





ORNL-3688

Contract No. W-7405-eng-26

Mathematics Division

SOME ALGORITHMS FOR THE CALCULATION OF THE CHARACTERISTIC

ROOTS AND VECTORS OF A NORMALIZABLE MATRIX

D. H. Clanton

Submitted as a thesis to the Graduate Faculty of Auburn University in
partial fulfillment of the requirements for the degree of Doctor of
Philosophy

OCTOBER 1964

OAK RIDGE NATIONAL. LABORATORY
Qak Ridge, Tennessee
operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION

OAK RIDGE NATIONAL

_ [T

. 3 445L 0548328 7







ABSTRACT

This thesis presents, for a normalizable matrix A of order n,
different algorithms for the development of a sequence of normalized
vectors q(l) (¢ =0, 1, 2, ...) such that the centers of their associ-
ated Weinstein disks are the Rayleigh quotients, q(z)H A q(l). If the
radii of the Weinstein disks approach zero as a limit, then the Rayleigh
quotients associated with the sequence of vectors converge to a charac-
teristic root of A.

In Chapter II, a new vector q(z+l) is chosen from a subspace spanned
by a set of mutually orthogonal vectors that contains the o0ld vector q(!).
The radius of the Weinstein disk associated with this vector q(!+l) will
not be larger than the radius of the one associated with q(l) and will,
in general, be smaller. The condition that the radii of the Weinstein
disks converge to zero is presented.

Algorithms are discussed in Chapter II for the subspace of dimension
two. In Chapter IV it is shown that the simplest algorithm from the stand-
point of operational count does not always yield vectors whose associated
Rayleigh quotients converge to a characteristic root of A.

The algorithm for a normal matrix in Chapter V always yields vectors
whose associated Rayleigh quotients converge to a characteristic root of
A with one exception. If a Weinstein disk has two or more characteristic
roots on its boundary, then the algorithm will not yield a new vector.
Any algorithm, however, that belongs to the class of algorithms presented
in Chapter II will also have the same exception. In the case of a her-

mitian matrix, a method is presented that will take care of the exception.
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I. INTRODUCTION

An inclusion region for a given matrix A of order n is a region of
the complex plane that contains at least one characteristic root of A.
Inclusion regions will be considered here only for matrices that are
normalizeble; that is, they are similar to a normal matrix and hence
similar to a diagonal matrix.

Bauer and Householder [1] proved that associated with any nonnull
vector q there is a family of inclusion disks which contains a minimum
disk. If A is hermitian, the minimum disk was obtained by Weinstein (3].
Henceforth, the minimum disk belonging to a vector q will be called a

Weinstein disk. The center of a wWeinstein disk is the Rayleigh quotient

qd'Ad/a’q
where the superscript "H" signifies the transposed conjugate. If q is
a characteristic vector of A, then the Rayleigh quotient is the charac-
teristic root of A that is associated with the vector q.
A class of algorithms for developing a sequence of vectors

q(‘) (¢ =0, 1, 2, ...) such that their associated Weinstein disks are

decreasing is presented in Chapter II. Each algorithm is a method of

(r + 1)

choosing a vector q from a subspace of dimension m(m =< n) which

is spanned by a set of mutually orthogonal vectors that contains the

vector q(l). And the radius of the Weinstein disk associated with the

(2 +1)

vector q will not be larger than the radius of the one associated

with q(l), and will in general be smaller.

(r +1)

In Chapter III, the subspace from which q is chosen is

assumed to be a plane. An algorithm is developed in Chapter IV which




is most desirable from the standpoint of operational count. In this
algorithm, however, the radii of the Weinstein disks may not approach
zero in the limit, and this method does not always yield a charac-
teristic root and vector of A.

The algorithm in Chapter V always yields a sequence of Welnstein
disks whose radii converge to zero with one exception. If a Weinstein
disk contains two or more characteristic roots on its boundary, then the
algorithm will not yield a new vector. It is proved, however, that sany
algorithm which belongs to the class of algorithms in Chapter II will
also have this same difficulty regardless of the dimension of the
subspace.

The gradient method of Hestenes and Karush [2] for finding the
characteristic roots and vectors of a real symmetric matrix is somewhat

analogous to the methods presented here. They choose a vector q(! +1)

(1) (1)

from the plane determined by q and Aq so that the Rayleigh quotient

(£ +1) is always smaller (larger) than the previous ones

formed by q
formed by q(k) (k =0, 1, 2, ... £). Thus, they form a monotonic
decreasing (increasing) sequence of Rayleigh quotients instead of a
monotonic decreasing (increasing) sequence of inclusion disks which the
methods presented here use. Their methods, also, give convergence only
to an extreme characteristic root of a real symmetric matrix, but the
method presented in Chapter V may give convergence to any characteristic
root of a normal matrix.

The following definitions and theorems will be used in the remainder

of the paper. The Euclidean vector norm,




M = H)2
and the spectral matrix norm,

llall

1
)
m?x (xi)

where xi(i =1, 2, ..., n) is a characteristic root of the matrix
AH A, will be the only norms considered. All vectors v will be column
vectors.

Let P be any matrix that diagonalizes A; that is, let

A=PAP?

where

A=ﬁ%(%,%,n”ad.

Define Kk by

-1
I

x = x(A) = gtv |P]| [P (1.1)

where P diagnolizes A. Then Kk = 1 since

1=zl =fle 2 = |p) IP7H = « -

For normal matrices K = 1 since P can be chosen unitary.

Let Vo be any nonnull vector. Then the Krylov sequence of vectors

is defined by



The scalar products

are called moments. Consequently, E&j = “31‘
The following definitions from Bauer and Householder {1] will Dbe

used. Two polynomials a(A) and B(A) are called mutually orthogonal

(with respect to A and vo) if a(A) v, end B(A) v, are orthogonal vectors;

that is, if
(B(8) vo)® (a(n) vp) =0 -

The norm of a(A) (with respect to A and vo) is defined to be |l(A) vo”.

