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ABSTRACT 

The mechanical propert ies of two aluminum al loys  and a 
f u e l  dispersion have been invest igated f o r  the  purpose of 
se lect ing a cladding material  and supplying data f o r  design 
evaluation of the  Advanced Test Reactor f u e l  p la tes .  

The propert ies of the X8001, 6061, and the  U308-Al \ 

dispersion were investigated.  The creep propert ies of these 
materials  i n  uniaxia l  tension were measured i n  the  temperature 
range of 400 t o  600°F f o r  maximum s t r a in s  of 1.0% and times 
of 450 hr .  The t e n s i l e  proper t ies  were measured from 70 t o  
600 OF. 

The 6061-0 i s  stronger i n  short-time tension and creep 
than the  X8001-0 material .  The t e n s i l e  s t rength  of a 0 0 1  
can be increased by cold working. Recovery of the  cold- 
worked X8001 and 6061 a l loys  was invest igated and compared 
with the  k ine t ics  of the  overaging of the  6061 a l loy  i n  the 
T6 condition. The f u e l  dispersion i s  stronger i n  creep than 
the X8001-0 matrix material .  The t e n s i l e  s t rength  of the  
f u e l  dispersion i s  approximately twice t h a t  of X8001-0. 

INTRODUCTION 

The ATR i s  a high-flux water-moderated and l i g h t  water-cooled reactor.  

Circular  segment f u e l  elements consist  of 19 curved f u e l  p la tes .  The 

f u e l  p la tes  a re  A1-U308 f u e l  dispersion clad with an aluminum al loy.  

Several aluminum al loys  were considered i n  the  f i n a l  conceptual 

design1 as cladding materials .  The materials  most feas ib le  f o r  the  f u e l  

element a re  the  6061 and X8001 al loys  based on the  mechanical propert ies,  

corrosion res is tance,  and f a b r i c a b i l i t y  data.  The purpose of the  ATR 

'D. R. deBoisblanc, The Advanced Test Reactor - ATR F ina l  Conceptual 
Design, IDO-16667 (Nov. 1, 1960). 



basic material  t e s t i n g  program completed a t  the  Oak Ridge National 

Laboratory was t o  supply the  necessary mater ia l  property data  t o  f a c i l i t a t e  

se lect ion of the  type of aluminum best  sui ted as  the  cladding f o r  the  f u e l  

p la tes .  A complete program was j o in t l y  agreed upon by the designer, 

Babcock and Wilcox Company, and ORNL a t  the inception of the program. 

The program included t e n s i l e  and creep t e s t s  a t  temperatures up t o  600°F 

f o r  the two basic  aluminum al loys ,  6061 and X8001, i n  addit ion t o  

l imited mechanical property data of the  f u e l  dispersion and f u e l  p la te .  

The data of B O O 1  and 6061 alloys are  reported i n  t h i s  report .  

Mechanical Property Determinations 
Useful t o  Fuel Element Design 

The mechanical property data needed t o  evaluate f u e l  element 

materials  and design can be innumerable. One can evaluate the  r e l a t i ve  

strengths of f u e l  element materials  by y ie ld  s t rength  i n  tension and, 

if one i s  designing i n  the  p l a s t i c - s t r a in  range, minimum creep r a t e  data. 

Normally, these data  are not sa t i s fac tory  i n  t he  evaluation of a 

par t i cu la r  f u e l  element design. A designer i s  in te res ted  i n  the  re la t ion-  

ship of s t r e s s  and s t r a in .  The re la t ionship  f o r  various s t r e s s  s t a t e s  

a t  a par t i cu la r  temperature and f o r  a given environment i s  des i rable .  

Experimental duplication of a l l  these conditions can be cost ly  and a t  

times impossible. Therefore, one must r e l y  on both theory and experimen- 

t a l l y  proven mathematical re la t ionships  of simple mechmical property 

data. Judicious se lect ion of the type of mechanical property t e s t s  and 

material  conditions w i l l  r e s u l t  i n  meaningful mater ia l  property data. 

The s t r e s s - s t r a in  curves f o r  a mater ia l  t e s t ed  i n  tension a t  various 

s t r a i n  r a t e s  are useful .  Tangent, Young's, and other  moduli can be 

obtained from these short-time t e n s i l e  curves. An example of d i r ec t  

application of t h l  s t r e s s - s t r a in  curve i s  t he  determination of e l a s t i c  

and p l a s t i c  def lect ion i n  bending of t h in  p la tes  such as  the  ATR f u e l  

p la tes .  

