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A Comparison of Several Methods for Inverting Large

Symmetric Positive Definite Matrices

M. H. Lietzke, R. W. Stoughton, and Marjorie P. Lietzke

ABSTRACT

Four methods for inverting large symmetric positive definite

matrices have been compared. These are the Gauss-Jordan, Choleski,

congruent transformation, and rank annihilation methods. An attempt

has been made to consider the effects of both condition and order of

the matrix to be inverted on the closeness of the computed inverse to

the exact inverse. Each method was programmed in FORTRAN using only

single precision arithmetic. Then the error indicators were computed

using double precision arithmetic so that the latter calculation was

not a limiting factor. It was found that any one of the methods is

satisfactory for a well-conditioned least squares matrix of order

10-30. However, when the matrix becomes ill-conditioned then the

Gauss-Jordan method appears to be clearly superior (at least for the

matrices studied).

Algorithms and FORTRAN subroutines for each method are presented

in the appendices.





-1-

In curve fitting and in the quantitative treatment of experimental

data the method of least squares is widely used. At the present time

attempts are being made, for example in the fitting of spectral data,

to determine ever larger numbers of parameters. In many cases the under

lying mathematical models are highly non-linear, and convergence diffi

culties may be encountered. In any least squares fit involving the

determination of a large number of parameters, however, the accumulation

of round-off error during the course of the computation, resulting in a

loss of significance, is one of the most serious restrictions. Since

the evaluation of a large number of parameters and their variances by a

least squares procedure on a high speed computer involves the inversion

of a symmetric, positive-definite matrix it becomes important to choose

an inversion scheme in which the effects of the accumulation of round

off error are minimized. This is especially true if limited memory

space for storage precludes the use of double precision arithmetic.

In this report a comparison of several direct methods for inverting such

matrices is given. An attempt has been made to consider the effects of

both condition and order of the matrix to be inverted on the closeness

of the computed inverse to the exact inverse. Since the method of least

squares has been described elsewhere1, it will not be repeated here.

The matrix inversion methods compared are the Gauss-Jordan2,

Choleski3, congruent transformation4, and rank annihilation5 schemes.

To give a fair comparison of the methods each was programmed in LBM 7090

FORTRAN II (Version 2) using only single precision arithmetic (good to

26 binary or about 8 decimal digits). The error indicators were then

computed using double precision arithmetic (good to about l6 decimal
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digits) so that the latter calculation was not a limiting factor. All

the methods used are well known and need not be described here. In the

following discussion the symbols for matrices will be underlined while

other symbols will not be.

*

The first matrix chosen for testing the inversion routines was A

where the elements a. . of A are given by

(i=j)

ai(. =^-1 (| 1-J |=1)
(| i-J |> 1)

C

The inverse of A is given by i <, where the elements c. . of C are given

r

c.

1J i

i(n-i+l) (i = j)

^j-l"1 <•> >V

V c..=c. . (j < i)

and n is the order of the matrix. A is a symmetric positive definite

matrix; it has a P-condition number0 of approximately —^ n . In

respect to both form and condition the matrix A is analogous to a least

squares matrix derived from a well designed experiment. In addition to

A the matrices Af_ and A3 were also inverted. The inverse of Af_ is given
C2 C3

by i i \£ , while the inverse of A^ is given by -,—r-yg . The latter two

matrices have P-condition numbers of —r n4 and -5- n6 respectively and
jt it

are hence progressively more ill-conditioned. In this respect they

correspond to least squares matrices derived from increasingly more

poorly designed experiments.
- , , _ __ _

The negative of this matrix was discussed by Newman and Todd6.



In addition to the three matrices just mentioned two other test

matrices were used. They are B, whose elements b.. are given by
-*- J

f2 (i = j)
b. .=•{
1J ll (i^d),

and D, whose elements d. . are given by

d. . = n - I i - j I.

The exact inverse of B is given by BINV whose elements binv are

r
if i = J

binv. . = <

n

n+1

1

n+1

dinv. . =

if

L

i /= i >

while the exact inverse of D is given by DINV whose elements dinv are

C n+2

1

2n+2
if i=J = 1 or n

1 if i=J ^ 1 or n

- 1/2 if 1 i-J | = 1 and n / 2

-1/3 if 1 i-J | = 1 and n=2

1

2n+2
if 1 -J | = n-1 = 1

1 o if 1< 1 i-J | < n-1

In carrying out the comparison of the various inversion methods the

test matrix was generated and inverted by each method to give (M)approx

Then the exact inverse was generated (using the above formulas and double

precision arithmetic) and as a measure of error the quantity Q defined

as

(i)
ij

- (M) I ..
exact - approx ' ij



was computed for each method, where M represents the matrix inverted.

The computations were performed with matrices of order 10, 15, 20, 25,

and 30. In addition to Q two other quantities, recommended as error

measures by Newman and Todd6,

a=3?2 I r I (2)
ij J

and

f = - /
n . .

ij

• ku*r <3>

were calculated, where R = (r. .) is the error matrix taken as
i«J

R = (M)"1 (M) -I (1+)
— approx — — v '

where I is the identity matrix. The number Q obviously reflects the

per term average of the overall difference between the approximate in

verse matrix and the exact inverse matrix.