The sequence of monic polynomials

v
o1
M) =1, @A) =r -5,
00
N\
oo Ho1 Hov
?, (A) = det det M . (1.2)
Hy-1,0 HPv-r,n 000 Meal,w
1 A . zY
where
oo o1 rr Ho,va

MV-1= LR A B A B I B O A BC R B I I I B B RE I B B A ]

Hy1,0 Hvar,n o0 “v-l,v-l/



is a sequence of mutually orthogonal polynomials with respect to A and

Vy+ For the polynomial ¢v(x) is orthogonal to A’ for all o < v since
oo o1 e Ho,v-1
H GH 8@ 2 5 0 9 8 8 PO 8P L0 e H O e e
vy A @v(A) vy = det det M , =0
Hy-1,0 HPv-1,1 0 Myei,val
0 p'cr,l ot Pov-l //

because, for ¢ < v, the last row of the above determinant is the same as
one of the other rows. Therefore, @v(x) is orthogonal to any polynomial

of degree less than v, and the vectors
p, = @,(4) p,

where PO = Vg are mutually orthogonal.
The following two theorems are proved in [1].
Theorem 1.1. Let the matrix A be normalizable, and let a(\) and

B(\) be any two polynomials. Then

{x : %—8:—;— sx{%—&—;—%}’»} (1.3)

is an inclusion region, where k is defined by (1.1) and where v is any

nonnull vector.
Theorem 1l.2. Among all polynomials of degree v and with leading
coefficient unity, the polynomial @ (\) has minimal norm, and hence

minimizes the right member of (1.3) for a given B(\).




II. ALGORITHMS

Let A be a normalizable matrix and let g be a normalized vector; that
is, let

v

q =7

vl

so that “q“ = 1.
In the rest of the paper let B8(XA) = 1 and let

a(r) = ¢ (A) = A=ng,

where @l(x) is the linear polynomial in the orthogonal set determined by A

and gq. The inclusion region (1.3) thus becomes

{x: |y = xll(A-uOlI)qll} (2.1)

which is an inclusion disk with center “Ol and radius

p = &l (A-p D)l

From Theorem 1.2, it follows that (2.1) is the smallest inclusion
region for the vector q and for a linear polynomial, or, in other words,
(2.1) is the Weinstein disk belonging to q.

Since Theorem 1.1 states that (2.1) is an inclusion region for any
nonnull vector q there may exist a normalized vector q(l) which will yield
a radius

7 = Iamny, eV

such that

y<p e (2.2)

If a q(l) satisfying (2.2) is found, the inclusion disk

{x: A=y, b K“(A-uOlI)q(l)N} (2.3)



will be concentric with the disk (2.1) and will be contained in it.

By Theorem 1.2, the inclusion disk

{x:I}\-uOl(l)IS“(A-uOl(l)I)q(l)”} (2.4)

where

Moo = = 4
will be smaller than the disk (2.3). The disk (2.4) is not in general con-
centric with the disks (2.1) and (2.3). A later theorem, however, will
show that the center of (2.4) will be interior to the disks (2.1) and (2.3).

More generally, let

2,0 = g, (2:5)

be the linear polynmomial in the orthogonal set determined by the matrix A

(1) (1)

and a normalized vector g That is “Ol satisfies the following rela-
tion:
H
(e) _ _(&)7, (1)
()" (1)
with q q = 1. Henceforth, the superscript "£" on a symbol will mean

(2)

the symbol is defined in terms of the vector g .

Obviously, a decreasing sequence of inclusion disks could be attained

()

if a sequence of vectors q could be found which yield a decreasing se-

(£)

quence of norms. That is, if there exists a sequence g of vectors such

that for all 1

I Camioy D10l i, D), (2.6)




then the sequence of inclusion disks
2 )4 )4
{x:lx-uOl( )| =l (A-uOl( )14 )ll} (1=0,1,2,...)

is decreasing. The following theorem gives a method of determining such a
sequence.

Theorem 2.1. Let A be a normalizable matrix of order n, and let g be

a normalized vector. If WO is an n by m (n=m) matrix of orthonormal col-

umns with q as the first column and if

oM - W (2.7)

where WO 1s the normalized characteristic vector associated with the small-

est characteristic root of the positive semidefinite matrix

Q= (¢ (&)W ) (o (a)w ) (2.8)

14

then

1 1
o, a)a M =lip, (a)al
If the smallest characteristic root of QO is a simple root, then equality
will hold only if (1) =
Yy q = Qe
Proof: ILet u be any normalized vector with m elements. Then as u

varies the minimum of

o, (8) pull (2.9)
cannot be greater than
o, (a)all
since u can be chosen so that
q = Wu. (2.10)



Now

-

oy (&) Wy ull = ;iuH(cpl (8) )" (2, (A) W,) u} :, (2.11)

which is the square root of the Rayleigh quotient formed by the vector
u and the hermitian matrix QO. Hence, a minimum of (2.11) will be the
smallest characteristic root of the matrix QO since the Rayleigh quotient
of a hermitian matrix lies on the closed segment between the least and

greatest characteristic roots. The minimum will be obtained when

where wo is the normalized, characteristic vector belonging to the

smallest characteristic root of Qo. Consequently,

o, ) oMl = flo, (a) al (2.12)

where q(l) is the vector (2.7). But
o, 1) (a) oM = o, (1) oV

by Theorem 1.2. Hence,

lo, M ()« = flo, (a) all - (2.13)

It follows from (2.10) that equality in (2.12) implies q'1) = q

since w,. is unique if the smallest characteristic root of the matrix Qo

0
(1) _

is a simple root. A fortiori, equality in (2.13) implies g q.

Now if

o

=Wy vy £ a
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(1)

then, by the use of q in place of q, the method described in the

above theorem yields a normalized vector

(2) _
q 1Y

with the property

@ (a) o) = o, (a) P

lloy

lloy

(2) (1) (3)

Then q can be used in place of q to obtain a vector q .  Thus,

the method of Theorem 2.1 can be repeated to yield a sequence of vectors

whose associated Weinstein disks are monotonic decreasing. If for all

L, q(z) # q(z+l), then the radii of the Weinstein disks are strictly

monotonic decreasing.

For each choice of the number of columns of wz and for each method

of determining the orthonormal columns of the matrix W, the above pro-

1

cedure is an algorithm which generates a sequence of normalized vectors

) _ 4

q 1.1 Yio1 (¢=0,1,2, ...) (2.1%4)

with the initial vector

The vectors (2.14%) will also satisfy condition (2.6); that is,

Wy ()= e, ) () o)

lloy llp;

for each £. In the remainder of the paper the discussion will be
restricted to those algorithms that have the property that the smallest

characteristic root of Q, is a simple root. Equality in (2.6) will
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thus hold only if q(l+l) = q(l). A vector q(l) which, when used in the
algorithm, does not yield a new vector will be called a "stationary
vector."

