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ABSTR AC’ 11 

A model assuming a zero-order react ion and dependence of spec i f ic  
area, a, on f r ac t ion  of pe l l e t s  dissolved, F, i s  proposed t o  explain the 
dissolut ion of 1JOo;2 pel le ts  i n  n i t r i c  acid solution. A Fortran program 
for  the IBM-7090 was developed to calculate  the  rate coef f ic ien t ,  ka,  
and F from experimental data €or concentration as a function of time 
obtained i n  countercurrent stage runs. Application of the  Fortran program 
t o  data €ram e ight  experimental runs led  t o  fairly good agreement between 
the  ka-vs-F r e l a t ions  for a l l  stages o f  the eight  runs. Tne average 
r e l a t ion  for a l l  runs can be represented by a second-order polynomial. 
From the  ka-vs-3’ polynomial and thc? zero-order reaction nodel, an analog 
computer representation of the  multistage dissolut ion process was dcveloged 
a n d  applied f o r  conditions of the eight  experimental runs. The concentra- 
t i o n  p ro f i l e s  thus calculated were i n  very good agreement; with the  o r ig ina l  
experimental p rof i les .  
concentrations from 5.5 t o  8.0 M - and L/V r a t i o s  from 0.126 to  0.223 min-”. 

The s tudies  covered conditions of i n i t i a l  ac id  

The madel described here should be tes ted w i t h  otller systems. It 
i s  desirable t h a t  the sampling t i m e  in te rva l  be decreased r e l a t ive  t o  the  
dissolut ion r a t e .  
frequent sampling should be used. 
i n t e rva l  is probably sa t i s fac tory .  
used, t he  Fortran program w i l l  have t o  be modified. 

Thus f o r  rates o f  the magnitude studied he re ,  more 
However for  slower rates, the  IO-min 
If in te rva ls  o ther  than 1 C  min a re  
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1 0 INTRODUC TIOPJ 

The purpose of this work w a s  t o  develop a r e l a t i v e l y  s2mple mathemati- 
c a l  model which canj w i t h  a l imi ted  number of bench-scale experiniental 
data, pred ic t  performance of a fu l l - sca le  countercurrent stage dissol.ver, 

Dissolution of spent f u e l  elements Prom power reac tors  i s  a key s tep 
i n  f u e l  processing. There is  a great  need Tor a sound method of designing 
such dissolving processes and fo r  pred ic t ing  the behavior of a given sys- 
t e m  i n  ex i s t ing  equipment. Dissolution cha rac t e r i s t i c s  vary widely from 
one t n e  of fuel  element t o  another and from one dissolvent t o  another. 
The work described here deals w i t h  d i sso lu t ion  or" U02 p e l l e t s  i n  n i t r i c  
ac id  solution. The method developed w i l l  not necessar i ly  apply t o  other  
types of f u e l  elements or other  acids,  but w i l l  have t o  be tes ted f o r  the  
cases of in t e re s t .  

Experimental work used i n  the repor t  w a s  performed i n  the Unit Opera- 
t i ons  Section by '13. C. Finney, 

2.0 EQT.IEBW OPERATION 

I n  the  operation of the continuous-spiral p e l l e t  dissolver (Fig. 1), 
fresh acid i s  fed continuously t o  the  upper end of  the dissolver.  The 
ac id  overflows successively from one compartment t o  the  next, the compart- 
ments being contained between adjacent elements of the sp i r a l .  The pel- 
l e t s  t o  be dissolved are fed t o  the lower end of the dissolver.  The s p i r a l  
r o t a t e s  i n  a d i rec t ion  such as t o  car ry  the  so l id  p e l l e t s  upward through 
the dissolver.  
countercurrently to the  ac id  flow. 