A t  elevated temperatures, s t r a i n s  o r  s t r e s se s  f a r  below the  short-  

time y ie ld  s t r e s s  o r  s t r a i n  can r e s u l t  i n  time-dependent p l a s t i c  

deformation. Creep data  can be generated and presented i n  many ways. 

More i s  understood about the  experimental determination of and the  



appl icat ion of uniaxia l  tension data than any other  type s t r e s s  s t a t e .  

These type t e s t s  represent the  most f ea s ib l e  time-dependent deformation 

t e s t s .  However, the  s t r e s s  s t a t e  f o r  t he  ATR f u e l  p la te  i s  bending and 

not uniaxia l  tension. The prediction of p l a s t i c  def lect ion f o r  rectangu- 

l a r  cross sections,  such as the  ATR f u e l  p la te ,  i n  bending from uniaxia l  

tension da t a  has been demonstrated. 2-4 

Creep data  can be presented i n  many ways. The simplest,  most 

voluminous method i s  the  p lo t  of s t r a i n  vs time a s  obtained d i r e c t l y  

from t e s t  data .  Each curve s a t i s f i e s  a given mater ia l  a t  a pa r t i cu l a r  

temperature, s t r e s s ,  and environment. Details  of several  methods of 

corre la t ing creep data  f o r  design have been reviewed by Aarnes and 

Tut t le .  However, no par t i cu la r  method of creep data  presentation i s  

both applicable and most convenient t o  a l l  design evaluations. It i s  

believed t h a t  the  use of isochronous s t r e s s - s t r a in  curves i s  a c lea r  

and concise method of creep data  presenta t ion which i s  applicable2 t o  

many design s tudies .  

One must a l so  decide the  type of heat  treatment t o  be applied t o  

the  mater ia l  p r i o r  t o  the  generation of mechanical property data.  

Metallurgical  i n s t a b i l i t i e s  of an a l loy  can s ign i f ican t ly  a l t e r  the  

mechanical propert ies.  For some al loys ,  these s t ruc tu r a l  changes can 

be predicted6 from the  thermal his tory .  However, the  combined e f f e c t  

of thermal and i r r ad i a t i on  h i s to ry  on s t ruc tu r a l  changes i s  not wel l  

known a t  t h i s  time. Several experiments7 indicate  t ha t  thermal annealing 

- 

2 ~ .  A. Weil, "Isochronous Creep Curves f o r  S t ra in  Determinations 
Under Complex Loading Cycles," paper presented a t  the ASME Design 
Engineering Conference, Chicago, I l l i n o i s ,  April  30-May 3,  1962. 

3 ~ .  H. H i l l  -- e t  a l . ,  Am. Soc. Testing Mater. Proc. - 61, 890 (1961). - 
4 ~ .  Marin and J. Sauer, Strength of Materials, 2nd ed. , MacMillan, 

New York, 194.8. 

5 ~ .  N. Aarnes and M. M. Tut t le ,  Presentation of Creep Data f o r  
Design Purposes, ASD-TR-61-216 (June 1961). 

6 ~ .  E. Fortney and C. H. Avery, Effects  of Temperature-Time S t ress  
Histories on the  Mechanical Propert ies of Aircraf t  S t ruc tura l  Metall ic 
Materials. Par t  I. Temperature-Time Studies of 2024-T3 and 7075-T6 
Alclad Sheet, WADC Tech. Rept. 56-585 (December 1956) . 

7 ~ .  M. Adair, R. E. Hook, and J. Garrett ,  Radiation Induced Over- 
Aging of a 2024-T3 Aluminum Alloy, ARL-132 (September 1961). 



i s  enhanced i n  i r rad ia t ion  f i e l d s .  Therefore, the  proper t ies  of the  

f u l l y  annealed a l loy i s  recommended a t  t h i s  time t o  ensure a dependable 

design and mater ia l  evaluation. 