Results of the Computations

The A Matrix

All the methods tried gave an approximate inverse that was very

close to the exact inverse of the A matrix for all orders from 10 to 30

except the rank annihilation method, in which case the routine used

failed to invert the A matrix. The reason for this failure was evidently

peculiar to the exact integers in the matrix and the particular computer

procedure for the rank annihilation method; the procedure could undoubt

edly be rewritten to obviate this particular failure although it was

not considered warranted in the current comparative study. Hence any

one of the methods would be suitable for a well-conditioned least

squares matrix in this range. All elements of the inverse matrix



produced by the congruent transformation method were good to one in the

eighth significant figure even for order 30. The Gauss-Jordan method and

the Choleski method were close behind in that order. Not only did the

congruent transformation method produce an inverse closest to the exact

inverse of the A matrix but the values of a and f (as defined by equa

tions 2 and 3) computed from the approximate inverse were lower than the

corresponding values derived from the Gauss-Jordan and Choleski inversion

routines as can be seen in Tables IA-ID. All the methods produced inverse

matrices, all elements of which were smaller in magnitude than the exact

inverse for all orders from 10 to 30. (The reason for this is unknown.)

The A2 Matrix

In the inversion of the Af_ matrix the effect of the condition of the

matrix starts to become apparent. This matrix is not as well conditioned

as the A matrix; in fact, its condition number is the square of the con

dition number for the A matrix and hence is proportional to the fourth

power of the order.

In the inversion of the A2 matrix for all orders from 10 to 30 the

Gauss-Jordan method produced an inverse matrix closest to the exact in

verse. The congruent transformation, the Choleski, and the rank anni

hilation methods gave very similar results and were somewhat inferior to

the Gauss-Jordan method. All elements of the inverse matrix produced by

the latter method were good to one part in 600,000 for order 10 to one

part in 20,000 for order 30. The corresponding figures for the other

methods were one part in about 150,000 for n = 10 to one part in about

3000 for n = 30. The values of Q, a, and f for the A2 matrix are shown

in Table I.
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The A3 Matrix

An examination of the values of Q, for the A3 matrix (Tables IA-ID)

indicates that the Gauss-Jordan routine produced an inverse matrix

closest to the exact inverse for all orders from 10 to JO. All elements

of the inverse matrix produced by this routine are good to one part in

80,000 for n = 10, to one part in 1100 for n = 20 and one part in lj-00

for n = 30« Close behind the Gauss-Jordan routine for n = 10 is the

congruent transformation method; however, for n = 15 to 30 the Choleski

method produced a more nearly exact inverse. At n = 30 the rank anni

hilation method appears slightly better than the congruent transformation

method, producing an inverse each element of which is good to one part

in l6.

In addition to the above observations concerning the closeness of

the approximate inverse of the A3^ matrix to the exact inverse it should

be noted that the Gauss-Jordan and congruent transformation routines pro

duced inverse matrices whose elements were in all cases smaller in magni

tude than those of the exact inverse, while the inverse matrices pro

duced by the rank annihilation method were for all orders greater than

the exact inverse. The Choleski routine produced an inverse matrix at

orders 10 and 15 with elements smaller than those of the exact inverse,

while at orders 20, 25 and 30 the inverse matrix elements were greater

than those of the exact inverse. The low value of Q at n = 15 for the

Choleski method reflects the fact that the elements of the approximate

inverse are passing through a transition from all being too small to all

being too large.
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The B Matrix

The B matrix is apparently so well conditioned that all four methods

produced inverse matrices very close to the true inverse as can be seen

in Table I. In fact the inverse matrix produced by the rank annihilation

routine varied at most by one in the eighth significant figure from the

exact inverse, and the values of Q computed were in all cases 0.0 to eight

decimal digits.

The D Matrix

The D matrix is also well conditioned and all the methods except the

rank annihilation method produced inverse matrices close to the exact in

verse. The rank annihilation routine failed to invert properly the D

matrix, undoubtedly because of the peculiar form of this matrix and the

peculiarities of the computer program as written. The values of a, f, and

Q for the D matrix are shown in Tables IA-ID.

A Comparison of the Indices of Error a, f and Q

The following observations may be made concerning the results

presented in Tables IA-ID:

1) The value of a is in all cases lower than the value of f.

2) The values of a and f are not, by themselves, reliable estimates

of the closeness of the computed inverse to the exact inverse. For ex

ample, if the a and f values alone were used to compare the approximate

inverses of the A^ matrix produced by the various inversion methods then

the congruent transformation method would appear to be as good as the

Gauss-Jordan method. However, the Gauss-Jordan routine produced an in

verse for n = 30 good to one part in 400 while the inverse produced by

the congruent transformation method was good only to one part in 15.
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Thus the Q values (which follow this pattern) reflect the observed

relation between the exact and approximate inverse matrices while the a

and f values may not. A possible explanation in the latter case may be

in the fact that the Af_ matrix contains elements of alternating sign

while all the elements of the inverse matrix are positive. Hence there

may be some cancellation of errors in forming the (M) M product
J & v- approx - ^

in equation (4), this effect becoming more pronounced as the matrix

becomes more ill-conditioned. Also the A^ matrix contains many zeros

(in fact a higher proportion the larger the order) and hence the errors

in some of the inverse matrix elements do not show up in the a and f

values.



