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ABSTRACT

This thesis presents, for a normalizable matrix A of order n,

different algorithms for the development of a sequence of normalized

vectors q^ ' (t = 0, 1, 2, ...) such that the centers of their associ-
(i)E (,\

ated Weinstein disks are the Rayleigh quotients, qv ' A q} '. If the

radii of the Weinstein disks approach zero as a limit, then the Rayleigh

quotients associated with the sequence of vectors converge to a charac

teristic root of A.

In Chapter II, a new vector q^ ' is chosen from a subspace spanned

by a set of mutually orthogonal vectors that contains the old vector q^ '.

The radius of the Weinstein disk associated with this vector q^ ' will

not be larger than the radius of the one associated with q} ' and will,

in general, be smaller. The condition that the radii of the Weinstein

disks converge to zero is presented.

Algorithms are discussed in Chapter II for the subspace of dimension

two. In Chapter IV it is shown that the simplest algorithm from the stand

point of operational count does not always yield vectors whose associated

Rayleigh quotients converge to a characteristic root of A.

The algorithm for a normal matrix in Chapter V always yields vectors

whose associated Rayleigh quotients converge to a characteristic root of

A with one exception. If a Weinstein disk has two or more characteristic

roots on its boundary, then the algorithm will not yield a new vector.

Any algorithm, however, that belongs to the class of algorithms presented

in Chapter II will also have the same exception. In the case of a her

mitian matrix, a method is presented that will take care of the exception.
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I. INTRODUCTION

An inclusion region for a given matrix A of order n is a region of

the complex plane that contains at least one characteristic root of A.

Inclusion regions will be considered here only for matrices that are

normalizablej that is, they are similar to a normal matrix and hence

similar to a diagonal matrix.

Bauer and Householder [l] proved that associated with any nonnull

vector q there is a family of inclusion disks which contains a minimum

disk. If A is hermitian, the minimum disk was obtained by Weinstein [3].

Henceforth, the minimum disk belonging to a vector q will be called a

Weinstein disk. The center of a Weinstein disk is the Rayleigh quotient

HA / Hq Aq/q q

where the superscript "H" signifies the transposed conjugate. If q is

a characteristic vector of A, then the Rayleigh quotient is the charac

teristic root of A that is associated with the vector q.

A class of algorithms for developing a sequence of vectors

q} ' (I =0, 1, 2, ...) such that their associated Weinstein disks are

decreasing is presented in Chapter II. Each algorithm is a method of

choosing a vector q^ from a subspace of dimension m(m :S n) which

is spanned by a set of mutually orthogonal vectors that contains the

vector q . And the radius of the Weinstein disk associated with the

vector q will not be larger than the radius of the one associated

with q^ , and will in general be smaller.

In Chapter III, the subspace from which q} is chosen is

assumed to be a plane. An algorithm is developed in Chapter IV which



is most desirable from the standpoint of operational count. In this

algorithm, however, the radii of the Weinstein disks may not approach

zero in the limit, and this method does not always yield a charac

teristic root and vector of A.

The algorithm in Chapter V always yields a sequence of Weinstein

disks whose radii converge to zero with one exception. If a Weinstein

disk contains two or more characteristic roots on its boundary, then the

algorithm will not yield a new vector. It is proved, however, that any

algorithm which belongs to the class of algorithms in Chapter II will

also have this same difficulty regardless of the dimension of the

subspace.

The gradient method of Hestenes and Karush [2] for finding the

characteristic roots and vectors of a real symmetric matrix is somewhat

analogous to the methods presented here. They choose a vector q

from the plane determined by q^ ' and Aq so that the Rayleigh quotient

formed by q is always smaller (larger) than the previous ones

(k)formed by qv ' (k = 0, 1, 2, ... l). Thus, they form a monotonic

decreasing (increasing) sequence of Rayleigh quotients instead of a

monotonic decreasing (increasing) sequence of inclusion disks which the

methods presented here use. Their methods, also, give convergence only

to an extreme characteristic root of a real symmetric matrix, but the

method presented in Chapter V may give convergence to any characteristic

root of a normal matrix.

The following definitions and theorems will be used in the remainder

of the paper. The Euclidean vector norm,



Ml = (vHv)* ,

and the spectral matrix norm,

||A|| = max (\±)

where \.(i = 1, 2, ..., n) is a characteristic root of the matrix
ti

A A, will be the only norms considered. All vectors v will be column

vectors.

Let P be any matrix that diagonalizes A; that is, let

A = P A P"1

where

A= diag (a±, a2, ..., aQ) .

Define K by

k = k(a) = gib ||p|| Up-1!! (1.1)

where P diagnolizes A. Then k s 1 since

1 = Hill = Up p_1II ^ ||P|| Up"1!! = k .

For normal matrices k = 1 since P can be chosen unitary.

Let vn be any nonnull vector. Then the Krylov sequence of vectors

is defined by

vi =Avi -i=a1vo '



The scalar products

H

are called moments. Consequently, \x.. = n ..

The following definitions from Bauer and Householder [l] will be

used. Two polynomials a(\) and p(\) are called mutually orthogonal

(with respect to A and vQ) if a(A) v and £(A) vq are orthogonal vectors;

that is, if

0(A) vQ)H (a(A) vQ) =0.

The norm of a(\) (with respect to A and vQ) is defined to be ||a(A) vQ||.

The sequence of monic polynomials

where

*019 (\) = 1 , <9A\) = \ - -*±, ... ,
U ^00

^00 ^01

<py (X.) = det

Mv-1,0 ^v-1,1

/ ^00 ^01 0,v-1

det

M
v-1

\Vi,o Vi,i ••• Vi,v-iy

M . (1.2)
v-1 v '



is a sequence of mutually orthogonal polynomials with respect to A and

v_. For the polynomial cp (\) is orthogonal to \ for all a < v since

H

vjj A° cpy(A) vQ =det

^00 ^01 0,v-l

v-1,0 *v-l,l ••* %-l,v-l

a,l "• ^a,v-l //^aO *

det M = 0

because, for o < v, the last row of the above determinant is the same as

one of the other rows. Therefore, 9 (\) is orthogonal to any polynomial

of degree less than v, and the vectors

Pv =9V(A) PQ

where pn = v , are mutually orthogonal.

