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Computer Programs Using Zonal Harmonics for Magnetic Properties of
Current Systems with Special Reference to the IBM 7090

M. W. Garrett !

ABSTRACT

This report discusses the magnetic vector and
scalar potentials, magnetic field components and
their derivatives, and flux linkage for single cur-
rent systems, and the mutual inductance, forces
and torques between two such systems, whose
axes are coplanar but not necessarily coincident.
Each system may include a combination of co-
axial loops, cylindrical or plane annular current
sheets, and cylindrical coils of rectangular section.

Working equations are listed, following an out-
line of theory in a form that has considerable
generality but is at the same time ideally suited
to precise calculation. A discussion of errors
and of means for reducing them leads to specific
suggestions for use of the method with any pro-
grammed computer. An existing comprehensive

program for the IBM 7090 is described in detail.

The rate of convergence of the harmonic series
depends on the ratio R of the polar radius of the
field point to that of the current discontinuity
nearest the origin, In some cases the precision
reaches 1000 parts per million even at R = 0.95,

improving to 1 or 2 parts at R = 0.80. Since the
origin is arbitrary, the practical range of the
method often includes the whole space that is
accessible to experiment. For very close approach
to the windings one must resort to elliptic integral
methods or their equivalent.

Alternative programs that have been used are
compared with the method of zonal harmonics,
but they are slower by more than a factor of 10
when large numbers of field calculations must be
made on a complex current system. One example
is the problem of following individual ions through
paths in the order of 100 turns in a field that is
generated by 20 coaxial thick coils; available
competing methods would have required too much
computer time. The zonal harmonic method also
has superior flexibility in attacking a wide range
of problems, This is especially true for the cal-
culation of rates of change, with respect to co-
ordinates of the field or of the generating system,
and for problems in which some property of o
system must be not only calculated, but also
adjusted to meet a specification.

INTRODUCTION

The magnetic properties of a current system,
as considered here, include the magnetic scalar
and vector potentials and their derivatives, the
magnetic flux through the system in an applied
field, and the mutual inductance, forces, and
torques between two such systems. The use of
zonal harmonics restricts the discussion to
axially symmetric systems. A system may include

]Consuhant, Swarthmore College.

any combination of coaxial circular current loops,
cylindrical or plane annular current sheets, and
cylindrical volume currents, which will usually
be called loops or filaments, (thin) solencids,
disks or pancakes, and (thick) coils respectively,
and will be referred to as elements of the system.

Chapter 1 of this report develops the theory in
outline, with the working equations. The theory,
equations and machine programs all depend on
a two-stage analysis in which the field and the
system that gives rise to it are separately treated.



The coordinates of the field and of its sources
never appear in the same equations or the same
subroutines. The field equations and the source
equations have in common only a set of ‘‘source
constants'' 1, and P, whose definition depends

on the concept of a *‘source.”” The constants
may be defined either for a single source or for
a complete system. This method is more general,
more compact in formulation, and more efficient
in practice than the conventional approach (I, 2).
Since many of the concepts and equations are
unfamiliar, as are the new source functions U
and W _, Chapter 1 is a necessary prelude to the
description of the computer codes.

Chapter 2 discusses modifications that are nec-
essary or desirable when the equations are em-

bodied Although this

section contains some specific references to an

in a machine program.

existing zonal harmonic program and subroutines
for the I1BM 7090, most of the information should
be useful to anyone who seeks to apply the same
method in solving problems of the same or related
types with other machines, or even with a desk
calculator.?

Chapter 3 describes the 7090 codes in greater
detail for those who may be able to use them,
with or without changes. Many details in this

should be helpful

similar programs for other computers.

section also in organizing

2Mosf of the methods, special formulas, series co-
efficients and other aids presented in chap. 2 were de-
veloped in the course of the author’s previous work on
field design problems, using first the Burroughs E-101
and UDEC computers and later the UNIVAC, all with
fixed point coding. This earlier work including the
calculation of Table 1 {not previously published) was
supported by the Army Research Office (Durham).
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CHAPTER 1. THEORY

The Traditional Microforms, Source and Field Harmonics

Limitations of space forbid the inclusion of full derivations. Little more can be done than to list
the working equations. These however deviate sufficiently from traditional practice, in form, interpreta-
tion, and method of use that a reasonably full analysis of the underlying logic is indispensable. Most
of the equations are deferred for convenience of reference to a point near the end of Chapter 1, while a
summary of concepts, methods, and performance is first undertaken.

The method of expanding laplacian field series in zonal harmonics is old and well known. But since
shortly after Maxwell’s time a kind of underbrush has grown up in the zonal harmonic jungle that often
obscures the trees. The criticism goes far beyond an objection to cumbersome and inefficient algebraic
forms, and implies a widespread failure to notice correlations and to establish unifying principles. It
has been a common practice to derive in isolation, and to compute from, a host of inflated special forms
for special cases that will be referred to here as microforms. A general symbolic form such as P ((0)
will be called a macroform.® Its three most commonly used microform equivalents are 5/2(7 cos? 6 ~
3 cos 0), 5/2 cos O(4 - 7 sin? @), and 5}'2r"3(4z3 - 3p2z). The third form is properly a power series in
the cotangent of the polar angle. To write out P7, would require 16 terms, with many coefficients of
about 15 digits. To compute it to two significant figures, seven or eight must be carried because of the
mutual attrition of + and — terms.

The general term of @ complete zonal harmonic series contains a product of two such harmonic func-
tions, belonging to a source angle of the current system and a field point angle, respectively, together
with powers of the two polar radii. The labor of computing from the microforms increases more rapidly
than the square of the order, and most series are stopped even in derivations at the ninth or tenth order,
that is at about the fifth term of the usual all-odd or all-even series.

Equally serious has been a failure to recognize the harmonic functions at all. MNeglect of analogies
that would surely have been discerned among the several sets of macroforms, and of homologies within
the sets, accounts for many gops and redundancies that have stood for half a century. The following

sections will attempt to define under four heads the elements of a more systematic approach.?

3The names were suggested by the terms micro- and macro-instruction, which belong to the jargon of pro-
gramming.

4Empl’lasis on these elements may be justified by a slightly overstated argument. Consider a set of magnetic
quantities, m in number, to include various field components, the vector potential, force, mutual inductance, etc.
Let conventional microform series be separotely derived for each of n source types (loop, solenoid, disk, coil).
Each harmonic factor of the general term, independently of the other, commonly occurs in any of three equivalent
forms as noted above for P;. Nearly always the origin is restricted in one of two ways, to remove terms of either

odd or even order. This again doubles the number of possible microforms, which now stands at 18m#n. If the solu-
tion of each case is carried out in two stages, with the source geometry and the field geometry segregated in
separate equations written in macroform, expressions and calculations that are common to several cases are not
repeated. There need be then only m field equations and (caunting both b, and qn) 2n source esquations, to replace

the entire set, The new equations are much shorter and far more lucid, while computing time is cut to a fraction
through the use of recurrence routines.

The gaps that a more orderly system would fill are evident in any standard collection of field and mutual in-
ductance microforms. But to trace correlations and identify the redundancies, or even to recognize the zonal
harmonic expansions for what they are, requires time and some aid such as Table 1 of ref (I}, For one example,
see footnote 8, hereafter.



Restriction to Macroforms. Notation for Functions of Angle

For functions of the polar angle, apart from s for sine and « for cosine, the macroforms P, Pl U,
W, Py, U%, and W5 will be used exclusively.® Though P (u) is the Legendre polynomial in « of order
n, in most cases no argument will be written, and the defining Eq. (1) does not contain ». Each set of
functions will be regarded as a set of magnitudes, characteristic of the polar angle, whose values after
the first or second order may be found by successive iterations, and not as polynomials in the sine,
cosine, or cotangent. Thus the angle itself will be written as argument, for example, an)' ifitis

not otherwise clear what angle is meant. The cosine « appears in all the recurrence relations [Egs. (41-

45)1.

Full Use of Series Homologies

The microforms have wusually been differentiated or integrated term by term, with respect to any
coordinate, whereas such operations are performed on macroforms with the aid of general symbolic rela-
tions that may be derived from the series homology. (Note again that derivations cannot be included
here.) The basic homology is concerned with z-differentiation. This can be seen most directly in the

definition

n! 0z" \r

P~ D (l) (n

which uses the mixed cylindrical and polar coordinates =z, 7, but which actually defines P as a function

of the polar angle alone. Again, if P’ = r?[’/nr?u, the following relations can be proved:

(1= u?)p” - (2)
o(n=1! dz"
and
;Tﬁp 7}2”*][’ J npoo n—1_p~
- nr 1 — =~ sl - (3)
aZ 7 I r’}p n n -~

For other useful homologies, see (7, 2). See also Eqs. (41-45), since the recurrence relations used for

all caleulations fall under this head. In effect, they reduce functions of all orders to 2-term polynomials.

sUn and W are new functions that were introduced in refs (I, 2) to deal with the case of thick coils. They
permit the magnetic properties of such coils to be calculated as precisely, and almost as easily, as those of loops
or solenoids. For the starred forms, see Eqs. (4). They are modified functions whose magnitudes never exceed
unity, designed to replace P};, U, and W4 respectively, when iterations are carried out with a fixed decimal
point,



General Origin

All equations are referred to an arbitrary axial origin. This permits the field of o complete coaxial
system to be coherently expressed by a single series, without adding up contributions from multiple
origins. It also extends greatly the range of convergence of the central field series, since calculations

may be referred to different origins in different parts of the field.

Two-Stage Analysis. Field and Source Equations

The efficiency of the zonal harmonic method depends on separating the variables. Since the func-
tions P, U , etc. depend only on a polar angle, while all remaining variable factors of the harmonic
terms are polar radii, this has already been done so far as the coordinates of each point are concerned.
But there is a great gain in efficiency, both of formulation and of calculation, if the coordinates of field
points and of sources (or in the case of mutual inductance, of primary and secondary sources) appear
only in separate equations and are processed in separate subroutines of the machine program. Both the
general theory and the practical problem are cleanly cut into two simpler parts, which are concerned
with properties of the field and of the sources respectively (or of primary and secondary).

The separation permits a dramatic reduction in the number and complexity of the equations, a point
that is elaborated in footnote 4. At the same time it clarifies the meaning since the elements that are

essential to correlations and analogies appear explicitly in the equations.

First Stage. The Field Equations

Two types of field are first defined, the “‘central’’ and the ‘‘remote.’”” Figure 1 shows a current
system with two stepped coils numbered 1 and 2. Let a spherical shell be drawn about an arbitrary
axial origin, of the minimum thickness to include all parts of the current system between the spherical
boundaries. The central field is then bounded by the inner sphere of radius 7 . , while the remote field
extends from the sphere of radius 7 to infinity. Each type of field can be fully described by a set
of field series, Eqs. (8) to (13) and (16) to (21), that contain no coordinates of the generating system.
They assume only that the system has axial symmetry. Such general field equations are made possible
by the severe restrictions imposed by Laplace's equation, the symmetry, and the spherical boundaries.
They must of course contain a set of adjustable coefficients, pure numbers whose values must later be
found from the system geometry, but except for these dimensionless magnitudes each field series is the

same for a single loop as for the most complex coaxial system.

The adjustable constants, from the manner of their definition, might logically be called field con-
stants. The constant of order n for the central field is proportional to the axial derivative a”vo/az”
of the magnetic scalar potential at the origin. The remote constant of order 7 is proportional to the
strength of a fictitious ideal multipole of order n, at the origin, from which the nth term of the remote
field series may be considered to arise. Individual constants of either set can be experimentally meas-
ured without knowing the geometry of the current system, and in fact the theory does not exclude axially

symmetric distributions of magnetized matter between the bounding spheres.
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Fig. 1. Central and Remote Fields. Spheres of convergence.

In this work the constants are always computed from the geometry of the current system, and so are
regarded as system constants. |t will be seen in the next section that the contribution to any constant
from each uniformly wound element (each loop, solenoid, disk, or coil) of a system is computed from
the coordinates of one, two, or four circles that mark the discontinuities in current density. Such
circles are called "'sources” of the field. Their contributions to the system constants of order » are
the source constants, ¢ for the central field and p for the remote field. The system constants are

dimensionless scalar summations over all sources, that is, for any given order ¢_ = 2z g, P, f}:pi.
: 14 i

From this point on, q_or p , whether for a single source, a complete element, or an entire system, will
usually be called o source constant of order n, suppressing the subscript s or / and dropping the term
system constant. The £ will not be written, but is to be understood implicitly in the field equations.
The flux through a system placed in on arbitrary external field can be expressed in terms of the
axial derivatives of the field and the constants p of the system. The field need have no symmetry.
From this expression, equations are derived for the mutual inductance, hence also forces and torques,
between two axially symmetric systems, in terms of the g-constants of the primary and the p-constonts
of the secondary system. These also are field equations, since they contain no coordinates of sources.
They cover in a few lines a wider range of cases than the entire standard repertoire of zonal harmonic

microforms for force and mutual inductance. They fail in the presence of magnetized matter.



Second Stage. The Source Equations

The second stage of analysis is to derive equations to calculate the source constants of any given
system from its geometry. When computing, the order of the stages is reversed. A set of constants
q, or b is first calculated and stored, or in certain cases punched out on cards for later use. !f the
problem so requires, sets of constants are calculated for each of several origins. Once computed, they
are used without further need for the system geometry, to calculate all field components, the vector
potential, forces, mutual inductances, etc.

