and starting
points for a set of lines of constant flux, consiant
|B|, cte. (on MAP cards). The card that begins the
first section of any problem will be referrved to
as a START card. In cvery case but one (see
TABLES), it first calls subroutune KCARDS to
read into storage the system geometry. The first
section 18 then executed under control of the
switch options. Later sections of the same problem
bypass KCARDS and are initiated by NET, MAP,
or FORCE cards. On the FORCE card, which
calls subroutine FORCE, the net locations are
blank.

Though either a NET or FORCE card may be
punched to call KCARDS (and thus may double as
a STAR'T card to begin a new problem), the MAP
card camnot do so. Otherwise, the number and

sequence of sections in any problem are arbitrary.

To compute axial force F and mutual induc-
tance M between selected pairs of solenoids or
coils, a switch entry on the FORCE card calls
subroutine FORCE. This reads in one or more
sequence (SEQ) cards which control the selection
of pairs. FORCE calls JONES for the contribution
to £ or M from each pair of elementary Gaussian
solenoid sources. For thick coils, self-inductance
is calculated as a special casc of mutual inductance,
while for ideal solenoids it is computed by SELF on
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a direct call from KCARDS.

A NET card causes MP to scan the field net,
calling on FIELD at each point to suim ihe contri-
butions to vector potentials and field components
from il coils o1 loops of the complete system, and
to print the results. FIELD, in turn, calls JONES or
LOOP to compute the contributions from individ-
ual Gaussian solenoid loop elements. If a
ficld map is required, the MAP card defines the
quantity to be constant tor any one line and sets
a switch to call TRACE. This subroutine follows
the lines (c.g., pA constant tor lines of {orce)
from their prescribed starting points, calling
FIELD for the values of p4. |B]. etc., at each point.

TABLES is called by a START card that is
blank except for the ficld MK, The required input
data are read in by the subroutine itselt, which is
used to print tables of elliptic integrals, or of field

Or

components and vector potential, for single loop
or ideal solenoid sources. If so desired, the sub-
routine may be used to check the agreement be-
tween independent valucs of certain quantities
that may be computed in the FAP section, using
the Hastings scries, or in JONES by the iterations
of Eqgs. (1Y) and (20).

Doto Cards

Table 3 is a working summary ot the data-card
fields.
erence for all information normally neceded to
assemble the data card deck for any set of prob-
lems. Though many entries in the table are self-
explanatory, the data-card fields are discussed in
detail below. The reader will need t refer fre-
quently to Tables 2 and 3 when reading the re-
mainder of this section.

To meet the varving needs of six tunctional
types of data card, it was found nccessary to re-

It 1s mtended to be a self-contained ref-

place the “normal” format® by two modified
forms. These differ in the left-hand half, which
provides ten integer fields in one case as compared
to one integer and four decimal ficlds in the other.
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2A data card with four three-digit mteger frelds and six
nine-digit decimal fields is here considered “normal”™ in the
sense that it conforms to the invariant card format of the
author’s parallel zonal harmonic programis (ref. 9), which have
been used routinely in this Iaboratory to check the results
computed by elliptic integrals or to suppleraent them, partic-
ularly tor solving design problems.



The similarities between cards are best shown by
Iisting rthent in the table according to format,
rather than by ovdering them in some typical
sequence that they might logically follow in a
working deck. Parentheses under each format
nuntber enclose the FORTRAN listing. Since
cach READ instruction is tollowed by an identical
WRITE, input data always appear in the outputas
entered. The entry in column 1 of a NET, MAP,
FORCE, or SEQ card controls paging or line
spacing of the output. It is normally 1, to start a
new page. The remaining five columns (2-6) of
the A6 field on these cards ‘and the entire A4
ficld (columns 1-4) on K or TAB cards ave printed
but do not affect the program. They may be
used for some simple code to identify the partic-
ular problem, section, or system, or even the type
of card (e.g., NET, MAP, SEQ, or TAB).

Integer fields (normally three columns) precede
decimal data fields (normally nine columus) on
each card. The table indexes for reference the
column that carries the least significant integer
digit. That is, the integral part of cach entry is
right adjusted to the index. In the case of decimal
fields, this assumes that in normal practice the
decimal point will not be punched; then the unies
digit must occupy the designated column. If the
decurnal point is punched, it may be placed any-
where in the field, but its “normal” position s i
the designated column. (Other positions may be
necessary 10 permit full 8-digit accuracy when the
input magnitudes cannot be chosen lor conven-
ience.) Note that all belds end in columns whose
numbers are multiples of 3, while tor all decimal
ficids but one the column numbers are also multi-
ples of Y. The units digit (or the normal decimal
point when punched) always occupies the middle
column of a group of three. Thus it is casier to
check dara that are punched on binary cards, since
these are ruled in three-column felds. Exception:
The frst three ficlds of Format 126 have been
compressed to two columus for the integer and
six for the decimal. These fields end in columns
6, 12, and 18.

It has been found convenient to punch four
master cards as templates for direct checking.
These are labeled START, KCRD, SEQ, and TAB
in the four or six available left-hand coluruos.
The rest of each card lists the symbols for variables
as in Table 3, each one right adjusted to the units
column of the corresponding data field. It is also

much easier to prepare data for a set of problems
if special forms are prepared for them. A full line
is used to end a field, and a dashed line (o replace
the decimal point (not punched). The two formats
are identical after column 36. Since the guide lines
are for reference only and not 1o be taken liter-
ally, the lefi-hand half ot the form may be ruled
to fit the two tormats on alternate lines, or perhaps
on alternate pairs of lines, without implying that
the cards actually occur in any particular sequence.

Most mteger and decimal fields fulfill normal
integer and decimal data functions respectively,
bat in seven cases it was found expedient to depart
from the normal mode. The change need not con-
cern the user, since it s corrected by immediate
conversion in the coding. Integers are normally
usedd tor counting and switching, decimals for
magnitudes. The numerous options provide great
flexibility, but they increase the number of data
helds. To mitigate this hardship, every effort has
been made to represent the most frequently used
options by blank felds, even to the point where a
completely blank SEQ card is not uncommon.
Blank options exist for about 9% of all fields,
namely, those which are enclosed in pareotheses
in Table 3. Here the decoding of the blank is in-
dicated in each case, usoally by equating the
symbol () to some equivalent positive value. A
blank just over any symbol means that its use
is sufhciently frequent to be considered “normal,”
while a dot over an integer symbol indicates that it
is cast in a normally decimal role, and conversely.

For many integer fields the binary choice 0 or 1
is sutlicient. In a few seldom-used cases the sign
and magnitude are separately decoded, while in
several cases the tens or hundreds digit of an
integer field is separated from the units digit to
control an independent option.

The following sections describe separate units
of the coding, with the data cards they use, in
greater detail. The fields of each card are discussed
in order from left to right.

The Main Program (MP).
START, NET, and MAP Coards

One data card is read at each pass through the
START position of MP, but such a card will not
be called a START card unless it begins a new
problem.