Thus, each batch of p e l l e t s  moves through the dissolver  

UNCLASSIFIED 
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/ I n l e t  Acid 

Inlet Pel leb -C 

Product 
Ove,flow 

Fig. 1. Continuous spiral pellet dissolver, 

The s ta r tup  operation i s  shown schematically i n  terms of an equiva- 
l e n t  bucket operation i n  Fig. 2. Fresh ac id  en te r s  t h e  ba t t e ry  (dragram a )  
end flows from one stage t o  the next, down t o  stage 1, where a batch of 
p e l l e t s  i s  introduced a t  zero time. Stage 1 then moves up the battery.  
Fres3, ac id  overflows f r o m  the stage ahead in to  stage 1, and the  spent 
solution, containing dissolved solute  and spent acid, overflows from stage 1. 
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(a) Zero-Time 
r - -1 

(b) to-Time 

( e )  2t,-Tirne 

(d) 3to-Time 
r---i 

(e) 4to-Time 

Fresh r Pellets Fresh 
Acid 

U 
Fresh Fresh 

Acid 

Fresh 
Acid 

Fresh 
A c i d  

U 

- .  
I-resk 
Acid 

Fig.  2. Startup of dissolver i n  ternis o f  equivalent bucket operation, 



If' the sp t rd .  requires  to time t o  make one complete revolution, we 
may t r e a t  t h e  system as if a batch of fresh p e l l e t s  is  introduced t o  
stage 2 a t  ti-me to. 
is  introduced t o  stage 2 as feed solut ion.  

A t  this ins tan t  (dfagram b ) ,  the e f f luent  f r o m  stage 1 

Stages 1 and 2 move up the  ba t te ry  and a t  time 2to (diagram c )  , a 
batch of  fresh p e l l e t s  Is introduced t o  stage 3 and overflow solut ion 
from stage 2 i s  fed t o  stage 3. 
stage being introduced at; each t i m e  i n t e rva l ,  to. 

(Fig. S ) ,  but it rises rapidly t o - a  maximum and then drops off  t o  zero as 
complete dissolut ion of  the  p e l l e t s  i s  approached. 
t r a t i o n  i n  s tage 2 i s  the same as t h a t  i n  the ef f luent  f r o m  stage 1 a t  t h i s  
i n s t m t .  
complete dissolut ion o f  pel le t s  of stage 2 i s  approached. 
continues for the succeeding stages,  <and as steady s t a t e  i s  approached, 
the curves f r o m  one stage t o  the  next become ident ica l  i n  shape and 
magni%ude . 

%he sequence continues, wi th  a new 

A t  zero time the  concentration of dissolved p e l l e t s  i n  stage 1 i s  zero 

A t  to time the  eoncen- 

Again, the concentration rises t o  a m a x i m u m  cand drops t o  zero as 
This behavior 
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Fig. 3. Typical concentration - time behavior of dissolved pellets. 



3.0 MATHEMAT I C  AT, MODEL 

Consider the nth stage of the dissolut ion operation (Fig. 4 ) .  If V 
i s  the  t o t a l  volunle of  t h e  stage,  l i t e r s ,  nin i s  the mass of the  so l id ,  g,  
being dissolved (302 i n  terms o f  uranium content, i n  this case); arid p 
i s  the density (mass of liraniixn i n  U02 per so l id  volume, i n  t h i s  case) 
of  t he  solid, g / l i t e r ,  then ( V  - mn/p) i s  the  volume o r  the  soluti-on. 
w i l l  be assumed t h a t  each stage i s  w e l l  mixed and the  solute  concentration, 
Cn i n  grams per l i t e r ,  i s  therefore uniform thmughout stage n. 'Thus 
[Cn(V - x / p ) ]  i s  the instantaneous solute  (dissolved uranium) content o f  
the  n th  stage.  Let L be the  solut ion flow rate, i n  l i t e r s  per minute, 
here assumed constant w i t h  time and unchanged between inlet, and o u t l e t  
flow fo r  each stage.  An overa l l  instantaneous solute  material  balance 
gives 

It 

where t i s  the  time i n  minutes, and r i s  the  rate of dissol-ution o f  solid 
per un i t  volume of solut ion,  g/min.liter, o r  

Feed In 
1 1 

d m /d t  
r = -  
n 

U NCLASSI F I ED 
OR N I -LR -DWG 68795 

Effluent Stream 

Fig. 4. Conditions of nth stage. 