The first step in deriving the constants is to expand the magnetic scalar potential of a single
circular loop along the axis by Taylor's theorem, and to fit the result as a boundary condition to the
corresponding central or remote zonal harmonic series. Thus g, and p_are found for the loop source.
No further reference to any field equation is necessary. The superposition theorem for laplacian fields
leads at once to simple expressions in closed form for the constants ¢ and p of a cylindrical or an-
nular current sheet and of a cylindrical volume current, through scalar integration of the expressions for
dg, and dp, over the elementary current filaments, with respect to z or to p or both. The system source
constants g _and p , as actually used in computing from the field equations, are then easily found by

scalar summation over all the loops, solenoids and coils of the system.

Sources. Algebraic Signs

The definite integrals that express the g¢- or p-constants for distributed currents contain no co-
ordinates of internal current filaments, but only those of the current discontinuities, that is, the bounding
circular edges of the windings. Hence the concept of ‘‘sources,’”” two in number for an ideal solenoid
or disk, four for a cylindrical coil, that replace the physical distributed sources for all calculations.
Except for thin loops carrying finite current, sources always occur in matched pairs of opposite sign but
with the same strength, equal to the surface or volume current density. The source equations are for
single sources of positive sign, but the subscript 7 of Fig. 2 is omitted.

Sign conventicns for sources are shown in Fig. 2. For positive currents, sources at the right ends
of solenoids and at the outer right corners of thick coils are positive. Signs in the latter case alternate
round the section perimeter. The thick coil with stepped section requires only six sources when com-
puting by hand. For the machine code, it is subdivided in either of the two ways shown. This adds a

coincident redundant source pair at §, or at §,, whose signs are shown inside the section.

Range and Rate of Convergence. The Convergence Ratio R

Several variables influence the details of convergence of the zonal harmonic series, but the terms
of all series contain ascending powers of R, a ratio of two polar radii. In all cases, after a few terms
the rate of convergence is dominated by the magnitude of R. The series fail in theory unless R is less
than one, and in practice it should rarely exceed 0.9, occasionally perhaps 0.95. For all series dis-
cussed in this paper, except for the double summations (25, 26), the combined secondary effect of all

variables other than R is to accelerate the smoothed rate in greater or lesser degree.
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Fig. 2. Notation. Sign convention for sources.

Because of the separation of field and source equations, the powers of R do not appear explicitly
unless, for example, the values of g from any of Egs. (32) to (34) are substituted into one of the central
field Eqs. (8) to (13). The radii r* and r; of the equations are just the r and ri of Fig. 2, normalized
with respect to an arbitrary reference length r;. Evidently normalization does not affect the ratio r/r]..
The g's for a complete system are summations over all sources. The source nearest the origin, whose

radius in Figs. 1 and 3is 7_. , makes the dominant contribution to the g-summations of high order.

[t follows that for the central field series, R = +/r where 7 is the polar radius of the field point,.

min’

For the remote series, R = r /r, where 7 ax May be seen in Figs. 1 and 3. For mutual inductance,

/
ax

, 7
T

force or torque, R = r S,
max min

where the prime belongs to the secondary and the radii are shown in
Figs. 1 and 3. This means that the secondary must be wholly within the central field of the primary.
R can be varied over wide limits by moving the origin. Thus in Fig. 1, a series for the force or mutual
inductance between coils 1 and 2 converges rapidly when the origin is placed at O, or O, but not if
it remains at O,. Again, if both coils constitute a single system, the total range of possible central
fields can be greatly extended by computing from several origins in turn. But to extend the remote field
as far as possible, it is necessary to give up the single origin and to add two field components at each

field point, computed separately for coils 1 and 2, from origins near O, and O, respectively. The same

device may be used when computing force or mutual inductance.
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Fig. 3. Mutual Inductance Between Systems Whose Axes Intersect.

Note that convergence depends on the position of the sources and not of the physical currents.
Consider a long solenoid of moderate wall thickness, with origin in the midplane. Its central field,
bounded by a sphere through the inner source circles, includes much of the actual wound volume and
of the space outside the coil. The calculations for B and for vector potential require no correction in
these regions. For B_, it is only necessary to subtract ATfjp x 1077, where j,is the total linear current

density Ji/dz between the axis and the field point, whose cylindrical coordinate is p.

Effect of Polar Angle. Source Harmonics

Term-by-term, as opposed to smoothed convergence, is strongly dependent on the polar angles of
the dominant source and of the field point. The functions P and [’,: occur in field equations, P, v,
and W _ (or their starred relatives) in source equations, all combined with powers of the polar radii.
Though only r*P and r”(”H)Pn are harmonics in the strict sense, all the functions of analogous form
show similarities that make it convenient to refer to them loosely as harmonics. All the functions of
polar angle are quasi-sinusoidal. They vary with angle and with order in a manner that parallels roughly
the behavior of sin 70 or of cos nf, but with an amplitude that for large n approaches (ns)~ 12 for P,
and (71/5)]/2 for P;. As 1 increases, U; +2 and - W:_2 both approach sP, asymptotically.

Each term of a complete field series contains the product of a field harmonic and a source harmonic.

The products of angular functions alone oscillate in sign in a variable sequence that depends on both
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polar angles, with possible extreme amplitudes that are either constant or diverge very slowly (nearly
as n). The equations show also that most products contain one or more reciprocals of integers, which

converge slowly (nearly as n™ ).

Convergence in Practice. The Nomogram

Because of the minor factors discussed above, the rate of convergence for a given value of R varies
slightly for different combinations of field and source equations (7). For example, source types listed
in order of decreasing rate of convergence are: thick coils, solencids or disks, and filaments. Field
series for B_ or B3, converge somewhat faster than that for JB‘D/(?:, but more slowly than the vector
potential series. Mutual inductance series converge faster than those for force, and these in turn faster
than the B_ or B, series, provided that the secondary origin is not displaced [as in Eqs. (25) and (26)].

The nomogram of Fig. 4 is designed to afford an estimate of the maximum truncation error to be
expected for a range of values of R = r/rmin, when a central field series for B_or Bp is stopped at the
vaoriable order n, in the case of a coil with moderately thick section. The field of a thick coil arises
from moderately diffuse currents, whose mean effective polar radius is appreciably greater than r_. .
Thin solencids and a fortiori isolated loops are more concentrated sources, whose series converge
somewhat more slowly. A rather loose chain of reasoning identifies the error with R"“Z(/'Z/(n ~2),
which can be read from the nomogram.

Powers of R can be read directly from the right-hand scale, on a line through R and the exponent
n — 2. For the field error, mark the point where this line cuts the index line, and read the fractional
error on a line with this mark and U .

The nomogram predicts maximum errors of 4, 30, and 180 parts per million, for » =33 and R =0.80,
0.85, and 0.90. Errors observed in practice have been less than half of these figures. Axial forces
between thick coils have been computed to within a few parts per million at R =0.8, 2 or 3 parts in
10,000 at R = 0.90, and better than 1/2% at R =0.95. The results for mutual inductance are better, about
0.1% at R =0.95.

The extension to 34 series terms, through the use of the recurrence formulas, has extended the range
of the zonal harmonic series far beyond previously accepted limits, Chapter 2 will discuss several
difficulties that were met in achieving this result with single precision coding. A rapidly increasing
number of orders must be added for each small increment in range from this point on, and it seems hardly
worth the effort to compete with elliptic integral methods in the space that lies still closer to the wind-

ings.

Comparison with Eliiptic Integrals

For precise calculation of fields and mutual induciances of loops and thin solenoids, with R no
greater than 0.4 or 0.5, zonal harmonic series have long been used. They are almost always in microform
and are frequently not recognized, and it is partly for this reason that the calculation by elliptic in-

tegrals is better known. When R is greater than (say) 0.5, a properly chosen series or iterative method
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using elliptic integrals is usually more economical for mutual inductance or for single field points. In
fact, the limit on convergence is removed and fields may be computed at every point where the result
has a valid physical meaning including points within the windings.

Nevertheless the zonal harmonic method has significant advantages. It reduces computing time in
some cases by more than an order of magnitude. [t is more versatile in solving a wide range of problems
that depend on differentiation or integration with respect to field or source coordinates. Because it
develops the field in continuity about an origin rather than by spot checks at a series of isolated points,
it permits a direct approach to certain problems of field design. These advantages depend on the use
of the series homologies, and on separation of the field and source geometries. They are further dis-
cussed in the following paragraphs.

Consider the ““DCX-2"" system, which generates a magnetic mirror field for thermonuclear experi-
ments at the Oak Ridge National Laboratory. Fields in this system have been computed by several
methods. The windings may be divided into 20 thick coaxial coils, which constitute 80 sources for the
zonal harmonic method. If n orders are retained, 80 n individual source constants are computed by
the recurrence formulas and summed into n qg-constants, for each origin. For this highly elongated
system, 10 to 12 origins are needed to compute the field components to one or two parts per million
throughout some 70% of the total volume enclosed by the windings, and to better than 1/]0% over an
additional 10%, with n = 33. The total number of constants to be computed and stored in the first stage
of analysis is just under 400. They may, if so desired, be punched out on cards for repeated use in
field calculations as, for example, in orbit tracing.

All details of source geometry may now be discarded. To calculate B_, Bo, A, or (JBP/GZ from g
at each field point requires a field series that is truncated on the average after fewer than

2
with a further economy in the case of the last three quantities since the P functions of Eqs. (11-13)

n terms,

are computed only once for all.

Elliptic integral methods are slower, in part because more sources are required, but principally
because every detail of source geometry enters afresh into the field calculations at each new point.
The concept of an origin is irrelevant. The field at an off-axis point is built up as a sum of contribu-
tions from elementary circular current filaments, each of which depends on the cylindrical radii of the
source and of the field point, and on their axial separation. The coordinates are not separable.

One formulation of the DCX-2 field, using elliptic integrals, replaced the 20 coils by 2154 loop
sources, or about one per square inch of cross-section. At points near the windings, but still well
within the range of the zonal harmonic code, the results were subject to small errors, presumably be-
cause the source net was relatively coarse. Nevertheless the time required to compute a field net of
several hundreds of points was estimated to be some 30 to 50 times greater than for the zonal harmonic
code.® An earlier version of the latter has been adapted by North and Parker (5)to trace ion orbits
through as mony as 100 turns in the DCX-2 field. This required some thousands of field calculations,

and would scarcely have been practicable with the elliptic integral code.

Time estimates are approximate, since for these tests a flexible clock routine was not available.
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To reduce the number of sources per coil, it is desirable to integrate the elliptic integral loop
equations with respect to the source coordinates. Integration with respect to z can be accomplished
in closed form. Thus two solenoid sources at the ends can replace a cylindrical sheet but the ex-
pressions for mutual inductance and for B include an elliptic integral of the third kind. Integration
with respect to p has not been achieved, but the need can be circumvented by a Gaussian numerical
quadrature.” 1f an w-point formula is used, each thick coil is in effect replaced by 27 solenoid sources.
Though the method has greater speed and accuracy than one that assumes a set of uniformly distributed
loops, it remains comparatively slow. With a system of m coils, 2mn sets of source coordinates still
enter the field calculations at each point.

The flexibility of the zonal harmonic method in evaluating derivatives, with respect to linear and
even to angular coordinates, is illustrated by the possibility of calculating mutual inductances when
the secondary is tilted or when it is displaced, either axially or radially or beth. Again, it required
only six short lines of Fortran coding to add the calculation and readout of GB/O/(?Z, when the code for
B, and A had been completed. The three functions are homologous. The gradient 9132/02 or any of

f

several other derivatives presents no greater difficulty.

Source Constants as an Aid in System Design

A harmonic series gives a coherent description of the field as a continuum. Since it is a power
series in the polar radius, a few nonvanishing terms of lowest order dominate the field throughout an
extended region near the origin, and everywhere outside an enclosing sphere of moderate radius. There-
fore the magnitudes of individual low-order source constants are immediately relevant to certain design
problems. The number of orders that must be considered when the source constants are used as an aid
to system design depends on the extent of the region of interest, more specifically on the convergence
ratio R. As an aid to the use of the source constants for system design, the computer code includes
an optional print of akn/az and ok /0p, where k stands for either ¢ or p and the rates of change are
computed for displacements of each of the four boundaries of individual coils of the system.

In the following examples it will be assumed that all currents are symmetrical about the midplane,
which restricts the source constants to odd orders. There are also important cases of antisymmetry,
the so-called cusp geometries, with a corresponding restriction to even orders. The uniformity of a

central field increases with the number of successive constants g4, 45, ..., etc,, that are suppressed.

TThis expedient was used to check the first pilot calculations made with the functions Urz and W, against
results obtained from the solenoid functions P; lref (1), p 1102]. Downing has avoided the use of elliptic integrals

altogethers He substitutes a Gaussian quadrature for the integration in azimuth around a circular loop, and com-
bines it with an axial integration in closed form to find B, Bp and A for a selenoid source. More recently he

4
has added a second Gaussian quadrature in radial depth, thus extending the use of his method to thick coils. The
writer has completed, and expects to report on @ program and subroutines that compute Bz' B _, and A, together

with mutual inductance and axial forces, for systems of loops, solenoids, and thick coils. This code uses a
Gaussian quadrature of variable order in radial depth, but relies otherwise on elliptic integrals throughout. Both
programs discussed in this note can calculate fields at points within the winding space, and the second one can
chculate the force and mutual inductance between two sections of a single coil that is divided by a transverse
plane.
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Homogeneity to 1/]0"23 out to R = 0.54 on the axis and 0.63 in the midplane has been achieved by elimi-
nating three orders [ref (1), p 1107]. Several hundred ceniral field systems have been computed, using
from two to four thick rectangular coils, to generate strong fields in which from one to three successive
odd orders vanish.

