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A Comparison of Several Methods for Inverting Large

Symmetric Positive Definite Matrices

M. H. Lietzke, R. W. Stoughton, and Marjorie P. Lietzke

ABSTRACT

Four methods for inverting large symmetric positive definite
matrices have been compared. These are the Gauss-Jordan, Choleski,
congruent transformation, and rank annihilation methods. An attempt
has been made to consider the effects of both condition and order of
the matrix to be inverted on the closeness of the computed inverse to
the exact inverse. Each method was programmed in FORTRAN using only
single precision arithmetic. Then the error indicators were computed
using double precision arithmetic so that the latter calculation was
not a limiting factor. It was found that any one of the methods is
satisfactory for a well-conditioned least squares matrix of order
- 10-30. However, when the matrix becomes ill-conditioned then the

Gauss~Jordan method appears to be ciearly superior (at least for the
matrices studied).

Algorithms and FORTRAN subroutines for each method are presented

in the appendices.







In curve fitting and in the quantitative treatment of experimental
data the method of least squares is widely used. At the present time
attempts are being made, for example in the fitting of spectral data,
to determine ever larger numbers of parameters. In many cases the under-
lying mathematical models are highly non-linear, and convergence diffi-
culties may be encountered. In any least squares fit involving the
determination of a large number of parameters, however, the accumulation

L of round-off error during the course of the computation, resulting in a
loss of significance, is one of the most serious restrictions. Since
the evaluation of a large number of parameters and their variances by a
least squares procedure on a high speed computer involves the inversion
of a symmetric, positive-definite matrix it becomes important to choose
an inversion scheme in which the effects of the accumulation of round-
off error are minimized. This is especially true if limited memory
space for storage precludes the use of double precision arithmetic.
In this report a comparison of several direct methods for inverting such
matrices is given. An attempt has been made to consider the effects of
both condition and order of the matrix to be inverted on the closeness
of the computed inverse to the exact inverse. Since the method of least

- squares has been described elsewherel, it will not be repeated here.

The matrix inversion methods compared are the Gauss-Jordan?,

5 schemes.

Choleski3, congruent transformation4, and rank annihilation
To give a fair comparison of the methods each was programmed in IBM 7090
FORTRAN II (Version 2) using only single precision arithmetic (good to

26 binary or about 8 decimal digits). The error indicators were then

computed using double precision arithmetic (good to about 16 decimal
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digits) so that the latter calculation was not a limiting factor. All
the methods used are well known and need not be described here. In the
following discussion the symbols for matrices will be underlined while
other symbols will not be.

*

The first matrix chosen for testing the inversion routines was A

where the elements aij of A are given by

2 (i=3)
aij =4 -1 (| i-g | = 1)
0 (] i-3 | >1)
C
The inverse of A is given by (HIET where the elements cij of C are given
by
i(n-i+1) (i =3)
Ciy = ci’j_l-l (3 >1)
©317C (§ <1i)

and n is the order of the matrix. A is a symmetric positive definite
matrix; it has a P-condition number® of approximately %2 nZ. 1In
respect to both form and condition the matrix A is analogous to a least
squares matrix derived from a well designed experiment. In addition to
A the matrices AZ and A3 were also inverted. The inverse of AZ is given

c2 c3

— . . 3 . . -
by (ﬁ:ijz , while the inverse of A~ is given by (

. The latter two
n+l)

matrices have P-condition numbers of ;g n* and §§ n® respectively and
are hence progressively more ill-conditioned. In this respect they

correspond to least squares matrices derived from increasingly more

poorly designed experiments.

*
The negative of this matrix was discussed by Newman and Todd®.
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In addition to the three matrices just mentioned two other test

matrices were used. They are B, whose elements bij are given by

2 (i=3)
vy -]
d L (1 £ 3),

and D, whose elements dij are given by

dij =n - i-31.

The exact inverse of B is given by BINV whose elements binvij are

orl if i=]
v binv, ., =
+J 1 . L
ey if 13 >

while the exact inverse of D is given by DINV whose elements dinvij are

5%%% if i=j = lorn
1 if i=j#lorn
dinv, =< - 1/2 if | i-j | =landn #£2
- 1/3 if | i-3 | = 1 and n=2
1 . s
. N if | i-j | = n-1=1
0 if 1<|i-j | < n-1

In carrying out the comparison of the various inversion methods the
test matrix was generated and inverted by each method to give (M)
-’ approx
Then the exact inverse was generated (using the above formulas and double

precision arithmetic) and as a measure of error the quantity Q defined

as

-t . (1)

exact —‘approx i

-zl |
1J




e

was computed for each method, where M represents the matrix inverted.
The computations were performed with matrices of order 10, 15, 20, 25,
and 30. In addition to Q two other gquantities, recommended as error

measures by Newman and Todde,

TP Zl | iy (2)
i

54

and

H
|

- %{ ;,] rzij}l/e (3)

(rij) is the error matrix taken as

were calculated, where R

R = (M)" (M) - I ()

—’approx ‘—
vwhere I is the identity matrix. The number Q obviously reflects the
per term average of the overall difference between the approximate in-
verse matrix and the exact inverse matrix.