Theorem 2.2. Let A be a normalizable matrix of order n, and let
q be a given normalized vector. For the vectors (2.14) and the poly-

nomials (2.5) form the inclusion regions

R, ={x o ) 01 = e, () (a) q‘”n} . (2.15)
Then (1) as £ increases (£ =0, 1, 2, ...), the sequence R, will decrease
as long as
o8 £ g(t+1) (2.16)
(2) if
1 o, ) (a) o) -0, (2.17)
l o
then
ll-i.mw “01(” =czJ (2.18)

where @, is a characteristic root of A.

J
Proof: The proof of (1) follows immediately since the algorithm
which gives the vector (2.14) insures that the radius of (2.15) will

decrease as long as (2.16) holds.

Since (2.17) implies

1m o, 01 = 1 - uy -0

- l =+ o

0
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it follows that condition (2.18) holds when condition (2.17) is true.

If

i(a - uOl(‘) 1 -0, (2.19)

(1)

then q is a characteristic vector of A since the norm of a vector is

zero if and only if the vector is null and since (2.19) implies that

(A - “01(1) I) q(‘) =0 . (2.20)

(¢)

is the characteristic vector of A associated with the charac-

(1)
1

Thus q

teristic root uo

Consequently, if the initial vector or a computed vector q

(£) is a
characteristic vector of A, then the algorithm will not yield a new
vector since (2.19) would hold. In summary, characteristic vectors of

A are stationary vectors.

Theorem 2.3. If q(t) is a stationary vector, that is, if

(£) _ (+1) _

q (2.21)

1-1 Y1-1

then the matrix

) = (5,1) () wt_l>H o, ) (a) Wz—1> (2.22)

is null in the first row and first column, except in the diagonal

position. By definition the matrix W contains q(l) as its first

-1

column.

Proof: Since the column vectors of wl-l are mutually orthogonal,

(2.21) implies that



where e. is the first column vector of the identity matrix. Thus e

1 1

is a characteristic vector of Q(!). In other words, the matrix Q(l)
will be null in the first column except in the diagonal position. The
off-diagonal elements of the first row will also be zero since the

(2)

matrix Q is hermitian.
Theorem 2.4. If the algorithm is such that the sequence of
matrices W, (t =0, 1, 2, ...) has a limit W; that is if
lim W, =W, (2.23)
] = o
then q, the first column of W, is a stationary vector of the algorithm
and

g = 1m o) . (2.24)

] +» >

(l) is the first column of W,.

Proof: (2.24) is true since each gq '

The result in (2.24) implies that the sequence of matrices

: ) Qpl(l) (a) Wz-1>H Gl“) (a) W1-1> (1=1,2,...)

converges to a matrix Q. Thus, there exists a vector w such that

Um w, =w (2.25)

] -

where w! is the normalized characteristic vector associated with the
smallest characteristic root of Q(l). Consequently, by (2.23), (2.24),

and (2.25),

O
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Wws= lim W, lm w, = lm (W, v,) = lm AR

] - o ] - ] - ] -

Therefore, q is a stationary vector of the algorithm.

Theorem 2.5. Let A be a normelizable matrix of order n. If the
algorithm is such that condition (2.25) holds and all stationary
vectors are characteristic vectors of A, then for any initial normalized
vector q(o) the algorithm will yield vectors q(l) of the form (2.14)

(1)
1

whose Rayleigh quotients u satisfy

0]

(t) _
im  wo, _ozJ (2.26)

| »®
where aj is a characteristic root of A.
Proof: Since condition (2.23) holds, from the previous theorem
the limiting vector q of the sequence q(l) (¢ =0, 1, ...) is stationary.
By hypothesis q is a characteristic vector of A. Hence, from (2.19)
and (2.20) it follows that

1 o, ) (a) o) = ey (A) all = 0 .

] >

Then (2.26) is true because of Theorem 2.2.
The importance of Theorem 2.3 is now clear since it gives a cri-

terion for a vector to be stationary.

(1)

01
In fact,

Examples exist which demonstrate that the Rayleigh quotient n

does not necessarily have to be in the inclusion region R
(2)
0l

1-2°

1) may converge to a characteristic root that is not in the first
inclusion region. However, the following theorem gives a relation

(1)
between “Ol and Rl-l'
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Theorem 2.6. The Rayleigh quotient HOI(l) is interior to the disk

R, - {x g Y =l - g Y 1) q“'l)n}.

Proof: Consider

b8 - D=6 -8 () ) -
2.27

) [um () _ (), (1) (2-1) (1) “-1)“("1)]% _

o1 %10 ~ Yo1 "o o1 M0 * HPo1 M0

Now

f(a - u(()i'l)l)q(l)” = [uﬁ) - uéi'l)ugé) - u&é‘l)u(()i) + uéi'l)ugé'l)]g-(z‘zg)

From the Cauchy inequality it follows that

(1) 5, (1), (1) (2.29)

-
P11 THor Mo

If in (2.27) uOl(l) ulo(l) is replaced by ull(l)’ then

W) -] = [ 0,0 ) e

Thus, by (2.28)

g, < g, 4 = - g Y ) ) (2.50)

And by Theorem 2.1,

Iea -, ¥ 1) o= ia - ug, P 1y V) (2.31)

Mo
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If the right side, therefore, of the inequality (2.30) is replaced by

the right side of the inequality (2.31) the result is

I“ol(‘) i L101(1-1)| < ||(a - uOl(1-1) 1y o)

since x = 1. Thus, uOI(I) is interior to the disk Rl-l'




III. THE MATRIX-WI WITH TWO COLUMNS

(1)

Since the method of finding R from q

1+ 1 =¥ 1Y

involves finding the smallest characteristic root of
! ! H I
)~ @) W) @*)(a) W) (3.1)

from which V) o1 is determined, the simplest case is that in which Q(l)

is of order two. Since Wl determines the order of the matrix Q(z), let

Wl consist of two columns; that is, let

(1) () o{*)
W =[a), =4l (3.2)
P

where ﬂ(l) (X\) is a polynomial such that

H
o Dy (1) g (3.3)

and where
o) _ =) a) o) (3.4)

If the polynomial n(z) (A) is of degree v, it can be expressed as
a linear combination of the mutually orthogonal (with respect to A and

q(z)) polynomials @il) (\) (k =1, 2, ..., v). Condition (3.3) rules

out the appearance of the constant polynomial ¢é£) (A) = 1 in this

expression. Obviously, the most natural choice from a computational

standpoint for n(l) (X) would be the linear polynomial

(1)

Ho1

q{” () = A -
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Before a discussion of the consequence of this choice, however, theorems
that are valid for an arbitray polynomial n(z) (N\) which satisfies
condition (3.3) will be presented.