The following two theorems are proved in [1].

Theorem 1.1. Let the matrix A be normalizable, and let cx(\) and

P(\) be any two polynomials. Then

m**m (1.3)

is an inclusion region, where K is defined by (l.l) and where v is any

nonnull vector.

Theorem 1.2. Among all polynomials of degree v and with leading

coefficient unity, the polynomial cp (x) has minimal norm, and hence

minimizes the right member of (1.3) for a given p(x).



II. ALGORITHMS

Let A be a normalizable matrix and let q be a normalized vector; that

is, let

v

9. =im

so that ||q|| = 1.

In the rest of the paper let f3(\) - 1 and let

a(\) = cp1(\) = \-n01

where cp, (a.) is the linear polynomial in the orthogonal set determined by A

and q. The inclusion region (1.3) thus becomes

r^:|M*01h 4(A-n01lkll} (2.1)
which is an inclusion disk with center u and radius

p= K||(A-|i01l)q||.

From Theorem 1.2, it follows that (2.1) is the smallest inclusion

region for the vector q and for a linear polynomial, or, in other words,

(2.1) is the Weinstein disk belonging to q.

Since Theorem 1.1 states that (2.1) is an inclusion region for any

nonnull vector q there may exist a normalized vector q} ' which will yield

a radius

.(Dii7=||(A-H01W

such that

7<P' (2.2)

If a q^ satisfying (2.2) is found, the inclusion disk

fc: U-^01N K||(A-n01l)q(l)||J (2.3)



will be concentric with the disk (2.1) and will be contained in it.

By Theorem 1.2, the inclusion disk

^I^^I^IKA-^^D^^IlJ (2.4)
where

will be smaller than the disk (2.3). The disk (2.4) is not in general con

centric with the disks (2.1) and (2.3). A later theorem, however, will

show that the center of (2.4) will be interior to the disks (2.1) and (2.3),

More generally, let

be the linear polynomial in the orthogonal set determined by the matrix A

(I) (i)and a normalized vector q . That is n , satisfies the following rela

tion:

,01«> . ,<(')
*H

(l) (i)with q qv ' = 1. Henceforth, the superscript "I" on a symbol will mean

(l)
the symbol is defined in terms of the vector q

Obviously, a decreasing sequence of inclusion disks could be attained

(J)if a sequence of vectors q could be found which yield a decreasing se-

(i)
quence of norms. That is, if there exists a sequence q of vectors such

that for all I

IKA-, <<+1>lh('+l)M|(A-u<')lh(')L (2-6)01 'U — ll\" r-Q1
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then the sequence of inclusion disks

rX:|X-^01(i)|^||(A-^01(i)l)q(^||J (1-0,1,2,...)
is decreasing. The following theorem gives a method of determining such a

sequence.

Theorem 2.1. Let A be a normalizable matrix of order n, and let q be

a normalized vector. If W is an n by m (n2:m) matrix of orthonormal col

umns with q as the first column and if

q(1) =Vo (2'7)
where w is the normalized characteristic vector associated with the small

est characteristic root of the positive semidefinite matrix

QQ =(91(A)W0)H(cp1(A)W0)^ (2.8)

then

IK(l)(A)q(l)U<||91(A)q|| .
If the smallest characteristic root of Q„ is a simple root, then equality

will hold only if q^1' = q.

Proof: Let u be any normalized vector with m elements. Then as u

varies the minimum of

ll91(A)^u|| (2.9)

cannot be greater than

ll<Pi(A)q||

since u can be chosen so that

q = WQu. (2.10)



Now

||cp1 (A) WQ u|| =[A^ (A) WQ)H (9X (A) WQ) u} ? , (2.11)

which is the square root of the Rayleigh quotient formed by the vector

u and the hermitian matrix Q^. Hence, a minimum of (2.1l) will be the

smallest characteristic root of the matrix 0^ since the Rayleigh quotient

of a hermitian matrix lies on the closed segment between the least and

greatest characteristic roots. The minimum will be obtained when

u = wQ

where w is the normalized, characteristic vector belonging to the

smallest characteristic root of Q . Consequently,

h± (A) q(l)|| £H9-L (A) q|| (2.12)

where q^ ' is the vector (2.7). But

Il91(l) (A) q(l)|| * 119-l (A) q(l)||

by Theorem 1.2. Hence,

||9l(l) (A) q(l)|| * ||9X (A) q|| . (2.13)

It follows from (2.10) that equality in (2.12) implies q^ '= q

since w is unique if the smallest characteristic root of the matrix Q

is a simple root. A fortiori, equality in (2.13) implies q} = q.

Now if

(l) TI 1
* =W0 W0 ±*
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then, by the use of q^ ' in place of q, the method described in the

above theorem yields a normalized vector

with the property

||9l(2) (A) qL(2)H H^15 (A) q(l)|| .

Then q can be used in place of q ' to obtain a vector q . Thus,

the method of Theorem 2.1 can be repeated to yield a sequence of vectors

whose associated Weinstein disks are monotonic decreasing. If for all

'> 1 r 1 > then the radii of the Weinstein disks are strictly

monotonic decreasing.

For each choice of the number of columns of W. and for each method

of determining the orthonormal columns of the matrix W the above pro

cedure is an algorithm which generates a sequence of normalized vectors

q(/) =Wi-1 Vl (1=0,1,2,...) (2.14)

with the initial vector

(0)q = qv

The vectors (2.l4) will also satisfy condition (2.6); that is,

KM(i).(,,11i*h1(,|w.("i

for each 1. In the remainder of the paper the discussion will be

restricted to those algorithms that have the property that the smallest

characteristic root of Q. is a simple root. Equality in (2.6) will
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thus hold only if q^ + '= q? '. A vector q^ ' which, when used in the

algorithm, does not yield a new vector will be called a "stationary

vector."

Theorem 2.2. Let A be a normalizable matrix of order n, and let

q be a given normalized vector. For the vectors (2.l4) and the poly

nomials (2.5) form the inclusion regions

R£ =U:K(i) (\)| *Jt||91(l) (A) q(i)|| ). (2.15)
Then (l) as / increases (/ =0, 1, 2, ...), the sequence R will decrease

as long as

(i) + q(X+l) ; (2.16)q

(2) if

I

lim \\^l) (A) q(i)|| =0 , (2.1?)

then

lim Hn-, = a. (2.18)
01 "J1 -+ 00

where a is a characteristic root of A.