MK.—This is the first data field. An entry of



=34, =2, or —1 calls TABLES (q.v.), while the rest
of a card with negative MK is unused, since the
subroutine then reads all remaining data. All
other START cards mnst carry in MK the number
of K cards (placed next it the deck) that describe
the system geometry. MK > 0 reads in the geom-
etry by calling subroutine KCARDS and returns to
MP. Here, it TP 1s negative (sce below), the START
card doubles as a FORCE card, and the fields after
IP are ignored. Otherwise, MP proceeds to scan
the field net prescribed by the data fields N7
through Al. That is, the STAR'L card doubles as a
NE'T card i all problems that begin by calling for
either a field net or a field map. But if the net
locations NZ-A1 are all blank, the field magnitudes
are computed and printed at the origin only.
This may be appropriate when one or more field
maps arc wanted without tabulating any net. Often
in such cases I through NN are not required,
and the START card then needs enly one or two
entrics. FORCE and NET cards placed after the
K cards have MK blank. The distinction between
the two is in IP. MAP cards cannot precede the
K cards. They have MK = —4 when the lines of
force (or lines for which [B| or some other field
function is constant) are to start in a common
plane (z = Z1), at a small angle to the Z axis.
MK =—5 wher the lines are to start on the cylinder
p = Al, more nearly parallel to a transverse planc.
The second option is often used, for example,
in the case of “cusp” geometries.

Maximum or Minimum Field Values. — MK
provides also a special option for investigating
fields near a point at which a selected field func-
tionn passes through an absolute maximurn or
minimum value. For example, there is currently
an active interest in so-called “magnetic wells,”

characterized by an absolute minimum value of

the total scalar field |B|. The function of interest is
selected by an entry in column 11 of the field IN.
The special option is controlled by the hundreds
digit (in column 7) of MK. When this is set on
A NET card to 1 for a maximum or to 2 for a mini-
muin, the program, while scanning the net, pre-
serves the extreme value of the selected function
and the coordinates of the point at which it occurs.
At the end, all the current densities CD(K) of the
system are s0 rescaled as to normalize the maxi-
mum or minimum value of the selected function
to unity. A second NE'I card may now be entered,
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with a 3 in colwmnin 7 for maximum, or 4 for mini-
mum. This card normally prescribes a net of finer
mesh, including both negative and positive values
of the coordinates. Before scanning the new net,
the program shifts its origin to the point where
the maximum or minimum was found and prines
the newly normalized values. Also, the last coluiun
of print shows the deviation of the selected func-
tion, in parts per million, from unity. Evidenily
the process can be continued, if desired, with a
third NET card, using a still finer mesh.

IN.—The sign of this field 1s plus when the
coil dimensions are expressed in centimeters
and the current densities in amp/cm or amp/cm?,
minus when the unit of lengih is the inch. This
optionn does not affect the magnetic units; A is
always computed in gauss-cm, 88,/0z in gauss/cm,
etc.

If the absolute magniuide of the units digit
of IN exceeds 2, it increases thie normal ratio
(DZ/DA = 2) of the end-zone parameters i sub-
routine FIELD (g.v.).

The absolute magnitude of the tens digit
(column 11) is independently decoded, and it
serves to sclect a field function: () or 1 for B,,
2 for B,, 3 for 4, 4 tor |B|, 5 for pA, and 6 for
aB,/az. The tunction so designated on a NET card
is used in routine normalization (see KCARDS)
and in the extreme-value procedures described
undcer MK, On a MAP card it selects the function
to be held constant while tracing a sct of lines,
but in this case the flux funciion pA is regarded
as normal, and a blank in column 11 is decoded as 5.

IP. A minus sign in this {ield idennfies a
FORCE card. If [P i1s minus and MK > 0, KCARDS
is called, followed by FORCE. If MK is blank,
FORCE is called directly. (The returin to MP de-
pends on the field IR of the SEQ card, ¢.v.)

Again, I? > 0 on a NET or MAP card causes the
printing of optional monitoring information in
MP or in TRACE. In MP this is a PDUMP that
gives a compressed résumé of the previously
prinied held magnitudes. In TRACE it is a de-
tailed record of corrections to the
coordinates of individual points and of the local
rates of change of the selected funciion on which
the corrections depend. (See also the [P entry
under “Subroutine JONES” in the latter part of
Sect. 2.)

ID.—If ID > 2, it increases the normal raiio

S1ICCESSIVE



(DAJAY == 29%) that defines the radial spread of
the end zones of coils in subroutine FIELD.
{E.—1E is an allowable error hmit, maltiplied
by 10% on NET cards for MP calculations and by
10* onn MAP cards for subroutine TRACE. It is
used in MP only when comparisons are desired
between the results of two ovr more orders of
Gaussian quadrature, that is, when NN is nonzero.
Calculationsare then carried out at each field point
with each value of the order n in succession. Only
the last set of values (for maximun n) is printed.
Buar when the sum of three absolute fracrional
differences in parts per million for the quant-
ties B, B,, and A, as computed for the highest
order and a lower order n, exceeds ihe value of 1E,
the three diffevences ave printed out, and the
order n is identified. Such a check is reassuving in
critical cases but is hardly necessary except for very
precise calculations neatr the end face of any coil,
when higher Gaussian orders may be needed.
Normally the choice n=6 or even n = 4 is suthcient
for six-figure accuracy. In order to save machine
time, it may be useful to set up limited nets for
any highly critical regions, on separate NET
cards that call for higher orders, with NN > 1.

On MAP cards, 1E controls the precision with
which the trial points must fit the line. It expresses
the allowable magnitude in parts per 10* of the
initial interval between lines (at the starting plane
or c¢ylinder) of the last correction made to the
coordinate of a point.

MN, NDIL, NN.-These three felds control
the orders of Gaussian quadrature, which in
special cases may range up to.n = 16. The single
order n = 0, however, has been chosen as normal.
Any other desired single order is entered in MN
(minimum), with NN (numberof orders to be used
in succession) and NDL (increment) blank. TFor a
system of ideal solenoids alone, MN may be setto
1; but in fact the program supplies this value auto-
matically for each solenoid elemeni.

TRACE uses only one Gaussian order, which: is
deternuned by MN. This frees NDL and NN for
special uses. NDL controls the spacing of lines in
the field map. When NDL == 1, the lines intersect
the common line of origin (z == constant or p =
constant) at equal geometrical intervals, whereas
when NDL == 2, they mark oft’ equal increments
of the sclected field function that is constant along
each line. NN controls the number of attempts
to trace any given line. When convergence tails
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at any point on the line, two new tries are made
with the wtgerval halved ecach tume if NN > 2,
one try if NN = 2, none if NN -< 2.

NZ, NA, DLZ, 21, DLA, Al.—-These
defining parameters for the field net or map. On
NET cards N7, DLZ, and Z1 are the number of
values, the increment, and the initial value for z,

are

with corresponding A symbols for p. If both 71
and Al are blank, the net begins at the origin;
it all six are blank, it is restricted to the origin.