First, it will be desirable to express the elements of the matrix

(1)

Q in terms of the elements of the matrix (3.2) and then to express

the elements of the normalized vector wl in terms of the elements of
the matrix Q(z) and its smallest characteristic root.

For each f, the set
! ! !
ps)chs )(A) q() (v=0,1,2, ..., n-1)
is a set of mutually orthogonal vectors. Hence,

(1) (1)
©"(A) p
CP:(LI)(A) Wz = Pl(z)) p(z) 1 (3~5)

since matrix polynomials in A are commutative.

If (3.5) is substituted into (3.1), the result is

, H N

()% (1) ot A o) (1)* (1)

P, Py ) 1 ‘01
KON -

H ,\H H ())H
ORI A OR AR O (1) (1)
o (0 Neg
(3.6)

where

i H 3 ‘ i+j
oy = (1) (a) sz) x(2) (a) pY) /p(z) ’ (3.7)
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and

(l)“2

= Il

) ) )
o1 _ ) (1)

(1)

Thus p is the radius of the inclusion region R,, since
1 1

p§l) = ”Pl(l)ﬂ = ”¢§l)(A) q(l)H . (3.8)

The smallest characteristic root of kgl) of Q(l) is

o )2 (!) O(!) (l) o) (1)
ng) Py ( , )"+ 10 %1 (3.9)

and the normalized characteristic vector w, of the matrix Q(l) corre~

1
sponding to kgl) is

%1
(1)
Po
v, = (3.10)
RORNO)
o (1)
where
2 [t
R

Now if the hypothesis in (2) of Theorem 2.2 is valid, then

(1)

lim “Ol

= @, where @, 1s a characteristic root of A. In order to
I = J J

determine the characteristic root to which the sequence in (2.15)
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converges, the behavior of uéi) must be investigated. To this end, the

remaining theorems in this section are presented.

Let P be any matrix that diagonalizes A; that is, assume that

A=pAp? (3.11)
where
A = diag (al, Oy vy an)
Since P is a nonsingular matrix, there exists a unique vector v(o) such
that
{9 = 5,0 (3.12)

where q(o) is the vector (2.14). If A is a normal matrix, then P can be

(0)

chosen unitary and thus v will be normalized.

The following theorem will be used to express the Rayleigh quotient

uéi) as a linear combination of the characteristic roots of A and thus
to compare the coefficients associated with oz'j in uéi) with those in
uéi * l). Specifically, if the coefficients for a particular o, increase

with £ while the coefficients of other o decrease, then uéi) converges

to that aj'

Theorem 3.1. Let P be a matrix that satisfies condition (3.11),
and let v(o) satisfy condition (5.12) where q(z) is a normalized vector.

Then the vectors (2.14) can be expressed as

(1) _ 5 500 ()

. (1) (0 o -1
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where

(k) _ (d§k), dék), e, dék)) (k=1, 2, oo, 1)

2
) o(k-1) cOl(k—l) i} (pl(k'l) _ xl(k-1)> n(k-l)<aj> |
2

- 2 2711
p<k-1>,:001<k-1> (e +_<pl<k-1> _ xl(k-1>:) }

Proof: From (3.2) and (3.12)

with

d.

(1) _
q = WO Yo

(o) %) ¢
- (:q , e ) (3.14)

- <%v<o>, (%) (a) pv(®) ;) W .
0(0) ©

Since condition (3.11) implies that

n(‘)(A) P=P n(’) (A) ,

it follows that

1) (.. =9 (n) )
q = <PV ’ p(O) Y9

(3.15)
=P <}(o), ) @) V(O);> W
0(0) 0

Then by (3.10)
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0 2
Q(l) =P 001( ) 1 - . <p (0) _, (0)> ._.___..."(O) (A) +0)
p,(0) p2(0) 1 1 p(0) (3.16)

_p pt1) L0
where
p(1) _ 4iag (d](_l), dél), .., dn(l)) (3.17)
with
< (2) ( )( )
0 0 0
L p( ) °01(O) oy . >\1(0) x a,
J 0(0) o (0)
0 0) (.
0 0 0 0
_(0)01 -pl()-Kl) ﬂ)aj_
2 271
0 0 0 0 2
p(0) [001( ) °1o( ) +<‘°1( ) >‘1( )> ]
Let

L) _ ) (1) ”
The results stated in the theorem follow by induction since
(1) _p () (1-1)

=P D(‘) [D(l) D("l) v(o):]

=P D(O) D(‘) v(o) (2

q
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because diagonal matrices are commutative and by the hypothesis that

1) _ 5 5(0)

The next theorem is a generalization of the well-known theorem that
a Rayleigh quotient found for a normal matrix is a weighted mean of the
roots of the matrix.

Theorem 5.2. The Rayleigh quotient uéi) formed with a normalijizable

matrix is a linear combination of the characteristic roots aj of A, and
the coefficients of the roots may be complex. But their sum is one.

Proof: The proof is a direct consequence of the fact that any

Rayleigh quotient for a normalizable matrix is

VH PA P-l v/vH Vo

The sum of coefficients of the a,'s can be obtained by the replacement

J

of A by I. This sum is one since

vH PI P-l v/vH v = vH v/vH v=1.

In case A is normal, P can be chosen unitary with

H

vV P = (P'l v)H

For normal matrices the coefficients are thus nonnegative. If A is

normal and if
V(O) = (Bl’ seey Bn)T ’

then from the previous theorem



2k

) - 2 oy 10, 0B g (P 2 (5.18)

so that

S (1) , (2) (2)2 2 _
Z IdJ d pee dy | IBJI =1.