Table IA

A Comparison of the a, f, and Q Values as a Function of Matrix Order and Inversion Method

Gauss Jordan Method

n

10

Matrix

a 1.3

A

X

-8

10 9.6 x 10"6 6.7

Af

x 10 2.2

B

X io"8 7.3

D

X io"8

f 1.9 X io-8 1.4 X io'5 1.1 X io"3 2.7 X

_8

10 9.1 X io"8

Q 4.8 X io-8 2.7 X IO"5 2.1 X 10-3 5-5 X io"9 3.3 X io"8

15 a 2.3 X

_8

10 3.6 X io"5 3.0 X io"2 3.0 X io"8 1.5 X io"7

f 3.6 X io"8 7.1 X IO"5 4.7 X io"2 3-8 X io"8 1.9 X io"7

Q 7.8 X io"8 8.3 X io"5 2.6 X io"2 6.4 X io"9 4.8 X io"8

20 a 3-7 X io"8 1.1 X io"4 5-0 X 10-1 4.0 X io"8 2.2 X

_7

10

f 6.1 X io"8 1.6 X IO"4 8.1 X 10-1 5.3 X 10"8 2.8 X 10-7

Q 1.2 X io"7 1.1 X io"3 3.4 6.6 X io"9 7.4 X io"7

25 a 4.3 X io"8 4.3 X io'4 3A 5-0 X io"8 3.7 X

_7

10

f 7.1 X io"8 7.2 X io"4 5.8 6.4 X io"8 4.8 X 10-7

Q 2.0 X io"7 5-2 X io"3 27. 6.6 X 10-9 9.2 X io"8

30 a 5-1 X io"8 1.3 X io"3 13. 6.1 X io"8 5.3 X io"7

f 8.2 X io"8 2.0 X io"3 23.7 7.8 X io"8 6.9 X 10-7

Q 3-9 X io"7 1.9 X io"2 69. 6.5 X io"9 1.2 X io"7

I

vO
1



Table IB

A Comparison of the a, f, and Q Values as a Function of Matrix Order and Inversion Method

Congruent Transformation Method

n Matrix A A2 A^ B D

1° a 1.0 x 10-8 1.2 x 10"6 5.6 x 10"5 1.5 x 10"8 6.8 x 10-8
f 1.5 x IO"8 1.4 x 10"6 7.2 x IO"5 p.r v in-8 1.1 x io-7

-8

A'
2

1 .2 X 10
-6

1 .4 X 10
-6

1 .0 X 10
-4

4 .3 X 10'
-6

5 .6 X 10'
-6

l .2 X 10"
•3

9 1 X 10"
-6

l 2 X 10

7 4 X 10'
-3

-•=;

1. 5 X 10

2. 0 X 10"
•5

2. 7 X 10

2. 9 X 10"
5

4. 0 X 10"
5

1

1. 1 X 10

Af

5 .6 X 10'
-5

7 .2 X 10'
-5

1 3 X 10"
-2

5 2 X 10'
-4

7 1 X 10'
-4

Q 5.9 x 10 1.0 x 10"* 1.3 x 10 7.9 x 10"s 2.6 x 10

15 a 0.0 4.3 x IO-6 5.2 x IO"4 1.8 x 10"8 1.1 x IO-7
f 0.0 5-6 x IO"6 7.1 x IO"4 3-0 x IO"8 1.7 x IO"7

1.0 x io"8

1.5 x io'8

5.9 x io"9

0.0

0.0

0.0

1.6 x io"8

2.6 x 10"8

1.0 x io"8

1.8 x io"8

3.1 x io"8

6.2 x io"8

1.9 x IO"8

3.2 X IO"8

2.2 x io"8

1.5 x io"8

2.5 X io"8

7.9 x io"9

1.8 x io"8

3.0 X io"8

9.2 X 10-9

2.1 x io"8

3-9 x io"8

1.0 x io"8

2.3 X io"8

4.3 X io"8

1.0 x io"8

2.4 x io"8

4.6 x io"8

1.0 X io"8

Q 0-0 1-2 x IO"3 1.3 9.2 x 10"9 2.9 x 10 -8

20 a 1.6 x IO"8 9.1 x IO"6 2.3 x IO"3 2.1 x 10"8 1.4 x IO-7
f 2.6 x IO"8 1.2 x IO"5 3.2 x IO"3 3.9 x IO"8 2.5 x IO"7
Q 1.0 x IO"8 7.4 x IO"3 29. 1.0 x IO"8 5.4 x IO"8

25 a 1.8 x 10" 1.5 x IO"5 5.7 x 10
f 3.1 x IO"8 2.0 x IO-5 7.5 x 10
Q 6.2 x IO"8 2.7 x 10"2 229.

-3

-3

30 a 1.9 x 10"° 2.9 x IO"3 1.5 x IO"2
f 3-2 x IO"8 4.0 x IO"5 2.3 x 10"2
Q 2.2 x IO"8 1.1 x IO-1 1885.

1-7 x 10"'

3.1 x io"7

6.4 x 10"8

2.1 x io"7

4.3 X IO"7

7-3 x io"8

I



Table IC

A Comparison of the a, f, and Q Values as a Function of Matrix Order and Inversion Method

Choleski Method

n Matrix A A2 A3 B D

10 a 2.0 x 10"° 1.6 x 10"° 8.7 x 10-5 2.7 x 10-8 8.0 x 10-8

1.1 x IO"4 3.7 x IO"8 1.0 x IO"7
2.1 x 10"2 7.8 x 10"9 4.5 x IO"8

15 a 4.0 x 10"" 8.9 x 10"° 1.6 x IO-3 3.7 x IO"8 1.6 x IO"7
2.2 x IO"3 4.8 x IO"8 2.2 x IO"7