Proof: The proof of (l) follows immediately since the algorithm

which gives the vector (2.l4) insures that the radius of (2.15) will

decrease as long as (2.l6) holds.

Since (2.1?) implies

lim fo^Ml - lim |x -» (l)| =0
I -* 00 l -* 00
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it follows that condition (2.l8) holds when condition (2.17) is true.

If

||(A -nQ1(i) I) q(i)|| =0 , (2.19)

then q is a characteristic vector of A since the norm of a vector is

zero if and only if the vector is null and since (2.19) implies that

(A -nQ1(i) I) q(i) =0 . (2.20)

Thus q is the characteristic vector of A associated with the charac

teristic root |i ^ ' .

Consequently, if the initial vector or a computed vector q is a

characteristic vector of A, then the algorithm will not yield a new

vector since (2.19) would hold. In summary, characteristic vectors of

A are stationary vectors.

Theorem 2.3. If q is a stationary vector, that is, if

qCW+^W^w^, (2.21)

then the matrix

Q(i) =(q^0 (A) W1_1)H (fM (A) W^) (2.22)
is null in the first row and first column, except in the diagonal

(/)position. By definition the matrix W, , contains qx ' as its first

column.

Proof: Since the column vectors of W. . are mutually orthogonal,

(2.21) implies that
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Vl = ei

where e is the first column vector of the identity matrix. Thus e

is a characteristic vector of Q* . In other words, the matrix q' '

will be null in the first column except in the diagonal position. The

off-diagonal elements of the first row will also be zero since the

matrix $} ' is hermitian.

Theorem 2.4. If the algorithm is such that the sequence of

matrices W (t =0, 1, 2, ...) has a limit W; that is if

lim W = W , (2.23)
I -» 00

then q, the first column of W, is a stationary vector of the algorithm

and

q= lim q}1* . (2.24)
t -* CO

Proof: (2.24) is true since each q^ ' is the first column of W..

The result in (2.24) implies that the sequence of matrices

Q(i) =(9x(l) (A) W^^IV0 (A) W ) (i =1, 2, ...)
converges to a matrix Q. Thus, there exists a vector w such that

lim w£ = w (2.25)
I -* °°

where w is the normalized characteristic vector associated with the

smallest characteristic root of Q^ . Consequently, by (2.23), (2.24),

and (2.25),
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W w = lim W lim w = lim (W w ) = lim qv = q
£ -» CO £ -» OO £ -» 00 £ -» 00

Therefore, q is a stationary vector of the algorithm.

Theorem 2.5» Let A be a normalizable matrix of order n. If the

algorithm is such that condition (2.23) holds and all stationary

vectors are characteristic vectors of A, then for any initial normalized

ii :

(i)whose Rayleigh quotients n v satisfy

vector q the algorithm will yield vectors q of the form (2.l4)

lim H0i '=a (2.26)
£ -+ oo J

where a. is a characteristic root of A.
J

Proof: Since condition (2.23) holds, from the previous theorem

the limiting vector q of the sequence q (l =0, 1, ...) is stationary.

By hypothesis q is a characteristic vector of A. Hence, from (2.19)

and (2.20) it follows that

£^00 K(i) (A) *(X)H =K (A) ill =o•

Then (2.26) is true because of Theorem 2.2.

The importance of Theorem 2.3 is now clear since it gives a cri

terion for a vector to be stationary.

Examples exist which demonstrate that the Rayleigh quotient \x '

does not necessarily have to be in the inclusion region R. p. In fact,

H ' may converge to a characteristic root that is not in the first

inclusion region. However, the following theorem gives a relation

(t)between n01x ' and R. -.
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Theorem 2.6. The Rayleigh quotient |iniv ' is interior to the disk
01

^l* «||(A -,J1^ I) q^ll).Ri-1 =\x: "X " »\>1

Proof: Consider

(I) (i-1)
x01 " *01 oi ^oi y vio ^io / J

(2.27)

(1)„(I) „(i)„(i-l) „(i-l)„oo _,(l-l)„(l-l)
^6i Ho' ~ ^oi'^io *6l ^10 + M-,01 ^10

Now

l/A (i-l)T\ (i)lI(A - ^ 'l)qv '|
L^ll ^01 M10 TO ^01 ^01 TLO J

From the Cauchy inequality it follows that

U) > (i) (*)
xii - V V

If in (2.27) H01 ^io is rePlaced bv ^11 ' then

(2.29)

'^01 ^01
(i) „(i)„(i-i) Ji-DJO . u(i-i)u(i-i)T*

" ^ ^10 + ^01 ^10 J '^11 " **01 ^10 01

Thus, by (2.28)

(O
01 ^-^I^HCa-Mo^D^II .*oi

(2.30)

And by Theorem 2.1,

l(A-M01<1-1>I)l(,)l*l<A-,H)1<<-1>I>1(l-l)l (2-51)



16

If the right side, therefore, of the inequality (2.30) is replaced by

the right side of the inequality (2.31) the result is

lMOI(l)-M01<,-1)l-«B(A-M01«1-1»I)4«|-1»l

since k ^ 1. Thus, n v ' is interior to the disk R. ..



III. THE MATRIX W WITH TWO COLUMNS

Since the method of finding R from q ' = W w

involves finding the smallest characteristic root of

Q(X) =(9^°(A) W£)H (q[l)(A) W£) (3.1)

(0from which w is determined, the simplest case is that in which Q

is of order two. Since W. determines the order of the matrix Qv ', let

W. consist of two columns; that is, let

\

W. ,(0 *<%u{l)
UT

M)where jt ' (x) is a polynomial such that

and where

»H

<'> „<'W>-0

(/) || (i),Av (1),pv = ||rtv '(A) qv '\

(3-2)

I

(3.3)

(3^)

If the polynomial ic ' (x) is of degree v, it can be expressed as

a linear combination of the mutually orthogonal (with respect to A and

q^1') polynomials 9^' (x) (k =1, 2, ..., v). Condition (3-3) rules
out the appearance of the constant polynomial 9!^ ' (x) =1in this

expression. Obviously, the most natural choice from a computational

standpoint for ir ' (x) would be the linear polynomial

*S» M . x - ,&>
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Before a discussion of the consequence of this choice, however, theorems

that are valid for an arbitray polynomial jt ' (x) which satisfies

condition (3-3) will be presented.