I J

As previously indicated, the purpose of the above theorem is to

(1)

express the coefficients of a, in terms of 4

J J

can be made of the coefficients associated with aj in “Ol
(2+1)

so that a comparison

(1) g

Kol Therefore, let
PP = (p,.) (3.19)

In consequence,

(1) _ () a gt

S o 1 (2 1 ]
) ng 1;1 % <13( = % )ﬁ3><11( - di( )ﬂi>Pij
and

21 121 1) 4, dj(l) BJ> (di(l) di(z) di(‘) f31>piJ =1.

If Id_h(k)l > 1 and Idj(k)l <1 (3 =1,2, vee, h =1, h +1, ... n

Ho1

and k=1, 2, ...), then

lim “Ol(l) = ah .

] »
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For a normal matrix A,

p,. =0,, , the Kronecker delta .
1J 13

Obviously, (1) is a weighted mean of the characteristic roots of A.

Ho1
The next theorem is applicable.to any normalizable matrix. Its
use, however, is more easily seen if A is a normal matrix since the
condition (3.18) implies that if Idj(‘)l2 > 1 (Idj(‘)l2 < 1) the coef-
ficient of aJ is increased (decreased) with £. 1In any case, it is
advantageous to know when Idj(z)l2 =z 1 and when Idj(l)l2 <1.

Theorem 3.3. Let d (1) (3=1,2, ..., n) be defined as in (3.13),

J
and let
(1) ()2 2w (1) (1) @
£ = [T - 5 e Re {“10 o /(N | -p . (3.20)
OO
1 1

Then for each j, one and only one of the following conditions holds:

(1) £(1) (aj) > 0 and Idj(‘)l >1,

.21
(2) £(#) (aj) <0 and |dj(‘)| <1, (3.21)

(3) £(£) (aj) = 0 and Idj(‘)| =1.
Proof: If (3.13) is substituted into

o, =1,

the result is
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2 2
L“WQ-Qﬁhﬁb’ﬂh%J{“”” Qy)l)(”@J
2 2
Jn[ép %)+<¥z (U>}

2 ———
p(z) (1) 1) _ () {p§z) ] Ky)} {o§g> )+ o) ﬁ(z)(ajJ

= 1.

Hence,

%0 %01
(3.22)

2 2 2 2 2
N [p£l) (l) Iﬂ(l)(aj)le _ (l) (l p(l) p§l) _ >{l).

Because the smallest root of a hermitian matrix cannot exceed a diagonal

element,
-ANTT =0 (3.23)

and by (3.9), equality holds only if

2 2
o, o () Z 0. (3.24)
| Equality in (3.23) and condition (3.24) imply that dj(l) is not defined;
\

also, equality in (3.23) implies that f(l)(k) is not defined. Therefore,

2
o 1) L (D) 5

may be assumed.

If (3.22) is simplified, it becomes

(¢) (2) _(2)
2 Re )
|n(l)(aj)|2 i £°1o ’ «ii] - p(l) =0 . (3.25)

MOBNG

1
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The left side of (3.25) is f(’)(aj). Hence, Idj(‘)l2 = 1 implies that
f(l)(x) = 0. Since the steps are reversible, (3) of (3.21) is valid.

The proofs of the other two parts of (3.21) follow immediately since
all the above operations either involve multiplying or dividing by a
positive number or involve some other operation which does not change
the sense of an inequality.

In [1], it is proved that for a normal matrix A and for a nonzero

vector v, a polynomial X(AH,A) which satisfies

vH X(AH,A) v=0

is a separation polynomial. Its locus will separate the complex plane
into two inclusion regions for A with the locus common to both.

If A is a normal matrix, the condition (3.3) imposed on the poly-
nomial u(’)(x) which has been used throughout this discussion implies
that ﬁ(l)(h) is a separation polynomial. The next theorem shows that
the polynomial (3.20) is a separation polynomial.

Theorem 3.4. If A is a normal matrix, the polynomial (3.20) is a
separation polynomial with respect to A and the normalized vector q(l).

Proof: The proof consists of showing that

H H/ H o(1)
LD o (2) _ q<z>{ﬂ<z>(A)ﬂ<z>(A) LA FORO IR SO

2
] pu)l} RN

Since condition (3.3) implies that ﬁ(l)(A) is a separation polynomial,

p{t) (1) (3.26)
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H H H H
o) A1) 4y o(1) [q(l) 1) (a) qL(l)] -0 .

Consequently,

H H
) [omm ) G4y 4 o () 0 (A)] W
The left side of (3.26) thus becomes

H H 2
D LDy 1) () o L @)

But this expression vanishes since the first term is “n(l)(A) q(l)“2 and

since by definition (3.4)

o) = 1) (a) oMy .




IV. AN ALGORITHM WITH A LINEAR POLYNOMIAL

This section contains a discussion of the algorithm with the linear

polynamial m(z)(h) and shows that this algorithm can have stationary

1
vectors that are not characteristic vectors. The Rayleigh quotients
uéi) may not converge to a characteristic root of the matrix A.

For the matrix
W, = (q(l), [ﬂ(l)(A)q(l)]/p(l)>

the linear polynomial

By = o0y = n -l

will give the simplest algoritlm from a computational standpoint.

Therefore, let
W, = <;(£), (A - ué{) I)q(l)/p(li>

where

o)~ f(a - w8 1y = p{) = o{8)

by (3.7).

Since oéi) is an off-diagonal element of the second order matrix
(3.6), Theorems 2.3, 2.4, and 2.5 show that an important question is
whether there are any vectors other than characteristic vectors of A
that make Uéi) vanish. Since céi) is the conjugate of the other off-
diagonal element, only oé{) needs to be discussed.