1.3 x IO"1 9.2 x IO"9 4.6 x IO"8

20 a 5.7 x 10~w 1.8 x 10"" 1.4 x 10"2 4.3 x IO-8 3.3 x IO-7

Matrix A

a 2.0 x IO"8

f 3.1 x 10"8

Q 1-3 x 10"7

a 4.0
-8

x 10

f 5.8 x 10"8

Q 2.4 x 10"7

a 5.7 x IO"8

f 8.8
-8

x 10

Q 2.4 x 10"7

a 7.4 x 10"8

f 1.2 x IO"7

Q 3.7 x 10"7

a 8.9 x 10"8

f 1.4 x 10"7

Q 6.4 x 10"7

A2

1.6 x io"6

2.2 x io"6

1.1 X 10-4

8.9 x io"6

1.4 x io"5

1.7 x io"3

1.8 x io"5

2.7 x 10-5

1.1 X IO"2

4.0 x io"5

5-5 x io"5

4.5 X io"2

1.2 x io"4

1.7 x 10-4

1.4 x io"1

1.9 x 10"2 5.8 x IO-8 4.5 x IO"7
8.3 9-9 x 10"9 8.4 x 10,-s

2.7 x io"8

3.7 x io"8

7.8 x io"9

3-7 x io"8

4.8 x io"8

9.2 X io"9

4.3 X io"8

5.8 X io"8

9.9 x 10-9

5.2 X
_8

10

6.8 x 10"8

1.2 x io"8

6.1 x io"8

7.9 x io"8

1.5 X 10"8

25 a 7.4 x 10"" 4.0 x 10"" 6.4 x IO-2 5.2 x 10" 5.9 x IO"7

9.6 x 10"2 6.8 x 10"8 7.9 x IO"7

130. 1.2 x 10"" 1.3 x IO"7

30 a 8.9 x 10"" 1.2 x 10" 2.2 x IO"1 6.1 x IO-8 9.6 x IO-7

3.7 x IO"1 7.9 x IO"8 1.2 x IO"6

751. 1-5 x IO"8 1.6 x IO"7

H
H
I



Table ID

A Comparison of the a, f, and Q Values as a Function of Matrix Order and Inversion Method

Rank Annihilation Method

n

10

Matrix

a 2.2 x 10"5 1.5

A;

X

3

"io"3
B

1.3 x IO"8
f 2.6 X IO"5 2.0 X io"3 1.6 x IO"8

Q 8.8 X 10"5 2.6 X io"1 0.0

15 a 4.2 X IO"5 6.4 X io"3 0.0

f 5.9 X IO"5 1.1 X

_2
10 0.0

Q 1.5 X 10"3 9.1 0.0

20 a 7.5 X IO"5 5-2 X io"2 3.1 x IO"8
f 1.0 X IO"4 9.4 X io"2 4.2 x IO"8

Q 1.2 X io"2 97. 0.0

25 a 1.9 X io"4 2.6 X io"1 3.6 x IO"8
f 2.7 X io"4 4.7 X io"1 5.0 x IO"8

Q 3-9 X io"2 440. 0.0

30 a 4.0 X io"4 9.1 X io"1 4.8 x IO"8
f 6.4 X io"4 1.4 7.1 x IO"8

Q 9.0 X io"2 1386. 0.0

I

H
ro
1
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As shown above, the value of Q, defined by equation (l), reflects

the overall difference between the approximate inverse matrix and the

exact inverse matrix. This quantity can be computed only if the exact

inverse matrix is known, as it is in the case of the test matrices used

in this report. In general, however, this will not be the case and yet

it is desirable to have some method for estimating at least an upper

bound of the difference which does not depend on knowing the exact in

verse matrix. Such an upper bound is given by the following inequality7

|| A"1 -C IJ^Ji-jJ" (5)
MI

where A." is the exact inverse of the matrix A, C is the computed

inverse, and H is a matrix defined by

H = I - AC

where I is the identity matrix. (Enclosure within the double vertical

lines indicates that the maximum row sum of magnitudes of the elements

of the appropriate matrix is taken.)

For comparison purposes values of both the left L and right R side

of the inequality (5) were computed for all the test matrices used and

the results are presented in Table II.

As shown in Table II the right side of the inequality (5) is indeed

usually greater than the term on the left, which is the maximum row sum

of the matrix formed by subtracting the computed inverse from the exact

inverse. In the few cases shown in Table II where the inequality does

not seem to hold the apparent violation can probably be attributed to

the particular method of rounding used in the arithmetic sub-routines

of the program and the consequent accumulation of round-off error.



Table II

Values of the Two Sides of the Inequality

n Matrix A

10 L 8.3 x 10"7

R 9.6 x 10"7

15 L 2.5
-6

x 10

R 3-7 x IO"6

20 L 4.7 x 10"6

R 8.7 x IO"6

25 L 7.9
_6

x 10

R 2.0 x IO"5

30 L 1.7 x IO"5

R 3.4 x 10"5

A
<- 11*11

Gauss-Jordan

Al

4.1 x 10"

5.8 x 10"

Al

3.1 x 10"

4.7 x 10"

-1
2.4 x 10 6.7 x 10

9.9 x IO"3 34.5

3.5 x 10"2 103.

6.7 x IO"2 871.

2.0 x IO"1 1034.

3.9 x IO"1 31107.