A system for which p,, Py, «-- . etc., are made to vanish generates a remote field that departs
appreciably from that of an ideal dipole only at short distances. At the same time, the flux through the
system in an arbitrary imposed field becomes more nearly proportional to the axial component of B at
the center of the system, ignoring field inhomogeneity. By suppressing three constants in a large search
coil, used to report the value of B at a point in a nonuniform field, sensitivity can be increased several
hundredfold over that of a conventional small coil, for the same error. Mott has applied the concept of
the multipole moments in a different way. He has simulated the remote field of DCX-2 by adjusting the
currents and oxial separations of two identical pairs of pre-existing coils to match the constants p
through p (8).

Finally, let it be required to design the primary and secondary systems of o mutual inductor so that
M is accurately proportional to cos :, where y is the angle of inclination of the axes. It is also desired
that M be nearly independent of moderate vector displacements of the secondary, which necessarily
means that the force ¥ on the displaced secondary is negligible. The main term of M (3] is proportional
to q,p ] cos y, with error terms proportional to G305 Gglgs -+, etc. The main error term of M(r, O) for
a displacement r, € is proportional to 1-/3p;r2P2(9), and the analysis is readily extended to higher orders.
[See Egs. (23) to (26).] Since the constants ¢ of the primary and p of the secondary are quite in-
dependent, while the products vanish with either factor, there is a considerable latitude for design even

when several orders must be suppressed for both types of error.

Units and Notation

MKS units are used in all the equations of Chapter 1. The programs as written use the gauss and
the centimeter for all the magnetic quantities, but with the option of describing the geometry in inches
if so desired. These details are not relevant here, but are discussed in Chapter 3, under the heads
of Scaling and Units and of Normalization (data card fields RX and BZ1).

For most equations the zonal polar coordinates r, € are appropriate, though for input and output data,
field compenents, and derivatives the cylindrical coordinates =, p are more convenient (Fig. 2). The sub-
script j, which belongs to the jth source, usually serves merely to identify a coordinate as that of a
source rather than of a field point. Thus ¢ and 0]. often appear as the arguments of harmonic functions
of the polar angles of field points and sources, respectively. The subscript may be dropped from any
variable, and in the case of angles the argument also, whenever the omission can cause no confusion.
In any case the notation Pn(ﬁ), P:(@), etc., never signifies a polynomial in 6. The symbol s is used
for sine, and u for cosine; u may have either sign, but s is necessarily positive.

Most lengths are scaled in terms of a suitably chosen unit or reference length r,. Lengths so normal-

ized are identified by an asterisk. It is usually convenient to make the starred source radii somewhat
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less than unity in central fields (r, < r_. ) and somewhat greater in remote fields (r, > r Y. The
0 min 0 max
dominant g- or p-constants are then slightly less than unity. The final results of the two-stage calcula-
tion are of course independent of the choice of 7, but the intermediate magnitudes are sensitive to it.
An entirely distinct use of the asterisk is fo distinguish three sets of functions of polar angles that

appear in the field and source equations as they are listed below, replacing P’ and the source functions

v, and W, of (1) and (2):

P* = SZP ’/‘Il ’
»n

n

Ufz Un/(n -1y, ey
W’; = W”/(n +2).

The modified functions are preferred for the computer program, for reasons that are explained in
Chapter 2. Their magnitudes never exceed unity.

The equations assume that the same current i flows in each turn of the system. Thus the strength
of an ideal circular current filament is Ni, where the N turns coincide and N is not in general an integer.
The strength of a thin solenoid source is the surface current density N7, where N’ is the turn count
per meter. The strength of a thick coil source is the volume current density N77i, where N ""is the
winding density in turns/meter?. Since the equations assume idealized uniform current sheets or volume
currents, the dimensions of helical or thick cylindrical windings include the insulation of the outer
turns. Every source must be given its proper sign, as previously defined and as shown in Fig. 2. For
a more complete list of working equations that cannot be included in the following sections, and for

derivations, (1) and (2) may be consulted.
Central Field Series. The Constants 4

The central field is defined as o source-free axially symmetric laplacian field that is bounded by

a sphere with center at the origin. Its scalar potential V. can always be expanded in the form

v, = nz:o A, r"[’n(f)) , (5)
where the A's are constants that depend on the generating system and on the units employed. This

expression must reduce on the oxis to the Tcylor series

o ] 7 On V 0

chx = Z 3° gz (6)
n=0 )

in which the zero subscript indicates that V and its derivatives are evaluated at the origin. It is con-
venient to replace the A's of Eq. (5) by a set of dimensionless constants ¢, so defined that each is
proportional to the axial derivative of corresponding order, with certain arbitrary factors:

rrx 107 gty

0 0

= - . 7
& 2mi(n = 1 927 7)
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Cn the axis, P _(6) of Eq. (5) reduces to z”. When the last three equations are combined, Vs

set equal to O, and r* is written for the dimensionless ratio 7/r., there results
q o

o0
1
_ — -7 - *7
v_=-27x10"7 ¥ 0,7 P (6. (8)
71T]
The meoning and use of the constants 1, and the reasons for calling them “‘source constants,”’ have
already been discussed. Equations (7) and (8) express the fact that an arbitrary central field is fully
determined if all the axial derivatives (:‘"\/’0/32” are known at the origin. No direct reference to the

source geometry is necessary.

From Egs. (8) and (2),

gV e (R b1
- L -7 —m * 7
= =2 107 Ty ) g, ., 7P (0) 9)
= n=1
This reduces when » = 1 to
. -7 -1 3 wnp (@
B, =27 x10 irg néo T, 47 n}‘n(tﬁ . (10)

By setting m =2, it is easy to find the gradient é’Bz/az.

From Eq. (8) and a known relation between the scalar and vector potentials,

S

1
A =27 x 10770 B g s PG (1)

el 7+ 1

The conventional notation for s_]P*n would be (1/7) sin 91’7; [Eq. (4)]. Successive differentiations of

(11) with respect to z yield:

- n
Bpf—Q’ﬁ X]0"7ira] Z n+-i r/nﬂr*ns—lf’;(@, (12)
n=1
B B o6
o _ I, e -7 -2 -1
_a,_ZH = ..é..pz =217 x 10 7, n§1 nq. 4y R PZ(O) . (13)

Equation (12) follows also from Eqs. (8) and (3). Series similar to those listed can be derived without

difficulty for higher derivatives, and for derivatives with respect to polar coordinates.

Remote Field Series. The Constants p

The remote field series are derived in analogous manner. The currently completed 7090 program
computes for the remote field only the source constants p,» but it would be easy to include field calcula-
tions by using the equations below. It is well known that the remote scalar potential can be expanded
in the form

\% =

p 0P (0), (14)

|2

n=0
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where the §'s are constants. They are often regarded as equivalent to a set of ideal multipoles at the
origin; (1, is a magnetic pole, ¢, a dipole, and so on. As before, it is convenient to replace the yi's by

a set of dimensionless constants, arbitrarily defined. In this case,
p, =+ Ny /277 x 1o~7z-rg“ . (15)

The p, is retained for generality. It appears for example in the first term of a mutual inductance series
when, to accelerate convergence, the contributions from the two end planes of a single secondary so-
lenoid or coil are referred to separate origins, each in its own plane. In passing, it should be noted
that, when computing external fields close to the windings of a long system, best convergence is
achieved by calculating the field of each coil separately, using a set of p-constants referred to an origin
at the center of the coil. The zero order does not appear unless two origins are used for the field of o
single ceil, for example, one in each endplane.

The remote field equations, analogous to Egs. (8—13) are:

o0

vV, =2 %1077 1 Pn_emtt0p (), (16)
n=0 7+
oy = moan =1 )
a\zﬂf{ = (M])m 27T * ]0—7iram E 11' pn-—- ,-*"'(m+”) m +n—-](0) ! (]7)
7n==1 )
B, =27 % 107750 B 5 0P () (18)
nz=]
_ -7. - [)7 x=(n+1) _~1pxrg
A =27 x 1077 E] e sl (19)
B =2 x 10~ 7] ;‘, ) =t o= 1px(g) | (20)
2 0 ol n-1 n
dB B o0
azp :—:9—;2—:; 2 10_7ir62 n§2 ,lprz—Zr*~<n+])s_]P;(O) ) (2])

Flux. Mutual Inductance. Force and Torque

The flux of a central field through a coaxial circle is 277pA, where p is the radius of the circle, and
A can be found from Eq. (11). The flux that links a complete axially symmetric system can be calculated
from the external coefficients p, of the system and the axial derivatives J"V /92", evaluated at the
origin, of any external field in which it may be placed. All sources of the flux must be “‘remote’’ as
previously defined, but the external field is otherwise arbitrary and may be devoid of symmetry. It is

of course irrelevant whether the coil is energized. To derive Eq. (22), equate the energy of an arbitrary

remote pole, at a point 7, 9 in the potential field (16) of the current system, to the energy of the system
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in the field of the pole. The derivatives of the pole field are found from (1). The equation reduces

to
o2 A Jd v
N, ¥ 0 n 0: 22
? ,EO (e 1 e 22

which implies that each p-constant responds, as it were by resonance, to a single field derivative. The
principle has been applied to the design of large search coils which report the field, field gradient, etc.,

at o single point of an inhomogeneous field (2, 7).

The mutual inductance between two complete axially symmetric systems can be efficiently computed
if the axes of the two systems are coincident or parallel, or, if they intersect in a common origin, as in
Fig. 3. The mutual inductance between coaxial systems follows at once from Eq. (22), when the p’s
belong to the inner or secondary system, while the derivatives O”VO/()Z" depend only on the ¢’s of the
outer primary system, as given by Eq. (7). When the expression is generalized to include the case in

which the axes intersect in the origin, at angle v, it becomes (3)

7.y Pnd
My(y) =472 x 10772 ¥ — 12 p (y) (23)

The zero order term reduces to Pgdy: since the n in the denominator is to be dropped. This term is
omitted except in the special case discussed in the next paragraph. The primed quantities belong to
the secondary, and the unit for M is the henry. If the axes coincide, omit Pn(y). For the torque about
a transverse axis through the origin, change P, to sP’, and multiply by ii% The equation assumes
ro =7gi if in a special case the constants have been calculated with different reference radii for primary

and secondary, insert the factor (r(/7,)" before P .

Equation (23) assumes that an origin can be found such that the secondary lies wholly within the
central field of the primary, as in Fig. 3. Sometimes this requirement can be partially relaxed by adding
together components of M computed from two or more origins, usually placed in the end planes of the
secondary. For each origin, only the secondary sources in its own plane are then required to lie in the
central field of the primary. The zero order must ke retained when, and only when, multiple origins are
used, and the summation must include every combination of a primary and a secondary source. Again,
it is always permissible to interchange the complete set of z-coordinates of any primary element (loop,
solenoid, or coil) with those of a secondary element, when computing the mutual inductance between the

two. This device often extends the range of convergence.

When the values of g and p_ for loop sources are substituted from Eq. (32) and Eq. (37) into (23),

the latter reduces to

My(y) =42 <1077 F <1—> PEOPEONP (V). (24)

R AN

n=
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This with minor changes in notation is Maxwell’s formula for the mutual inductance between two loops
whose axes intersect (6).2 Equation (23) is a versatile generalization of Maxwell’s formula, from which,
in fact, it can be derived by a superposition principle based on ‘the concept of source constants., For
the mutual inductance between two complete systems must be calculable as a scalar summation over all
combinations of the elementary circular filament pairs. The angle v is common to all such pairs, while

each product p g, of the source constants for the complete systems is just the scalar sum of all ele-

n
mentary products dp dg .

When the secondary system is arbitrarily displaced without rotation, the mutual inductance M and
the axial force F_ on the secondary are laplacian scalar functions of the coordinates 7, 0 of the dis-
placed secondary origin. It is therefore possible to find expressions for M(r, 0) and for its derivatives by
reasoning that parallels the derivation of Eqgs. (8) through (13). Since only the case of parallel axes will
be considered here, M is given by Eq. (23) without Pn(y). On the right side, ¢, alone is a function of r
and €. Substitute M for V in Egs. (§) and (6), but omit Eq. (7) and evaluate the derivatives of ¢ with
the aid of Eq. (28). The result is

(n4+m-1!
M(r, 0) =47? %1077 r, )_] Z Tk pig, ., TP (0). (25)
n=0 m=0 7n + me

This equation reduces to (23) when m = 0 or r = 0, and for moderate displacements, it suffices to
retain the first few orders only of m. Drop the zero order of » unless multiple origins are used.