Results of the Computations

The A Matrix

All the methods tried gave an approximate inverse that was very
close to the exact inverse of the A matrix for all orders from 10 to 30
except the rank annihilation method, in which case the routine used
failed to invert the A matrix. The reason for this failure was evidently
peculiar to the exact integers in the matrix and the particular computer
procedure for the rank annihilation method; the procedure could undoubt-
edly be rewritten to obviate this particular failure although it was
not considered warranted in the current comparative study. Hence any
one of the methods would be suitable for a well-conditioned least

squares matrix in this range. All elements of the inverse matrix
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produced by the congruent transformation method were good to one in the
eighth significant figure even for order 30. The Gauss-Jordan method and
the Choleski method were close behind in that order. Not only did the
congruent transformation method produce an inverse closest to the exact
inverse of the A matrix but the values of a and f (as defined by equa-
tions 2 and 3) computed from the approximate inverse were lower than the
corresponding values derived from the Gauss-Jordan and Choleski inversion
routines as can be seen in Tables IA-ID. All the methods produced inverse
matrices, all elements of which were smaller in magnitude than the exact
inverse for all orders from 10 to 30. (The reason for this is unknown.)

The AZ Matrix

In the inversion of the A® matrix the effect of the condition of the
matrix starts to become apparent. This matrix is not as well conditioned
as the A matrix; in fact, its condition number is the square of the con-
dition number for the A matrix and hence is proportional to the fourth
power of the order.

In the inversion of the éi matrix for all orders from 10 to 30 the
Gauss-Jordan method produced an inverse matrix closest to the exact in-
verse. The congruent transformation, the Choleski, and the rank anni-
hilation methods gave very similar results and were somewhat inferior to
the Gauss-Jordan method. All elements of the inverse matrix produced by
the latter method were good to one part in 600,000 for order 10 to one
part in 20,000 for order 30. The corresponding figures for the other
methods were one part in about 150,000 for n = 10 to one part in about
3000 for n = 30. The values of Q, a, and f for the ﬁi matrix are shown

in Table I.
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The A® Matrix

An examination of the values of Q for the éi matrix (Tables IA-ID)
indicates that the Gauss-Jordan routine produced an inverse matrix
closest to the exact inverse for all orders from 10 to 30. All elements
of the inverse matrix produced by this routine are good to one part in
80,000 for n = 10, to one part in 1100 for n = 20 and one part in 400
for n = 30. Close behind the Gauss-Jordan routine for n = 10 is the
congruent transformation method; however, for n = 15 to 30 the Choleski
method produced a more nearly exact inverse. At n = 30 the rank anni-
hilation method appears slightly better than the congruent transformation
method, producing an inverse each element of which is good to one part
in 16.

In addition to the above observations concerning the closeness of
the approximate inverse of the éi matrix to the exact inverse it should
be noted that the Gauss-Jordan and congruent transformation routines pro-
duced inverse matrices whose elements were in all cases smaller in magni-
tude than those of the exact inverse, while the inverse matrices pro-
duced by the rank annihilation method were for all orders greater than
the exact inverse. The Choleski routine produced an inverse matrix at
orders 10 and 15 with elements smaller than those of the exact inverse,
while at orders 20, 25 and 30 the inverse matrix elements were greater
than those of the exact inverse. The low value of Q at n = 15 for the
Choleskl method reflects the fact that the elements of the approximate
inverse are passing through a transition from all being too small to all

being too large.



The B Matrix

The B matrix is apparently so well conditioned that all four methods
produced inverse matrices very close to the true inverse as can be seen
in Table I. In fact the inverse matrix produced by the rank annihilation
routine varied at most by one in the eighth significant figure from the
exact inverse, and the values of Q computed were in all cases 0.0 to eight
decimal digits.

The D Matrix

The D matrix is also well conditioned and all the methods except the
rank annihilation method produced inverse matrices close to the exact in-
verse. The rank annihilation routine failed to invert properly the D
matrix, undoubtedly because of the peculiar form of this matrix and the
peculiarities of the computer program as written. The values of a, f, and
Q for the D matrix are shown in Tables TA-ID.

A Comparison of the Indices of Error a, f and Q

The following observations may be made concerning the results
presented in Tables TA-ID:

1) The value of a is in all cases lower than the value of f.

2) The values of a and f are not, by themselves, reliable estimates
of the closeness of the computed inverse to the exact inverse. TFor ex-
ample, if the a and f values alone were used to compare the approximate
inverses of the éi matrix produced by the various inversion methods then
the congruent transformation method would appear to be as good as the
Gauss-Jordan method. However, the Gauss-Jordan routine produced an in-
verse for n = 30 good to one part in 400 while the inverse produced by

the congruent transformation method was good only to one part in 15.
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Thus the Q values (which follow this pattern) reflect the observed
relation between the exact and approximate inverse matrices while the a
and f values may not. A possible explanation in the latter case may be
in the fact that the éi matrix contains elements of alternating sign

while all the elements of the inverse matrix are positive. Hence there

-1

may be some cancellation of errors in forming the (M)
—’approx

M product
in equation (4), this effect becoming more pronounced as the matrix
becomes more ill-conditioned. Also the éf matrix contains many zeros
(in fact a higher proportion the larger the order) and hence the errors

in some of the inverse matrix elements do not show up in the a and T

values.