8.6 x io-1 « —

2.0 _ _

B

1.2 x 10"

2.1 x 10"

2.0 x 10'

3.2 x 10"

2.5 x 10

4.9 x 10
-7

_7

3.5 x 10

6.4 x 10"

4.0 x 10"

7.7 x 10"

5.4 x 10"

8.9 x 10"

-6
1.5 x 10

1.9 x 10"

-6
2.8 x 10

4.1 x 10"6

4.4 x IO"6

6.4 x 10"6

6.2 x IO"6

8.6 x IO"6

1

1



n Matrix A

10 L 1.2 x 10

R 4.9 x 10

15 L 0.0

R 0.0

-7

-7

20

25

30

R

L

R

-7
4.4 X 10

4.6 X 10

2.8 X 10

-6
6.5 x 10

_6

1.6 x 10

8.7 x 10"

Table II (continued)

Congruent Transformation

1.4 x 10

1.1 X 10

2.7 x 10

3.0 x 10

2.2 x 10

2.3 x 10

1.0

1.1

5-2

5-8

Al

1.9 x 10

3.2 x 10

-1

-1

27.7

41.9

873-

1106.

8678.

15416.

B

1.4 x 10

1.9 x 10'

-7

2.2 x 10

3-2 x 10"

-7
3.4 x 10

4.8 x io"7

-7
4.5 x 10

6.5 x 10"

5.6 x 10"

7.9 x 10"
-7

D

4.6 x 10"

9.1 x 10"

5.4 x 10

2.1 x 10

-7

-6

1.9 x 10

3.8 x 10

-6

-6

3.0 x 10"

5-4 x 10
-6

4.0 x 10

8.6 x 10

-6

-6

I

H
Ui

1



n

10

15

20

25

30

Matrix

L

R

R

R

L

R

R

1.9 x io

1.2 x 10*

6.2 x 10

5.2 x 10"

-6

-6

8.5 x 10

1.4 x 10

-6

-5

-5
1.5 x 10

2.9 x 10"

-5
3.5 x 10

5.9 x 10"

Table II (continued)

Choleski

Af

1.6 x 10"3
A3.

3.0 x io

1.5 x IO"3 6.1 x 10

4.0 x IO"2 2.9

4.4 x io"2 107.5

3.4 x io"1 249.

3.4 x IO"1 25966.

1.7

1.7

6.5

7.6

B

1.2 x 10"

3.1 x 10"

2.3 x 10

4.9 x 10"

3.4 x 10"

7.0 x 10"
_7

4.8 x 10"

9.1 x 10"

6.7 x 10"

1.2 x 10"

D

7-9 x 10"

9.2 x 10"

9.8 x 10

2.8 x 10

-7

-6

2.3 x 10

5.9 x 10"
_6

-6
6.0 x 10

1.1 x 10"

7.6 x 10"

1.6 x IO"5

1



n Matrix

10 L

R

15 L

R

20 L

R

25 L

R

30 L

R

Table II (continued)

Rank Annihilation

Af A3.

1.3 x io"3 3.8

1.3 x io"2 15.1

3.6 x io"2 202.

2.4 x io"1 2729.

3.6 x io"1 __

1.4 —

1.5 --

5-1 —

4.2 --

19.6 --

B

0.0

9.1 x 10"

0.0

0.0

0.0

3.8 x 10"

0.0

5.0 x 10

0.0

7.1 x 10

-7

-7

D

H
-J
1
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Hence it is possible to get an estimate at least of an upper bound of

the term on the left of the inequality without knowing the exact inverse

of a matrix.

Conclusions

From the foregoing calculations it appears that any one of the

matrix inversion methods tried will invert a well-conditioned least

squares matrix of order 10 to 30. When the matrix becomes ill-conditioned

then the Gauss-Jordan method appears to be clearly superior (at least

for the matrices studied). However, if memory capacity must be con

sidered and only a triangular array can be tolerated, then the Choleski

and congruent transformation methods appear to offer an advantage for

large n. Only in the case of the relatively poorly conditioned A3

matrix did the Choleski method appear to be the better of these two

for evaluating the inverse matrix. From a study involving the in

version of several well-conditioned least squares matrices of orders

to n = 29 all the methods tried gave a and f values about two to three

orders of magnitude smaller than those obtained with the A3^ matrix and

consistent with those obtained with the A matrix.
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APPENDIX I
*

Algorithms for the Inversion Methods

These algorithms are written in the current 7090 Algol hardware
representation. Private communication, Share Algol Project.
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COMMENT MATRIX INVERSION BY GAUSS-JORDAN ELIMINATIONS
PROCEDURE INVERT(N,A,EPSILON,ALARM,DELTA)$

VALUE N$ ARRAY AS INTEGER N$

REAL EPSILON,DELTAS BOOLEAN ALARMS
BEGIN ARRAY B,C(/I..N/)$ INTEGER l,J,K,L,PS

INTEGER ARRAY Z(/I..N/)S REAL W,YS

DELTA#I.QSALARM* FALSE $

FOR J#l STEP I UNTIL N DO

Z(/J/)#JS

FOR I#i STEP I UNTIL N DO

BEGIN K#ISY#A(/I,I/)SL#I-ISP#I+IS

FOR J#P STEP I UNTIL N DO

BEGIN W#A(/IfJ/)$ IF ABS(W) GR ABS(Y) THEN

BEGIN K#J$Y#WS

END

END S

DELTA#DELTA»YS

IF ABS(Y) LS EPSILON THEN

BEGIN ALARM* TRUE S GOTO RETURN END S

FOR J#l STEP I UNTIL N DO

BEGIN C(/J/)#A(/J,K/)SA(/J,K/)#AC/J,I/)S
A{/J,I/)#-C(/J/)/YSB(/J/)#A{/I,J/)#A(/I«J/)/Y

END S

A{/I,I/)#I/YSJ#Z</I/)$Z(/I/)#Z(/K/)SZ(/K/)#JS

FOR K#i STEP J UNTIL L,P STEP I UNTIL N DO
FOR J#l STEP I UNTIL L,P STEP I UNTIL N DO

A(/K,J/)#A(/K,J/)-B(/J/)*C(/K/)