Forces and torques depend on the derivatives of M, with a foctor ;% The axial and radial forces
are related to M as B_ and Bpof Eqs. (10) and (12) are to V of Eq. (8):

ﬂ + m

F (r,0) =4m%i’ %1077 Z Z p'qn+m+]r*um(0). (26)

ol a0 w0 (n + ] m]

For £ (r,0), m >0, and P, (0) must be changed to [~m/(m + ’l)is“lP;; or {=1/0m + ])]SP,;. When the

primary and secondary origins coincide /7 = 0 and the axial force reduces to
2., -
F o= 4m%i” % 10 Z 7-— P4 (27)
n=0

The unit of force in these equations is the newton. As before, the zero order of n is omitted unless

multiple origins are used.

The Source Equations. Calculation of 4 and p
n n

In this section all equations for source constants apply to single positive sources, but the subscript

7 appears only on the coordinates, to avoid possible confusion with field coordinates. The source

BThe redundancy and lack of correlation that were discussed in footnote 4 may be illustrated by the microforms
for special cases of Eq. (23) to be found in any standard collection of working formulas. Counting only the combi-
nation of two thin solenoids and of loop and solencid there are nearly a dozen, including formulas considered to
be distinct and attributed to Lorenz, Gray, Searle and Airey, Rosa, Roiti, Grover, Clem, Dwight, Snow, and others.
Except for Snow’s formula, all have sets of polynomials in the sine or cotangent that do not seem to have been
recognized as harmonics, and even the exception has been similarly expanded for computing.
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constants of the field equations are summations, with due regard to algebraic sign, over all sources.
The zero order g, is rarely used. It appears only in mutual inductance and force formulas, and then only

when multiple origins are used, as explained in the last section.

Two general differential relations may be derived from Eqgs. (7) and (15) respectively. They hold
for an elementary current loop or for a complete axially symmetric system, and they have been used in
the computer code to calculate rates of change of the source constants when a single source plane or

a complete coil is disploced along the axis:

aq"/az =-nry ]qnﬂ , (28)

apn/az ={n + 1)r6']p (29)

n-1"

Two further relations are physically obvious since a small axial increment to a thin solencid is just
a filament, while a radial increment to a thick coil is a thin solenoid. If F, S, and C identify the source
as filament, thin solenoid, or thick coil respectively, while k& is used in place of g or p  since the

equations are equally valid for either set,

Nok (5)/3z = N'r &k (F), (30)

NGk (C)/dp = N"r k,(S) . (31)

0
Equation (31) is used to calculate the effect on the source constants of displacing a cylindrical coil

boundary radially.

The elementary g-constants are those of a filamentary circular current element N7 at r, 6, whose mag-
netic potential on the axis in the central field is 27 x 10-7N:i(1 - u].). The oxial derivatives of this

potential can be found from Eq. (3), and when they are substituted into Eq. (7) the result is

qo(F) = —Nu].,' (n>0), qn(F) = Nnr;f“"”P*(O.) . (32)

noj

This basic result can be integrated with respect to z to find g, (5) for a thin solencid. Introduction of
the limits of integration suggests at once that the idealized helix can be replaced by a pair of fictitious
equal sources, each of strength N’i but of opposite sign, coinciding with the circular edges of the
equivalent current sheet.

qo(S) = ~N 'ro r;.‘ , ql(S) = N'ro oy

(33)

(100, ,4(8) = =Nro PO .
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When Egs. (33) are integrated in radial depth, that is with respect to p, the result for a thick coil is
four equivalent sources, each of strength N“7i, with signs that alternate round the perimeter, beginning

with + at the outer right corner:’
N —] jre 2 %27 2 -
qo((_,) = /2/\ To’; [5]. + u].f(OJ.)J ,

N N7 2 % 3
g,(C) = N7y r} zzj/((i].) ,

9,(C) =N ”rg[s]. - /(0].)1 . (34)
T+ s.\ 0.
iy oo L) — = sinh= Y[ 4
/(0].) = In < — ) = In (p]. : r].) In 2= sinh <Z_> ;
7 N
N*"y2
< _ 0 wx—(n=2);+
(n > 2) ‘ qn(C) w2 r]. ('/72(9j) )

For hand computation, the function f(ﬁj) can be read from a table of sinh~! x. When computing it from
the second logarithmic form, omit In i which vanishes in summation for each end plane.

To derive Egs. (33) without an integration, substitute Eq. (28) into Eq. (30), to yield

2Npq, H(S) = ~N; s qn(F) , (35)

and then replace qn(F) by the right side of Eq. (32). This method of arriving at Eqs. (33) suggests that
the ¢-constarts of a plane annular or disk winding (D) can be found at once by treating it as a thin slice

of a thick coil (C):

/ (,,"70 (]n(D) = —-ﬂNI; an(C) . (36)

With the aid of this equation the source functions U/} can be used to calculate the g-constants of disk
coils (2).
The external source constants p_ can be developed by closely similar reasoning. Only the results

will be given here. All formulas include the zero order.

p(F) = Nyt T 1p(0)) | (37)
Ny n
0 2+ 1 .
IJn_‘ ](S) == m‘ fj*7 P;(O]) ‘ (38)

9The functions Un first appeared in ref (1), and Wn in ref (2). [An error occurs in Eq. (54) of ref (1); everything

following u~1 should be enclosed in brackets.] For tables of these functions see footnote 10. The modified func-
tions U; and W:: of Eq. (4), as used here, are calculated from Eqs. (44) and (45). See also Eq. {46).
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L 27 2

N T
_ 0 «n+3
Pn(C) = "'1"':":'3" T]- un(ej) ' (39)
Né’ropn([)) =(n + 1)N[’)pn__](C) . (40)

Much time can be saved in manual calculations if it is possible to place the origin in a plane of
symmetry or antisymmetry of the coil system, or alternatively in the plane of the field point, thereby
eliminating either odd or even terms of the complete harmonic series. Many types of problems, especially
design problems, can be solved completely in this way. The 7090 program as written provides this
economy automatically when it is possible, in the sections that compute ¢, and p . But this refinement
was omitted from the program for the field equations, which was written after experience had shown the

extreme speed of the machine.

The Recurrence Formulas

Four recurrence formulas for the harmonic functions of the angular coordinate of a source or of a

field point are used in this work [Eq. (42) is given for reference onlyl.

P. =1, P.=u,

0~ 1

(n + ])Pnﬂ =(2n + ])uPn - rzl’n~] ,

P.=0, P]' =1,
nP;ﬂ = (2n + ])uP; —(n + ])Pr;—l , (42)
2
PS:O, P’;zs ,
P = ubP* 'I\ p* /1 ] > P (43)
S B ;_ n«1+\’n+]un’
U; =1, l/;” =1 —-—)(U:(2 - SP;M.I)H— , (44)
77,
WS = ]/253 , W;H = <1 - )(uli': + s[);+2) . (45)
n+ 3,

Proofs are omitted. Although the first two have been well known in theory for more than a century,
the recurrence relations do not appear to have been used to calculate the magnetic properties of axially
symmetric systems until 1950. The first two formulas are given in the standard form. The last three
conform closely to the arrangement that was actually used for fixed point machine coding. The reason
for these special forms is discussed in Chapter 2. The recurrence formulas yield at the first application:
Py= ?/2(3112 -1, Pl = 3u, Py = 3/27152, U3 = I/2(] -3/, W’{ = 4/31153.

The following equation is exact for all orders in the plane of the origin (z = 0), and is a good ap-

proximation at high orders for all angles:

(n>>0),  UL,% -Wr ,%sP . (46)



23

CHAPTER 2. MODIFICATIONS FOR USE WITH COMPUTERS

The theory of Chapter 1 has been developed,
and the equations have been written, in forms
that need little change for practical use, with
either o desk calculator or a programmed com-

puter, 10

They have proved to be highly efficient
in solving a wide range of field, force, and mutual
inductance problems, including design. problems.

It is the purpose of this section to discuss
certain points of numerical analysis, including the

of difficulties
large rounding errors and the methods
that were used to test the results.

avoidance that are capable of
causing
The proce-
dures and numerical checks ‘that are described
here have proved useful with several computers,
but the discussion refers specifically to the
pregram as written for the IBM 7090. In the final
section, this existing code is used to illustrate
some general features that might be found in any
versatile zonal harmonic computer program, but

the details of the 7090 code are deferred for
consideration in Chapter 3.

Fixed and Floating Point

All parts of the working program use single
precision The major portion is con-
veniently written in the Fortran interpretive lan-

routines.

guage, which employs floating point arithmetic
with a precision of 27 bits or about 8.1 decimal
digits. It is necessary, however, when the highest
precision is demanded, to use fixed point with
its ability to retain 35 bits or 10.5 decimal digits,
to compute both harmonic and logarithmic func-
tions of the polar angles. Also, floating point
conversion of non-integral input coordinates of
the coil system from decimal to binary form, prior
to their entry into the fixed point section,
avoided by so scaling the coordinates that they

is

are expressed-as integers. The fixed point section
is coded in the FAP system (essentially the direct

1Of:(:ur hand calculations the use of alfernate trrm re~
currence formulas is convenient |Ref (1), p 10951, The
functions Un are tabulated in (2) fhrough n=17, 8 to

5 decimals, at interval 0.001 of the cosine argument,
with second differences. There is also a brief pilot
toble of W through » = 17, 10 decimals, at interval
0.1.

language) and it includes the square
root, the logarithm (for g, and ¢,), and six re-
currence routines based on Egs. (41) to (45).

The modified functions P*, U%, and W* of Eq.
(4) were defined expressly for fixed point machine
calculation; since they remain between limits +1
and =1 for all orders and all polar angles. But to
avoid overflow, the recurrence formulas also must
be recast into forms such that no intermediate
product or sum exceeds unity. Equations (43) to
(45) satisfy this condition, but (41) fails to com-
pute P, since 3/2142 This equation
must be divided through by n + 1 and then re-
arranged like (43), with three terms on the right
side, the first and last containing «P_. The
reciprocals  of integers (1/#) are computed once
for all and stored, at the start of the first pass

machine

can overflow,

through the fixed point subroutine.

Calculation by Reverse Recurrence {# < 0.5)
Equation (44) for U*, alone among the recur-
rence formulas, presents a serious problem in
the if
The repeated multi-
plications by 1/u amplify the early rounding errors
intolerably.

progressive of significant digits,
I 11

the argument = is small.

loss

The normal use of this equation is
therefore greoter than
0.5. Uy of highest re-
quired order is first computed from a power series
in 2u. The functions of lower order are then found
by successive iterations, using Eq. (44) in re-
verse, until U} is reached. The necessary values

restricted to arguments
For smaller arguments,

of P* are first of all computed in the usual way
from (43).

Eight are provided, whose
order ranges in steps of 4 from 5 1o 33,

maximum
Table 1

for these

options

lists coefficients of the powers of 2u

The entire table is stored in the fixed
section of the IBM 7090 code, and the
limiting order for any problem is selected by a
data card entry. As the order advances, there is
a progressive loss of significant digits in the
series sum, from the mutual cancellation of + and
— terms.

series.
point

The magnitudes of the coefficients in

”Reference (1) p 1102 and Table VI, and {2) p 7.



the working series require critical adjustment to
minimize this loss while at the same time avoid-
ing overflows. FEach coefficient contains a factor
220 10-7, with p separately adjusted for each
column.
(n
tually computed for v, = (n - 1)[1;. The divisor
is listed at the foot of each column, together with
the sum of coefficients (dividend) and the quo-
tient. The quotient is the value of lw':;(O.S) since

For

this limiting value the precision is least, and the

The series sum must then be divided by
1220 10~? since the coefficients were ac-

for this argument all powers of 2v are unity.
progressive loss with advancing order is meas-
ured by the declining precision of the sums of
successive columns.

Derivation of the Coefficients

To compute the data for Table 1,12 calculations
based on Eqs. (42) and (44) were carried through
the 43rd order, retaining 22 decimal digits. In
place of (44), the corresponding formula in U,
was used, and both this and (42) were rewritten
with w = 2u as the variable,
mulas were repeatedly applied, not to the suc-

The recurrence for-

cessive orders of functions of a specific argument,
but to the coefficients of the corresponding 40-
term series expansions for the functions of the
general argument.  The initial functions were
531’;(11) (1 - 1/411,72)3/2, expanded to 40 terms
by the binomial theorem, and U,= 1, both mul-
tiplied by 220 x 10~8, At each step, coefficients
of
The individual coefficients and the series totals
were stored and carried through to the highest
order,

like powers were added before proceeding.

At eight selected points in the iteration,
contents of the entire working storage block were
shifted left one place to avoid loss of possibly
significant figures, while to estimate the final
precision the complete set of calculations was
repeated with a shifted input decimal point.