Material and Experimental Procedure 

The chemical composition of the cladding a l loy  tes ted  i s  given i n  

Table 1. The f u e l  dispersion i s  a 33% by weight dispersion of U308 i n  

a 0 0 1  aluminum. The pa r t i c l e  s i ze  of U308 before fabr ica t ion  varied 

from -100 t o  -1-325 mesh. The f u e l  p l a t e  t es ted  i s  0.015-in. X8001 clad 

on an 0.020-in. f u e l  dispersion. The resu l t ing  0.050-in.-thick f u e l  

p la te  was fabr icated using the  technique described elsewhere. 8 

Table 1. Composition of Aluminum Alloys Under Investigation 

Percent Weight f o r  
Element Alloy X8001 MX13001 6061 

N i  1 .'19 0.93 

S i 0.06 0.003 0.60 

T i  0.11 

Fe 0.48 0.53 

Mg 1.00 

Cu ,260 PPm 0.25 

C r  0.25 

Al Bal Bal Bal 

Al l  specimens designated by a suff ix ,  0, were annealed 2 hr a t  

775°F i n  a i r  and furnace cooled pr io r  t o  t e s t i ng  t o  ensure removal of 

p r io r  cold working. 

The short-time t ens i l e  properties were obtained using a 10,000-lb- 

capacity Baldwin Universal t e s t i ng  machine. The cross-head speed was 

0.05 in .  /min. The load-elongation curves were autographically re  corded 

u t i l i z i n g  an extensometer arrangement on the  specimens. 

8 ~ .  L. Heestand - e t  -* a1 7 "Fabrication Development of the  Advanced 
Test Reactor Fuel Element," pp 315-36 i n  Research Fuel Element Conference 
September 17-19, 1962, Gatlinburg, Tennessee, TID-7642, Book I (1963). 



The time-dependent deformation data  were obtained using constant 

load t e s t s  and an extensometer arrangement. 

RESULTS AND DISCUSSION 

Moduli 

E las t ic  moduli were obtained from dynamic and s t a t i c  determinations. 

"Dynamic" moduli so determined3 represent those moduli t o  be used i n  

calculations of deformation a t  high r a t e s  of load application.  These 

moduli f o r  X8001 aluminum are  given i n  Fig. 1 and 6061 i n  Fig. 2. 

Significant differences i n  moduli begin i n  the  temperature range f o r  

which the temperature exceeds 0.5 of the  absolute melting point. The 

dynamic moduli values presented here a re  s l i g h t l y  greater  than the  

values presented e a r l i e r  by H i l l  -- e t  a1. f o r  1100 aluminum. 

Dynamic moduli of the  f u e l  dispersion are  given i n  Table 2. These 

moduli were calculated,using the cross-sectional area  of the  f u e l  

dispersion. I f  the modulus of the f u e l  dispersion i s  calculated using 

the cross-sectional area  of the  metal l ic  matrix, the  modulus i s  equiva- 

l e n t  t o  the modulus of the matrix material .  These data a re  shown i n  

Table 2. Therefore, the modulus of f u e l  dispersion fabr icated i n  a 

l i ke  manner can be predicted from the  modulus of the  matrix mater ia l  

and the  volume f rac t ion  of dispersion. Venard and swindeman9 demonstrated 

the same re la t ionship f o r  the modulus of a dispersion of U02 i n  type 347 

s ta in less  s t e e l .  

'J. T. Venard and R. W. Swindeman, Metals and Ceramics Div. Ann. 
Progr. Rept., May 31, 1962, ORNL-3313, p 33. 
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Table 2. Dynamic Moduli of 33 wt % Dispersion 
of U308 i n  X8001 Aluminum 

Dynamic Dynami c calculateda 
Test Moduli of Moduli Dispersion 

Temperature Dispersion of X8001 Moduli 
( OF) (ps i>  (-Psi> (p s i )  

a 
Note: Calculation of f u e l  dispersion modulus: 

Modulus of = ( I -  Volume Fraction Modulus of 
Fuel Dispersion of Dispersion Matrix Material 

Yield Strength and Ultimate Tensile Strength 

The y ie ld  s t rength  and ult imate t ens i l e  s t rength  of these a l loys  

are  given i n  Figs. 3 and 4, respectively.  The t e n s i l e  propert ies of 

the f u e l  matrix and dispersion are compared i n  Table 3 .  These proper t ies  

of the X8001 a l loy  are  very s imilar  t o  those of 1100 aluminum. The 

strength of the 6061 a l l oy  i s  s ign i f ican t ly  g rea te r  than the  X8001 al loy.  

The yie ld  s t rength  of the f u e l  dispersion i s  higher than t ha t  of the  

X8001 al loy.  The s t r e s s - s t r a in  curves f o r  the  6061 and B O O 1  a l loys  a r e  

given i n  Figs. 5 and 6, respectively.  