In the case of MAP cards, assume first that
MEK = —4, NDL = ( ) or 1. Then NA lines are
traced, intersecting the plane z = Z1 at equal
geomertrical intervals DLA, beginning at Al. Each

s

line is extended by a process of extrapolation and
correction, with the points spaced at z-interval DLZ.
It ends when the next extrapolated point falls
outside a region bounded by axial Umits 21 — 0.6
DLZ, 71 + (NZ + $3)DLZ, and by p limits of the
same form, with A substituted for Z. A later sec-
tion on subroutine TRACE discusses the devices
that allow it to tollow lines that may curve sharply,
may take on infinite or negative values of slope,
and ultiviately close on themselves. In the above
case, z is initially assigned as the mdependent
variable x, whicl is stepped by increments DLZ
while the dependent variable y == p is computed.
As the trace proceeds, the assigninents x =z, y=p
are interchanged as often as necessary. Uhe incre-
ment dx = DLZ remains constant. Also for con-
venience in manual plotting, the x-coordinate,
whether
DILZ.

if MK = —5, A should be read for 7 and con-
versely, in the preceding paragraph. Thus the
mitial assignment is x = p, y ==z, [f NDL == 2, the
region to be mapped is defined in the same way as
betore, but the lines now correspond to equal

z or p, is always an lntegral muliiple of

increments of the selected field function,

The Output Print. — The field net output prints
a heading for each value of p, while z appears in
the second column of each line, followed by B,,
B,, total magnitude |B|, the vector potential A,
flux pA, and d8,/9z. The first column shows the
mazximuam ovder MXN. The last three columns
contain monitoring information. M records the
maximum number of entries to subroutine JONES
for any coil-in the system. Normally M = 3n, the
sum ot the Gaussian orders. But when the field
point falls in the end zone of any coil or within.the
winding, though remote from the ends, the coil



is partitioned into from two to four (= m) coaxial
shells inn subroutine FIELD. The M count is then
increased to mXa.

‘t'he T count is the maximum value, for any coil,
of the number of iteratons through Fgs. (20),
averaged over all the 2mXn Gaussian sources
assigned to that coil. At points in an end zone
which lie very close to one or more of the equiva-
lent sources, the 1 count usually shows an increase.

The last column shows the smallest value of ¢
of Eq. (16), multiplied by 10°, that has entered the
calculations. It measures the closest approach of
the field point to any Gaussian source.

Subraitine KCARDS

A set of K cards may describe the geometry
ol a single systein or of a number of subsysteins
ot individual coils. The number of cards is defined
by the (+) MK citvy on the preceding START
card. The first four columns of the K card are
ignored by the program and may be used tor
indexing. Only one card is needed to dehine either
a pair of coils with mirror symmetry or a sym-
metrical pair with opposed currents, but the pio-
gram stores and counts the elements separately.
Each coil is described by five parameters, to which
a common subscript K is assigned, with dimension
40. The number of elemenis MXK 1is stored in
COMMON as an amended K count.

IS.—1S is uniquely a two-digit hield. The units
digit is a symmetry indicator: blank for a mirror
pair, | for a single coil, and 2 for an opposed pair.
The tens digit (colunni 5) is normally blank,

#T. R, Lyle, Phil. Mag. 3(6), 310 (1902). Lyle’s principle
may be restated as follows. The magnetic field of a cvlindrical
coil of moderately small axial breadth B and radial depth D is
nearly cqual. except at points quite close to the winding,
to that of a pair of ideal circular loops, cach carryving half the
total awrent. The loops cut the section at points displaced

fromn its effective central filament, in the divection of the longer
section dimension, by distances =8, where 8° = |B* — D?|/12.

The radius of the effective central filaiment is larger thaa the
geometrical mean radius 40, in the ratio [1+ (1/12) (L/A0)* ],
where L is the smaller of the dimensions B, D. ' B = D, the
effective radius is just the root-mean-square radius. Evidently.
it the section is square, the two hlaments coalesce.

This is a second-order principle. That is, if the feld is
represented by a series expansion, terms containing the tactors
(B/A0)* and (D/40)* are neglected. The principal ervor is due

approaches or exceeds 2, the coil should be subdivided.
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separating the A4 field from the numerical data,
but it has two special nses.

The entry 1 is used only with thick cylindrical
cotls (B and D nonzero). It causes the coil to be
replaced by the approximately equivalent Lyle
filament or pair of filaments™ in all NE'T and MAP
calculations. 'This option provides a much faster
way to map the fields of special systems, parti-
cularly in the design stages. It replaces the Gaus-
sian quadrature of FIELD, which for order n
requires at least 2n passes through JONES, with
its long iterations, by one or two passes through
tlie short series expansions of the FAP subroutine
LOOP. The Lyle shorteut for remote coils may be
combined with the full normal procedure for near-
by coils by punching column 5 on selected K cards
only. The precision may be checked in a iypical
case by compuiing a system that supcrposes on
one or more thick coils the negative of their Lyle
cquivalents. When any Lyle replacement has
been clfected, the entire stored description of the
magnetic system is reprinted with the changes
that hiave been made.

The entry 2 in column 5 identifies a magneto-
static dipole ring (p ring), while 3 1s used for a
magnetic charge or () ring. In either case, B=D =
{ ). There 15 no sj
but a thin p cylinder with uniform axial polari-
zation is cquivalent to a pair of opposed Q rings.
If the cylinder is centered on the midplane, it
may be entered as such a pair on a single K card
with 70 blank. A symmetric pair ot dipole cylindeis
reduces to four Q rings and requires two cards
(Z0 # 0.). In either case, IS == 32. In other cases
two cards are required for each p cylinder (IS =
31). An idealized thick p cylinder is entered as a
current systein, since it may be replaced by a pair
of ideal solenoids (D = 0.) with the same Z0 and B
but with opposed currents. For dipole rings with
conical polarization, the polar angle 8 in degrees
is entered in BZ1 (q.v.).

Magnetostatic clements of all types, together
with current elements, may be included in a single
system if the entries in the respective CD data
fields for magnetic charge, magnetic moment, and

ccial provision for cylinders,

current are expressed in compatible units (see
below). Contributions to B, or B, will then be
correctly summed in gauss for the complete
system. The vector poteniial 4 for axially polarized
p rings only (BZ1 = 0.) and the gradient 8,/
dz tor Q rings only are also computed and are



included in the summation for the system. For
all other types of magnetostatic element, however,
these two quantities are arbitrarily set to zero.

ZB, AB.~Both ficlds are blank except on a
K card that is the last of the set for a given sys-
ten, and on which BZ1 is nonzero. In such a case,
all the magnetic quantities computed for field
nets or maps tor that system are scaled in such
proportion that the function defined by columa
I'i of the START card takes on the value BZ1 at
the point z=78, p == AB, for example, at the origin
it both fields are blank. Note that these are six-
digit fields (FORMAT F6.4).

20, A0, B, D.—These parameters, all with sub-
script K, are respectively the z and p coordinates
of the central filament of a thick coil, its axial
breadth, and radial depth. The combination B ==
( ), B=( )identifies a circular filament or loop,
and B # 0, D = ( ) an ideal solenoid. B = (—),
D = 0 is a special code that calls for the self-
inductance of an ideal solenoid. The program sets
B == [B], calls SELF in the FAP section, prints the
self-inductance, and then stores the data for the
solenoid normally as part of the system.