Table TIA

A Comparison of the a, f, and Q Values as a Function of Matrix Order and Inversion Method

Gauss Jordan Method

n Matrix A A= A3 B D
10 a 1.3 x 1070 9.6 x 107° 6.7 x 107* 2.2 x 107 7.3 x 1078
£ 1.9 x 1078 1.4 x 107° 1.1 x 107> 2.7 x 107° 9.1 x 107°
Q 4.8 x 107° 2.7 x 107° 2.1 x 1073 5.5 x 107 3.3 x 1070
15 a 2.% x 107 3.6 x 107° 3.0 x 1070 3.0 x 1070 1.5 x 1077
3.6 x 107 7.1 x 107> 4.7 x 107° 3.8 x 107 1.9 x 1077
7.8 x 10°° 8.3 x 107° 2.6 x 1072 6.4 x 107° 4.8 x 1078

v

20 a 5.7 x 107° 1.1 x 107* 5.0 x 107" 4.0 x 10°° 2.2 x 1077
£ 6.1 x 10°° 1.6 x 107 8.1 x 107* 5.3 x 107° 2.8 x 1077
Q 1.2 x 1077 1.1 x 1073 3.0 6.6 x 107° 7.4 x 1077
25 a b3 x 1070 4,3 x 107% 3.4 5.0 x 1072 3.7 x 107
£ 7.1 x 107° 7.2 x 107* 5.8 6.4 x 107° 4.8 x 1077
Q 2.0 x 1077 5.2 x 1072 7. 6.6 x 107° 9.2 x 107°
30 a 5.1 x 1070 1.3 x 1072 13, 6.1 x 107° 5.3 x 107"
£ 8.2 x 107° 2,0 x 10°° 23,7 7.8 x 107° 6.9 x 1077
3.9 x 1077 1.9 x 1072 69. 6.5 x 107 1.2 x 1077




10

15

20

25

30

A Comparison of the

Matrix
a

f
Q

1=

1.0 x
1.5 x
5.9 x

0.0
0.0
0.0

1.6 x
2.6 x
1.0 x

1.8 x
3.1 x
6.2 x

1.9 x
3.2 X
2.2 x

a, f, and Q Values as a Function of Matrix Order and Inversion Method

Congruent Transformation Method

Table IB

1.2
1.4
1.0

4.3
5.6
1.2

9.1
1.2
7.4

1.5

A2

X

X

X

~

2.0 x
2.7 x

2.9
4.0
1.1

10°°
107

1074

10°°

10
10

-8

-3

1078

10°°

10”7

AS

5.6 x
7.2 x
1.3 x

5.2 X
7.1 x
1.3

2.3 X
3.2 X
29.

5.7 x
7.5 x
229,

1.5 x
2.3 x
1885,

107°

10
1077

-5

107

107

1072

|

1.5
2.5
1.9

XX W

1.8 x
3.0 x
9.2 x

2.1 x

3.9 x
1.0 x

2.3 x
h.3 x
1.0 x

2.4 x
L,6 x
1.0 x

1078

1078

107°

1078

-8
10

107°

1078

1078

10

1078

1078

108

1078

10°°

1078

1o

6.8 x
1.1 x
2.6 x

1.1 x
1.7 x
2.9 x

1.4 x
2.5 x
5.4 x

1.7 x
3.1 x
6.4 x

2.1 x
h.3 x
T.3 %

—O‘[_
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15

20

25

30

A Comparison of the

Matrix

a
f

Q

1=

2.0
3.1
1.3

XM X

4,0 x
5.8 x
2.4 x

5.7 x
8.8 x
2.4 x

T4 x
1.2 x
3.7 x

8.9 x
1.4 x
6.4 x

a, £, and Q Values as a Function of Matrix Order and Inversion Method

10

107°

10~7

-7

1078

10~"

10~7

Table IC

Choleski Method

A2

1.6 x
2.2 X
1.1 x

8.9 x
1.4 x
1.7 x

1.8 x
2.7 X
1.1 x

4,0 x

5.5 x
4.5 x

l.2 x
1.7 x
1.4 x

107
10°°
107

1078

107°

1073

107°
107

1072

1072

10°°

1072

1074

AS

8.7 x
1.1 x
2.1 x

1.6 x
2.2 X
1.3 x

1.4 x
1.9 x
8.3

6.4 x
9.6 x
130.