The coefficients and series sums computed by
this method are believed 4o be reliable to ten
decimal digits even at the 43rd order. When used
with the reverse recurrence routine, the coeffi-

12Tl’\is part of the work was carried out on UNIVAC,
using the direct machine language and a double pre-
cision fixed-decimal routine. The author is indebted to
the computing center of the University of Pennsylvania
for access to UNIVAC, while the cost of muchine time
was met in part by the National Science Foundation.
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tabulated
precision of four significant figures in the least

cients as should permit a working
favorable case, « = 0.5 and # = 33, taking account
of rounding errors. The error in the series for
highest order (33, 29, 25, etc.) is attenuated in
the course of the iterations by successive mul-
by u, followed by the addition of
Since these added
terms have full 10-decimal precision at the lowest

tiplications
terms computed from (43).
orders, and never lose as many as two significant
digits
overall

through cumulative rounding errors, the
rate of attenuation of error is more than
adequate to ensure the full usable precision at
all
less than urity, and their magnitudes decrease

lower orders. The functions (/> are always

They enter the ex-
the

slowly with increasing ».

pression for the source constants ¢ with
decreasing factor 1/{n — 2), and are finally mul-
tiplied in the field series by ascending powers
of the ratio R of polar radii, upon which the rate
of convergence of the series principally depends.
When the series is truncated, even one significant
figure usually suffices for the highest order re-
tained. These considerations would justify car-

rying the method of reverse recurrence at least

to n = 41, using single precision with a 10 or
11 digit machine and restricting the range, as

here, to » = 0.5,

Limitation on Forword Recurrence

The cumulative rounding errors in computing g
tor thick coil sources are more serious when Eq.
(44) is used in the forward direction. When « =
0.5, they may approach 4 or 5 percent at n =33,
and they would be barely tolerable at n = 37. To
equalize the maximum errors of forward and back-
ward iteration, the direct range of Eq. (44) might
be ended at (say) 0.45, while to cover the vacated
range Table 1 would be recalculated with 2.25x
as voriable in place of 2u.

In this way the maxi-
mum order could be raised to 41 or even to 453,
But the considerable labor is difficult to justify
in view of the rather limited increment to the
practical werking range of the convergence ratio
R. The probable extension can be roughly judged
from the nomogram (Fig. 4).

Note that Egs. (41) and (43), which suffice for
loops and thin solencids, and even (45) for the
external constants of thick coils, permit good

precision af much higher orders. It is in fact
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Table 1. Coefficients for Series Expansion of 27 U; % 1077 in Powers of 2,7

vty

01691 289600
9241 689600
104458 5100
9572 806100
2970 278695

1

ufo,

~. 02625 480000
+ 26157 560000
~ 76223 154150
+ 99434 709563
68095 850856

Power Qg 95

1 ~.29491 200000 -.09031 430000
3+ 13926 400000 + 20772 864000
5 - 360 000000 ~ 12785 472000
7 - 42 240000 + 2694 672000
9 - 4 100000 - 128 555438
17 - 525000 - 4 530187
13 - 77930 - 387967
15 - 12695 - 45189
17 - 2206 - 6258
19 - Loz - 967
21 - Gl - 161
2 - 34
25

Divisor .41943 040000
Sum - 16571 753327
Uz(.5) =.39510 1507

. 08388 6080

+.18081 7530

00

+.01516 307798

Pover ,U§1 H§5
1 ~.00368 588220 -. 00043 590303
3 4+ 5822 010475 + 1115 708114
5 - 27152 185607 - 7601 887848
7+ 58041 292399 + 20031 836588
9~ 67949 9926l - L2483 729912
11+ LG 503400 + 46266 199492
13~ 20478 035660 - 3R715 132626
15 + 546 901813 + 15395 937586
17 -~ 848 835452 - 4831 023151
19 + 66 8279 + 987 053350
21 - 1 507919 ~ 123 161362
23 - 29721 + 8 017799
25 - 1556 - 153395
27 - 135 - 2617
29 - 130
31
33
Divisor .00209 715200 .00025 165824

Sum  +.00024 331651

Ug(.5) +.11602 2353 +. 04268 0246

+.00001 07084

+
+ 402 053236 + 25897 480839
- 14 066006 -~ 5373 590298
- 398636 + 535 152864
- 28336 - 14 694135
- 287k - 32205
- 356 - 20637
- 59 - 1831
- 232

.01258 291200
+.00081 95273
+.08512 4252

01677 721600
-.00308 231170
18372 0094

1

Uy
-.00006 135019

%5
00000 750617

+ 193 014518 + 30 996056
- 1807 265989 - 381 662553
+ 7907 673052 + 2206 079285
- 19579 867493 ~ 7270 013134
+ 30399 445643 + 15186 289089
~ 31431 361636 - 210k LEghS3
+ 22422 386217 + 21321 622670
- 11238 005508 - 15309 970292
+ 3970 901413 + 8049 933113
- 977 276898 - 3111 515965
+ 162 024492 + 878 473111
- 16 855453 o197 714387
+ 935181 + 2l p8hii21
- 15527 - 2 210681
- 24y + 106861

- 1589

.00002 936013 00000 335504
.00000 403502 +.,00000 030907
- 13743 2099 +,09211 1223

TThe digits are properly aligned, but coefficients after the first order are multiplied by 10! ], that is, the decimal

point and leading zeros are suppressed.

entirely practical to use higher orders if it is
to work somewhat closer to a thin
winding. Analysis of the integer factors in the
source Egs. (32-34) and (37-39) for coil, so-
lenoid, and filament sources suggests that the
rate of convergence of the field series should

The

necessary

decrease appreciably in the order named.
inference is confirmed by experience.
Monitoring the Convergence

Computing time can be saved by truncating the
field series when a convergence test is satisfied,

but a simple test of magnitude cannot be safely
applied. (See the discussion of convergence in
Chapter 1.) 'Each series term is the product of a
source harmonic and a field harmonic. The prod-
ucts oscillate within predictable limits whose
smoothed rate of decrease depends mainly on the
convergence ratio R. The short-range variation
of signs and magnitudes, though amenable to
analysis, may conform to no very cobvious pattern.
Two or three successive near-zero terms may be
followed by others of appreciable magnitude, even
though there is no risk of eventual divergence.

For this reason a running sum of the absolute
magnitudes of the last six terms is carried, and



the field series is stopped when this sum falls
below some value that is preset on a data card.
The running sum and the order at which truncation
occurs are printed. There is also an optional
print of the initial terms, or of the final terms, or
both. A study of the final terms supports the
assumption that the running sum affords a con-
maximum fruncation

servative estimate of the

error.

The Logarithmic Functions

The lowest-order source constants g, and ¢,
for thick-coil sources contain logarithmic factors.
(Eq. 34.) Where a coil is far from the origin and
the
paratively small, two or more significant figures

linear dimensions of its section are com-
can be lost in the summation of + and ~ g-con-
stants of nearly equal magnitudes over its four
sources. Logarithms were at first computed in
the Fortran section of the 7090 program by the
standard routine, which is subject to errors of
3 in the 8th significant decimal digit. Initial
conversion of input data from decimal to binary
in the same

may introduce errors of one unit

place. Unexpectedly large discrepancies ap-
peared on comparing sets of values of B com-
puted for a fixed net of field points but from two
or more origins, especially when field contri-
butions frem distant coils were significant. Errors
were found, of the order of 5 parts per million,
that were nearly constant over the whole net for
a given origin, but were random from origin to
origin.  The difficulty was traced to the first
term of the field series, that is to ¢ ,.

The discrepancies were reduced to one or two
parts in 107 by recoding parts of the program
in fixed point and incorporating them into the

FAP

nearly 8 significant bits.

subroutine, which resulted in a gain of
The altered code in-
troduces an arbitrary scaling foctor RS (usually
a power of 10) by which all linear coordinates of
a system are multiplied so that they appear as

integers on the data cards. In the FAP section,
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the source coordinates Zi0p; of each source enter
at once a routine that preserves only their ratio,
while converting the larger quantity to a fraction
with 35 significant bits, that is, one whose mag-
least 0.5 but less than 1.0. The
The ratio
used to compute the sine and cosine of the polar

nitude is at

normalizing factor is discarded. is
angle, from which all remaining angular functions
are calculated in fixed point.

The logarithm is computed once only for each
source plane, or twice for a complete coil. That
in place of the difference in logarithms of
(1 + s)/u for the two sources, the logarithm of
the ratio is computed, using a 4-term Hastings
approximation that is good to 2 x 107! Con-
stants are summed over the two source plones of
each

is,

coil before conversion to 27-bit floating
while of the factor RS and all
further calculations involving linear magnitudes
are done in the Fortran sections.

point, removal

Zonal Harmonic Section Expansion

Concuirently with the changes discussed in the
last section, tests were made in which the con-
stant g, for a thick coil was derived from that
of its central filament by a series expansion.
This done by writing a two-dimensional
Taylor's series in powers of B and D, in which
the zero-order term is given by Eq. (32) (n = 1),
and higher orders are derived from Eq. (3) and
related general expressions for partial derivatives

wdas

of the zonal harmonics. B and D are respectively
the axial breadth and radial depth of the cross-
section, normalized by dividing by the mean
cylindrical radius pg.

[n this way an expression was obtained for the
general order g _, but g, only will be considered
here, since higher orders were not used in this
work,

since the second and fourth are retained, and

Residual errors are of the sixth order,

odd orders vanish by symmetry.
When n = 1, the general expression reduces to

’s 2 %1 2] 2 2\ 2p- 2 -
qy=N"BDp*ri™ s \”TQ(B - D%)s p3+~aD(P3—1)
1 2 2 2 2\ 4 1 212 4\ 2
+—(B 3D4) (3B D#)s*P{ + (58<D* -- 3D%)s*P
240 108



Compare Eq. (32). The expression enclosed in
brackets in Eq, (47) is the ratio of g, for the
coil to that for an ideal filament of N"BDp?
Equation (47)
is an approximation that is similar in principle
to that of Lyle's well known formula, '3 which
gives much the same result as the first line of
(47). Inclusion of the fourth-order terms in the
second and third greatly

turns at the center of the section.

lines improves the
ptecision.

Although this expression was coded entirely
in 27-bit floating point Fortran its use leads,
as expected, to errors even smaller than those
of the 33-bit fixed point logarithmic routine, in
the case of coils very far from the origin, At
intermediate distances, the two methods are
equally precise, but of course when coils of large
section are placed so close to the origin that
terms in B and D® are significant, the calculation
by logarithms is the more precise. Since in
practice the modified logarithmic code proved to
be adequate, the method of section expansion
was dropped, and it was never coded for ¢, or
higher orders. However, hand calculations estab-
lished the validity of the general form for odd
orders through n = 7.

Numerical Checks

The systematic character of the theory and of
the machine programs makes it easy to devise
internal checks, to test the self-consistency and
precision of the overall procedure. Three ex-
amples of somewhat different types may be men-
tioned. A very severe test is the agreement of

results calculated from two or more origins.
Hundreds of such comparisons for field com-
ponents, forces, and mutual " inductances have
shown agreement to seven significant figures,

though the high-order source constants may change

13Lyle's approximation is ideally simple and sur~
prisingly occurate when the cross section is square.
It then concentrates all ampere turns in a single fila-
ment, but at the rootemeanwsquare rather than the mean
radius. [f the extreme radii are py and p,, the squared

equivalent filament radius is p?_. = ]/3([)% + PPyt pg).
This approximation removes all second-order errors of

finite section (i.e., terms with the factor B2 = Dz) from
the series expansion of q, or p, of any order n. When
the section is not square, two loops are required, and

the error increases rapidly with the larger dimension of
the section.

Significant dis-
crepancies occur only when the series referred
to one or both origins has run through to the
maximum order.

by many ordets of magnitude.

Such discrepancies are com-
parable in magnitude to the running sum referred
predicted by the
A second kind of internal test is to
compute the constants of a thin cylindrical coil

to above, and to the errors
nomogram.

from the equations for both solencid and coil
source types. A third is to compare computed
valves of 9B /dz with the computed effect of
finite z-increments on B

B_. '
z

or of p-increments on

Several hundred comparisons made on the field
of the DCX-2 system, with B, and B
computed by Downing’s code,” showed agreement
within one or two units in the 7th significant

values

figure. More recently, the author's elliptic in-
tegral code’ was used to check values of B,,
B_, A, F, and M, with comparable results. Both
ofp the comparison codes are slower than the
zonal harmonic program, probably by about one

order of magnitude.

in the
fixed point section using the recurrence formulas,
checked to high
previously calculated on other machines. The
precision of the logarithmic functions and of
the values of ¢, computed by section expansion

The harmonic functions as computed

were orders against values

from a central filament were checked by analysis
of fourth differences, as follows.

Sets of logarithms were calculated for the
successive terms of several geometric series,
over the basic binary range 0.5 to 1, using a
constant ratio 1 + a. In theory, all differences
except the first should vanish. The entire cal-
culation, including the fourth difference routine,
was carried out in fixed point in the FAP section,
and the terminal fourth differences alone were
printed out after decimal conversion. Values of
¢y through g, for several single thick coils were
computed for origins arranged in 8 or 10 sets of
12 each. The sets were far apart, but origins
were equally spaced at a small interval within
each set,  Fourth differences were computed
within each set. Here ¢, was computed by the
revised logarithmic code as described above, by
a straight Fortran program, and by section ex-
pansion. By these tests it was verified that both
the logarithm itself and the complete routine in
which it is used result as expected in a gain of

two significant decimal digits when compared to



a straight Fortran code. It seems also that there
is no need to resort to the method of section ex-
pansion, except perhaps in a high precision in-
vestigation of the field of an infinite array of
coils.

A Flexible Zonal Hormonic Computer Program

A few general suggestions based on experience
in organizing the existing 7090 program may make

it easier to adapt the method developed in this
report for use with other machines. The details
that are needed for the effective use of the

actual program are discussed in Chapter 3.
The currently completed code includes most
of the range of calculations that is discussed in

Chapter 1.

however, are restricted to coaxial systems. Also,

The force and mutual inductance,

though the remote source constants p, —are com-
puted for all systems, the remote field components
of Egs. (18) to (21) have not been coded. Disk
or The
might be added with very little
labor, since all the harmonic functions that they
require are computed in the existing routines.