The kine t ic  mechanism assumed will be t h a t  of a zero order reaction, 
i . e .  the dlssolut ion r a t e  i s  independent of solute  concentration i n  the  
solut ion.  The r a t e  should, however, be proportional t o  the  area of the  
so l id  exposed t o  the  solution. Thus 

kcm 
( 3 )  

n 
rn = V q  

where IC i s  a spec i f ic  r a t e  constant, r a t e  per un i t  area of s o l i d ,  g/min.cm2, 
and "a" i s  the  effect ive so l id  surface per un i t  m a s s  of  so l id ,  cm2/g. 
a given dissolut ion it w i l l  be assumed tha t  k i s  constant since dissolut ion 

For 



w i l l  be car r ied  out  i n  a boi l ing solut ion and temperature will chcange 
r e l a t ive ly  l i t t l e .  
t i o n  w i l l  have t o  be j u s t i f i e d  experimentally. The spec i f ic  surface,  a, 
i s  assumed t o  be a. function of t he  f r ac t ion  of the Wl id5  dissolved, F, 
because tne  so l id s  probably tend t o  c m b l e  and expose increased surface 
t o  the  solut ion as the  dissolut ion proceeds. TZlere i s  no convenient means 
f o r  separating area ,and absolute rate ef fec ts ;  thus ka w l l l  be treated as 
a single  term. 

The neglecting of possible e f f e c t s  of acid concentra- 

An assumption t h a t  leads t o  considerable s implif icat ion of' t he  above 
equations i s  t h a t  m/p i s  very s m a l l  
not s t r i c t l y  va l id  f o r  the  experlmeiital conditions stud Led because the  
volume of the p e l l e t s  fed t o  each stage i s  a s igniffcant  Pracbion of  the  
t o t a l  stage volume. However, the  assumption w i l l  be made because the  
experimental data  s c a t t e r  extensively ,and the  refinement of a1 lowing for 
pellet volume i s  probably not j u s t i f i e d  i n  l i g h t  of t he  addi t ional  com- 
plexi ty  introduced t o  the problem. Omitting the  m/p terms from eqs. 1, 
2, and j leads t o  

r e l a t ive  t o  V. This assumption is 

dC n -v - d t  = ICn - - V r  n 
z;cll-l 

dm I n  
n = - v a t  

1 r = - k m  n V  n 

(4) 

(5 )  

Data Prom a series of bench-scale runs on the  dissolut ion of UO;? 
pel]-ets i n  n i t r i c  acid were reported by B. C .  Finney I n  Unit Operations 
Section Mont'nly Progress Reports, February 1961. (CF 61-2-65), March 1961 
(CF 61-3-67) , April  1.961 (ORNL-TM-32), and May 1.961 (ORTTT,-TM-33). 
each run, a series of beakers was each charged wfth -600 g of IJO2. 
acid solut ion w a s  fed a t  8 c o n s t a t  r a t e  t o  the  fi.rst beaker, over.flow 
from t h i s  beaker w a s  sampled at LO-min in t e rva l s ,  and, a f t e r  an hour, 
w a s  directed t o  the  second beaker. Overflow from t h i s  w a s  sampled a t  
10-min fn-tervals and. a f k r  another hour w a s  d-iverted t o  the  t h i r d  beaker. 
This sequence was repeated for  s i x  t o  nine beakers. Thus the behavior 
of t h e  beakers simul.nted t'ne behavior of stages i n  a continuous dissolver 
whose rate of revolution i s  one cycle per  hour. The f resh n i t r i c  acid 
concentration, constant i n  each run, ranged from 5.5 t o  8.0 M (Table 1). 
Tile data were plot-Led i n  Figs. 5 through 12,  where the  l o w e r s e t s  of  
dotted l i n e s  represent smoothed experimental uranium concentrations vs 
time data. Points a t  10-min i n t e r m l s  were read from these curves and 
used In  coxputing instantaneous values of  ka. 