2.2 X
3.7 x
751.

10°°

107

1072

10™°
1073

10°t

107

1072

1072

1072

B

2.7 x 10~

3.7 x
7.8 x

3.7 x
4.8 x
9.2 x

4.3 x
5.8 x
9.9 x

5.2 %
6.8 x
l.2 x

6.1 x
7.9 x
1.5 x

8
1078

107°

10~°

1078

-

8.0
1.0
L.5

KooK X

1.6 x
2.2 X
L.,6 x

3.3 X
4,5 x
8.4 x

5.9 x
7.9 x
1.3 x

9.6 x
l.2 x
1.6 x

—T_‘T_‘ -
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15

20

25

30

Matrix

a

f
Q

A2

2.2 X
2.6 x
8.8 x

e
5.9
1.5 x

»

»

T.5 x
l.O
l.2 x

»

1.9 x
2.7 x
3.9 x

L,0 x
6.4 x
9.0 x

107°
107°

107°

107°

107°
1073
1075
10

1072

-4

107
-4

10

1072

1074
107*

1072

Table ID
A Comparison of the a, f, and Q Values as a Function of Matrix Order and Inversion Method
Rank Annihilation

Method

AS
1.5 x 10~
2.0 x 10~
2.6 x 10°*

3

3

6.4 x 1073
-2

1.1 x 10

9.1

5.2 x 1072

9.4 x 10

97.

-2

2.6 x 10
h.7 x 10
Lho.
9.1 x 107*
1.4
1386.

1.3
1.6
0.0

0.0
0.0
0.0

3,1
4.2
0.0

3.6
5‘0
0.0

4.8
7-1
0.0

B

x 10
x 10

-8

-8

-Z"[_

-8

-8

-8
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As shown above, the value of Q, defined by equation (1), reflects
the overall difference between the approximate inverse matrix and the
exact inverse matrix. This quantity can be computed only if the exact
inverse matrix is known, as it is in the case of the test matrices used
in this report. In general, however, this will not be the case and yet
it is desirable to have some method for estimating at least an upper
bound of the difference which does not depend on knowing the exact in-
verse matrix. Such an upper bound is given by the following inequality7

. (k31
|| A 'Cllfl-])g” (5)

where é-l is the exact inverse of the matrix A, C is the computed

inverse, and H is a matrix defined by

H=1-AC
where I is the identity matrix. (Enclosure within the double vertical
lines indicates that the maximum row sum of magnitudes of the elements
of the appropriate matrix is taken.)

For comparison purposes values of both the left L and right R side
of the inequality (5) were computed for all the test matrices used and
the results are presented in Table II.

As shown in Table II the right side of the inequality (5) is indeed
usually greater than the term on the left, which is the maximum row sum
of the matrix formed by subtracting the computed inverse from the exact
inverse. In the few cases shown in Table II where the inequality does

not seem to hold the apparent violation can probably be attributed to

the particular method of rounding used in the arithmetic sub-routines

of the program and the consequent accumulation of round-off error.




Table IT
Values of the Two Sides of the Inequality

II A'l -C H <__U_C::-Iﬂ_
= = =1- 1]
Gauss~Jordan
Matrix A AZ AS B D

L 8.3 x 10~ 4.1 x 107% 3,1 x 1072 1.2 x 1077 5.4 x 1077
R 9.6 x 10”7 5.8 x 10°° 4.7 x 107% 2.1 x 1077 8.9 x 10~

- -3 - - -

2.5 x 107° 2.4 x 10 6.7 x 10°* 2,0 x 10~ 1.5 x 10°°

- -3 - -

R 3,7 x 107° 9.9 x 10 34.5 3.2 x 1077 1.9 x 107°
L 4.7 x 107° 3.5 x 1072 103. 2.5 x 1077 2.8 x 107°
R 8.7 x 10°° 6.7 x 1072 871, 4.9 x 1077 4.1 x 107°

- - =7 -

L 7.9 x 10°° 2,0 x 10™% 103k, 3.5 x 10 b4 x 10°°

. . 7 .

R 2.0 x 10°° 3.9 x 10°%  31107. 6.4 x 10 6.4 x 10°°
L 1.7 x 10°° 8.6 x 107" - 4.0 x 1077 6.2 x 10°°

R 3.4 x 10 2.0 -- 7.7 x 1077 8.6 x 107

_47'[_
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15

20

25

30

Matrix

=

l.2x
L.9 x

0.0
0.0

L.y x
4.6 x

2.8 x
6.5 x

1.6 x
8.7 x

1077

1077

Table II (continued)

Congruent Transformation

A2 AS

1.4 x 1073 1.9 x 107t
1.1 x 1072 3,2 x 107t
2.7 x 107 7.7

3.0 x 1070 41.9

2.2 x 107" 873.

2.3 x 107" 1106.

1.0 8678,

1.1 15416.