END S

FOR I#l STEP I UNTIL N DO

BEGIN

REPEAT..K#Z(/I/)S IF K EQ I THEN GOTO ADVANCES

FOR J#l STEP I UNTIL N DO

BEGIN W#A(/I,J/)SA(/IfJ/)#A(/K,J/)SA{/K,J/)#W END S

P#Il/I/)SZ{/I/)#Z(/K/)SZ{/K/}#PSDELTA#-DELTAS

GOTO REPEATSADVANCE.. END SRETURN.. END S
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COMMENT CONGRUENT TRANSFORMATION

PROCEDURE SYMINV(A,N,OK)$

VALUE N$

INTEGER NS

BOOLEAN OK$

REAL ARRAY AS

BEGIN

REAL AIJ,AJLtALJ,AII,AILS

COMMENT..

XCHANGE

NTERCHANGE

OBTAIN THE

OF ORDER N.

PART OF A IS STORED.

REPLACES A IN STORAGE

BEGINS AT DIAGONALIZES

REAL BIGAJJS

INTEGER I,J,KS
REAL ARRAY Q (/I..N,I..N/)S

INTEGER ARRAY L(/I..N/)$

PROCEDURE INTERCHANGES

BEGIN

COMMENT.. INTERCHANGE ROW-COLUMN I WITH
ROW-COLUMN L(/I/). PROCEDURE

AT INTERCHANGES

PROCEDURE EXCHANGE(X,Y)$ REAL X,YS

BEGIN

COMMENT.. EXCHANGE CONTENTS OF
LOCATIONS X AMD YS

REAL HOLDS

HOLD # X$

X # Yi

Y # HOLD

END EXCHANGES

IF L (/I/) NQ I THEN

BEGIN

FOR J # I STEP I UNTIL N DO
IF J LS L (/I/) THEN

BEGIN

AlJ#A(/I,J/ )$

AJL#A(/J,L(/I/)/)$
EXCHANGE(AIJ,AJL)S

A(/I,J/)#AIJS
A(/J,L(/I/)/)#AJL

END

INVERSE OF

ONLY THE

INVERSION ROUTINES

SYMMETRIC MATRIX A

UPPER TRIANGULAR

ON EXIT THE INVERSE

PROCEDURE

BEGINS
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ELSE

BEGIN

AlJ#A(/I, J/)$

ALJ#A(/L(/I/),J/)S

EXCHANGE(AIJ,ALJ)$

A(/I,J/)#AIJS

A(/L(/I/),J/)#ALJS

END $

AII#A(/I,I/)$

AIL#A(/I,H/I/)/) S

EXCHANGE(AII,AIL)S

Al/I,I/)#AIIS

A(/I*L(/I/)/) #AIL

END

END INTERCHANGES

DIAGONALIZE.. FOR I # I STEP I UNTIL N DO

BEGIN

L(/I/) # IS

BIGAJJ H OS

FOR J # I STEP I UNTIL N DO

BEGIN

IF ABS(A(/J,J/)) GR BIGAJJ THEN
BEGIN

BIGAJJ # ABSUl/J, J/) )S

L(/I/) # J

END

ENDS

INTERCHANGES

IF A {/I, I/) EO 0 THEN
BEGIN

OK H FALSE $

GOTO EMDI

END $

Al/1,1/) # l/A(/I,I/) S

FOR K H I+l STEP J UNTIL N DO

Q(/I,K/) # -A(/I,l/)»A(/I,K/)$

FOR J # I+l STEP I UNTIL N DO

FOR K # J STEP I UNTIL N DO

A(/J,K/J U A(/J,K/)+Q(/I,K/)«A(/I,J/)

END $
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RESTORE.. FOR I # N-1 STEP -I UNTIL I DO

BEGIN

FOR J # I+l STEP I UNTIL N DO

A{/I,J/) # OS

FOR J # I+l STEP I UNTIL N DO

BEGIN

FOR K # J STEP 1 UNTIL N DO

BEGIN

A(/I,K/) # A(/I,K/)+Q(/I,J/)*A</J,K/)S

IF J NQ K THEN

A(/I,J/) # A(/I,J/)+Q(/I,K/)*A(/J,K/)

ENDS

A(/I,I/) # A(/I,I/)+Q(/I,J/)*A(/I,J/)

END S

INTERCHANGES

END S

OK # TRUES

ENDI.. END SYMINVS
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COMMENT ROUTINE TO INVERT SYMMETRIC POSITIVE DEFINITE MATRICES BY

THE CHOLESKY METHODS

PROCEDURE MATINVCA,AINV,ORDER,SINGULAR MATRI X,NEGATIVE MATRIXJS

VALUE ORDE8S INTEGER ORDERS ARRAY A,AINVS

BOOLEAN SINGULAR MATRI X,NEGATIVE MATRIXS

BEGIN ARRAY T,K(/I..ORDER,I..ORDER/)S

REAL SUMLS

NEGATIVE MATRIX*SINGULAR MATRIX* FALSE S

FOR L*l STEP I UNTIL ORDER DO

FOR M#L STEP I UNTIL ORDER DO

BEGIN IF L EQ M THEN

BEGIN SUML#O.OS

FOR 1*1 STEP I UNTIL L-l DO

SUML*T(/I,L/)**2+SUML$

IF (A(/L,M/)-SUML) EQ Q THEN BEGIN SINGULAR MATRIX* TRUE S

GOTO RETURN END

ELSE BEGIN IF (A(/L,M/)-SUML) LS 0.0 THEN BEGIN NEGATIVE

MATRIX#TRUE$ GOTO RETURN END END S

T(/L,M/)*SQRT(A(/L,M/)-SUML)