All dato cards conform to a single pattern that

pancake coils are not now included.

missing parts

provides four fields for small integers and six
for decimal data, Flexibility of operations re-
sides in the many switching options, exercised
by single digits in the integer fields. These
control the reading of data, the sequence of op-
erations including at times the calling of sub-
routines, the quantities to be computed, and the
extent and form of output data to be printed or
punched. To simplify the input, the most fre-
quently used option is in most cases a blank
field.

Several versions already exist for certain sub-
routines. To provide for additions and special
small problems or tests, the sequence options
also include calls for several dummy subroutines.
A

(abstract) retains only a card read and a set of
sequence opfions.

reduced optional form of the main program

These three features permit
the solution of a wide range of problems with a
minimum of recoding. Essential parts of the
complete system are listed in the following para-
graphs, with the hierarchy of control in reverse
order,

The fixed point subroutine uses the appropriate

recurrence formula to compute any required set
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of harmonic functions of the polar angle for a
single source. As noted above, it also computes
the logarithmic source functions ¢, and ¢, for
each pair of coplanar sources and sums them for
It is called by two other sub-

which complete

a complete coil.

routines, the calculations for
the source equations and the field equations re-

spectively.

The source routine computes either q, O P,
and on demand also their rates of change with
respect to source coordinates, for a single ele-
ment of the system. This is calculated as a thick
rectangular coil if the axial breadth B and radial
depth N are finite, as a solenoid if D = 0, and
as a loop if B =D = 0. This subroutine supplies
the proper number of sources (4, 2, or 1) and sums
constants over The rates of
change are for use in solving design problems.

the all sources.

One field subroutine reads in one or more sefs
of origins (by ordinal number), parameters for
one or more nets of field points to be associated
with each origin, and specifications of the field
components that are required, together with out-
put print options. Another version accepts co-
ordinates of a single field point or of a complete
net of points, and automatically computes from

This is the

proper field routine to use when tracing ion orbits.

the nearest origin for each point.

A third field subroutine computes mutual induct-
ances and axial forces between coaxial systems.
Each of the three versions requires a complete
set of source constants q, for each origin, pre-
viously summed over the entire system and stored,
while the third requires also the’ p-constants of
the secondary system.

The main program controfs the sequence of op-
erations. |t reads in the geometry of the current

system and abscissas of one or more sets of
equally spaced origins, calls for the source con-
stants of each element in turn, sums the constants
the entire system for each origin, prints
stores the

options under control of the data cards.

over

and sums, and exercises various

It is clear from a study of the field equations
that significant sections of coding can be common
to two or more field components. Similar econo-
mies can be made in the source subroutine, with
to different
the calculation of derivatives.

31), (35-36), (40).1

and also in

[See Eqs. (28—

respect source types,
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CHAPTER 3. ZONAL HARMONIC CODES FOR THE |BM 7090

Chapter 3 assumes that the reader has a working
knowledge of 7090 Fortran. The existing 7090
codes comprise a main program, a program ab.
stract, and eight subroutines, some of which
have severdl versions. Only single precision
routines are used, though one major section that
is called by all the others is written in the FAP
language, mainly because it requires the 35-bit
precision of fixed point arithmetic. All other
parts are coded in Fortran. ldentical sets of
COMMON and DIMENSION cards are used in all
Fortran source decks, and all variables are trans-
mitted from: one section through
COMMON storage.

All data cards conform to a standard pattern
with eleven available fields (6H ,413,6F9.4).
The four integers are available for counts or
limits, and to specify swiiching options. The
six decimal fields may be used for numerical
data, or to select various options. Table 3 sym-
marizes the uses of data fields on the five cards

to another

that are read in by the main program and by sub-
routine ZEBRA, which are treated more fully in
the next two sections. The first column of the
table identifies the card by type, while the
second column gives the number of the Fortran
statement that reads in the card. Of the 46 fields
listed, about two-thirds have zero options, which
in practice means a blank field on the card.
Wherever possible, the blank is assigned to the
most common option. Parentheses in the table
identify fields that may be blank, while double
parentheses enclose dummy symbols that are
always blank. The first Hollerith space of some
data cards is used to control line spacing or
paging of the output print. Thus a 1 is usually
entered in column 1 of START and ZEBRA cords,
to begin a page, while the remaining cards begin
with 0.
any card may carry some brief code to identify
either the card or the problem (in place of the
letters START, etc., of Table 3).

Special data forms and a master card or template
have been made up to facilitate the preparation
and checking of the data cards. As each card is
in, it is reproduced at once on the output
tape. With these aids it is easy in spite of the
many options to write and check a set of data

The remaining five Hollerith spaces of

read

cards after one or two problems have been run.

Most options will be blank, and with few ex-
ceptions, it is simplest to omit decimal points
in the numerical fields.

A considerable variety of problems may be
solved by suitable combinations of the five
types of dota card. The flow of the program,
including the reading and processing of data and
the sequence of subroutines, is controlled by
the switching entries on the cards, either in the
main program or in certain subroutines, notably
ZEBRA. Thus it is possible without changing
the main program to udd sections of coding, to
make special tests, or to introduce major varia~
tions or new problems, by using new card se-
quences and changing the content and sometimes
also the function of one or more of the named
subroutines. Several of these are normally dum-
mies for any particular problem.

The f{following paragraphs outline briefly the
functions of the most commonly used sections of
Fortran coding. Discussion of the FAP section,
and of the remaining Fortran subroutines, is ‘de-
ferred while three other sections of the text are
developed. The first two describe some details
of the COMMON storage area, and of the five
types of data card that are required by the main
program and by subroutine ZEBRA. The third
describes the complete sequence of cards for
solving two typical problems.

The main program abstract (MPA) may be con-
veniently used for tests, and for occasional new
problems or variations. It includes only the
standard COMMON and DIMENSION lists, plus
a set of switching options. |t reads in a START
card, as shown in the first line of Table 3, ini-
tially and again at each return from any sub-
This card transfers, as shown under the
first entry IX, to any of six subroutines or to
EXIT. It provides nine additional fields to carry
data or switching options to the selected sub-
routines, Note that all ten fields of the START
card load into COMMON storage locations. For
increased  flexibility, the meaning of some of
these symbols may be safely changed to fit new

routine.

variants of the subroutines.

The main program (M.P.), besides performing the
control function just described, carries out the
first stage of problem solving as discussed in



Chapter 1, namely the calculation of source con-
stants g_ or p from the source equations.

It reads in the geometry of one or more com-
plete systems or subsystems, and the abscissas
of one or more sets of origins that are to be used.
For each origin (subscript J) it computes, prints,
and stores in QS(J,N) a set of source constants
for the system or subsystem, and prints also if
required the contributions from separate elements
of the system, with or without the rates of change
of such contributions with respect to z or to p.
It calls FINDQK for most of the actual calcula-
tion.

FINDQK computes g, or p up to the maximum
order MAXN, for a single element of the system,
referred to a single origin. Each element is iden-
tified by a subscript K, hence QK in the title.
An element of the system may be a loop, a thin
solenoid, Either of the
last two may be semi-infinite. Optionally, FINDQK
can also compute derivatives of the source con-
stants,

or a rectangular coil.

This subroutine reads no cards and prints
no results. It calls the FAP section to compute
functions of the source angles.

ZEBRA (1) {a skewed mnemonic for BZ,BR,A)
employs the field equations to carry out the
second stage of solution as defined in Chapter 1.
It reads in one or more sets of origin subscripts
(J), with the corresponding abscissas, and one
or more nets of field points to be referred to each
set of origins, also information about the field
components that are desired and certain specifi-
cations of output print options. It refers to the
source constants previously stored in QS(J,N),
calls the FAP section to calculate functions of
the field angles, computes and prints the field
information required. On demand, it also stores
in BN sets of values of a specified field com-
ponent, for each point of a prescribed field net,
for each of a given number of subsystems. These
values are for use in an optimization routine. (See

BEST).

COMMON STORAGE., THE MAIN PROGRAM (M.P.)

The COMMON storage area of 4714 cells is
mapped in Table 2. Horizontal spaces divide
sections that are treated as separate units in
PDUMP operations initiated by the instruction
CALL OPEN and controlled by the X field of

certain dato cards. (See below.) References
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to the source constants g in the last column
of the table include p_as an alternative. These
remote source consfants are computed in place
of 7, when IX = 1. DIMENSIONS of the variables
are listed in the first column.

The reader will need to refer constantly to
Tables 2 and 3 when reading this and the fol-
lowing sections.
entries in the tables are self-explanatory. Table 3

It will be assumed that many

is intended to be the routine source of all informa-
tion that will normally be needed to assemble a
data card deck.

The START Card

IX, K. ~ A negative entry in IX causes an imme-
diate transfer to one of several subroutines, as
may be seen from Table 3. A blank or 1 starts a
pass through M.P. On each pass the program come
putes, stores, and prints a set of source constants
for a complete system or subsystem, and then either
transfers to ZEBRA or calls for a new START card,
depending upon IB (g.v.). A blank in IX produces
g-constants, while 1X = 1 generates p-constants.
Each pass through M.P. requires a START cord,
K K-cards, and one or more ORIGN cards, one
K is the

number of elements, or pairs of elements, in the

for each set of equally spaced origins.

system or subsystem, and the minimum number
of cards is K+ 2.

J. The J- or Origin Count. — Stored information
for each origin includes its abscissa 0O(J), the
minimum or maximum polar source radius RX2(J)
that determines its sphere of convergence, and
a set of source constants QS{J,N) that may be
either ¢ or p . A flexible control over the sub-
script J allows such data to be computed and
stored in a variahle sequence up to a maximum
value J = MXJ of 24. The stored data may be
accumulated during several passes through M.P.,
or it may be read, in whole or in part, from cards
Data to which
different subscripts J are assigned may belong

punched by a previous program.

to several systems or subsystems, and may in-
clude g-constants radii
for some origins and p-constants with maximum
source radii for others., See for example the dis-
cussion of TEST (M), and of the second problem

below.

with minimum source

Subroutines PUNCH and READ, which permit
intermediate storage of problem data on cards,

always begin at J = 1 and end at J = MXJ. PUNCH
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Table 2. Guide to COMMON Storage

Dimensions Subscripts Total Begin Symbol End Explanation
8, 100 I, M2 800 66 310 BN 67 747 Data for optimization
40, 34 K, N 1360 67 750 QK 72 467 g, separate coils
4, 34 L, N 136 72 470 Q 72 677 q, s separate sources
4,18 L, N 72 72 700 DA 73 007 Derivatives, separate sources
16, 18 K, N 288 73 010 DA2 73 447 Radial derivatives of g
16, 18 K, N 288 73 450 DA1 74 107 n
16, 18 K, N 288 74 110 D72 74 547'] Axial derivatives of g
16, 18 K, N 288 74 550 DZ1 75 207, 7
K 16 75 210 1A 75 227 Switch, radial derivatives
K 16 75 230 1Z 75 247 Switch, axial derivatives
24, 33 J, N 792 75 250 Qs 76 677 q, for system, each origin
24 76 700 RX2 76 727 Min or max polar radius
24 76 730 0 76 757 z coordinate of origin
Q10 76 760 gy for central origin
BZ1 76 761 B, for central origin
RS 76 762 Scale factor, input geometry
RO 76 763 Unit or reference length (ro)
MXJ 76 764 Limiting value of J
M1 76 765 Switch (several uses)
| 76 766 Count of sube=systems
X 76 767 Switch for PDUMP
K 40 76 770 CcD 77 037 Current density
K 40 77 040 D 77 107 Radial depth of coil section
K 40 77 110 B * 77 157 Axial breadth of coil section
K 40 77 160 AQ 77 227 Mean radial coordinate
K 40 77 230 Z0 77 277 Meon axial coordinate
J 77 300 Origin count
K 77 301 System element (coil) count
L 4 77 302 A 77 305 Radial source coordinate
L : 4 77 306 pa 77 31 Axiol source coordinate
MXD 77 312 Limiting order, derivatives
IX 77 313 Main sequence switch
RX 77 314 Current min or max polar r
OR 77 315 z coordinate of current origin
WN 77 316
SPNI1 77 317 Switches for FAP options
PN 77 320
AC 77 321 Cyl. radius
ZC 77 322 Axial coordinate
u 77 323 Cosine (input to FAP)
S 77 324 Sine
N 43 77 325 RCP 77 377 Reciprocals of integers
L 77 400 Source count, | to 4
MAXN 77 401 Limiting order, 5 to 33

N 48 77 402 QF 77 461 Functions of angle (from FAP)
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Qutline of Date Card Fields
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CARD CODE
START (1)

K

CRIGN (5)
ZEBRA (1)
FIELD (3)

)
-7 EXIT -3 READ
~6 OPEN -2 PUNCH+#
-58EST ~1ZEBRA
-4 TEST *

G CONT T Centra!
1} CONTT Remote

(1)

Dummy. Output print here
is the K count

(403

{+) Set JR (ref} to ordinal
number JO in current set

0 JR = number 1 in first
set

{(IK)$
Seiects function for
PUNCH (CPT)
3 BZ or BR
4 RBR 9 RA
8 A or DBR/DZ

{IBZ)