5.2 -
5.8 -

1=

1.4 x
1.9 x

2.2 x
3.2 X

3.4 x
4.8 x

k.5 x
6.5 x

5.6 x
T.9 x

o

4,6 x
9.1 x

5.4 x
2.1 x

1.9 x
3.8 x

3.0 x
5.4 x

4,0 x
8.6 x

—g'[-




10

15

20

25

30

Table II (continued)

Choleski

b=
jo
(=

1.6 x 1072
1.5 x 10~

3.0 x 10°
6.1 x 107"

4.0 x 107
b4 x 1077

»

"
-gT-

3.4 x 10°
3.4 x 107t



Matrix

Table II (continued)

Rank Annihilation

A2
1.3 x 107°
1.3 x 1070

3.6 x 1072
2.4 x 107"

3.6 x 107"
1.4

1.5
5.1

4.2
19.6

As
3.8
15.1

202,
2729.

0.0
9-1

0.0
0.0

0.0
5.8

0.0
5.0

0.0
7.1

Lot}

X

10

10~

10

10

-8

-7

-7

_ZJ‘[_
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Hence it is possible to get an estimate at least of an upper bound of
the term on the left of the inequality without knowing the exact inverse
of a matrix.
Conclusions

From the foregoing calculations it appears that any one of the
matrix inversion methods tried will invert a well-conditioned least
squares matrix of order 10 to 30. When the matrix becomes ill-conditioned
then the Gauss-Jordan method appears to be clearly superior (at least
for the matrices studied). However, if memory capacity must be con-
sidered and only a triangular array can be tolerated, then the Choleski
and congruent transformation methods appear to offer an advantage for
large n. Only in the case of the relatively poorly conditioned 53
matrix did the Choleski method appear to be the better of these two
for evaluating the inverse matrix. From a study involving the in-
version of several well-conditioned least squares matrices of orders
to n = 29 all the methods tried gave a and f values about two to three
orders of magnitude smaller than those obtained with the A3 matrix and

consistent with those obtained with the A matrix.
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APPENDIX T
*
Algorithms for the Inversion Methods

*
These algorithms are written in the current 7090 Algol hardware

representation. Private communication, Share Algol Project.
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COMMENT MATRIX INVERSION BY GAUSS-JORDAN ELIMINATIONS
PROCEDURE INVERT(N,A,EPSILON,ALARM,DELTA)S
VALUE N$ ARRAY A$ INTEGER N$
REAL EPSILON,DELTAS BOOLEAN ALARMS
BEGIN ARRAY B,C(/1<eN/)$ INTEGER I,JyKyL,P$
INTEGER ARRAY Z(/l..N/)$ REAL W,Y$
DELTA#1.0G$ALARM# FALSE $
FOR J#1 STEP | UNTIL N DO
L{/J/7) kI8
FOR I#1 STEP | UNTIL N DO
BEGIN KH#ISYHA(/I,1/7)SLAI-1$PHI+IS
FOR J#P STEP | UNTIL N DO
BEGIN WHA(/I,J/)% IF ABS(W) GR ABS(Y) THEN
BEGIN K#JSY#HWS
END
END $
DELTA#DELTA=YS
IF ABS(Y) LS EPSILON THEN
BEGIN ALARM# TRUE $ GOTO RETURN END $
FOR J#1 STEP |1 UNTIL N DO
BEGIN C(/J/)RA(/I\K/)SAL/JK/IHAL/ 4178
AL/7II7VH=CU/I7)V/YSBU/I/)VRAL/ TG/ VEAL/T4I/)7Y
END $
XV AES VAN INAL NI YAVAVARYAVAUAE YAV VAR YAVAVAE N}
FOR K#1 STEP | UNTIL L,P STEP | UNTIL N DO
FOR J#1 STEP | UNTIL LeP STEP | UNTIL N DO
AC/KyJ/VEA(/KyI/)-B(/J/)=C(/K/)
END $
FOR I#1 STEP | UNTIL N DO
BEGIN
REPEAT..K#2(/1/)% IF K EQ I THEN GOTO ADVANCES
FOR J#I1 STEP | UNTIL N DO
BEGIN WHA(/T1,337)8A(/1+4J/)EAL/KyJ/)SA(/KyJ/)#W END $
PRIU/I/ISZC/TI/)YBZIU/K/)SZ(/K/)HPSDELTA#-DELTAS
GOTO REPEATSADVANCE.. END $RETURN.. END $
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COMMENT CONGRUENT TRANSFORMATION INVERSION ROUTINES