CD.—Enter the volume current density of a
coil, the surface current density of a solenoid,
or the total current of a loop. The unit for current
is the ampere, but all magnetostatic quantities
use absolute electromagnetic units (emu). List in
CD the linear magnetic charge density for a
ving, or the linear, surface, or volume density of
magnetic moment for a dipole ring, cylindrical
sheet, ov thick cylinder. The units correspond,
in the case of a thin ring of ideal constant permea-
bility, to the relation CD = 4. BdS, where B is
the total local field, dS is the area of cross section,
and u, is the effective permeability, taking into
account demagnetization. The angle 8 of the

polarization vector is nearly the samme as that of

the rotal local field.

The unit of length for all parameters, includiug
linear, surface, or volume densitics, is the centi-
meter if IN is () or (+), the inch if it is ().
Subroutine FORCE does not deal with magneto-
static elements. For the designated pairs of current
elements, it prints both force and mutual induc-
tance, but since the first quantity depends on cur-
rent density and the second on turn density,
there is an extraneous factor in one or the other
unless the currvent is unity.

BZ1.—BZ! has two distinct functions. For
normalization of the field values, it is ignored
except on the K card whose serial number is
MK, that is, on the last card of a set. Here, if there
1s a nonzero entry in BZ1, it is equated to the value
of the particular field function that is defined in
column 11 of the START card at the point ZB,
AB. This is done by adjusting the current densities
so that the values of all field quantities throughout
the net are normalized in proportion. Ouly the
first line of print, which gives absolute field values
at the reference point, is computed with the orig-
inal set of current densities.

On any K card (identified by the entry 3 in col-
umn 5) that describes a magnetic dipole ring,
BZ1 1s read as B, the polar angle (in degrees) of
the magnetic moment. Only the exact entry +1.000°
is forbidden, since it would be decoded as a factor
for normalization if punched on the last K card of
a set, and ignored on any other card. It follows
that if a set of K cards must end with a dipole
ring, the field values can be normalized only to
the value unity at the reference point. To circum-
vent this trivial limitation, normalize to any value
by using a dummy end card which is included in
the MK count, but on which CD = ( ).

When MK cards have been processed, the pro-
gram returns to MP and proceeds as determined
by rhe sign of 1P,

Subroutine FORCE. The SEQ Card

FORCE is called before or after KCARDS by a
card in MP with IP negative. It reads in one or
more sequence (SEQ) cards, calls JONES to com-
pute force and mutual inductance for each of the
indicated pairs of elements, and prints the re-
sults before veurning to MP. This subroutine
does not presently accept loop or magnetostatic
elements. The SEQ card permits a varied selection
of coil pairs or the inclusion ot all possible pairs;
it prescribes the order or orders of Gaussian
quadrature to be used; and it defines rhe required
precision. The 14 fields provide a very tiexible set
of options, especially if more than one card is used.
But the code is so arranged thar a completely
blank card calls for calculations that include
without duplication every possible pairing of
coils. If the systemn has symmetry, some of these
combinations are redundant.



IR. —If this field is blank, there 1s a reiurn to
MP when the sequence i1s completed; an entry in
column 9 (units digit) indicates that a new SEQ
card is to be read. The tens and hundreds digits
are normally blank. They can be used o control
print options that have been retained trom the
testing stage of the program. A nonzero in the
tens digit calls out a line of print in FORCE which
was used to test the error resulting {rom very small
values of the modulus . Details are omitted, since
they can be read from a listing of the FORTRAN
program. Fromn the test it was concluded that &
should not be less than about 0.001. This i1s not
normally a significant restriction, since & 1s iwice
the ratio of the geometric mean of the radii p
and a of the field and source rings to the maximum
distance r, between any two points on them.

Any eniry from 1 to 4 in the hundreds digit
(column 7) is transterred to IP in COMMON,
where it produces a potential avalanche of printin
subroutine JONES (g.7.). It must be used with
caution, usually with a single pair of ideal sole-
ntoids ana with low Gaussian orders. This digit has
been placed for safety in a conspicuous and other-
wise unused column.

ND, MN, MXN. —These three fields, in which
blanks are read as 1, 3, and 16, set respectivelv
the mcrement, the mimimum, and the maximum
for the order of Gaussian quadraiure. Calcula-
tions for each pair start with order MN and are
repeated through order MXN or until the frac-
tional changes of ¥ and M (in parts per million)
from one order to the next are so small that the
sum ol their absolute values is less than the entry
in the field PPM. Only the end values are printed,
but to monitor the convergence there is a running
record of the changes i both F and M in parts
per million. The himit MXN is usually redundant,
since unless the coils are very close together the
orders 4, 5, or even 3, 4 will agree within the
“normal” hmit PPM = ( ) = 100. If either the
K or J element of a pair is an ideal solenoid, the
program reduces the Gaussian order to [ for that
element, while ND, MN, and MXN reuain their
defined valucs.

NK, K, K1, and NJ, JD, J1.--These are twin
sets used 1o designate subscripts K and |, both
properly K subscripts, that index the locations of
stored paramecters describing the two coils of a
pair. Members of ecach set are respectively the
number of coils in the set, the increment to K or

J. and its iniiial value. Blanks are read as MXK-1,
1, 1in the K set and MXK-1, 1, 2 i1 the } set. The
J sequence is stepped through for each successive
value of K, excepi that the coding enforces ihe
restrictions K < MXK, | < MXK -+ 1, and K < ],
regardless of what may be punched on the cards.
The maximum numniber of pairs is the product of
NK and NJ. It may be reduced by the enforced
restrictions, especially when | is stepped by an
entry in Fj (q.v.).

DJK. A blank herc calls for the matching of
the Gaussian orders, at each stage in the calcu-
lations, for the K and ] sets. That is, if the K coil
of any pair is replaced by n fictitious Gaussian
solenoids and the J coil by m solenoids, m = n +
DJK. It may happen that identical end planes of
two coils approach each other closely or may cven
coincide, as in the calculation of self-inductance or
of the mutual inductance and force between two
scctions of a coil cut by a transverse plane. Such
problems cammot be solved with matched orders,
since the case of coincident Gaussian solenoids is
indeterminate. The entry in DJK should then be
(+) and preferably odd, perhaps 3. If it1s even, all
orders must also be even, since every odd order

[
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generates one Gaussian source at a = AQ. In case
of an oversight, “Singularity” is printed as a warin-
ing. A mod
slow except in the case of coincident ideal sole-
noids, for which only one order is tested and the
result has no meaning. Apart from this necessary
use, variation of DJK provides another option for
checking critical cases.

FJ.—F]J, if blank, has no effect. If it is (+), the
initial subscript J1 for each successive ] set is
stepped by an increment equal to FJ. For example,
with MXK = 8, let NK = 3, KD =2, Kl =( ),
Nj =9 JD=( ) Jl =6, and F] = ( ). The K]
combinations are 16, 17, 36, 37, 56, and 57. If
F] = 1., the pairs are changed to 16, 17, 37, 38, and
h&.

[t can be scen that a blank SEQ card (conven-
iently labeled SEQ in columns 26} calls {or the
calculation of all the 1/2m(m — 1) possible pairs

erate error vesults and convergence 1s

in a system of m coils, but without duplication. The
entry FJ = 1. would not change the sequence,
since it merely repeats the restricion K > J.