~2 RETURNM 1o M. P,

-1 New ZEBRA card
0 No BZ, REPEAT T
1 Do 8Z, REPEAT T

@)
~2 Set J1 = MXJ + 1
-1 Set J1 =M +1
Qor(w0 J1=J+1(Jis
the origin count, and
J1is its initie! value)

{I0)
0 Symmetrical pair
1 Single coil
2 Opposed pair

(i8)
{~) REPEAT T
0 CONT, out to ZEBRA
1 CONT, then back to
{15 START
>1 Set | and IA(15)$
CONT, out to ZEBRA

3t
Initial origin J for field
net

(1BR)

0 Omit BR and A
1 Do BRand A
2 Do 3R and DBR/DZ

K

Number of cards in the set
{for a given system or
subsystem}

(tZ)

0 Omit D/DZ
1 Compute D/DZ

{MPJ)
Max J count (origins) for
output print of DZ, DA,
QK

MX

Final origin J for field net

(18)

0 No series print
1 Initial series
2 Final series §
3 Both series§

MAXN

Max order N = 5(4)33 for

the source constants

{1A)

0 Omit D/DA
1 Compute D/DA

{MPK}

Max K count {coils) for
output print of DZ,

DA, QK

MAXN

Max order N = 5(4)33 for

the field series

{(DMY))
Dummy

Main Program

RO

Unit length for calculation
of source constants
(order of magnitude of
the min source radius)

Z0*

Mean Z of coii section

{DMX)

Max N to limit calculation
of DZ and DA, and ous-
put print of DZ, DA, QK

Subroutine ZEBRA (1)
EPS

Limiting sum of 6 terms,
*0 end the field series

(in parts per million}

DLZ

Z increment for field net

Must be (1)

RS*

Scale factor (= RO scaled
the same as ZG, AQ, B,
D, DLO, and O1)

AQ*

Mean A of coil section

(DLO™)

increment to origin

RHM

Max R/RX for fieid series

{percent)

ZMX

Maximum Z

(BZT)

—~1 Normalize for M or force
(+) Normalize on value .of
BZ as entered
0 Same as -}

(8)

Axial breadth of section

(DL}

Number of erigins in this
sef

(RHP)
Min R/RX for print of the

end terms $ (percent]

initial Z

(RX)

) Lengths are given in cm

f
\
2.54 Lengths are in inches

by~

Radial depth of section

(on~*

Initial origin

(RX)
() Field lengths are given
incm
2.54 Lengths cre in inches

DLA

A increment for field net
Must be {+)

X
(+) PDUMP (see beiow)
0 No PDUMP

{(CD)

Current density

(X
4 Qs, CD-Z0
3 DA-1Z
2 QK-Q

1 J-QF, etc.
{cumulative)

0 No PDUMP

(X3

{-++) PDUMP (see above)
0 No PDUMP

{(AMX}

Maximum A

((OR))
Dummy

{AT)
Initial A

#TEST {M) cord must define MAXN and RX.

T CONT means continue the program. REPEAT calls for a foilowing card of the same type.

¥ PUNCH card must define MAXN and RO.

¢ Final series prints only when R/RX > RHP.

* The seven lengths thus marked are sceled up by an arbitrary common factor.

$ 1B = Number of subsystems for an GPT routine. The foilowing ZEBRA card requires a (+)
entry in 1K, which automatically causes a skip back to START for the (IB-1) subsystems
after the first, bypassing ORIGN, ZEBRA, and F{ELD cards after the {irst set, Enter oniy
START and K cards for these subsystems. The iB count is in |, limited by 1A(15).

Sequence of Sources

3 1
Subscript L |

4 2|

List of Subroutines

PNUM, PNU, PUN, UM, FTEST, LN, LNT (theses are in the FAP section)
FINDQK, ZEBRA, PUNCH, READ, TEST, BEST, OPEN



reads the value of MXJ from COMMON, while
READ obtains it from the first card. Data com-
puted in any one pass through M.P. are stored
with subscripts in ascending order, in successive
sets each of which is generated by a single
ORIGN card and corresponds to a set of equally
spaced origins. The J-count proceeds from J1
to a current maximum JM, both of which occupy
cells in the M.P. storage area.

At the end of each such pass, MXJ in COMMON
is replaced by JM only if JM is the larger. MXJ
is thus an overall maximum count, cumulative for
an entire problem and in fact for a set of prob-
lems. It can be reset only by the entry J = -1 on
the START card. The count starts at J1 = MXJ +
1ifld==2,at IM+ Vif) =<1 and at J+ 1.if
J is blank or (+). The blank is regarded as
"normal,’” that is, the count normally begins at
J =1
the section on problem setup.

MAXN. ~ This is the limiting order for g, or
pﬂ'
and it is further restricted if g-constants are to
be computed for thick coils, It must then be one
of the 8 integers, 5,9, , 33 in steps of 4
within this range, since the reverse recurrence
U must start
with one of the 8 power series of Table 1. The
higher values of MAXN are necessary only when
fields must be computed close to the windings,

Examples of other options are given in

It must always lie in the range 5 to 33,

routine for the source functions

or when mutual inductance and forces are cal-
culated for coils close together. (See the nomo-
gram, Fig. 4).

RO, RS, RX. Scaling and Units. — RO is the

unit or reference radius ry of Chapter 1. It should
be roughly of the same order as the radius of
the sphere of convergence, that is the minimum
polar source radius of a central field or the
maximum source radius of a remote field. Other-
wise the constants g or p —of high orders may
assume inconveniently large or small numerical
values, may also the high powers of the
normalized radii in the field equations. Evie

dently @ mismatch by a factor of 10 can generate
-IoMAXN

as

extreme magnitudes of the order and

10-MAXN_ " Though this may not of itself lead
to errors of calculation, such magnitudes are in-
compatible with the F-type decimal conversion
which has been found convenient for part of the
output print.

RS is just RO scaled up by the arbitrary factor
RS/R0O (usually a power of 10) which is common
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to the entire input geometry, that is to Z0, AQ,
B, D, DLO, and 01, and which is divided out
in FINDQK, before ¢, or p, are calculated. It
may be unity, or it may be so chosen that the
geometry can be described by a set of
integers (which may safely include mixed num-
bers that contain only exact binary fractions).
This precaution
cases, when

input

is necessary only in critical
it is desired to avoid random con-
lead to discontinuities
of the order of some 5 or 10 parts per million in

version errors that may
the fields of extended systems, as computed from
multiple origins. The reasons are discussed in
Chapter 2, and are considered again below when
the FAP section is described.

RX is blank if the system geometry is expressed
in centimeters, 2.54 if it is measured in inches.
In either case, though the output print is based
on the same unit of length as the input for the
geometry of the system and of the field, the
magnetic units are based on the centimeter and
the gauss. That is, the vector potential is in
gauss cm, flux in gauss cm? or maxwells, r?BP/(Fz
in gauss/cm, etc,

BZ1.

field components, mutual inductance and forces

Normalization. — The scaling factors for

all depend on the scaling or normalizing facter
for the source constants, which is determined by
the BZ1 entry on the START card and the JO
entry on the ORIGN card.

The special code entry BZ1 = -1, generates
directly the constants ¢ and p, of Eqs. (32-34)
and (37-39), without special scaling. The fields
B
kﬁogouss if currents are in kiloamperes), M is
This is the correct

and B, are then computed in gauss {or in

in henrys and F in newtons.
option computing absolute
field values from known currents, or when the
constants are to be used in TEST(M) to compute
M and F. Any other magnitude ussigned to BZ1
serves to define B,

normalizing when

at the origin selected by the
JO  entry {(4.0.), and the source constants are
scaled accordingly. For
BZ1 field is equivalent to +1., which covers ‘the
very common case in which all field magnitudes

convenience a blank

are scaled to the arbitrary value B_ = 1., assigned
at any selected origin.

X. Control of P.DUMP. — A controlled P-DUMP
can be made available at any point in the program
or subroutines, by inserting the instruction CALL
OPEN. It can alss be initiated without this in-
struction, by the entry |X = —~6 on a START card.



It operates only when X is set equal to 1., 2.,
3., or 4. Each option dumps the storage areas of
MP and of subroutines FAP, FINDQK, and ZEBRA,
in addition to COMMON storage J through QF,
while options 2 to 4 include additional areas of
COMMON as listed under X in Table 3. The four
options are limited by separate counts in OPEN,
in such a way that not more than four dumps can
be obtained from any one value assigned to X,
at each loading of the machine.

The K-Cards

IC., ~ One K-card is required for each element
or matched pair of the magnetic system. {f IC
is blank the loop, solenoid, or coil is duplicated
in memory as a symmetrical pair, to which suc-
cessive subscripts K are assigned. [C = 1 signi-
fies a single element, IC = 2 an opposed pair.
When the last K-card has been read in, the total
number of elements, counting each pair as 2, is
entered in MXK. This may not exceed 40,

IZ, 1A, DMX, — In addition to the source con-
stants of any given element or pair, z-derivatives
of the constants are computed if 17 = 1, and p-
derivatives if |A = 1. Such derivatives are often
useful as an aid to system design. The limiting
order DMX for such derivatives cannot exceed 18,
and of course cannot exceed MAXN. The 1Z option
is limited to elements whose K-subscript is 16 or

The A

lower, as for example, the first 8 pairs.

option is restricted to Kevalues of 13 or less,
since memory cells |A(14) through (16) are pre-
empted.

Z0, A0, B, D, These coil dimensions are

explained in Table 3. All are expressed to the
same scale as RS. [f D alone is blank, the ele-
ment is computed as a thin solenoid, while for
a loop both B and D are blank. Finally, the entry
B = —1 causes the program to generate constants
for an infinite thin or thick solencid extending
from z = Z0 to plus infinity.

CD, —~ 1f CD is blank, it is taken to be +1.
This is either a current, a linear current density,
or a space current density, depending on whether
the element is a loop, thin solencid, or thick coil.
The unit of length for current densities is the
cm if RX is blank, the inch if RX = 2.54.
counts
place
alone are to be computed.

Turn
replace currents and turn densities re-
it mutual

current densities, inductances
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The ORIGN Card

J0. — One card is required for each set of equally
spaced origins. The program assigns subscripts
J to the origins in the order of eniry, beginning

If

is blank, the origin of reference for normali-

with J1 as described above under J-count.
Jo
zation of system constants {subscript JR) is iden-
tified with the first origin of the first ORIGN
JO is also blank when BZIl = -1, since
A (+) value
of JO on any card resets JR io the ordinal num-
ber JO of the set that is specified by that card.

IB. ~ The field IB is o sequence switch. If
negative, it calls for a new ORIGN card, to read

card.
then normalization does not occur.

in a new set of equally spaced origins before
proceeding. When it is non-negative, the program
to compute source constants for all
origins. If IB is zero, or greater than 1, the
sequence then leads out to ZEBRA, but if IB =1,

the main program reveris to step (1) and reads

in anew START card.

from 2

goes on

Any value of IB to 8 causes subrou-
tine ZEBRA to print and punch out on cards IB
separate sets of data representing the contribu«
tions to a chosen field component that arise from
subsystems or individual elements of a generating

Such

optimization routine that must adjust currents in

system. information is needed for any
the 1B independent subsystems, in order to satisfy
some condition imposed on the combined field.
The field component to be computed (B,, B, pA,
etc.) is specified by IK on the following ZEBRA
card (g.v.).

fined once only, since it must be the same for

The network of field points is de-

all subsystems.

Switching for this case is automatically con-
trolled by the 1B entry, which suppresses the
reading 18-1 of ORIGN, ZEBRA, and
FIELD cards, though IB complete passes are
made through MP and ZEBRA.
the first requires only a START card and a set

of sets

Fach pass after

of K-cards, to describe the geometry of a new
element or subsystem.

MPJ, MPK, DMX. -~ These fields limit respec-
tively the number of origins, the number of ele-
ments of the generating system, and the order,
for which separate sets of source constants, with
their axial or radial derivatives, are printed out,
Source constants only are printed for any ele.
ment unless 1Z, 1A or both are non-zero for that

element, while if MPJ or MPK is blank, only the



source constants for the complete system are

printed.

DLO, DLJ, 01, X. ~ The first three fields de-
fine a set of DLO origins on the axis, beginning
at z = 01, with constant interval DLJ. The X-
field has already been discussed.

SUBROUTINE ZEBRA (1)

ZEBRA and FIELD Cards

IBZ. — At least three cards are required by sub-
routine ZEBRA. The first is a ZEBRA card, in the
notation of Table 3. [t defines a set of origins,
beginning with the origin of subscript J1 and
ending with MXJ. The second or FIELD card,
with IBZ = 0 or 1, prescribes a net of points to
be set up about each origin in turn, at which
certain field functions are to be computed. The
last two cards must be of this type, since the
caleulation of a field net always returns to (3)
a new FIELD card. For exit to M.P,, set
IBZ = -2, on an otherwise blank card. To com-
pute a second or third field net from the same

for

origins, set again IBZ = 0 or 1. To change to
a fresh set of origins, call a new ZEBRA card
by setting IBZ = -1,

Apart from the switching function, non-negative
entries in IBZ and IBR specify the field func-
tions that are to be computed. All functions
called for, whether by IBZ or IBR, are computed
before returning to (3) for a new FIELD card.
The z- and p- intervals, and the range of co-
ordinates are prescribed by the last six entries
on the card (see Table 3). Dimensions are in
inches if RX = 2.54, in cm if RX is blank. The
field caleulations are further restricted by RHM,
which limits the ratio, in percent, of the polar
radius of the field point to that of the source
nearest the origin.