First, it will be desirable to express the elements of the matrix

Q ' in terms of the elements of the matrix (3«2) and then to express

the elements of the normalized vector w, in terms of the elements of

the matrix Qx ' and its smallest characteristic root.

For each /, the set

(l) Jl)r*\ (I)
Py K (A) <1 (v = 0, 1, 2, ..., n - 1)

is a set of mutually orthogonal vectors. Hence,

,(«){A) „_fp <«> '"W*
91 ^A) Wl Pl ' (I)

I P

since matrix polynomials in A are commutative.

If (3«5) is substituted into (3-1), the result is

\

(3.5)

/• \

(0

(0H U)
»1 pl

(0H (i)/.x (i)p^ nv '(A) p^ '

JJ) 4° £>
Q

where

(if (0H,Ax (i) (i)H C0H/Ax (i)/Ax (i)p^ ' tC ' (A) p* ' P^ * (A) y> '(A) p]_ '

I .(O .«)'

,(i)S.x Ji)U «(l)J(A)p^]/p^1+J (3.7)
'U

= *V*; (A)p^

,(0 JO
10

(3-6)

aio' Gn .
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and

Mf _ uf U) 4°ii2

m) ,Thus p^ is the radius of the inclusion region R , since

P<° =IIP1(',ll -hi1}(A) ,">|| •

The smallest characteristic root of X^ 'of Q* 'is

w <<>2 ♦ £> -V(4i' -pi"V +>W &

(3-8)

(3.9)

and the normalized characteristic vector w. of the matrix Q* ' corre

sponding to \' 'is

Wi = (3.10)

where

M
01 °10 4,r (D

Now if the hypothesis in (2) of Theorem 2.2 is valid, then

(i)
lim a* ' = a. where a. is a characteristic root of A. In order to
£ •* oo ux J J

determine the characteristic root to which the sequence in (2.15)
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converges, the behavior of ^ must be investigated. To this end, the

remaining theorems in this section are presented.

Let P be any matrix that diagonalizes A; that is, assume that

A =PA P_1 (3-11)

where

A = diag (a^, a2, ..., a^) .

Since P is a nonsingular matrix, there exists a unique vector v such

that

q(0) =Pv(0) (3.12)

where q^ ' is the vector (2.l4). If A is a normal matrix, then P can be

chosen unitary and thus v^ ' will be normalized.

The following theorem will be used to express the Rayleigh quotient

[i). ' as a linear combination of the characteristic roots of A and thus

to compare the coefficients associated vith a. in M-i, with those in

l-OU • Specifically, if the coefficients for a particular a. increase

with I while the coefficients of other a decrease, then n^_' converges

to that a..

Theorem 3»1. Let P be a matrix that satisfies condition (3.11),

and let v^ ' satisfy condition (3.12) where q^ is a normalized vector.

Then the vectors (2.l4) can be expressed as

W.F»(»)dW...»('),M (d«».i)<1
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where

d<*> - (d00, dW, ...,£)) (k = 1, 2, ..., I)

with

d.
(j(k-1) (k-1) ( (k-1) (k-1) I (k-l)l

<*> _! !oi ~_Vi Ih LI v^ji.. (3.15)
(k-1) (k-1) (k-1) ( (k-1) _ (k-1)

°01 °10 + Vpl Xl

Proof: From (3-2) and (3-12)

,(D -
W0W0

J0)f »«(0)(A) Q(0)^w
0) / o

^(0) ,«»(A) Pv(°> ,„
p(0)

b *

Since condition (3.1l) implies that

it follows that

Then by (3-10)

n(i)(A) P=PJ£) (A) ,

.(1) _ foJO)Pvv ' P-(0) 'A) v(0) N,
' p(0) J °

p,T(0) .0) (A) .«») ,,
p(0) 0

l

(3.1*0

(3.15)
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' "'p2<°> P2<°» V1 h J p(o) W

= pDW ,<°>

(1)

D^ =diag (df), dW, ..., dn(D,

p<°> a <°>
p 01 Pl«» -̂ J «<°>U,

p(o) p2(o)

>(o) v(o) -(pi(g) -^i(o)) «(o) L
2

(0) ^0)J.(o)
oi io Vpi

(3-16)

(3.17)

v(i)=D(l) v(l-l)
(I = 1, 2, ...)

The results stated in the theorem follow by induction since

qW =„l')T('-D

=pE<'>[>>... d"-1' v<°>]
=,»")...,(",(») (« =1, 2, ...)
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because diagonal matrices are commutative and by the hypothesis that

4(°> -PD<°> .

The next theorem is a generalization of the well-known theorem that

a Rayleigh quotient found for a normal matrix is a weighted mean of the

roots of the matrix.

(£)
Theorem 3»2. The Rayleigh quotient n^_ formed with a normalizable

matrix is a linear combination of the characteristic roots a of A, and
J

the coefficients of the roots may be complex. But their sum is one.

Proof: The proof is a direct consequence of the fact that any

Rayleigh quotient for a normalizable matrix is

H
v PA P-1 v/vH v

The sum of coefficients of the a 's can be obtained by the replacement
J

of A by I. This sum is one since

H ti t t->"1 / H H / H .v PIP v/v v = v v/v v = 1 .

In case A is normal, P can be chosen unitary with

V P = (P v)

For normal matrices the coefficients are thus nonnegative. If A is

normal and if

v(0) =(Pl, ..., en)T ,

then from the previous theorem
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Z* Id^d^ ... d<"|z |PJ2 (3.18)^ (1) _ V „ I, (1) „ (2) „ (D|2 |« |2
oi v o ' J J

so that

n

I
1

I |dW d<!>... d/'>|8 |p/-i

As previously indicated, the purpose of the above theorem is to

express the coefficients of a in terms of d * ' so that a comparison

can be made of the coefficients associated with a. in n_, and
J 01

[x ^ + '. Therefore, let

PH P-foJ (3-19)

In consequence,

(I) JOHAq(i)
^01 ' *

•II-AVl,-*i(1)0(4i(1)-^>',v''«
and

11^(1) V2) -V" <0 G(1) ^2) - S(l) 0»« "1
If |<y |̂ >1and |d ^k'| <1 (j =1, 2, ..., h - 1, h+1, ... n

and k = 1, 2, ...), then

,lim ^oi(l)=ah
£ -* oo



25

For a normal matrix A,

P. . = 5. . , the Kronecker delta .
ij ij

Obviously, nm * ' is a weighted mean of the characteristic roots of A.