END

ELSE

BEGIN SUML*O.OS

FOR 1*1 STEP I UNTIL L-l DO

SUML*T(/I,L/)*T(/I,M/)+SUMLS

T( /L,M/)*(A(/L,M/)-SUML)/T(/L,L/)

END

END S

FOR L*l STEP I UNTIL ORDER DO

K(/L,L/)*I.Q/T(/L,L/)$

FOR L*l STEP I UNTIL ORDER-I DO

FOR M*L+I STEP I UNTIL ORDER DO

BEGIN SUML*0.0$

FOR I*L STEP I UNTIL M-l DO

SUML#T(/I,M/)*K(/L,I/)+SUML$
K(/L,M/)#-SUML/T(/M,M/)

ENDS

FOR L#l STEP I UNTIL ORDER DO

FOR M*l STEP I UNTIL ORDER DO

BEGIN SUML#0.0 S

FOR I*M STEP I UNTIL ORDER DO

SUML#K{/L,I/)*K(/M,I/)+SUML$

AINV(/L,M/)*SUML
END S

RETURN.. END $



•27-

COMMENT MATRIX INVERSION BY RANK ANNIHILATIONS

PROCEDURE RANKAN(A,C,N)S

INTEGER N$ VALUE NS ARRAY A,CS

BEGIN ARRAY ALPHA,BETA,U,V(/I..N/)S

INTEGER I,J,K,I1,Jl,NIS REAL SIG,SIGP,LAMBDAS

BEGIN FOR 1*1 STEP I UNTIL N DO

FOR J*l STEP I UNTIL N DO

C(/I,J/)# IF I EQ J THEN 1.0 ELSE O.OS
FOR I#l STEP I UNTIL N DO

A(/I, I/)*A(/I,I/)-t.QS

N I* I $

50..I*.NIS

FOR K#I STEP I UNTIL N DO

BEGIN ALPHA(/K/)#A(/K,NI/)/A(/NI ,NI/)S

BETA(/K/)#A(/NI,K/>

END S

FOR I I*J STEP I UNTIL N DO

BEGIN SIG#Q.u$SIGP#D.OS

FOR K*NI STEP I UNTIL N DO

BEGIN SIG*SIG+C(/II,K/)*A(/K,NI/)S
SIGP*SIGP+A(/NI,K/)*C(/K,II/)

END $

U(/II/)*SIG$V(/II/)#SIGP

END $

J#NI$SIG#0.0$

FOR JI#J STEP I UNTIL N DO

SIG*SIG+V(/JI/)*A{/JI,NI/)S

LAMBDA#SIG+A(/N1,N1/)$

FOR 1*1 STEP I UNTIL N DO

fok-j#m stfpt uirrrL n do
C(/I,J/)*C(/I,J/)-U(/I/)*V(/J/)/LAMBDA

IF Nl EO N THEN GOTO RETURNS

I6NIS

FOR I I#1 STEP I UNTIL N DO

BEGIN J#NI$

FOR K#J STEP I UNTIL N DO

Al/I1,K/)*A(/Il ,K/)-ALPHA!/I I/)*BETA(/K/)

END $

NI#NI+I$ GOTO 50$

RETURN.. END RANKANS
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APPENDTX II

FORTRAN Subroutines for the Inversion Methods
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MATRIX INVERSION BY GAUSS-JORDAN ELIMINATION

SUBROUTINE INVEKT(A,N)

DIMENSION A(3u,30),R(30),C(30),LZ(3J)

DO 10 J#l,N

10 LZ(J)*J

DO 20 I#l ,N

K#I

Y#A(1,1)

L# I— I

L P # I + I

IF(N-LP) IU, I I, I I

DO 13 J#LP,N

W*A( I,J)

IF(ABSF(WJ-ABSFlY) ) I3,I 3,12

K*J

Y*W

CONTINUE

CO lb J*I,N

C(J)*A(J,K)

A(J,K)*A(J,I)

A(J,I)*-C(J)/Y

A(I,J)*A(I,J)/Y

15 tilJ)*A( I,J)

a(t;n/n.o/y

J*LZ(I )

LZ< I )*LZ(K)

LZ(K)*J

DO 19 K#l,N

IF(I-K)16,19,16

DO 18 J*l,N

IF(I-J)17,18,17

A(K,J)#A(K,J)-B(J)*C(K)

CONTINUE

CONTINUE

CONTINUE

DO 200 1*1 ,N

IF(I-LZ(I))100,200,ICO
K*I + I

DO 500 J*K,N

IF(I-LZ(J))500,600,500

M#LZ(I )

L7( I )*LZ(J)

L7(J)#M

DO 700 L*l,N

C(L)*A( I,L)

A(I,L)#A(J,L)

700 A(J,L)#C(D
500 CONTINUE

200 CONTINUE1

RETURN

END

I I

12

13

14

16

17

18

19

20

100

600
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; MATRIX INVERSION BY THE CONGRUENT TRANSFORMATION METHOD

SUBROUTINE BLMATI(A,A I,N,NERR)