In 
Ni t r i c  

Since W-int data a re  t o  be used, the above d i f f e ren t i a l  equations 
are approximated by difference re la t ions .  It' i i s  a time index 
m d  t h e  differences between successive values denote 10-min in t e rva l s ,  
by use of second differences it can be shown that, appmximte ly ,  
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Table 1. Sirnary of R u n  Conditions _-.-. 

v = 0.150 l i t e r  

Original 
Computer R m  HNO3 FIOW Rate (L) , Jd/Vi 
Case No. No. Conc., M_ l i ters /min min- 

7 
0 

R -1)+ 
R -20 
13-17 
13-21 
R-23 
R-26 
11-27 
R -24" 

7.0 
5.5 
7.0 
'7.0 
7.0 
8.0 
0.0 
7.0 

0.0189 

0.0206 

0.0229 
0.0183 
0.0285 
0.0312 

0.0334 

0.0313 

0.126 
0.223 
0.137 
0.202 
0.153 
0.122 
0.190 
0.208 

~- __ 
a Crushed p e l l e t s  were used i n  run R-24, whole pellets i n  others .  

Subst i tut ion o f  eq. 7 i n  eq. i t  and s01ut;ion for  r leads t o  

From eq. 5, it i s  seen t h a t  

C 

where % i s  the mass of  u r a n i m  i n  the  i n i t i a l  charge. 
t h i r d ' '  r u l e ,  

By Simpson's "one- 

r 

-t. 4r 4- I" ) 
0 n,i 3 n,2 n,3 

1 Uncorrected (m - m ) = - (1O)V 

1 

Js i becomes large,  %,i approaches zero. 
hand. side o f  eq. 1.0 should approach % f o r  large values of  i. 
prac t ice ,  experimental e r ro r s  and approximations i n  the  calcul.atlon 
prevent t h i s  condition from being exactly sa t i s f i ed .  Cne can therefore  
iiefihe 

T'nus t h e  v a l - i ~  of  the  r igh t -  
In  ac tua l  
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m 
0 

l1.m [uncorrected (m - m ) ]  
%large value 

c =  
o n , i  

On multiplying elements of the right-hand s ide of eq. 10 by C, one obtains  
corrected valxes of (m, - m n , i ) .  The f rac t ion  dissolved mw be calculated 
from 

F n,i = (mo - m n,i )m o (12) 

~ h r :  rate term, ka, i s  calculated from eq. 6 :  

f o r  Yne IBM-7(:90 was prepared for computation o f  
f r o m  concentration data by use of eqs. 8 ,  l O - l . 3  
the  e ight  m s  were processed by t h i s  progrm and 

The shape o f  the  curve f o r  the resul-ts plot ted(Flgs .  13 th.rough 20). 
k 8  vs f ract lon dissolved, F, i s  generally the  same for a l l  s tages  of 
each m, but there  I s  some s c a t t e r  from stage -to s tage o f  any one mn .  
The c ~ r v e  f o r  the first  sta.ge i s  Yrequently i n  poor agreement wi th  those 
of t h e  o ther  s tzges .  This i.s probably due i n  pa r t  t o  the vezy sharp 
concentration peak t h z t  i s  cha rac t e r i s t i c  o f  the first stages and Lo 
t h e  f a c t  that t h e  10-min t l m e  i n t e rva l  used i n  the  ana lys i s  1s large 
re1a t i .w t o  these peaks. 
methods a re  probably i n  ser ious error. hLso, i n  most o f  t he  runs  s c a t t e r  
appears t o  be worse between s tages  a t  P v,dues of' 0.75 m d  higher* 
s c a t t e r  i s  not surpr i s ing  because w i t h  high F values concentrations a r e  
low, and t h e  calculat ions involve differences between very small numbers, 
each oE whose r e l a t i v e  error i s  large. 

Renee the X!/dt t e rns  calculated by difference 

This 

The 01-iginal n i t r i c  acid concentrations used In the  varFous rims are 
shown i n  Table 1. 
OT all m~ is reported i n  the  aforementioned progress rcports .  In 
attempts t o  co r re l a t e  ka with acid concentration f o r  each stage of a l l  
runs, no s ign i f i can t  t rend could. be cletected. It 'was concluded t h a t  
within the  acid concentration range of t h i s  work and within t;?e aecwacy 
o f  the  experimental" work and mathematical analysis, ka i s  independent of  
acid concentration. 