The next theorem is applicable to any normalizable matrix. Its

use, however, is more easily seen if A is a normal matrix since the

condition (3.l8) implies that if |d ^'|2 >1(|d,^|2 < l) the coef-
J J

ficient of a is increased (decreased) with i. In any case, it is
o

( 8 \ O ( $ \ O
advantageous to know when |d. '| 2:1 and when |d. '| < 1.

J J

Theorem 3.3. Let d '*' (j = 1, 2, ..., n) be defined as in (3«13),

and let

r(l)(x)-|^)(x)|2--4^ ^
o M -X (i)P-L \

- PU) • (3.20)

Then for each j, one and only one of the following conditions holds:

(1) f(i) (a.) >0 and |d/£)| >1 ,

(2) f(i) (a.) <0 and |d.(i)| <1 ,

(3) f(i) (aj =0 and |d.(i)| = l .

Proof: If (3.13) is substituted into

K(1,l2-i,
J

the result is

(3.21)



p(l,#

Hence ,

2

.(0
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p^-^7^")

(*) (0
a a +
01 10

(I)Jl)
pv '°,

2

.0)

01

(i)X.

(O Ji)J (0/ x
pi i / * (aj).
21

= 1.

(O JO JO (O
p aio aoi " p o(i) -X(Z)pl xl

a<<> *«>(a.) +ff(l) ,(!)(„ )j
(3-22)
2

o(i) - X(i)pl Xl . i^>K)iW<>£>4<> +P<<V<<>-4<y.

Because the smallest root of a hermitian matrix cannot exceed a diagonal

element,

p^-^'Uo, (3.23)

and by (3>9), equality holds only if

CToi aio - u * (3.24)

Equality in (3.23) and condition (3.24) imply that d ^ ' is not defined;
J

also, equality in (3.23) implies that f* '(x) is not defined. Therefore,

2

<"-X<">0

may be assumed.

If (3.22) is simplified, it becomes

_. ,<o »[.jo ^,]

pi h

2

.CO = 0 (3.25)
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The left side of (3-25) is f^'(a,). Hence, |d ^£'|2 =1implies that

f (X) = 0. Since the steps are reversible, (3) of (3-21) is valid.

The proofs of the other two parts of (3«2l) follow immediately since

all the above operations either involve multiplying or dividing by a

positive number or involve some other operation which does not change

the sense of an inequality.

In [l], it is proved that for a normal matrix A and for a nonzero

vector v, a polynomial X(A ,A) which satisfies

vH X(AH,A) v =0

is a separation polynomial. Its locus will separate the complex plane

into two inclusion regions for A with the locus common to both.

If A is a normal matrix, the condition (3«3) imposed on the poly

nomial n '(x) which has been used throughout this discussion implies

that n (x) is a separation polynomial. The next theorem shows that

the polynomial (3.20) is a separation polynomial.

Theorem 3>^. If A is a normal matrix, the polynomial (3.20) is a

separation polynomial with respect to A and the normalized vector q .

Proof: The proof consists of showing that

A(I)(A)4<') -/'>{Aa)^m --£L- kV'W&Vw]
Pli)->i1> (3-26)

-p«')l}4(')-0.
Since condition (3«3) implies that jt '(A) is a separation polynomial,
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HH H

(O (O /A\ (Of ' jr ' (A) qx ' =

H

.(O JO (O(A) q' = 0

Consequently,

H

JO a10(i)n(i)(A) +a01^«^(A)
The left side of (3-26) thus becomes

.(O
= o

XT TT O

(£) (0/Ax (O ,Ax (O (i)qv ' ir '(A) rtv ' (A) q - p .

But this expression vanishes since the first term is ||jr '(A) q^ '|| and

since by definition (3-*0

.(" - ll«(" (A) ,("ll .



IV. AN ALGORITHM WITH A LINEAR POLYNOMIAL

This section contains a discussion of the algorithm with the linear

(l)polynomial 9.; '(x) and shows that this algorithm can have stationary

vectors that are not characteristic vectors. The Rayleigh quotients

u!l ' may not converge to a characteristic root of the matrix A.

For the matrix

»1-(i(l),[.(ilwt('W") ,
the linear polynomial

.Ww-^w-x-pW

will give the simplest algorithm from a computational standpoint.

Therefore, let

where

by (3-7).

/(O /a (0 tn (0/ (0\Wj = jqv ', (A -n^' I)qv '/P M

p^-H(a.^)d^)||-11^)11-p^

Since a^' is an off-diagonal element of the second order matrix

(3-6), Theorems 2.3, 2.4, and 2-5 show that an important question is

whether there are any vectors other than characteristic vectors of A

that make a^.' vanish. Since en..' is the conjugate of the other off-

diagonal element, only aJL,' needs to be discussed.

Let A be a normal matrix with characteristic roots a (j = 1, 2, 3,

..., n). Now,
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41 pi \~ ^oi xypi

which is a Rayleigh quotient of the matrix

(A-^f-^l)2
whose characteristic roots are {a. -u|Q'Ya. - |a ] ,j=1, 2, ..., n,

since A is a normal matrix. Consequently, by Theorem 3.2

n n

.£' - I si-j -^ -^>)(f>••• ^(41)-4l)^i
j=i i=:

If the roots of A are real, an answer to the above question is easy

to formulate. Let A, therefore, be a hermitian matrix of order n such

that

A = PAP"1=PAPH

where

A= diag (o^, a2, ... c*n)

with

a., < a- < ... < a
L d n

Since Ais hermitian, u^ =\J£ and a^ =of£. Let

Ml ^1 ^10

and

°1 °01 °10
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From (3.18) it follows that if A is hermitian, then

and

where

z (d^ ... &\l) p.)2 =1
j=1 J J J

The previous question of the existence of vectors other than

characteristic vectors of A which make 0^ ' vanish is equivalent to

the question of the existence, for a fixed u.-. £a* , of vectors

T
7 —\7j^> 7q> •«., 7n)

that satisfy the system of equations

/ n

ri " x

2
7, = H,Z«,5 'J

1

n

v 1

For some u. j£ a., the answer to the question is in the affirmative,

as the following theorem shows.