Again, assume a system of 2m coils with a plane
of symmetry or anusymmetry, The number of
distinct combinations is reduced from m(2m — 1)
to m*. Arrange the coils in memory in the order



1,17, 2,2, ..., mm', where the prime denotes a
mirror image and any two pairs such as 137, 1'%
are equivalent. This order results automatically
from a set of m cards, each with IS=( )orI18S=2,
Evidently the true geometrical sequence is itrele-
vant. A study of the enforced restrictions and of
the conventions for blanks will show that the m?
distinet  combinations are defined without
dundancy by a card with the single entry KD = 2.
These two examples illustrate the versatility of
even a single SEQ card, when the many options
on the card are supplemented by the treedom of
ordering the K cards. ;
PPM. — PPM, if blank, is reset to 100. It 1s an
allowable error limit whose use has alrcady been
discussed.
EP.—This is a durnmy field.
The Output Print. —Mutual
printed in henries, force in newtons and in tons
(2000 1b), together with their fractional changes
from each order to the next, the initial order MN,
and values of the highest K order n and | order
m that were used.
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inductance is

Subroutine FIELD

This subroutine computes B,, B,, |B| (total),
A, pA, and aB,/dz for a complete systen, at a single
field point whose coordinates are z = 7(5), p == Al.
Elements of the system may be cylindrical coils,
wdeal solenoids, or loops including Lyle hlaments
and magnetostatic charge or dipole rings. All types
of element may be frecly mtermixed, with cor-
rect summation in the case of B, and B,. How-
ever, the following quantitics are computed as
zero and do not contribute to the summation over
the clements of a system: 4 and pA for rings of
magnetic charge, dB,/dz for dipole rvings, and all
three quantities for dipole rings whose magnetic
moment vector is not parallel to the axis. Con-
tributions from loops arve computed by calling
L.OOP in the FAP section, those from other ele-
ments by calling JONES. While computing the
contributions from an ideal solenoid, the program
drops the Gaussian order automatically to 1, ig-
noring the current value of the order n. Contri-
butions from thick coils normally use the single
order MN. If a succession of orders is prescribed
by entrics in the fields NDL and NN of the MP
data cards, any significant changes with increasing
order are reported as has been noted.

Either NET or MAP data cards for MP may be
punched without regard to whether the windings
intrude into the field region.

The coding assigns a field point, with respect to
each cylindrical coil in turn, to one of six classes,
depending on its location. If 1t lies outside the
winding and the end zones, the coil is treated as a
single unit. If it is inside but not in an end zone,
the coil 15 divided by a cylindrical wall passing
through the field point. If it lies in an end zone,
the coil is divided into 2, 3, or 4 cylindrical shells,
depending on the position of the field point with
respect to the cylindrical coil boundaries, and each
shell is replaced by a separate set of fictitious
Gaussian solenoids.

The considerations that require this complica-
tion are discussed at the end of Sect. 1. The coding
defines an end zone as a cylindrical shell of axial
length 2DZ, with inner and outer radii respec-
tively decreased and increased from those of the
coil by the mncrement 2DA, that is bisected by the
end plane. The increments may be set on the data
cards for MP, through the relations DA == 0.01p X
{D, D7 = DA X |IN|. But blanks in ID and IN
are read as 2, and punched values less than 2 are
ignored. It will rarely be necessary to increase
these limits. Though tests revealed small errors at
points near an end plane, which were reduced well
below one part o a thousand when either 1D or
|[IN]| was reset to 5, no detailed analysis of these
limits was made. For each coil pair, the sub-
scripts K and ] are printed with the mean 2-
coordinates ZO(K) and ZO(J) of the coils. The
average number of iterations through Egs. (20) is
also computed and printed (as I Ave.) for each
order, together with the smallest value of the ratio
¢' of ¥q. (16) that was found for any pair of fic-
titious Gaussian solenoid sources, muluplied by
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Subroutine TABLES

This short routine was written to test the itera-
tions in JONES and the series expansions in the
FAP sectiont by tabulating the elliptic integrals to
argument £ and the field compouoents generated
by single loop or solenoid sources at points of a
net. Comparisons were made with published
tables and between values of the same functions
as computed by the two subroutines. TABLES is
called by a START card with MK =-—1, =2, or —3.



It reads in one or more TAB cards of the same
format as K cards, but most of the fields are used
more nearly as in a NET card for MP.

IR.— A blank causes a return to MP for a new
START card after completing the assignment on
the current TAB card; IR = (+) calls for a new
TAB card.

FNZ, ¥FNA.These fields show respectively
the z and p counts, and their product is the number
of points in the net. These entries are functionally
integers.

Z(2).—7(2) in COMMON 1s a loop current or
the surface current density of a single ideal sole-
noid source. If (—), it is decoded as 1/2a,if () as
unity, while (+) values are taken literally.

A2.—This entry, which need not be punched if
it is unity, is the loop or solenoid radius.

DLZ, Zi, DLA, Al.—These complete the de-
scription of the field net, as in a NET card.

MK = —1 on the START card calls JONES,
followed by 1.LOOP, and prints two lines of field
values and elliptic integrals for each point (one
computed by each subroutine). Both routines
compute the integrals K and K - E and the sole-
noid fields B, and dB,/dz. One value is printed in
cach case directly below the other. MK = —2 calls
LOOP only, and it prints a single line. MK = -3
generates arguments for a table of K, K—E, and
E by decoding the field net in a special way. The
value of z/p is computed and is interpreted as
k', where %' is the complementary modulus.
Here p has usually the single value Al = 100,
1000, cte., while z is stepped by small increments.
The entry point to the FAP section is KANDE.

The FAP Section. GALSS, KANDE, LOOP, SELF

The iiile lists four entry points to a single FAP
subroutine. At the first entry to any of the four, for
each loading of the imachine, complete sets of
abscissas and  weight coefficients for Gaussian
numerical intcgration of orders N = 1 through
N = 16 are transterred to COMMON as the one-
dimensional array G. A range of 2N subscripts,
beginning with NG(N), is assigned to order N.
The index NG is a separate array. Each abscissa
has an odd-numbered subscript and is followed
immediately by the corresponding even-numbered
weight factor. The first pass through the FAP
section scts an internal switch, and GAUSS oper-
ates thereafter as a durnmy subroutine.
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KANDE (K and E) computes the elliptic inte-
grals K, K — E, and E, which it stores in the con-
secutive cells ¥(4,5,6). Itis entered after supplying
the quantity &' = (r/r;)* to F(7). The values are
computed in floating point from the Hastings
series approximations.'® The standard series is
used for K, but K — E is computed direcily rather
than E by using coefhcients obtained from the
standard K and £ series by subtraction. "T'his gives
more accurate values of K — Ewhen 2 and K —E
arc small, since the errors of the truncaied series
for K and for E oscillate in phase with each other.
E is calculated as K — (K — K).

LOOP computes B., B,,, A, and aB,/dz for a field
point at 0,p, and a circular loop at z.a. The field
components are stored consecutively mn F(1,2,3),
with the elliptic integrals K, K — F, and E in
F(4,5,6) as before, the maximum radius ry in Z(3),
and dB,/dz in F(8). Beforc entry, z must be placed
in Z(1), p in Al, e in A2, and the loop current in
2(2).