PROCEDURE SYMINV(A,N,0K)$
VALUE N$%
INTEGER N$
BOOLEAN OK$
REAL ARRAY AS$
BEGIN

REAL AIJyAJLsALJ,ATI,AILS
COMMENT.. OBTAIN THE INVERSE OF SYMMETRIC MATRIX A

OF ORDER N. ONLY THE UPPER TRIANGULAR
PART OF A IS STORED. ON EXIT THE INVERSE
REPLACES A IN STORAGE. PROCEDURE

BEGINS AT DIAGONALIZES

REAL BIGAJJS
INTEGER I,J4K$

) REAL ARRAY Q(/1..Ny1..N/)%
INTEGER ARRAY L(/1..N/)$
PROCEDURE INTERCHANGES$

> BEGIN
COMMENT.. INTERCHANGE ROW-COLUMN I WITH
ROW-COLUMN L(/I/). PROCEDURE BEGINS
AT INTERCHANGES$
PROCEDURE EXCHANGE(X,Y)$ REAL X,Y%
BEGIN
COMMENT.. EXCHANGE CONTENTS OF
LOCATIONS X AND Y$
REAL HOLDS
XCHANGE .. HOLD # X%
X # Y%
Y # HOLD
END EXCHANGES$
NTERCHANGE . » IF L (/1/) NQ I THEN
BEGIN
FOR J # I STEP | UNTIL N DO
IF J LS L (/1/) THEN
. BEGIN
ATJRA(/T,07)%
AJLEAL/S,L(/17)7) %
EXCHANGE(ATIJ,AJL) S
v AU/TsJ/7)HATIS
AC/I,LU/T/7)/)HAJL
END
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ELSE
BEGIN
ATJHA(/T 4703
ALJRA(/L(/T1/7)4d/)%
EXCHANGE (ATJ,ALU) $
A(/T,J/7)#ATJS
AC/LL/T7)J7)RALYS
END 3
ALTHA(/I,1/7)%
AILAA(/TI LU/17)/7) %
EXCHANGE(AII,AIL)S
A(/T.1/7)1#AIILS
A(L/I,L(/1/)/) BAIL

END
END INTERCHANGES$
DIAGONALIZE.. FOR I # 1 STEP | UNTIL N DO
BEGIN

L{/1/7) # 1%
BIGAJJ # U$
FOR J # I STEP | UNTIL N DO

BEGIN
IF ABS(A(/J,sJ/)) GR BIGAJJ THEN
BEGIN
BIGAJJ # ABS(A(/Jd,d7))%
L{/I7) # J
END
ENDS$

INTERCHANGE S
IF A (/I,1/) EQ O THEN
BEGIN
OK # FALSE %
GOTO ENDI
END 3%
Al/L,17) # V/A(/T1,17) &
FOR K # I+1 STEP | UNTIL N 1O
QU/1,K/Z) # -A(/T1,1/)=A(/1,K/)%
FOR J # 1+1 STEP | UNTIL N DO
FOR K # J STEP | UNTIL N DO
A(/JsK/Z) B A(/IWKZ)+QU/ T4 KZ)uA(/1437)
END %
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RESTORE.. FOR I # N-I STEP -1 UNTIL 1 DO
BEGIN
FOR J # I+1 STEP | UNTIL N DO
A(/1,47) # Os
FOR J # I+l STEP | UNTIL N DO
BEGIN
FOR K # J STEP 1 UNTIL N DO
BEGIN
AU/I4K/Z)Y # AU/LZK/)+QU/ 1437 )#A(/J0,K/) 8
IF J NQ K THEN
| AC/I,Jd7) # AC/1,3/7)+Q(/1,K/)#A(/J4yK/)
| END$
AC/IZ17) # AU/L1/7)04Q0/1,0/7)=A(/1,37)
END %
INTERCHANGE $
END ¢
OK # TRUES