Theorem 4.1. Let A be a 3 by 3 hermitian matrix with characteristic

roots

a, < au <;2<a3
(4.1)
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ai + a2 + °SIf u < — 1 ^ and u, < a_, then there is a real noncharacteristic

stationary vector whose Rayleigh quotient is p.. for each

ai+a2 al+a3
2

(4.2)

a + a„ + a

Similarly, if |i, > ? - and \i. > au, then there is a real non-

characteristic stationary vector whose Rayleigh quotient is (i, for each

a± + Ctj
^ls 2

(^•3)

Proof: Assume that A is translated so that u = 0. If n, is not

a characteristic root of A, then the vector is a noncharacteristic

stationary vector if it satisfies the following system of equations:

( Y 2 i
i

La±7± = °

u A - °
1

The determinant of coefficients for this system is

(4.4)

8 = det OL {a± +a2 +o^Ko^ -a2)(a2 -^(a^ -o^),

<* 4 i
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and by Cramer's rule

(1) 572 =a2 a5 (a2 -a2,)

(2) S/^a^ (a2 -o|) (4.5)

(3) 5y| =aj_ a2 (a2 -a2) .

Since a, +ap +a, ^ 0 and since the characteristic roots are simple,

5^0 and the vector y exists.

Now assume that <x, + a_ + a, > 0. Then 8 > 0.
1^3

The assumption that a translation is performed on the matrix A

so that l-i, =0 means that

a < 0 < a, (^.6)

since Rayleigh quotient of a hermitian matrix lies on the closed

segment between the least and greatest characteristic roots. The

inequalities (4.6) must be strict if the vector is to be a noncharacter

istic vector of A.

If

a2 > 0 (4.7)

the equations (4.5) have a real solution if and only if

a2 - a2 =(ax +otj )((*,_ - a^) <o

and

a!-ai=(a2-ai)(ai +a2>-°
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These two inequalities hold if and only if

a± + a~ s o (4.8)

and

a± + a2 < o (4.9)

since by hypothesis

a - a, < 0

and

a2 " al > ° *

If a± - nx is substituted for a± (i = 1, 2, 3) in (4.8) and (4.9)

and if the resulting inequalities are solved for u,, the results are

(4.2).

Now, assume that a + a„ + a, > 0 ; then 8 > 0.

If a2 < 0

the equations (4.5) have a real solution if and only if

Oj -Q^ = (0=5 +a2)(a5 -«2) ^0

and

ai ""3 = K +°j) K -°9 S°'

These two inequalities hold if and only if

°5 +a2 3 ° (4.10)

and

o^ +a, =s 0 (^.ll)
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since by hypothesis

ou > o°i-°2
and

ex. - a, < 0 .
i 3

If a± - nx is substituted for a. in (4.10) and (4.11), and if the

resulting inequalities are solved for u , the results are (4.3).

If u. satisfies one of the inequalities (4.2) or (4.3), then there

exist real vectors which satisfy the system of equations (4.4). This

means that if the algorithm yields vectors q^ ' that converge to one of

these vectors, the inclusion regions R will converge to a disk with

a nonzero radius, and the sequence of Rayleigh quotients nj 'will

converge to a number that is not a characteristic root of A. Conse

quently, this algorithm presents some serious difficulties when it is

used to find characteristic roots and vectors.

If A is an nth order hermitian matrix, the system of equations

(4.4) will be three in number, but the number of unknowns will be

increased to n. There, thus, will be additional noncharacteristic

real stationary vectors whose Rayleigh quotients n-, satisfy inequalities

similar to (4.2) and (4.3).



V. AN ALGORITHM WITH A QUADRATIC POLYNOMIAL

This section presents the properties of the algorithm with the monic

quadratic polynomial

*<*> a, jo - <k - ,<£>) (a -$) -v[if (5.D

- il) (X) ¥<" (A) -P<i)2
where p is the radius of the inclusion disk

|X -M^l <|| (A -„£> I) 4<'>|| . (5.2)

Henceforth, the symbol it will denote this algorithm.

If q is a stationary vector of the algorithm it then either q^

is a characteristic vector of the given normal matrix A, or the inclu

sion disk (5.2) has two or more characteristic roots of A on its boundary.

U)A later theorem shows that if qv is a stationary vector of it, then it

is a stationary vector for all algorithms that use the method discussed

in Theorem 2.1 to determine q^ ' from q . That is, from the subspace

spanned by a set of mutually orthogonal vectors that contains the old

vector q a vector q cannot be chosen that will yield a smaller

inclusion disk with u: ' as center than the disk (5.2). Thus,

IKA-HoJW^U < II (A -u^} I) xII / || x||

for all vectors x in the subspace regardless of the dimension of the sub-

space.
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Since

^)H(^)H(A)<pW(A)-pW2I,,(^

- *<"%<"* (A) ,<" <W> -p^

- p(«)2-p("2
Pl ^1

= o ,

the polynomial it (A, A) satisfies condition (3-3)•

The next two theorems show that the Rayleigh quotients converge to

a characteristic root of A if the radii of the Weinstein disks converge

to zero.

(i)Theorem 5»1» Let A be a normal matrix. If the radii p.[ of the

inclusion disks (5-2) formed by the algorithm converge to zero, then the

(&)sequence of vectors q will contain an infinite convergent subsequence

that converges to a characteristic vector of A.

Proof: Since by hypothesis

lim p^ = 0

the only stationary vector are characteristic vectors. Hence, if the

normalized vector q is not a characteristic vector, then the algorithm

it will yield a new vector q^ . Then by Theorem 2.1

II 9^ (A)q(l)|| <||cpf} (A)q(0)|| .