SELF calculates the self-inductance of an ideal
solenoid. It is entered with the lengih of the sole-
noid in Z(1), a in A2, and the square of the linear
turn density (CD?, multiplied by 2.54 when the
inch is used) in Z(2). The output value, expressed
in henries, is in Z({4).

LOOP and KANDE are completely independent
of JONES. LOOP is much faster than JONES for
computing any of the cight quantities in the last
two rows of Table 1, provided that no quantity in
the first two rows is needed. Subroutine FIELD
uses LOOP instead of JONES in NET or MAP
operations to compute all contributions from loops
or from Lyle equivalent loops. This substitution 1s
controlled by the switch B(K) = (). The existing
code does not compute the limiting case of a
pancake coil (B = 0, D > 0) directly, but only by
setting B < D. It could of course be domne directly
by Gaussian integration of field magnitudes com-

puted by LOOP.

Subroutine JONES

This subroutine carries out the iterations (19)
and (20) and computes from the end values all the
magnetic quantities listed in Table 1, with the
exception of B,(L). To control the number of
iterations, one more pass through both (19) and
(20) is programmed when a and g differ by less
than 1077, and onc more pass through (20)



alone when & differs from unity by the same
amount. The adequacy of this criterion was estab-
lished algebraically and confirmed by tests. The
iterations are counted in M5, from which the
average number of iterations is computed in sub-
routines FIELD and FORCE and printed out for
monitoring purposes.

JONES is called once by FIELD for each elemen-
tary Gaussian solenoid in NET or MAP operations,
and by FORCE for each elementary K — | pair.
Input parameters supplied through COMMON
are: Al = p, A2 = qa, Z(1) =z, L1 =1, 2, or 4.
JONES uses Eqgs. (14) through (26), of which the
last five express the magnetic properties of in-
dividual positive sources of unit strength. L1 is
the number of passes through JONES at each
entry; that is, L1 == 1 for a loop or single solenoid
end plane as in TABLES, L1 = 2 for a complete
solenoid element as in FIELD, and L1 = 4 in
FORCE, where there are four combinations of the
end planes tor each pair of solenoids. JONES com-
putes the quantities given by Eqs. (22) to (26) tor
cach source or source pair, and stores them in
COMMON with L. subscripts whose range is L1.
The subscripts are as follows: ¥(S,8), 1 to0 4; M(S,8),
bto 8 F(S,L), 9, 10; Bx(S), 11, 12; A(S), 13, 14;
B.(S), 15, 16; aB,/0z(S), 17, 18.

These values must be multiplied by a current
density or by the product of two carrent deuasities,
by Gaussian weight factors or by a product of two
such factors, by constants that appear in the
equations, and by others that depend on the
chosen units. All these operations are performed
in MP or in the calling subroutines.

There is no direct print from this routine unless
IP has been set 10 a positive value (call it 1.2). The
value +L2 calls for the printing of @, p, z, 7, 11— K,
B2 K—E K, B, A, B,, and aB,/0z (all for solenoid
sources), from L =1 through L = (L1 or L2, the
lesser). Since a normal program may require tens
of thousands of passes through JONES, the in-
cautious user of this monitoring print option will
find himself in the same plight as the Sorcerer’s
Apprentice. For this reason, though IP is entered
by one field of the MP data card, it is used only for
other print options and is reset to zero immediately.
Only column 7 of the SEQ card, which is well
protected from inadvertent use, can call forth this
flood; for test purposes, however, it is easy to sct
IP in any short exploratory program.
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Subroutine TRACE

As was stated at the beginning of the section,
TRACE exists in a restricted version that maps
only lines of force (p4 = constant) and also in a
more general form to plot lod of the constant
values of B,, total |B], etc. TRACE is called and
supplied with data by a MAP card in MP on which
MK is punched —4 or —5. Either routine traces the
lines of force if column 11 is blank, but if one of
the digits 2-6 is entered here, the general routine
maps a different function, as has been previously
listed.

At each trial point, TRACE calls FIELD for the
local value of the ficld function. The restricted
version calls also for B, and B, whose ratio defines
the slope of the line and whose values readily yield
the derivatives of pA4. The general version is esti-
mated to require from 50 to 70% more time, since
it must find the rates of change by actual wial or
by extrapolation and interpolation procedures.

Since the calculation of magnetic-field quantities
at closely spaced points, even in a simple system,
takes far more time than any set of interpolations
or extrapolations that may permit the use of a
larger interval, a reasonable degree of refinement
in the trial-and-error tracing procedure is justified.
Moreover, a line 1s easily lost if it curves sharply or
if' its slope passes through infinity and reverses
sign. Finally, for manual plotting it is a great con-
venience if one coordinate is always an integral
multiple of some simple unit.

TRACE uses x as the independent and y as the

dependent variable. Lines arve started from points

Xg, ¥y, Where x, 1s constant and y, is stepped, and
are continued with an interval Ax between points.
Usually MK = -4, which sets x =y, y = p initiaily,
but if MK == -5, the variables are interchanged.
This is necessary, for example, when it is desired
to map lines of force near a plane of antisymmetry,
since pA = 0 at all points in the plane, and the near-
by lines run at nearly 90° to the axis.

In the restricted version, y; for the second point
on any line of force is first estimated from y, and
the initial slope B,/B,. To improve this value, and
in all calculations for later points, the derivative
a(pA)[dy, as computed from B, or £,, is used. The



general version must use instead a differential
quotient of the selected funciion f, as computed
directly from Ay and Af. Here, tor the first trial
made on the second point, y, 1s equated to y, and
Ay 1o EPS. For subsequent operations an estimate
of Ay is always available, and EPS serves only asan
cerror limit. It 1s determined by IE on the MAP
card and is normally 0.001 of the initial interval
between lines.

In both programs the first guess is refined by
successive approximations, computing cach new
Ay from the error Af and the last known deriva-
tive or differential quotient. Actually, in the
resiricted  version the rate of convergence is
significantly improved by using both rates of
change. This gives an indication of curvature. In
other words, Ay is estimated at each step from two
values each of ¥y and f and a derivative, which
means that a parabolic rather than a linear inverse
interpolation is made. The iteration count is
limited to 6; that is, six tries are allowed to reach a
value of Ay that is less than EPS.

As successive firm points are cstablished, the
first guess for the next point is made to depend on
a 2-, 3-, and eventually a 4-point Lagrangian
extrapolaiion. In the general version only, the
values of Af/Ay ac the latest three points are
similarly used to extrapolate an estimate of the
derivative. In this case it scems to be necessary to
cnsure at least one firm value of Af/Ay at each
point by imposing a lower limit of 2 on the itera-
tion count. Also, both routines enforce an upper
limit to the magnitude of Ay equal to the initial
value of Ax.