Table 3. Comparison of the  Mechanical Propert ies 
of Fuel Dispersion and Matrix Material 

Fuel Dispersion 
Test Yield Ultimate Tensile Percent 

Temperature Strength Strength Elongation 
( OF) (ps i )  ( p s i>  a t  Rupture 
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Fig. 3. Yield Strength of Alloys as a Function of Test Temperature. 
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Fig. 4. Ultimate Tensile Strength a s  a Function of ~ e m p r a t u r e  
f o r  Several Aluminum Alloys. 
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The d u c t i l i t y  of the f u e l  dispersion i s  low compared t o  the  

cladding material .  The rupture elongation of the f u e l  p la tes  a t  the  

temperatures investigated varies from 7 t o  10% without apparent trend.  

Creep Properties 

The isochronous s t ress -s t ra in  curves f o r  the  X8001 a l loy  a t  400, 

500, and 600°F compared t o  the t ens i l e  curves a t  t h i s  temperatures a r e  

shown i n  Figs.  7, 8, and 9. The isochronous s t r e s s - s t r a in  curve f o r  

the 6061-0 a t  350, 400, 500, and 600°F i s  given i n  Figs. 10 through 13. 

The isochronous s t r e s s - s t r a in  curves f o r  the f u e l  dispersion a t  400 and 

500°F are given i n  Figs. 14 and 15. 

These data  show the creep strength of the f u e l  dispersion t o  be 

greater than t h a t  of the X8001 mater ia l  but l e s s  than the 6061-0 a l loy .  

The isochronous s t r e s s - s t r a in  curves f o r  6061-T6, data courtesy of 

Alcoa Research Laboratory, are  presented i n  Figs.  16 through 19 f o r  

comp%rison with the  strength of the annealed a l loy.  These data  are ,  i n  

the main, compatible with other data1' t o  be found i n  the l i t e r a t u r e .  

A t  400°F, the  annealed a l loy  i s  weaker than the  a l loy  i n  T6 condition 

f o r  expsures of a t  l e a s t  1000 hr.  However, a t  500°F the creep strength 

of the a l loys  i s  s imilar  a f t e r  exposure of 100 t o  1000 hr. 

Effect  of Cold Work on Tensile and 
Creep Properties of SO01 Aluminum 

Previous investigations1' demonstrated t h a t  cold work e f fec t ive ly  

increases the  t e n s i l e  yie ld  strength of the X8001. Kemper and Powell1* 

examined the  recovery of these cold-worked al loys  a s  a function of heat  

treatment, temperature and time, by the reduction of room-temperature 

yie ld  strength a f t e r  thermal treatment. From these data, one would 

expect the longest benef i t  of increased y ie ld  s t rength from a 10% 

'OH. R .  Voorhees and J. W. Freeman, Am. Soc. Testing Mater., Spec. 
Tech. Publ. - 291, 131 (1960). t - 

' l ~ .  E. Johnson and W. H. E l l i s ,  A Preliminary Study of t he  
Mechanical Properties of M-388, An Aluminum 1% Nickel Alloy, HW-41859 
7bIarch 1956). 

1 2 ~ .  S. Kemper and K. F. Powell, Mechanical Properties of Aluminum 
Alloy M-388: Effect  of Fabrication Variables, HW-54364 ( ~ a n u a r y  1958). 
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Fig. 7. Stress-Strain Curves for Aluminum Alloy X8001-0 Tested 
at 400°F in Air. 
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Fig. 8 .  Stress-Strain Curves for Aluminvm Alloy X8001-0 Tested 
at 500°F in Air. 
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Fig. 9. St ress-Stra in  Curves f o r  Aluminum Alloy X8001-0 Tested 
a t  600°F i n  A i r .  
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Fig. 10. Stress-Strain Curves of 6061-0 Aluminum at 350°F. 



Fig .  11. S t r e s s - S t r a i n  Curves f o r  Aluminum Alloy 6061-0 Tested 
400°F i n  A i r .  
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Fig. 12. Stress-Strain Curves for Aluminum Alloy 6061-0 Tested 
at 500 OF in Air. 
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Fig. 13. Stress-Strain Curves for Aluminum Alloy 6061-0 Tested 
at 600 "F in Air. 
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Fig. 14 Stress-St ra in  Curves f o r  35% by Weight U308 Dispersion 
i n  X8001 Aluminum Tested a t  400°F i n  A i r .  
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Fig. 15. Stress-Strain Curves for 35% by Weight U308 Dispersion 
in BOO1 Aluminum at 500°F in Air. 
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Fig. 16. Stress-Strain Curves for 6061-T6 Aluminum Tested 
at 212 OF. 
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Fig. 17. Stress-Strain Curves for 6061-T6 Aluminum Tested 
at 390 OF. 
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Fig. 18. Stress-Stra in  Curves f o r  Alumrinum Alloy 6061-T6 Tested 
at 400 OF. 
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Fig. 19. Stress-Strain Curves for 6061-T6 Aluminum Tested 
at 500 O F .  



cold-worked X8001 material  a t  temperatures i n  the  range of 400 t o  500°F. 