Let A be a normal matrix with characteristic roots aj (§ =1, 2, 3,

..., n). Now,
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H
o o - uDr) ol

H
(8 (A ) “épI)H(A ) “épI)e o (1)

which is a Rayleigh quotient of the matrix

!
A'“01)\ ('“(gl))

whose characteristic roots are 55 - “10))( - “Ol) , J=1,2, ..., n,

]

since A is a normal matrix. Consequently, by Theorem 3.2
(l) Z;/L Zla - “01 2<°‘J ) Hé?) (dgl) d§')63)<d§l) dy)%P
=1 i=

If the roots of A are real, an answer to the above question is easy

to formulate. Let A, therefore, be a hermitian matrix of order n such

that
A=PAPL=papt
where
A = diag (al,a, ...an)
with
o <oy < ..o<oy

Since A is hermitian, uéi) = uié) and Ué{) = °§é)' Let

KOIROING

Mo1™ = Mo

and

o2 < ofp oD
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From (3.18) it follows that if A is hermitian, then

Hy) = %aj (dgl)... <1§’)133)2

n
| and oy) =z (aj - ui’))3 (dgl)... dé’) 33)2

where

no () ) g2
jil(dj ‘e dj 133) 1

The previous question of the existence of vectors other than
characteristic vectors of A which make o(l) vanish is equivalent to

1

the question of the existence, for a fixed Hy #t! , of vectors

J
T
7= (Y1 Yos vees 7p)

that satisfy the system of equations

H
-

~
s O

FDMe RV R
Q
[
~
€ N
1l
=
|—l

For some Hy % aj’ the answer to the question is in the affirmative,
as the following theorem shows.

Theorem 4.1. Let A be a 3 by 3 hermitian matrix with characteristic

roots

@ <a, < a (4.1)
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al+a2+a3
3 and Hqy < a2, then there is a real noncharacteristic

stationary vector whose Rayleigh quotient is Hqy for each

If Hqy <

o, +Q a, +
1 2 1 b]
_....._2__5 Hy s_é____ (}4,.2)

Q +0, + 03
Similarly, if Hy > 3 and My > Q,, then there is a real non-

characteristic stationary vector whose Rayleigh quotient is Hqy for each

a, +
12w

"
532__2_25. : (4.3)

1

Proof: Assume that A is translated so that My = 0. If Hy is not
a characteristic root of A, then the vector is a noncharacteristic

stationary vector if it satisfies the following system of equations:

(3
2
vy =1
271
3
< ), @ 75 =0 (4.1)
1
3
32 2 <o
\ 1

The determinant of coefficients for this system is

8 =det [ a o = (o) +ay +0z)(ag - o) (0, - &)y - a)),
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and by Cramer's rule
2 2 2
1 o) = Q. O - Q
(1) & 7] =0, a5 (0 - 05)

(2) 575 = o5 (of - o) (4.5)

2
(3) 7§ =a a, (o - af)

Since Q) + 0, + a3 # 0 and since the characteristic roots are simple,
5 # O and the vector y exists.

Now assume that Qp + 0, + a3 > 0. Then d > O.

The assumption that a translation is performed on the matrix A

so that ul = 0 means that

a <0< Qg (4.6)

since Rayleigh quotient of a hermitian matrix lies on the closed

segment between the least and greatest characteristic roots. The

inequalities (4.6) must be strict if the vector is to be a noncharacter-

istic vector of A.
If

a, >0 (%.7)

the equations (4.5) have a real solution if and only if

2
ai-oz}=(al+a3)(al-a3)so
and
2 2
a2-a1=(a2-al)(al+a2)so.
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These two inequalities hold if and only if

al + 03 =0

and

since by hypothesis

and

ay - a; >0 .

(4.8)

(4.9)

If @; - p, is substituted for a; (i =1, 2, 3) in (4.8) and (4.9)

and if the resulting inequalities are solved for Hq» the results are

(k.2).
Now, assume that Q; +0, + 03 >0 ; then 8
If a, <0
the equations (k.5) have a real solution if and
o - o = (o +ay)(ay - )
and
ai - or§ = (ozl +or3)(ozl - 013)
These two inequalities hold if and only if
a3 + aé =0
and
al + a3 =0

> 0.

only if

(4.10)

(&.11)
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since by hypothesis
a3-a2>0
and

al-a3<o.

I ai - ul

resulting inequalities are solved for My the results are (4.3).

is substituted for o, in (4.10) and (4.11), and if the

If u; satisfies one of the inequalities (4.2) or (k.3), then there
exist real vectors which satisfy the system of equations (4.4). This
means that if the algorithm yields vectors q(z) that converge to one of

these vectors, the inclusion regions R, will converge to a disk with

4
a nonzero radius, and the sequence of Rayleigh quotients u£z) will
converge to a number that is not a characteristic root of A. Conse=-
quently, this algorithm presents some serious difficulties when it is
used to find characteristic roots and vectors.

If A is an nth order hermitian matrix, the system of equations
(4.4) will be three in number, but the number of unknowns will be
increased to n. There, thus, will be additional noncharacteristic

real stationary vectors whose Rayleigh quotients Hy satisfy inequalities

similar to (4.2) and (4.3).




V. AN ALGORITHM WITH A QUADRATIC POLYNOMIAL

This section presents the properties of the algorithm with the monic

quadratic polynomial

B E = ®-ud oWl (”’ (5.1)

R 2
o) ) o) () - o)

Z)

where pi is the radius of the inclusion disk

[N P A S (5.2)

Henceforth, the symbol n will denote this algorithm.

(%) (2)

is a stationary vector of the algorithm = then either q
is a characteristic vector of the given normal matrix A, or the inclu-
sion disk (5.2) has two or more characteristic roots of A on its boundary.
A later theorem shows that if q(z) is a stationary vector of n, then it

is a stationary vector for all algorithms that use the method discussed

(£+1) (£)

in Theorem 2.1 to determine q from q That is, from the subspace

spanned by a set of mutually orthogonal vectors that contains the old

(%) (g+1)

vector q a vector q

(£)

0l

cannot be chosen that will yield a smaller

inclusion disk with p as center than the disk (5.2). Thus,

e - P <t B o e

ol

for all vectors x in the subspace regardless of the dimension of the sub-

space.
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a9 1 () ol (ay - o1 1y o)
= T ) o) () ) S
- P

- o

the polynomial n(z> (N, N) satisfies condition (3.3).
The next two theorems show that the Rayleigh quotients converge to

a characteristic root of A if the radii of the Weinstein disks converge

Theorem 5.1. Iet A be a normal matrix. If the radii p§z> of the

inclusion disks (5.2) formed by the algorithm converge to zero, then the

()

sequence of vectors g will contain an infinite convergent subsequence

that converges to a characteristic vector of A.