A detailed record is kept of the successive cor-
rections, and these are usually printed for inspec-
tion by making a (+) entry in IP. When the interval
Ax is not excessive, the average iteration count is
only slightly greater than 2 after the frst four
points, when the general routine is used, and it
often falls nearly to 1 in the restricted version. In
either case it may rise to 3 or 4 if the interval is
large, or in any event when the line curves sharply
or crosses a coil boundary. When the count passes
6,if NN = { ) or 1, the firm points are listed, and
tracing of the next line starts. If NN =2 or 3, one
or two new tries are made on the same line, but
with the interval Ax halved each time. The line is
not retraced from the starting point if there are
as many as three firmn points. Two ncw points are

first interpolated and improved, midway in the
last two intervals, and tracing is resumed with a
normal four-point extrapolation by using the new
points and the lasi two from the old set.

Besides the extrapolations that have been de-
scribed, from the fourth point onward, there is
also a three-point extrapolation o estiraic the line
slope dy/dx. A predicted slope greater than 2 is
z and p with re-
by stepping the
. The new secries

rcad as a warning to interchange
spect to x and y and to continue
previously dependent coordinaic
must overlap the old, and its independent co-
ordinates are required to be integral muliiples of
Ax. Its first three points are estimated by three-
point inverse interpolation, and they are refined
as beforc by successive approximations. For the
refinement process, the general routine requires
also an initial estimate of df/dx at each of the three
poiitts. The notation here preserves the original
meanings of x and y, before the turnover. The
derivatives are estimated from the relation

affax = —(affav) X (dyfax).

The two factors on the right are found from the
inversely interpolated estimate of x, by using
respectively a four-point direct function inter-
polation with remembered values of Aff/Ay and a
four-point direct slope interpolation with remem-
bered values of y. The normal tracing procedure is
now resumed, starting with a three-point extrap-
olation from the three new firm points.

The optioni NDL = 2 causes lines to be traced
at a constant interval of the selected function,
rather than with uniform z or p spacing. In this
case the starting points, NA or NZ in number, are
first set up exactly as before, and the function is
computed at each point. These figures are used
to locate NA-2 or NZ-2 new points that mark off
equal increments between the extreme values of
the funciion. These intermediate starting poinis
are established as usual by successive refinements,
and NA or NZ lines are then traced through the
full set. There is currently no provision for tracing
lines with preset values of the function or with
prescribed increments to it.

Although methods of interpolation are well
known, the appropriate formula is not always at
hand. The following equations are used for inter-
polation or extrapolation, to find the function
ty at the point yp = y, + 64, where £ 1s the constant
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interval, and 81s a proper fraction forinterpolation
in the positive unit range y, to y,, a negative or
improper fraction for extrapolation outside this
range.
< 3 . . .
For four-peint full-interval function extrapola-
tion (6 = 2),

fo= 4fl —ofy+ 4"ff—l_f--2 .

Formulas for other orders are obvious, since they
use only the binomial coeflicients.

For three-point full-interval slope extrapolation
(0==2),

sy = Yy (5f) — Sfu + 3f,1) .

For three-point inverse interpolation,®

r=2fo = f)Ith —f1) s
s = (2fg ~ fi = )~ 1) s
8= r(((Srs+2)rs +1)rs+ 1) .

The last equation has been arranged in the stand-
ard form for computing a power series, with the
parentheses grouped as in FORTRAN. This short-
range series approximation is more convenient
than an exact parabolic inverse interpolation for
the routine improvement of estimated y-coor-
dinates. But for the initial estimate of the y-inter-
cepts that mark off equal increments of the func-

. E. Salzer, Natl. Bur. Std. Appl. Math. Ser. 30 (1949).

tion to be mapped, it is better to solve the quadratic
equation

af® + bb+c=0,

where
a=,(fu =2 +1f) .
b= ‘/2(4f1 o 3ﬁ1 fz) ’
e fo—fo -

This procedure works well over a wider range than
the preceding method if the higher devivatives of
the curve are not too large. The algebraic sign
betore the rvadical in the quadratic formula may
have to he reversed from one point to the next, to
select the physically valid root. In the absence of
an obvious test, the sign is arbitrarily set (+). If the
resulting estimate places y outside the prescribed
range, it is diminished by twice the magnitude of
the square root.

For four-point irderpolation at fractional
interval 8, let 8, =1+4+6,0, =248, and 8;=1—8.
Then

6f) = 00,8,/, + 30,0,0.f, — 300,06, + 00,0 .

When 8 == 2, this formula reduces to the full-
interval extrapolation above.

For four-point interpolation of the slope f at
fractonal interval 6,

6hfy = (302 — 1)f, — (90° + 120 — 3)f,
4+ (962 — 120, — 3)f, — (367 — 1)f_, .
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Toble 2. Guide ta COMMOMN Storage

Dimensions Begin Symbel End Use"

Open end Qor DY 76 207 Storage for optional priut
40 76 210 PH 257 Polar angle of moein vector
40 260 1Q 327 Indicator for magnetostatic element
B 330 L. 334 Not presently used
NDI. 335 Switch location for TRACE
N/ 336 Number of z values in field net
NA 337 Number of p values (or flux lines)
MXK 310 Number of coils in system
MXN 341 Maxiinuin Gaussian order
MN RES Minimum Gaussian order
M6 343
M4 344
M3 345 Various count and switch operations
M2 346
11 76 347
10 76 350 CD 417 Current density or turir density
0 420 D 467 Radial depth of coil
40 470 B 537 Axial breadih of coil
40 540 A0 607 Mean radius of coil
40 610 70 657 Mean axial coordinate of coil
36 660 FR 723 Mutual inductance values
8 76 724 7 733 Axial coordinaies (relative)
L] 734 Number of z values per entry to JONES
M5 735 Various counts
Al 736 Solenoid radius «
Al 737 Field point radius p
24 76 740 FS 76 767 Force or hield values
24 76 770 F 77 017 F, M, or field values, for single
source pairs or single sources
272 77 020 G 437 Gaussian coeflicients (16 orders)
16 440 NG 457 Indexing for Gaussian coeflicients
e 460 Print options
N 77 461 Gausstan order

are stored in the range Z through F for use in FIELD.
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Format, Code, and
Card Names

Columns 7—18

FORMAT 194
(A6, 1013, 4F9.4)

START, NET,
MAP, or FORCE Card

FORMAT 126
(A4, 12, 2F6.4, 6F9.4)

TABLES

TAB Card

9)

()
(IR)

( ) Return to MP

(+) Read new SEQ) card
(Or print options)

(+, column 7) JONES

(+, column 8) FORCE

(MK)

~5, —4 MAP card

—3, =2, —1 TAB card

( ) FORCE or new NET

(+) FORCE or NET
(number of K cards)

1 to 4 (column 7)°

(6)

()
(IR)

( ) Return to MP
(+) New TAB card

()
(I8)

() Mirror pair
(1) Single coil

(2) Opposed pair
(+) (column 5)¢

()=1
(+) Increment to
Gaussian order

(IN)

()=+2
(—) Inch unit
(+) Centimeter unit
|IN| (in FIELD)
Ratio DZ/DA
I to 6 (column 11)°

(8)

-

)
FNZ

(+) Number of
z values

(ZB)

Reference
value of z
(if BZ1 # 0.)