DIMENSION L(30),A(30,30),Q(30,30),AI(30,30)

DO 100 1*1,N

L(I )*I

BIGA*0.0

DO 120 J*I,N
IF(ABSF(A(J,J))-BIGA)120,120,130

130 BIGA#ABSF(A(J,J))

L(I)#J

120 CONTINUE

IF(L{I)-I)I HO,140,150

150 CALL INTCGE(L,I,A,N)
140 IF(A(I,I))160,170,160

170 NERR*i

GO TO 1000

160 A(I,I)#l./A( I, I )

11*1+1

IF(Il-N)U00,400,100

400 DO 183 K*I I,N

180 Q(I,K)*-A(I,1)*A(I,K)

DO 101 J#H,N

DO IQI K#J,N

101 A(J,K)*A(J,K)+Q(I,K)*A<I, J)

100 CONTINUE

I#N-I

300 11*1+1

DO 200 J*I I,N

200 A(I,J)*0.0

DO 210 J*II,N

DO 220 K#J,N

A(I,K)*A(I,K)+Q(I,J)*A(J,K)

IF(K-J)220,220,230

230 A(I,J)*A(I,J)+Q(I,K)»A(J,K)

220 CONTINUE

210 A(I,I)*A(I,I)+Q(I,J)*A(I,J)

IF(L(I)-I)25D,250,240

240 CALL INTCGEIL,I,A,N)
250 IF(I-I)260,260,270
270 1*1-1

GO TO 300

260 NERR*0

DO 310 1*1 ,N

DO 310 J*I,N

310 A(J,I)#A(I,J)

DO 320 1*1 ,N

DO 320 J*I,N

320 AI(I,J)*A(I,J)

1000 CONTINUE

RETURN

END
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SUBROUTINE INTCGE(L,I,A,

DIMENSION L(30),A(3C,3G)

DO 402 J*I,N

IF(J-L( I ))400,4UI,401

400 X»A(I,J)

M*L(I)

Y*A(J,M)

CALL EXCGE(X,Y)

A( I,J)*X

A (J ,M )* Y

GO TO 402

401 X*A(I,J)

M*L( I )

Y»A(M,J)

CALL EXCGE(X,Y)

A( I,J)#X

A(M,J)*Y

402 CONTINUE

X*A(1,1 )

Y*A(I,M)

CALL EXCGE(X,Y)

A(1,1)*X

403 A(I,M)*Y

RETURN

END

SUBROUTINE

HOLD*X

X#Y

Y*HOLD

RETURN

END

EXCGE(X,Y)

N)
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MATRIX INVERSION BY THE CHOLESKY METHOD

SUBROUTINE MATINV(A,B,N)

DIMENSION A(30,30),B(30,3Q),T(30,30),D{30,30)
DO 20 L#I,N

DO 20 M*L,N

IF(L-M)15,10,15
ID SUML#0.0

LU#L-I

IF(LU)12,50,12

12 DO II 1*1,LU

II SUML*T(I,L)*»2+SUML

50 T(L,M)*SQRTF(A(L,M)-SUML)
GO TO 20

15 SUML*0.0

LU*L-I

IF(LU)13,60, 13

13 DO 16 1*1,LU

16 SUML*T( I,L)*T(I,M)+SUML

60 T(L,M)*(A(L,M)-SUML)/T(L,L)
20 CONTINUE

DO 25 L#I,N

25 D(L,L)#I.0/T(L,L)
NI*N-I

DO 30 L*I,NI

LI#L+I

DO 30 M*LI ,N
SUML*0.D

MI#M-I

DO 26 I#L,MI

26 SUML#T(I,M)*D(L,I)+SUML
D(L,M)*-SUML/T(M,M)

30 CONTINUE

DO 40 L*l,N

DO 40 M*L,N

SUML#O.G

DO 31 I#M,N

31 SUML#D(L,I)*D(M,I)+SUML

B(L,M)#SUML
40 CONTINUE

RETURN

END
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MATRIX INVERSION BY RANK ANNIHILATION

SUBROUTINE RANKAN(A,C,N)

DIMENSION A(30,301,0(30,30),ALP 130),BET(30),U(30),V(30)
DO 100 I*I,N

DO 100 J*I,N
100 C(I,J)*0.0

D02I*I,N

C(I,I)*l.0
2 A( I,I)#A(I,IJ-I.O

Nl*l

50 I*NI

DO 6 K*I,N

ALP(K)*A(K,NI)/A(NI,NI)

6 BET(K)*A(NI,K)

DO II I 1*1 ,N

SIG*0.0 :

SIGP#0.0

DO 12 K*NI,N

SIG*SIG+C(I I,K)»A(K,NI )

12 SIGP*SIGP+A(NI,K)*C(K,II)

U( I I )*SIG

II V(I I )#SIGP

J*NI

SIG#0.0

D020JI#J,N

20 SIG*SIG+V(Jl)*A(Jl,NI)

ELAM#SIG+A(NI,NI)

DO 23 1*1,N

D024J*I,N

24 C(I,J)*C(I,J)-U(I)*V(J)/ELAM

23 CONTINUE

IF(NI-N)33,32,32

33 I#NI

DO 36 I 1*1,N

J#NI

DO 37 K*J,N

37 A( I I,K)*A( I I,K)-ALP( II )*BET(K)

36 CONTINUE

Nl#NI+1

GO TO 50

32 RETURN

END
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