This inequality is strict since o.J '^ 0 and since condition (3-9) implies

that the smallest characteristic root of the matrix (2.8) is a simple root.
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For any initial normalized vector q , therefore, the algorithm it

will yield the vectors of the form (2.14) such that, for all SL,

I^W^H <||^)(A)1U)||
(z)as long as q is not a characteristic vector of A.

(Z)
The vectors q are in the 2n dimensional compact space. By the

(k)
Bolzano-Weierstrass theorem, there exists a subsequence, say [q ],

which will have a limit in the space. There, thus, exists a vector q

such that

fk)
lim q^ ' = q . (5-3)
k—> co

Associated with this sequence of vectors is a sequence of matrices W

that converges to a matrix W since

Wk = (q' ', itv (A ,A) q )

(k) (k) H
is a continuous function of q because it (A , A) is a continuous

(k)function of q/ '. Therefore,

lim Wk - lim (q(k), it(k) (AH, A) q(k)) = W. (5-4)
k—> oo k—> oo

Since the columns of w, are orthonormal and since
k

(k+1)
* - WkWk '

then

wk - %4(«) .
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By (5-3) and (5-4),

TTH (k+1)
lim w = lim W qx '
k—> 00 k—> 00

TTH .. (k+1)
= lim W lim qv '
k—> 00 k—> co

W q

= V

Thus W e = q, which implies that q is a stationary vector. Consequently,

q is a characteristic vector of A since the hypothesis that the radii p^'

of the inclusion disks converge to zero implies that a stationary vector

is a characteristic vector.

The next theorem shows that the Rayleigh quotients formed by the

(Z)sequence of vectors q_K have a unique limit.

Theorem 5.2. Let A be a normal matrix and let the vectors be formed

by the algorithm in the previous theorem. Then the Rayleigh quotients

H formed by the vectors q^ 'will converge to a characteristic root

a. of the matrix A. That is,

U)lim u; / = a .
Z~> 00 U1 J

If a. is a simple root of A, then
J

lim qS£) =q
Z—> 00

where q is the normalized characteristic vector of A associated with the

characteristic root a. .
J



40

Proof: Since every convergent subsequence of the vectors must con

verge to a characteristic vector of A, the radii p^ = || qr (A) q ||

of the Weinstein disks

R£ =h: |X -n^}| <P^}| U=0, 1, ...)

converge to zero. Hence, every infinite subset of the Rayleigh quotients

(z)\i.\- must converge to a characteristic root of A.

Now, to show that every infinite subset of the Rayleigh quotients

converges to the same characteristic root of A, let a. be within the

J

Weinstein disk R and let the diameter of R (2 pl: ) be less than one-

half the distance between a. and the closest characteristic root of A.
J

The diameter of R can be arbitrarily small since

lim p^} = 0 .
Z—> oo

By Theorem 2.6, the Rayleigh quotient u: must be within R,. The

Weinstein disk R can contain, therefore, only one of the a.. Similarly,

the Weinstein disks R (m = k+2, k+3, ...) can contain only this same a..
m 0

Consequently, the sequence of Rayleigh quotients ni-, (Z = 0, 1, 2, ...)

converges to this characteristic root a .
J

If a. is a simple characteristic root of A, then there is only one

normalized characteristic vector associated with a . That is,
J

lim <£*) = q
Z—><»

where q is the normalized characteristic vector associated with a..

For simplicity the superscript "Z" will be omitted from now on since

the remaining theorems do not involve iterations.
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TT TT p

Since the matrix it(A ,A) =q^ (A) cp^A) -p I is hermitian, the

off-diagonal elements a and a of the matrix Q(3-l) are equal. Let

01 = 01O = a01

Then by (3-7),

i± = $1 it (AH, A) V± . (5.5)

TJ

The next theorem shows that 0 is the norm of the vector it(A , A) q.

If a1 = 0, then by one of the properties of norms

it(AH, A) q = (cpj (A) cpx(A) -p2 I) q=0.

Thus,

9* (A) cpx(A) q = p2 q. ^^

2
Hence, p1 is the characteristic root and q is the characteristic vector

of q? (A) cpx(A) .
Theorem 5«3. Let A be a normal matrix. Then

a1 = || it (AH, A) q || .

Proof: From condition (5-5),

ai ={pi [ <A ~̂01 I)H (A ""oi I} "pl « %} / p

= cp? ( a - »01 i)H (a - ^01 i} pi - pi] / p (5.7)

{qH [ (A - nQ1 I)H (A - nQ1 I) f q-pjj / p



By definition (3-4)

p2 = || it (AH, A) q || 2
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q it (A , A) it (A , A) q

qH [« (AH, A) f q

qH [(A -nQ1l)H (A -n01l) -p2 I]2 q (5.8)

qH [(A -^01I)H (A -^01I)]2 q-2p2qH (A-^l)* (A-^l) q+pj

qH [(A -n01l)H (A -^01I)]2 q-2PJ +p^

qH [(A -u01l)H (A -n01l)]2 q-p!j .

Thus, (5.7) and (5.8) imply that

2

cr, =
_ P

1 P
P || * (A) q || .

Theorem 5*4. Let A be a normal matrix of order n. If q is a nor

malized stationary vector of the algorithm it, then either q is a charac

teristic vector of A or the inclusion disk determined by q and A has two

or more characteristic roots of A on its boundary.

Proof: Since A is normal, there exists a unitary matrix P such that

A = PAPE

where

A = diag (a,, a_, ... a ) .
1 2 n

There exists a normalized vector v such that

q = Pv (5.9)
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since q is a normalized vector and since P is a nonsingular matrix.

If (5.9) is substituted into (5-6), then

cp!J (A) cpi (A) Pv = p2 Pv. (5-10)

If the equation (5-10) is multiplied by P^, then

since

Thus

and if

<pJ(A) 9X(A) v = p2 v,

P11 cpj (A) PP11 ^(A) P = cpj (A) cp^A) •

p P P

diag (|a -^ih -> K^ml )v=pi v*1 ^01' ' •••' ' n ^01' ' Kl

Consequently, if

K-^oJ =pi

K-"oil * K-^oil ^-11}

for all k ^ i, then

Hence,

v= ek

Av = OL v
k

and APv = a^ P v .