Proof: Since by hypothesis

()

lim o) = 0
- L o0

|

|
to zero. |
the only stationary vector are characteristic vectors. Hence, 1if the

(o)

normalized vector g is not a characteristic vector, then the algorithm

n will yield a new vector q(l>. Then by Theorem 2.1

198 ) o« < 1089 (@) (O

(

lz> # 0 and since condition (3.9) implies

This inequality is strict since ¢

that the smallest characteristic root of the matrix (2.8) is a simple root.




38

o) .
For any initial normalized vector q( ), therefore, the algorithm =

will yield the vectors of the form (2.14) such that, for all £,

I ¢§£+l)(A) q(z+1)”

(2)

< cp](f) (a) q(/&)”

is not a characteristic vector of A.

(2)

as long as ¢q

The vectors q are in the 2n dimensional compact space. By the

()

Bolzano-Weierstrass theorem, there exists a subsequence, say [q
which will have a limit in the space. There, thus, exists a vector g

such that

lim q(k) =q . (5.3)

Kk—> o

Associated with this sequence of vectors is a sequence of matrices Wk

that converges to a matrix W since

W, = (q(k), n(k) (AH, A) qk)

is a continuous function of q(k) because n(k) (AH, A) is a continuous
function of q(k). Therefore,
lim W= lim ({8 () (BB 4y q(k)y o oy, (5.4)
k—> k> o

Since the columns of wk are orthonormal and since

q( k+1)

then
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By (5.3) and (5.4),

lin  w_ = lin wi g {k+1)
k—> o k—> o
= 1im WY 1im q(k+l)

k> @ F k—5 w

Thus W el = g, which implies that q is a stationary vector. Consequently,

q is a characteristic vector of A since the hypothesis that the radii p§2)
of the inclusion disks converge to zero implies that a stationary vector
is a characteristic vector.

The next theorem shows that the Rayleigh quotients formed by the

(£)

sequence of vectors g have a unique limit.

Theorem 5.2. Let A be a normal matrix and let the vectors be formed

by the algorithm in the previous theorem. Then the Rayleigh quotients

(2)

uéf) formed by the vectors q will converge to a characteristic root

aj of the matrix A. That is,

(8) _

lim “Ol 3

£—>

If aj is a simple root of A, then

lim q(z) =q
/> »

where q is the normelized characteristic vector of A associated with the

characteristic root aj .
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Proof': Since every convergent subsequence of the vectors must con-

(2) _ H‘P;(Lz) (a) q([’)”

verge to a characteristic vector of A, the radii N

of the Weinstein disks
R£={7\:| w2 < (“} (1=0,1, ...)

converge to zero. Hence, every infinite subset of the Rayleigh quotients

(£)
Ho1

must converge to a characteristic root of A.
Now, to show that every infinite subset of the Rayleigh quotients
converges to the same characteristic root of A, let &, be within the

Weinstein disk Rk and let the diameter of Rk(2 pg )) be less than one-

half the distance between aj and the closest characteristic root of A.

The diameter of Rk can be arbitrarily small since

(£)

1lim pl = 0 .
£

(k+1)

01
Weinstein disk Rk+l can contain, therefore, only one of the aj. Similarly,

By Theorem 2.6, the Rayleigh quotient p must be within Rk' The

the Weinstein disks R_ (m = k+2, k+3, ...) can contain only this same aJ.
Consequently, the sequence of Rayleigh quotients p( £) (6 =0,1, 2, ...)

converges to this characteristic root «

J
IT aj is a simple characteristic root of A, then there is only one

normalized characteristic vector associated with & ,. That is,

J
(2)

lim q = q
b—>
vhere q is the normalized characteristic vector associated with aj.

For simplicity the superscript "4" will be omitted from now on since

the remaining theorems do not involve iterations.
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Since the matrix n(AH, A) = @f (4) @l(A) - pi I is hermitian, the

off-diagonal elements UOl and 010 of the matrix Q(B.l) are equal. Iet

Then by (3.7),

H

o = o x (% a)p (5.5)

The next theorem shows that o, is the norm of the vector n(AH, A) q.

1

If 0, = O, then by one of the properties of norms

(a, ) a = (@ (A) o (a) -5 T)a=0.

Thus,

@? (A) @l(A) q = Di q . (5.6)

Hence, pi is the characteristic root and q is the characteristic vector
H
of @) (A) 9,(4) .
Theorem 5.3. Let A be a normal matrix. Then
H
g, = | = (A7, A) q ||

Proof: From condition (5.5),

Q
Il

N {piI [ (A -uy, )f (A -n,; 1) -pi I Pl}/p
= [pi]: (A - py, ) (a - Moy I) Py - pi] /e (5.7)

:{qH[(A-uOlI)H(A—uOlI)lgq-p’{}/p-
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By definition (3.k4)

2

o = || (4", a)q |2

H H, H H
= q n (A, A)n (A7, A)a

= o [x (A% a) 1P q

_H H 2 _42

= q [(A - uOlI) (A - uOlI) -p; I a (5.8)
_H H 2 2 H H 4
= a [(A-n,I)" (a- Hop T1 a-20la (A-ny 1) (A, T) atp
_H H 2 I

= a [(A-pyI)" (& -p T)]° a-2p) + N

= -, D A D% a - o

Thus, (5.7) and (5.8) imply that

2

o, = —%— = p |Ix@)all .

Theorem 5.4 Let A be a normal matrix of order n. If g is a nor-
malized stationary vector of the algorithm =, then either q is a charac-
teristic vector of A or the inclusion disk determined by q and A has two
or more characteristic roots of A on its boundary.

Proof: Since A is normal, there exists a unitary matrix P such that

A=PA PH

where
A = diag (Gl, 02, ] an) .

There exists a normalized vector v such that
qQ = P (5.9)



since q is a normalized vector and since P is a nonsingular matrix.

b3

If (5.9) is substituted into (5.6), then

If the equation (5.10) is multiplied by PH, then

gince

p cpf (a) P Pl o (a) B

Thus

diag (|al -

Consequently, if

and if

for all k # i, then

Hence,

and

Ho1

H _ 2
P (A) ?; (A) Pv = p] Pv.