The t ens i l e  propert ies of a 10$ cold-worked a l loy  are given i n  Table 4 

a s  a function of t e s t  temperature. The creep s t rength of the  1 0 s  and a 

15$ cold-worked X8001 i s  compared t o  t h a t  of an annealed a l l oy  a t  400°F 

i n  Table 5. These data  show t h a t  the  advantage of increased s t reng th  

due t o  cold working evidenced by t e n s i l e  data  is  not indicated by creep 

data f o r  exposure a t  temperatures of 400'3' or  above. 

Table 4. Short-Time Tensile Strength of a 10% 
Cold-Worked and Annealed a 0 0 1  Aluminum Alloy 

Test Yield Strength Ultimate Tensile Total  Elongation - 
Temp (ps i )  Strength (ps i )  a t  ~ u ~ t i r e  , 
(OF) Annealed Cold-Worked Annealed Cold-Worked Annealed Cold-Worked 

Table 5. Comparison of Typical Isochronous Stress-Stra in  Data f o r  
Cold-Worked X8001 and Annealed Aluminum a t  Elevated Temperatures 

S t ress  (ps i )  Necessary t o  Produce 0.1% S t r a in  i n  a 
Given Time a t  Various Temperatures 

Type of 400 OF 500 OF 
Material 100 h r  450 hr  100 hr 450 h r  

X8001, 10% 1650 1100 850 
Cold-Worked 

X8001, 15% 1650 1100 750 
Cold-Worked 

- - - - -  - -- -- 

It i s  evident t h a t  there i s  no advantage i n  using the  cold-worked 

material  f o r  creep conditions because of the  recovery phenomena. I n  

terms of recovery, there  are  two types of processes - the  dynamic 

recovery and s t a t i c  recovery. The process of dynamic recovery i s  

ass i s ted  by an applied s t r e s s  whereas the  usual  s t a t i c  recovery i s  not. 

Certainly a t  the  temperatures of 400°F, both processes occur. The s t a t i c  

recovery of t he  6061 was investigated (see Appendix I) t o  obtain some 

information a s  t o  i t s  significance a t  these temperatures. 



CONCLUSIONS 

Tensile and creep data of two aluminum al loys  and a f u e l  dispersion 

have been investigated f o r  application t o  f u e l  p la te  mater ia l  se lect ion 

and evaluation of f u e l  element design. The basic material  property 

data can be summarized as  follows: 

1. The t ens i l e  and creep properties of annealed X8001 a re  s imilar  

t o  1100 aluminum a l loy  but s ign i f ican t ly  l e s s  than the 6061 a l loy .  Heat 

treatment of the 6061 a l loy  t o  the  T6 condition can increase the s t rength 

of the a l loy f o r  exposure a t  400°F, but the increase i n  strength i s  not 

observed a f t e r  exposure of 100 t o  1000 hr a t  500°F. 

2. The degree of' increased t ens i l e  strength due t o  cold working 

of X8001 is  marginal f o r  i r r ad i a t i on  exposure a t  temperatures of 400°F 

and above. Cold working does not increase the creep strength of 

annealed X8001 a l loy  a t  temperatures of 400°F and s t r a in s  up t o  1%. 

3. The dmamic modulus of a f u e l  dispersion can be calculated 

from the dynamic modulus of the  matrix material  and the volume f r ac tu re  

of dispersion. 

4.  The t ens i l e  and creep strength of the f u e l  dispersion is  

s ignif icant ly  greater  than t h a t  of the  matrix material  X8001. 

The authors wish t o  acknowledge the contributions of E.  Bolling, 

R. Waddell, V. G.  Lane, B. McNabb, and C. W. Dollins who performed the  

mechanical properties t e s t s .  They also thank the Alcoa Research 

Laboratory fo r  t h e i r  permission t o  publish t h e i r  t ens i l e  data on 

6061-T6 al loy.  