ENDI.. END SYMINV$
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COMMENT ROUTINE TO INVERT SYMMETRIC POSITIVE DEFINITE MATRICES BY
THE CHOLESKY METHODS
PROCEDURE MATINV(A,AINV,ORDER,SINGULAR MATRIX,NEGATIVE MATRIX)$
VALUE ORDEBS INTEGER ORDER$ ARRAY A,AINV$
BOOLEAN SINGULAR MATRIX,NEGATIVE MATRIXS
BEGIN ARRAY T,K(/1..0RDER,|..ORDER/)S
REAL SUMLS$
NEGATIVE MATRIX#SINGULAR MATRIX# FALSE $
FOR L#1 STEP | UNTIL ORDER DO
FOR M#L STEP | UNTIL ORDER DO
BEGIN IF L EQ M THEN
BEGIN SUMLH#C.0%
FOR I#1 STEP 1 UNTIL L-1 DO
SUMLHT(/1,L/)=%2+SUMLS
IF (A(/L,M/)=-SUML) FQ O THEN BEGIN SINGULAR MATRIX# TRUE $
GOTO RETURN END
ELSE BEGIN IF (A(/L,M/)-SUML) LS 0.0 THEN BEGIN NEGATIVE
MATRIX#TRUES GOTO RETURN END END $
T(/L M/)HSQRT(A(/L,M/)=SUML)
END
| ELSE
| BEGIN SUML#0.0%
| FOR I#! STEP | UNTIL L-1 DO
SUMLAT(/I,L/)5T(/1,M/)+SUMLS
TU/L oM/ YE(A(/L M/ )=SUML) /T(/LsL/)
| END
| END $
| FOR L#! STEP | UNTIL ORDER DO
K(/LoL/)H1.0/T(/L,L/)S
FOR L#! STEP | UNTIL CRDER-{ DO
FOR M#L+1 STEP | UNTIL ORDER DO
BEGIN SUML#0.0%
FOR I#L STEP | UNTIL M-} DO
SUMLAT(/1,M/)%K(/L,1/)+SUMLS$
KE/L oM7) #=SUML/T( /M, M/ )
END$
FOR L#! STEP | UNTIL ORDER DO
FOR M#1 STEP | UNTIL ORDER DO
BEGIN SUML#J.0 &
FOR I#M STEP | UNTIL ORDER DO
SUMLHK (/Lo I/ )%K(/My1/) +SUMLS$
AINV{/L,M/ ) HSUML
END $
RETURN.. END $
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COMMENT MATRIX INVERSION BY RANK ANNIHILATIONS
PROCEDURE RANKAN(A,C,N)$
INTEGER N$ VALUE N$ ARRAY A,C$%
BEGIN ARRAY ALPHA,BETA,U,V(/1..N/)%
INTEGER I,J4,KyI}t,J1,81% REAL SIG,SIGP,LAMBDAS
BEGIN FOR I#1 STEP | UNTIL N DO
FOR J#1 STEP | UNTIL N DO
Cl/1,4/7)# IF I EQ J THEN 1.0 ELSE 0.0%
FOR I#1 STEP 1 UNTIL N DO
AL/T,I/7)HA(/T,17)-1.0%
NI#LS
50..I#NIS
FOR K#I STEP | UNTIL N DO
BEGIN ALPHA(/K/)H#A(/KyNI/)/AU/NINI/)$
BETA(/K/)H#A(/NI,K/)
. END $
FOR Il#1 STEP | UNTIL WK DO
BEGIN SIGHU.OSSIGPHD.US
o FOR K#NI STEP | UNTIL N DO
BEGIN SIGHSIG+C(/I1,K/)#A(/KyNI/)$
SIGPHSIGP+A( /N1 ,K/)=C(/K,11/)
END
UL/TIV/)ESIGSVI/TIN/)ASIGP
END %
JENISSIG#D.US
FOR JI#J STEP | UNTIL N DO
SIGHASIGH+VI/JI1/7)#A(/J1,N1/)%
LAMBDA#SIG+A(/NI,NI/)$
FOR I#1 STEP | UNTIL N DO
FOR-J#1 STEP - UNTIL N DO
CU/TI2Jd/7)V#C(/1,d/7)-U(/1/7)=v(/J/)/LAMBDA
IF NI EQ N THEN GOTO RETURNS$
14N %
FOR I1#I STEP | UNTIL N DO
BEGIN J#NI3
FCR K#J STEP | UNTIL N DO
- AL/TLK/ZYHAC/TL,K/)=ALPHA(/T1/)=*BETA(/K/)
END %
NIANI+IS GOTO 50%
- RETURN.. END RANKANS
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APPENDIX II
FORTRAN Subroutines for the Inversion Methods
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o MATRIX INVERSION BY GAUSS—JORDAN ELIMINATION
SUBROUTINE INVEKT{A,N)
DIMENSTON A{35,30) yR(30),C(30),L2(33)
LO VG J#1,N

| 10 LZ(J)#J
i 0O 20 L#1,4N
KH#1
| YHEA(L, 1)
| LH#I-I
LP#I+]
IF(N=LPI b, 11,11
11 DO 13 JHLP,N
WAA(L,J)
IF(ABSF(wW)—-ABSF(Y))13,13,12
12 K#J
YHW
13 CONTINUE
s CO 15 JEI,N
CUJIHA(I,K) .
A(LJ K)I#A(I, 1)
A(J,L)#-C(JI) 7Y
ALy JYBA(L,J)ZY
1S BIJYHA(T,J)
ACT;ETRELDZY
JHLZ(T)
LZ{1)HELZ(K)
LZ(K)#J
DO 19 K#I1,N
16 DO 18 J#I,4N
IF(I-=J)1T418,17
17 A(KyJ)H#A(K,J)=-B(J)=C(K)
18 CONTINUE
19 CONTINUE
20 CONTINUE
DO 200 I#1 4N .
IF(I-LZ(I))10L0,200,1C3
100 K#I+1
DO 500 J#K,N
IF(I-LZ(J))500,600,500
600 MH#LZ(I)
LZ(IVHLZ L)
L7 (J)EN
DO 700 L#14N
CLL)H#ALTI,L)
A(T,L)Y#ALJ,L)
700 A(J,L)#C(L)
500 CONTINUE
200 CONTINUE
RETURN
END
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c MATRIX INVERSION BY THE CONGRUENT TRANSFORMATION METHOD

SUBROUTINE BLMATI(A,AI,N,NERR)
DIMENSION L(30),A(3G,3C),Q(30,30),A1(30G,30)
DO 100 I#t,N
LII)#I
BIGA#0.D
DO 120 J#I4N
IF(ABSF(A(J,J))-BIGA) 12U, 12054138