H 2

i

2 2
I y *** |an-u01| )V

Q
'
T
|

©

L )

i
Q
lav]
<

APv

@ (A) 9,(a)

(5.10)

(5.11)

Therefore, if condition (5.11) holds, q = Pv is a characteristic vector

of A; and if it does not hold, there will be at least two characteristic

roots of A on the boundary of the inclusion disk determined by A and q.
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If A is a hermitian matrix and if q is a noncharacteristic stationary
vector of the algorithm n, the next theorem shows that two characteristic
vectors of A are linear combinations of the two orthogonal vectors q and
P, -

Theorem 5.5. Let A be a hermitian matrix, let q be a stationary
vector of the algorithm = which is not a characteristic vector of A, and
let ai and aj be the end points of the inclusion interval determined by A

and q. Then ai and aj are characteristic roots of A and

W2 1
X, T 5 (q - —51 Ii) (5.12)
and
NE 1
= Y=z = .1
X, 3 (q + ol Pl) (5.13)

are characteristic vectors of A corresponding to ai and aj.

Proof: By the previous theorem the end points of the inclusion
interval determined by A and q are characteristic roots of A since q is
a noncharacteristic vector of A and a stationary vector of the algorithm
. Therefore, let ai and aj be the left and right end points, respec-

tively. Thus &

4 = Mgy - 0ys &nd aj =Wy, + p,- Consequently, by (5.12)

a; % = (Mg - ep) x4

(hgy = 0p) \% (q - —i—l- P, ) (5.14)

J2
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and by (5.13)
a, x. = (g + pq) X,

NE: 1
= (H01+ol) 5 (Q+'TJI Pl)

NE

. (kgy + pp) (00 + ;)
1
Since q is a stationary vector of the algorithm w, then

2 2 2
(9] (a) - p; IDa = o () P, - p] 4

o 2
Pp " Moy Py - P 4

Hence,

Ap. = +'2
Py = Moy Py tep @

2 2
Moy A4+ (pl - Moyl -

If (5.12) is multiplied by A, then

N2 1
Axg = 5 (M- —-Ap)
1
J2

If (5.16) is substituted into (5.17), then

NE 2 2

= iési (hyy = pp) [-Ba + (py+ pnyy) ]

(5.15)

(5.16)

(5.17)

(5.18)



L6 .

55 (kop - pl) [-(A - ny; I)a+ pa] (5.18)

Therefore,

since (5.18) and (5.14) are the same. Thus, x, is the characteristic .
vector of A corresponding to the characteristic root ai.
Similarly, xj is a characteristic vector of A corresponding to the
characteristic root aj.
In the following discussion let C denote the class of algorithus
‘ that was discussed in Chapter IT.
| Theorem 5.6. Let A be a normal matrix, and let g be a stationary
‘ vector of the algorithm n. Then g is a stationary vector for every algo-

rithm that belongs to Class C.

Proof: Since q is a stationary vector of the algorithm x,
H 2
¢, (A) 9,(A)a = o] a - (5.19) .
For simplicity, let .
_ H
X, = Xy (A7, A)

H
where X, (A, A) (i =1, 2, ..., m-1) is a sequence of polynomials that

satisfies the following relations:

H
¢ % a =0 (5.20)
H . H
QX qu = 0. (5.21)
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An algorithm that belongs to Class C is determined when a method of
determining the columns of the n x m orthonormal matrix W is given.

Therefore, let
W = (q, XA XoQy eees X g q) .
Hence,
o (A) W = (9 (A) q, ¢ (A)Xq, @ (A)Xa, «ony @ (A)X 1a) .
Since A is normal, the polynomials wl(A) and Xi commute. Thus,

H
q

[oy(A) x;a1™ [9,(A) X,a] = o % @1(A) 0,(4) X, a

H_H H
4 X X, ¢ () ¢1(A) q

I

(5.22)

2 H_H
Py a4 X XJ q

]

2
Py Sij

by (5.20) and (5.21). Consequently, by (5.22)

2

Py I .

(o, (a) W) (@, (a) W) =

Therefore, g is a stationary vector for every algorithm that belongs to
Class C.
The following discussion concerns the application of Theorem 3.3 to
the algorithm .
It n (N,A\) is substituted for n(A) in (3.20), the result is
2

20‘1

£(A) = |«(X, 2)|? - % (%, A) - o

Pl = N
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02 0')+
- 1 2 2 1
= [#(A, ) - 3 I - °1+(2 2
P = P =N
2 J 1 2
= 1 2 1 2 - 1
={|ﬂ(7\, A- = | = |o] + = NEZ }{“()" A) - 25 |
91 7™ (P = A P = ™

N L

2, 9 2
+ g 1 (_2— i )\ ) )
S ]

Since the second factor of f(k) is always greater than or equal to zero,
the first factor determines the signs of f(A). If the first factor of

f(A\) is less than zero, then

2 04 1
2 2 1 2 1 5
||)"“01| P T 3 )\l<°1+ 2P
P1 =M™ (o] = %
which is the annulus
C1
2 07 ) 5 2]
(e o - fe e
e 1
o 1
2 1 -\/2 2 ARE
< {°1+2 N op * oy + (o= Ay) }
P =™

that will be denoted by B.
The circles of the annulus B are concentric with the inclusion
region

e {h gl el o all = ko)

and the boundary of the inclusion region R is within the annulus B.
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Now, f(A) < O for every A within the annulus, and f(A) > 0 for
every A within the inner disk or outside the outer disk. By Theorem
3.3, ‘djl > 1 when the characteristic root aj is within the inner disk
or outside the outer disk, and Idj| < 1 when the characteristic root aj
is in the annulus. Thus, the weight of a characteristic root will be
increased if it is within the inner disk or outside the outer disk and
the weight decreased if it is in the annulus.

In summary, this study shows different algorithms for the develop-
ment of a sequence of vectors q(ﬂ) (¢, =0, 1, 2, ...) such that the radii
of their associated Weinstein disks are decreasing. If the radii of the
Weinstein disks approach zero as a limit, then the Rayleigh quotients
associated with the sequence of vectors converge to a characteristic root
of the matrix A.

The algorithm with the linear polynomial

¢, (N) =n - Moy

does not always yield vectors whose associated Rayleigh quotients converge
to a characteristic root of the matrix A. However, the algorithm =x does
yield vectors whose associated Rayleigh quotients converge to a character-
istic root of a normal matrix A with the exception that is noted in
Theorem 5.4. In the case of a hermitian matrix, Theorem 5.5 gives a

method to cover the exception.
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