Therefore, if condition (5»ll) holds, q = Pv is a characteristic vector

of A; and if it does not hold, there will be at least two characteristic

roots of A on the boundary of the inclusion disk determined by A and q.
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If A is a hermitian matrix and if q is a noncharacteristic stationary

vector of the algorithm it, the next theorem shows that two characteristic

vectors of A are linear combinations of the two orthogonal vectors q and

Theorem 5.5. Let A be a hermitian matrix, let q be a stationary

vector of the algorithm it which is not a characteristic vector of A, and

let OC and a. be the end points of the inclusion interval determined by A
1 J

and q. Then oc. and OC. are characteristic roots of A and

x. = % (q- -i- Pj (5.12)id p1 1

and

xi =% ^+ ;rpi} (5-13)

are characteristic vectors of A corresponding to a. and OC..

Proof: By the previous theorem the end points of the inclusion

interval determined by A and q are characteristic roots of A since q is

a noncharacteristic vector of A and a stationary vector of the algorithm

it. Therefore, let OC. and a. be the left and right end points, respec

tively. Thus a = u. - p , and a. = u + p . Consequently, by (5«12)

ai xi = V - pi' xi

= "2^ Kl "pl} ^ ~Pl} '
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and by (5-13)

=(^01 +Pl) \ (4 +-^ PX) (5-15)

= ^ V +pl} ^l* +Pl} '

Since q is a stationary vector of the algorithm it, then

(q>l (A) -p2 I) q = cpx (A) P]_ -p2 q

= Api ' ^01 Pl " Pl q

= 0 .

Hence,

Api = ^oi pi + pi q (5'l6)

- ^oiAq +(pi - 4} *
If (5.12) is multiplied by A, then

-[2Ax. = -f- (Aq --jjj-A P;L) (5.17)
Pl

="lp-^1 A(1 "AP1} *

If (5.l6) is substituted into (5.17), then

^ =\ [piA* -^ •(p" -4>*] (5-i8)

=\ (^01 "Pl} [-A^ +(pl+ ^01} *3



Therefore,
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42_
2pl

(HQ1 -Pl) [-(A -n01 I) q+Plq] (5-l8)

-f^ V "pi} (piq "Pl} '

Ax. = a. x.
1 11

since (5.18) and (5.14) are the same. Thus, x. is the characteristic

vector of A corresponding to the characteristic root a .

Similarly, x. is a characteristic vector of A corresponding to the
J

characteristic root a..
0

In the following discussion let C denote the class of algorithms

that was discussed in Chapter II.

Theorem 5.6. Let A be a normal matrix, and let q be a stationary

vector of the algorithm it. Then q is a stationary vector for every algo

rithm that belongs to Class C.

Proof: Since q is a stationary vector of the algorithm it,

CpJ (A) «P1(A) q = p2 q . (5-19)

For simplicity, let

X. = X. (AH, A)
i 1 '

TT

where X. (A , A) (i = 1, 2, ..., m-l) is a sequence of polynomials that

satisfies the following relations:

qH X. q = 0 (5.20)
1

H ..Hq X* X.q = 0 . (5-21)
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An algorithm that belongs to Class C is determined when a method of

determining the columns of the n x m orthonormal matrix W is given.

Therefore, let

W = (q, Xxq, X2q, ..., X^ q) .

Hence,

CP1(A) W = (cpx(A) q, cp]_(A)X1q, cp^A^q, ..., ^UJX^q) •

Since A is normal, the polynomials <p.,(A) and X. commute. Thus,

[cpi(A) X.q]H [^(A) Xq] =q.E xj <pJ(A) cp^A) X q

=qH xj X. cpJ(A) cp^A) q

2 H ,.H ..= Pl q X. X^ q

Ml 1J

by (5.20) and (5.21). Consequently, by (5-22)

(cp^A) W)H (cpi(A) W) = p2 I .

Therefore, q is a stationary vector for every algorithm that belongs to

Class C.

The following discussion concerns the application of Theorem 3-3 to

the algorithm it.

If it (X,X) is substituted for it(?0 in (3.20), the result is

_ ? 20i - ?f(A) =|«(A, A)T - -2—±- it (A, A) -oj
pl ~\

(5-22)



|*(A, A) '1 ,2
2 ,

pl " \

2
a, +
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1 (pi - v£

={|it(A, A)- -^
pl - Al

!cti+,~(p, - v£

. 2
+ o\ +

4

f>1 ( 2 > ^
(pl " V

*(A, A)
2 ,

Pl "\

Since the second factor of f(A) is always greater than or equal to zero,

the first factor determines the signs of f(A). If the first factor of

f(A) is less than zero, then

\y I2 2|A - n™ | - p
01'

1 4-\
which is the annulus

• 2 ul<|01+ -g— --g
(P, - Axr

(4+ /^ °i"V0i+ (pi •v ]F< |A -^oii

< < P-l +

1

2

that will be denoted by B.

The circles of the annulus B are concentric with the inclusion

region

R=JA :|A -uQ1| <AC || cpx(A) q|| =k0^

and the boundary of the inclusion region R is within the annulus B.
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Now, f(A) < 0 for every A within the annulus, and f(A) > 0 for

every A within the inner disk or outside the outer disk. By Theorem

3.3, |d.| > 1 when the characteristic root a. is within the inner disk

or outside the outer disk, and |d.| < 1 when the characteristic root a.

is in the annulus. Thus, the weight of a characteristic root will be

increased if it is within the inner disk or outside the outer disk and

the weight decreased if it is in the annulus.

In summary, this study shows different algorithms for the develop

ment of a sequence of vectors q^ ' (Z = 0, 1, 2, ...) such that the radii

of their associated Weinstein disks are decreasing. If the radii of the

Weinstein disks approach zero as a limit, then the Rayleigh quotients

associated with the sequence of vectors converge to a characteristic root

of the matrix A.

The algorithm with the linear polynomial

*! <*>=*- HQ1

does not always yield vectors whose associated Rayleigh quotients converge

to a characteristic root of the matrix A. However, the algorithm it does

yield vectors whose associated Rayleigh quotients converge to a character

istic root of a normal matrix A with the exception that is noted in

Theorem 5«4. In the case of a hermitian matrix, Theorem 5*5 gives a

method to cover the exception.
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