APPENDIX I 





STATIC RECOVERY OF ALUMINUM ALJ;OYS 

Recovery i s  normally studied by measuring a t  room temperature one 

of the properties,  such a s  y ie ld  strength or  hardness, p r io r  t o  and 

a f t e r  a given heat treatment a t  elevated temperatures. These data  are  

then p lo t ted  as  a function of time f o r  a given heat treatment temperature. 

The shape of these curves then i l l u s t r a t e s  (1) the time a t  which recovery 

and recrys ta l l i za t ion  occurs f o r  cold-worked material  or  (2) f o r  an 

age-hardening alloy,  the process of aging or  overaging. But it i s  

d i f f i c u l t  from these data  t o  correla te  the recovery f o r  any other time 

o r  temperature other than those investigated.  

However, other experimenters13 have investigated the  response of 

cold-worked s t a in l e s s  s t e e l  and the age-hardenable 7075 aluminum a l loy  

with heat treatment and correlated t h e i r  data  using the Larson-Miller 

parameter. 

The correla t ion was good; therefore ,  an e f f o r t  has been made t o  

investigate the recovery of the 6061 a l l oy  i n  both the  cold-worked and 

age-hardened conditions. In  these s tudies  the hardness of the a l l oy  

was measured pr io r  t o  and a f t e r  heat  treatment of 1, 10, 100, and 

500 hr a t  150, 200, 250, and 300°C. 

The percent recovery (R) was defined as:  

R = --- A - B 1 O O  , 
A - C  

where 

A = i n i t i a l  hardness of the mater ia l  a f t e r  the cold working o r  

T6 condition, 

B = hardness a f t e r  exposure f o r  time, t , a t  a given temperature, T, 

and 

C = hardness of the a l l oy  a f t e r  complete annealing. 

13c. D. Brownfield and D. R. Apodaca, Effect  of Severe Thermal and 
S t ress  Histories on Material Strength - Rate Process Theory Approach 
AISI 301 Extra Hard, PH 15-7 MO RH, ~ e n e '  41, 7075-T6, ASD-TR-61-194 
( ~ a n u a r y  1962). 



The time-temperature correlations used were the Larson-Miller 

parameter, 8, and the relat ionship:  

8 = T ( D  + log t ) ,  

T = temperature of heat treatment i n  degrees Kelvin, 

t = time of heat treatment i n  hours, and 

D = material  constant (17.7 f o r  t h i s  a l l o y ) .  

The correlated data giving the value of 8 f o r  a given percent 

recovery and a given a l loy  condition are shown i n  Table 6.  This 

relat ionship does not predict  the r e l a t i ve  strength a t  room temperature 

of cold-worked and age-hardened al loys  but merely the r a t e  a t  which the 

increased strength due t o  cold working or aging decreases with exposure 

a t  elevated temperatures. These data should prove valuable i n  pre- 

dic t ing the recovery of the a l l oy  f o r  times and temperatures not 

investigated. For example, i n  an ac tua l  y ie ld  strength t e s t ,  6061-T6 

showed 9% recovery a f t e r  10 h r  a t  232°C. The data  given i n  Table 6 

would have predicted 10% recovery. 

Table 6. S t a t i c  Recovery of 6061 Aluminum 

8 Necessary t o  Obtain a Given Percent Recovery 
f o r  6061 Aluminum ( $  ~ e c o v e q )  

Alloy Condition 10 20 30 40 50 60 

6061-0 

5% Cold-Worked 10,700 11,500 11,700 11,800 11,950 12,100 

10% Cold-Worked 11,200 11,700 11,900 12,050 12,200 12,300 

25% Cold-Worked 10,500 10,850 11,150 11,400 11,600 11,800 

50$ Cold-Worked 9,150 9,800 10,100 10,300 10,350 10,450 

A similar type study could be performed on i r rad ia ted  a l loy  and 

the data  generated from post i r radiat ion hardness t e s t s  correlated i n  a 

similar manner. A comparison of the  data of unirradiated and i r rad ia ted  

a l loy might substantiate the findings of Adair e t  a1. l4 whose metallo- -- 
graphic and hardness examination of 2024 aluminum a l loy  indicated t h a t  

i r rad ia t ion  increased the r a t e  of aging a t  a given exposure temperature. 

1 4 ~ .  M. Adair, R .  E. Hook, and J. Garret t ,  Radiation Induced 
Overaging of a 2024-T3 Aluminum Alloy, ARL-132 (September 1961). 
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