The n i t r i c  acid concentration Iiisto12;y for  a l l  s tages  

In i+'ig. 21 a re  shown curves, each of which represents the  average 
ka-vs-F r e l a t i o n  f o r  a l l  stages of one rim. In Fig. 22 the  s o l i d  l i n e  
shows the average r e l a t ion  of ka-vs-F €or d l  runs. This curve was 
f i t t e d  by a second-order polynomial, the  constants being determi-ned by 
the method of  l e a s t  squares. The resul.ting equation 

ka -: 0.007968 + 0.01736:) F + 0.028125 F2 (14) 

is shown a5 a dot ted l i n e  i n  Fig. 22. 
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a fab le  2. Fortran P1-Ogi"aZII 

00000013  
0 0 0 0 0 0  14 
00000015 
00000016 
00000017 
00000018  
00000019 
000001 90 
00000020 
0000002 1 
00000022  
00000023 
0 0 0 0 0 0 2 4  
00000001 
00000002 
00000003 
00000004 
0 0 0 0 0 0 0 5  
00000006  

Yhe Fortran code words or l e t t e r s  have the  following meanings: a. 

KASF: Case No. 
NOSTA Stage No. 
rJ No. of concentration values 

L 0 i f  noc las t  case of l a s t  stage;  
( N  m u s t  be odd) 

1 if last  case of  l a s t  s tage 
FOV L I V  
v V 
BATCH0 % 

I Subscript i 
C N  Cn 
CNL 1 C,-1 

RATE r 
SUM Uncorrected (m, - s,i) 

Correction Factor C 
DIS(I) (q - %,i) corrected 

Fract ion dissolved,  F FRAC 
AF(I) 
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5.0 APPLICATION OF ka-vs-F FO3IATION 

Having ka as a function of F which appl ies  approximately for e ight  
runs made under varying conditions of flow r a t e s  and acid concentrations, 
an attempt w a s  next made t o  use t h i s  r e l a t ion  wi th  eqs. 4, 5, and 6 t o  
compute r e l a t ions  of concentration and F vs time f o r  the conditions of 
the  experiments-3.. runs. 
and the r e s u l t s  were compared w i t h  the  o r ig ina l  experimental data. 

Calculations were made on an analog computer, 

L e t  the  constants of eq. 1 4  be A, 3, and C :  

ka = A + BFn + CFn2 n 

The de f in i t i on  of P i s  n 

F n = (m 0 - rnn)/mo = 1 - mn/mo 

and. ka between eqs. 4, 5, 6, 1-5, and 16, one n' mnJ n On eliminating r 
obtains  

and 

For scal ing purposes, define X n 9  
x = c /CR n n 

i s  an a r b i t r a r i l y  selected reference concentration, preferably 
where some v 3 ue s l i g h t l y  greater  than the  maxlmum concentration i n  the  problem. 
Now subs t i t u t e  eq. 1.9 i n  18: 

Fjy using equations i n  which Fn and a re  dependent 
magnitudes range between 0 and 1, magnitude seal ing 
taken care o f .  

var iables  whose 
i s  automatically 

Observation of concentration prof i les  indicates  t h a t  t he  concentra- 
t i o n  of one stage can be affected by concentrations i n  the  two preceding 
s tages ,  but tha t  there  i s  never any s igni f icant  e f f e c t  of earlier stages. 
Equations 15  and 20 apply t o  any stage,  and these were s e t  up three  t j m e s  
so t h a t  th ree  stages could be simulated simultaneously. The 221R Pace 
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Analog Computer i n  the  Department of Chemlcal and Metal.l.urg-ica1 Engineering 
a t  the  University of  Tennessee w a s  used for this problem. Figure 23 shows 
the  diagram for one s tage.  The o ther  two were s i m i l a r  t o  this except t h a t  
servo mul t ip l ie rs  veye used r a the r  than the quarter-square e lec t ronic  type 
shown i n  Fig. 23. The circui. ts  for  the three stages were connected through 
switches (Fig. 24) .  