(13) (18
() ()
(MN) (MXN)
()=3 ()=16
(+) Minimum (+) Maximum

Gauyssian order

() )
(IP) (ID)
(=) FORCE card (y=9

(+) (In FIELD)
Ratio DA/A1
in percent

(+) Optional print
(in MP or TRACE)

1)
)
FNA

(+) Number of
p values

(AB)

Reference
value of p
(ifBZ1 # 0.)

Gaussian order

“Normalize NET to maximum value of field function if column 7 is 1 or 3, minimum value if it is 2 or 4. Shift NET origin to the point of maxi

7 is 3 or 4.

*Column 11 (NET) selects field function for normalization: () or 1,8,; 2,B,; 3,4; 4,|B|; 5,p4; 6,0B,/3z. [MAP selects same function, except (

“(1) in columm 5 causes a cylindrical coil to be replaced by the “equivalent” Lyle filaments. (2) in column 5 identifies a magnetostatic dipole
Q ring. For a dipole ring, enter polar angle in degrees in BZ1.



Table 3.

Qutline of Data-Card Fields

Format, Code, and Columns 7—18
Columns 18-27
Card Names Columns 28-36 Columns 37—45 Columns 46—54 Columns 55—63 Columns §4—72
FORMAT 194 9) (12) 15
(A5, 1013, 4F9.4) il (8 en (S @n 30 (33) (36) 1) (50
) (59) (68)
FORCE | ((m)) <£Jr)>) "ix\)n () ) () Oy
—_— 6 M N 3 . :
' (XN &9 (KD) &D ~N] (D) ) @ 5 fon o
SEQ Card { ) Rewrn to MP O=1 (y=s s . 1 J S (PPM) (ERY)
{(+) Read new SEQ card (+) Increment to I-L) Minimum E—f-; \'Ila(:cimum E+;;MXI\ _fl ¢ )T ! =l ()=MXK =1 (=1 : ‘ )=2 () Maich 1
. N T : 1 h umber o (+) Increment {-) Mini iumt . : == < { & =10C
“ (:Zo)}'u}::nm’] ?gtg‘ggs Gaussian order Gaussian order Gaussian order coiis in { wk o vall:len.:)ufn}‘( &) ;‘;l:':’;r of ) ll_ﬂjremenz ; {+) Minimum Caussian orders :+; ése;‘);;s an (H'g Ef,[ff; fimit () Dummy
M * q o < N N
(+ cohumn 8) FORCE K set § ser value of J @ ;‘;;::“a‘::}? s with K x 108
MAIN PROGRAM
R ) () ) )
ME) (1) 15) . o () ()
¢ (D) (£} (MN) {NDL) (NN) (NZ) ‘ Ay o12) () )
START, NET, —5, —4 MAP card ()=+2 (-) FORCE card (y=2 (=10 (y=6 (=1 Cym | (Z]) (DLA) (A1)
MAP, or FORCE Card =3, —2,—1 TAB card (-} Inch unit (+) Oprional pri Error Yimi | Mini = ()= ()=1 i = -
’ » . ) ° print {+) (In FIELD) (+) Error limit {F) Minimum (+) Increment +) Numt - : (1=1 (+) lncrement Initial value In .
2_‘3 igggg :— :?TNET + Cerjmmeu:r unit (in MP or TRACE) Ratio DA/AL X 108 (NET) Gaussian " to order {NET) ® ;r‘:l:]r:c (‘:\v‘j‘sf'r) ) l:‘:‘;ﬁ: o1 () Number of wz of z # wc;emem ) i:]‘::lo ‘
(humber uf‘K cards) 'XMR(HI"H;Z/%)A in percent % 10* {MAP} order {2} MAP at equai Number of {points or ‘ f s (2 Only iENZ= () { ) Onlyif .
atio i . ints .
1 to 4 {column 7)° 1 to & (column £1)® ;?c"];ﬂal;g;nh tries (MAP) MAP lines) ‘\,}P:)\l; lir(\)ers) NA=()
FORMAT 126 {6) ®) 14 (23
(A4, 12, 2F6.4, 6F9.4) 23) 59 an 50 (
: 59) (68)
TABLES ((‘ni) ) ) I
FNZ FNA (9 () \
’—— Z@n . A nLZ ((21)) %
TAB Card t+; I}':elur; 1;% MPd {+) Number of (+) Number of =) = li2w =1 DLA (Al
ew cart z values p values ()=t =i As above As above
(+) Current density {+) Radius of loop As abave As above
KCARDS ) () ) )
- (s
1s) @3) (48) @ A0 ® 7
. . D) (CD
( ) Mirror pair Reference Reference ; { (D) (BZ1)
(1} Single coil e vl of o Mean z of section Mean p of section Axial breadth Radial depth :
(2} Opposed pair (fBZ1+#0.) (ifBZI%0) of coil section of coil section §+)) ;;é'nltude or () Do not.
B={-}, D=0.cali SELF - normalize

) (column 5)°

aNormalize NET to maximum value of field function if column 7 is 1

7is3or4.

oColumn 11 (NET) seiects field function for normatization: ( )orl,By;

(1) in column 5 causes a cylindrical coil to be replaced by the “equivatent” Lyle fil
Q ring. For a dipole ring, enter polar angle in degrees in BZ1.

or 8, minimum value if itis 2 or 4. Shift NET origin to the point of maximum or minimum vaiue if column

2,Bp: 3,41 4,18|; 5,04; 6,0B,/3z. [MAP selects same function, except { ) is decoded as 5].
taments. (2) in column 5 identifies a magnetostatic dipole or p ring, (3) a magnetic charge or

density of
current, turn
count, magnetic
charge, moment

(3 Set field
function to this
value at ZB, AB?
Seet
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8-27.
28.
29.
30.
3.
32.
33.
34.

35-44.
45.
46.

24

ORNL-3575
UC-32 — Mathematics and Computers
TiD-4500 (38th ed.)

INTERNAL DISTRIBUTION

Biology Library 47. C. E. Larson

Central Research Library 48. R. S, Lord

Reactor Division Library 49. Gordon R. Love

ORNL — Y-12 Technical Library 50. J. A. Martin

Document Reference Section 51. H. G. MacPherson
Laboratory Records Department 52. S. W. Mosko

Laboratory Records, ORNL R.C. 53-57. C. E. Parker

J. A, Auxier 58-59. R. B. Parker

P. R. Bell 60. A. H. Snell

E. G. Bohlmann 61. M. J. Skinner

W. R. Busing 62. A. M. Weinberg

D. L. Coffey 63-137. M. W. Garrett (consultant)
C. V. Dodd 138. H. Grad (consultant)

W. F. Gauster 139. H. Heckrotte (consultant)
R. P. Jernigan 140. D. J. Rose (consultant)
Troyce Jones

141.
142,

143.
144.
145.
146-759.

EXTERNAL DISTRIBUTION

R. J. Mackin, Jr., Jet Propulsion Laboratory

E. P. Gray, Applied Physics Laboratory, Johns Hopkins University,
8621 Georgia Avenue, Silver Spring, Maryland

A. E. Ruark, U.S. Atomic Energy Commission, Washington

W. C. Gough, U.S. Atomic Energy Commission, Washington

Research and Development Division, AEC, ORO

Given distribution as shown in TID-4500 (38th ed.) under Mathematics
and Computers category (75 copies — CFSTI)