130 BIGAH#ABSF(A(J,J))
LIT)#J

120 CONTINUE
IF(LII)-T1) 140,140,155

150 CALL INTCGE(LsI,A,N)

140 IF(A(I, 1)) 160,170,160

170 NERR#}
A GO TO 1603
160 A{I,I)#1./A(1,1)
[V&#1+]

. IF(I1-N)400,400,100 |
400 DO 180 K#I1,N |
180 QI K)#=A{I,I1)%A(I,K)
DO 131 J#I1,N
DC 101 K#J,N
101 A(JyK)#ALJK)+Q(I,K)=A(I,J)
100 CONTINUE
[ #N—-1
300 TH1#I+1
DO 203 J#I1,N
200 A(I,J)#08.0
DO 210 J#I1,N
DO 223 K#J4N
A(I KYHA(T,K)+Q(I,J)=A(J,K)
IF(K-J)220,220,230
230 ACLLJ)HA(T,J)+Q(I,K)#A(J,K)
220 CONTINUE
210 AT, IIEALL,1)+Q(1,J)=A(I,J)
IF(L(I)-1)250,250,240
240 CALL INTCGE(LysIsA4N)
250 IF(I-1)260,260,270
¥ 270 I#I1-1
GO TO 300
260 NERR#D
DO 310 I#1,4N
DO 310 J#I,N
310 ALJ,1)RACLTL, D)
DO 320 I#1,4N
DO 320 J#I,4N
320 AI(I,J)#A(1,J4)
1000 CONTINUE
| RETURN
| END
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SUBROUTINE INTCGE(L,I,A,A)
DIMENSION L(30),A(3C,303)
j CO ull2 JH#I N
‘ IF(J-LI))u0C,uiil4CH
| LO0 x#A(I,4)
MEL(I)
YH#A(J, M)
CALL EXCGE(X,Y)
A(T,J)#X
AlJyMIHY
GO TD u(2
41 X#A(TI,J)
M#L(T)
YHA(MyJ)
CALL EXCGE(X,Y)
AlT,J)#X
A(M, JIHY
02 CONTINUE
XH#HA(IL 1) *
YHA(I+M) :
CALL EXCGE(X,Y
A(TI,I)#X
B33 A(I M)H#Y
RETURN
END
SUBROUTINE EXCGE(X,Y)
HOLD#X
X#Y
YHHOLD
RETURN
END




10

12
1
50
15
13
16
60
20

25

26

30

31

40

-33-

MATRIX INVERSION BY THE CHOLESKY METHOD

SUBROUTINE MATINV(A,B,N)

DIMENSION A(30,30),8(30,300),7(30,30),D(30,30)

DO 20 L#14N

DO 213 MEL4N
IF(L-M)I5,10,415
SUML#0.C

LU#L-|

IF(LU}I12,50C,12

DO Il I#1,4LU
SUML#T(I,.L) =22+SUML
T(LyM)¥SQRTF(A(LsM)-SUML)
GO T0 2C

SUML#0.0

LU#L-I

IF(LUM13,60,13

DO 16 T#1,0LU
SUMLAT(I,L)*T(I,M)+SUML
TILeM)#(A(L,M)=SUML)/TI(L,L)
CONTINUE

DO 25 L#1,4N
DILyL)#1.G/T(LyL)

NI #N—-1

DO 30 L#1,NI

LI#L+I

DO 30 M#LI,N

SUML#0.0

M1 #M-]

DO 26 T#L,MI
SUML#T(IM)=D(L,1)+SUML
DILyM)H#-SUML/T(M,M)
CONTINUE

DO L0 L#14N

DO 43 MALHN

SUML#3.0

DO 31 I#M,N
SUMLAD(L,I)#D(M, I)+SUML
BIL,M)#SUML

CONTINUE

RETURN

END
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MATRIX INVERSION BY RANK ANNIHILATION
SUBROUTINE RANKAN(A,C,N)
DIMENSION A(30,33),C(30,30),ALP(33),BET(33),U(30),VI13D)
DO 100 TI#1,N
DO 100 J#1,N
100 C(1,J)4#0.0
DO2TH#I1 4N
C{I,1)#1.0
2 ALI,IVEA(TL,I)-1.0
NI#1
50 I#NI
CO 6 K#I,N
ALP(K)H#A(K,NI)/AINI,NI)
6 BET(K)H#A(NI,K)
DO 11 TIH#1,N
SIG#0.0 -
SIGP#0.C
DO 12 K#NI,N
SIGH#SIG+C(II,K)=A(K,NI)
12 SIGPH#SIGP+A(NIK)=C(K,I1)
UCTI)ASIG
bt VIII)HSIGP
JENI
SIG#0.3
DO2CJ I #J4N
20 SIGHSIG+V(JI1)=A(Jl4NI)
ELAMESIGH+A(NI4NI)
DO 23 T#I1,N
DO24J#1 4N
24 CUI,IH#C(I,)-UlL)=V(J)I/ELAM
23 CONTINUE
IF{NI-N)33,32,32
33 I#NI
DO 36 TI1#I,N
JHENI
DO 37 KHEJWN
37 ACL 1 KYH#A(TIN 4 K)-ALP(I1)=#BET(K)
36 CONTINUE
NE#NT +I
GO TO %4
32 RETURN
END

A
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