1. 

2. 

3 .  

4. 

5. 

6 .  

7 .  

8 .  

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

Computer runs were made as follows: 

Set  potentlometers wit'n appropriate values for  rm parameters. 

For n = 1, open switches 00 and 01. 

Se t  i n i t i a l  values f o r  X1 and F1 a t  zero i n  stage n c i r c u i t .  

Operate, p lo t t i ng  out  values of X1 and F1. 

Hold operation a t  time to and read X1 and F1. 
and F11, respectively.  

Complete operation. 

For n :: 2, n - 1 = 1; close switch 01. 

Set i n i t i a l  values of X2 and F2 a t  Xll and 0,  respect ively,  i n  the 
n-stage c i r c u i t ,  and XI and Fl a t  X1l and Fll i n  the (n-1)-stage 
c i r c u i t .  

Operate, p lo t t i ng  out  X2 and F2. 

Hold operation at time to and read Xz, XI, F2, and F1. 
a re  X 2 2 ,  X12, F22, and F p ,  respectively.  

Complete ope rat ion . 
For n ::: 3, n - 1 = 2, n - 2 = 1; close switch 00. 

Set i n i ' t i a l  values fo r  X 3  and F3 a t  X 2 2  and 0, respectively,  i n  t he  
n-stage c i r c u i t ,  X 2  and F2 a t  X22 and F2.2 i n  the (n-1)-stage c i r c u i t ,  
and X 1  and F1 a t  X l 2  and Fl2 i n  the  (n-2)-stage c i r c u i t .  

Operate, p lo t t i ng  out  X3 and, F3. 
XS, X2, Fa, and F2. The values aTe X 3 3 ,  X23> F33, and F23, respectively.  

Complete operation. 

For n = 4 ,  n - 1 = 3 ,  n - 2 = 2 >  repeat procedure of s t ep  12 and 
following. 

These values a re  X11 

The values 

Hold operation a t  t i m e  to and read 

I n i t l a l  condition se t t i ngs  and switch sett ings are summarized i n  Table 3. 
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Fig. 23. Analog computer diagram, stage n. 
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Fig. 24. Relation between analog computer circuits for three stages. 
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'Table 3. I n i t i a l  Condition Set t ings f o r  Analog I- Computer Studies ..I_____ 

No. of 
Stage Switch I n i t i a l  Conditions" 

F (4 00 01 xn xn-l xn-2 Fn Fn -1 n-2 
-- - - 

1 0 0 0 - - 0 I - 
2 0 c x11 X11 0 F11 - 
3 C C Xa2 x22 x12 0 Fen F12 

C C x3 3 x33 x23 0 F33 3'2 3 4 

- 

- 
a Tn the  double subscript  notat ion,  the f i r s t  number re fers  t o  the stage 
number, and the second t o  the number of  time uni t s ,  to, t h a t  have lapsed 
a t  the in s t an t  the appropriate value of X o r  F ex i s t s .  
X22 i s  t h e  r e l a t i v e  concentration i n  the second stage a t  time 2t0, o r  
a t  t i m e  to a f t e r  the second stage begins operation. 
a graphical representation of the  X values.)  

For example, 

(See Fig.  3 f o r  

The r e su l t s  of analog computer runs fo r  t'ne cases of Table 1 are  
shown i n  the  so l id  l i n e s  o f  Figs. 5 through 12. Agreement i s  generally 
f a i r l y  good between calculated and experimental concentration p ro f i l e s .  
The first  stage f o r  each run usual ly  shows poorest agreement. This i s  
proba'oly due t o  the  f a c t  t h a t  the  agreement of  ka of eq. 14  (average f o r  
a l l  stages of a l l  runs) with ka of the f i r s t  stages i s  worse than with 
k a ' s  of all the other  stages.  It should be remembered a l so  ka's f'or the  
f i r s t  stages a re  i n  grea tes t  doubt because the experimental sampling 
intervals were large r e l a t i v e  t o  the  time required f o r  the sharp concsn- 
t r a t i o n  p ro f i l e  peaks t o  develop. 
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