The field series are truncated at order MAXN,
or earlier if the sum of absolute magnitudes of
the last 6 terms computed, when expressed in
parts per million, is less than EPS. This moni-
toring sum is printed in either case. If it should
be desired to study the details of convergence,
either initial or final series terms may be printed
by making an entry in IS, as specified in Table 3.
The high-order series will not print in any case
unless the ratio of polar radii exceeds RHP,
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THE PROBLEM SETUP. FIRST PROBLEM
Two typical problems of different types will be
considered.  The first requires o calculation of
the axial and radial components of the magnetic
field, and the vector potential, at a number of
points distributed throughout the interior of a
system having a plane of symmetry, and con-
sisting of five coaxial pairs of thick cylindrical
coils. All fields are to be scaled to the value
Bz:1.cfZ:0,p=:0.
the system is comparatively long, with “‘mirror”

Suppose further that

coils of small diameter at the ends, and that it
is desired to compute the field with high precision
quite close to the windings. Having visualized
the spheres of convergence, we may find it con-
venient to sef up two ranges of equally spaced
origins, for example fram z = 0 to z = 30 at é-in.
intervals, and from z = 33 to z = 45 at 3-in. in-
tervals,

The main program requires a START card, five
K-cards, and two ORIGN cards. On the START
card, IX, J, BZ1, and X may be blank. Also JO
is blank on both ORIGN cards. That is, g-con-
stants are wanted, the first origin is assigned to
J =1, fields are normalized to B_ = 1, at the
origin J = 1, and no P-DUMP is desired. K =5,
MAXN = 33, RX = 2.54, since the coil dimen-
sions were measured in inches. If the inner radii
are of the order of 12 in., the choice RO = 10.
will lead to source constants that are conveniently
printed by F-conversion. If dimensions were
measured to .01 in., a scale factor of 100 will
convert them all to integers, to ensure maximum
precision.  This factor, which is also applied
below to Z0, A0, B, D, DLO, and 01, yields
RS = 1000.

Since no derivatives are required and all the
coils are paired, the four integer fields are left
blank on each K-card. The current densities are
in amp/in.?. On the first ORIGN card, 1B = -1,
DLO = 600., DLJ = 6., while O1 and all the rest
are blank. On the second card, DLO = 300.,
DLJ = 5., O1 = 3300., and the rest are blank.

Sometimes only the source constants are re-
quired, without immediate field calculations.
[See the sections on PUNCH, READ, and TEST
(M), below.] To bypass ZEBRA and return to
START, set IB = 1 on the last ORIGN card. (The
PUNCH option may then be exercised, by setting
IX = -2, not forgetting MAXN and RO.) IfIB
is blank, ZEBRA is called, but in either case



source constants are first computed and printed
for all origins.

If the field nets prescribed for the two ranges
of origin are different, ZEBRA needs six cards
to complete the problem, otherwise three suffice.
To prescribe two types of field net, the first
ZEBRA card may read J1= 1, MXJ = 6, MAXN =
33, EPS = 1., RHM = 90., RX = 2.54, with the
rest blank. These options, with the highest pos-
sible order 33, high limiting convergence ratio
0.90, and error test of 1 part per million, assume
a need to compute the field with high precision
and to include points quite close to the windings.

To calculate all three field functions but omit
all extra print of the series terms, the first FIELD
card should read IBZ = 1, IBR = 1, with IS and
DMY blank. The six numerical fields specify
the desired ranges and intervals of the coordi-
nates. These are true values, not scaled. Such
a combination as DLZ = 2., ZMX = 6., Z1 blank,
computes fields at four points, with 2-in. axial
intervals, for each value of p (RX = 2.54). Every
fourth calculation is redundant, since z = 6 for
one origin is the same as z = 0 for the next. The
field series, however, are quite distinct in the
two cases, and at points very close to a field
source, discrepancies arise from the truncation
of the series, especially of the cne for which the
ratio RHO of polar radii is larger. Such checks
are unnecessary, since in any case the print
RHO, the order N, and the

monitoring SUM of magnitudes of the last six

includes terminal
terms. [t will be found, if a discrepancy occurs,
that one series at least shows N = MAXN, and a
SUM that is comparable to the observed error.

The program steps parallel to the axis through
the whole range of z, including points referred to
all origins, before p is incremented. If o second
field net is desired for the same origins, either
to allow variable spacing or to compute 9B3p/dz in
addition to A, add a second FIELD card. If not,
an otherwise blank card that reads IBZ = -1 will
call a new ZEBRA card. This may read the same
as before, except that for the second range of
origins J1 = 7, MXJ = 11, This cord is followed
by one or more FIELD cards, then by an EXIT
card with the single entry IBZ = ~2, which returns
to statement {1) of M.P. for a new START card.
The PUNCH option may again be exercised at
this time.

SECOND PROBLEM

The second problem is to compute the mutual
inductance and axial force between one or more
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pairs of coils or of complete coaxial systems,
Here the second stage of the problem is invariant,
and it will be discussed first. It is carried out
by TEST (M), using the field Eqs. (23) and (27)
of Chapter 1, while ZEBRA is not called at all.
TEST (M) begins by computing MJ = MXJ/2 and
it assumes that subscripts J =1, 2, ..., MJ iden-
tify the g-constants and minimum radii of a set
of primary systems, while MJ + 1, MJ + 2, ...,
MXJ identify the p-constants and maximum radii
The
stored data are thus matched by J subscript in
paired sets, and a maximum of 12 mutual induct-

of the corresponding secondary systems.

ances and forces (each between a pair of elements
or of complete systems) can be computed in one
pass. |If the ratio RHO of polar radii (rr;cx/rmin)
is less than unity, F and M are computed, and
are printed together with RHO. If not, F and M
are set to zero. Optionally, the complete series
may be printed; no series print, I series only,
or both, depending on whether X = 0., 1., or 2.

Mutual

and forces in newtons.

inductances are computed in henrys
If the CD entries on the
data cards are current densities, the force may
be read directly, but M must be divided by the
product of the currents. |f they are turn densities,
F must be multiplied by the product of currents.

There is great flexibility in assembling data
cards for M. P

stants in the first stage of these problems.

., to compute and store the con-
The
J-count must be regulated to pair the system sub-
scripts properly. All START cards for primary
systems, J = 1 through %MXJ, must have 1X = 0
for g-constants, while all the secondary cards
have IX 1 for p-constants. The units used
require BZ1 = —~1 in both cases. FEach system
may have from 1 to 40 elements, but with due

regard to the convergence limitations on polar
radii. ORIGN cards also must be carefully matched,
since the field equations accept only ¢'s and

p's computed for the same origin.

Case 1
The mutual inductance and axial force are to
be computed for a single pair of fixed coaxial
This

two trials have con-

coils, using a series of distinct origins.

severe test, after one or
firmed the validity of the method, will be reserved
for critical cases in which the convergence ratio

is very close to unity and a check on errors of



truncation is desired. If two coils are close to-
gether, the convergence is best when the origin
is near the point that leads to the smallest value
of RHO. The optimum point can be located ap-
proximately by eye or by drawing arcs with a
When calculations are made from

origins, fairly far apart and lying on

compass.
several
both sides of the chosen point, it is found that
the optimum is quite flat.

The problem requires the standard set of three
cards each for primary and secondary, plus one
card to call TEST (M). The two START cards
differ only in I1X and J. The overafl range of
magnitudes of the source constants, considering
both g and p_, is least when RO is intermediate
between the extreme radii of primary and sec-
ondary. K =1, BZ1= -1, and if dimensions are
inches RX = 2.54. For the primary, IX and
J are blank, which calls for g-constants and
assigns J1 = 1, For the secondary, IX = 1, J =
—-1. This continues the J-count withJ1=DLJ + 1,
where DLJ is the count on the ORIGN card, but

it also resets the cumulative maximum MXJ, which

in

is necessary for proper functioning of TEST (M)
if any earlier problem in the same deck has set
MXJ too high. Otherwise, either J = DLJ or
J = =2 would serve equally well. This question
does not arise after MXJ has been once reset,
but for the second START of o mutual inductance
problem J = ~1 is the usual choice.

There is one K-card in each set. The two ORIGN
cards are identical, with JO blank, IB = 1 to re-
furn to START, and the origins stepped as re-
quired. The last card calls TEST through IX = ~4.
It must repeat MAXN and RX, while X = blank,

1.0 or 2.0 controls the optional series print.

Case 2

If instead of checking from several origins, it
is desired to compute M and F for a pair of coils
with variable axial spacing, the only change re-
quired is to enter separate values of DLO on the
the two ORIGN cards, whose difference is the
desired axial increment.

Case 3

As many as 12 independent pairs of elements
or of complete systems or subsystems can be
entered at one time, using up to 24 sets of START,
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K-, and ORIGN cards, before calling TEST (M).
If a single primary or secondary subsystem is
to be combined in turn with several others, the
repeated system needs only one sst of cards.
The ORIGN card then carries in DL.J the number

of combinations, while DLO is blank.
THE FAP SECTION

One essential subroutine is a FAP assembly
of about 1000 words. All the Fortran sections
can be effectively used, ond even modified for
specinl problems, without any detailed knowledge
of this slave routine. It is called by FINDQK
and ZEBRA, and by several versions of TEST
that were written %o tabulate the various zonal
harmonic functions.

Except for some dozen words, the entire FAP
section is written in fixed point, 50 as to retain 35
significant bits in the calculations, up to the point
of return to the Fortran coding. !t contains, in ad-
dition to short sections for conversions and tests,
the series and recurrence routines for caleulating the
functions of polar angle, namely P, 07, UZ’ wx,
and log ({1 + s)/ul. it also sums the contributions
to g4, namely z, log U1 + s)/ul,, and to ¢,, over
the four sources of a rectangular coil (L = 1 to
4) with the full precision of the fixed point arith-
metic, before floating the results for storage in

COMMON,

Mormal Entry Points

Special entry points for testing are nof con-
sidered here. To calculate the functions of polar
angle, the FAP section is entered at PNU, PNUM,
or PUN, with suitable data in each case to define
In subroutine ZEBRA, which

field components from the
stored system constants, the normal 27-bit floating
point precision suffices.
is then:

the polar angle.

calculates various

The calling sequence

U= z/r
S =p/r
(Switch)
CALL PNU
The first two statements, with the coordinutes on

the right side replaced by their symboliz Fortran
equivalents, compute the cosine and sine of the



The *‘switch’" is a func-
tion selector that specifies an output option (see
below). Here the 27-bit floating point cosine U

defines the angular argument.

field-point polar angle.

To ensure the in-
ternal consistency of sine and cosine to 35 bits,
the FAP section contains a one-step square root
extraction on 1 - Uz, using the input value of
S as a #rial divisor. The improved value is also
re-floated and returned to S.

In critical cases, especially when calculating
the source constants of long coil systems for a
series of origins, it is desirable to use the full
precision of the fixed point arithmetic. This re-
quires that the polar angle be defined from the
ratio of two coordinates that have been converted
to exact floating point binary numbers from inte-
gral dimensions on the data cards, thus avoiding
the error inherent in a decimal to binary fraction
conversion. The system geometry is described
by a set of integers (exact binary fractions are
also allowed) through the use of the arbitrary
scale factor RS/RO, usually a power of 10. The
input lengths scaled to RS are used sclely to
transmit exact ratios, through subroutine FINDQK,
to the FAP section.
thereafter lengths normalized on RO, which cor-

The Fortran sections use

responds to the unit or reference length r, of
Chapters 1 and 2.

Subroutine FINDQK transmits the scaled input
cylindrical  coordinates of each source to the
FAP section, thus defining the angle through its
tangent or cotangent:

ZC ==z
AC=p
(Switch)
CALL PNUM
For precision testing, and for reserve flexibility,

a third calling sequence is provided that is cur-
rently used only in a polar version of subroutine

TEST:
72C =z
AC = 7 (polar)
(Switch)
CALL PUN

In either case the smaller of the scaled lengths
ZC and AC is converted to a floating point mixed
number {usually with one or more zero bits fol-
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lowing the binary point) having the same char-
acteristic as the larger length. The latter retains
its original form, in which the fractional part is
always normalized. Both numbers dare now con-
verted to exact fixed point binary fractions by
shifting left 8 bits to drop the characteristic. In
effect, both are scaled down by the same unre-
corded power of 2. This normalizing routine pre-
serves only the ratio of lengths, while ensuring
that the larger one contains 35 significant bits.

The
easily completed in fixed point, followed by that
of the remaining functions of polar angle. Evi-
dently the PNUM sequence can generate valid

35-bit binary equivalents of

calculation of sine and cosine is now

cotangent or tangent
arguments for such functions, and the PUN se-
quence similar equivalents of cosine arguments,
when the arguments can be expressed as ratios
of integers.
such decimal fractions as 0.57 or 0.6192 is cor-

In particular, 35-bit conversion of

rectly carried out.

Qutput Qptions

The functions that are transmitted to COMMON
depend only on the switch instruction of the
calling sequence and not on which of the three
sequences is used. In any case the FAP op-
erations may be divided into two stages, the
first of which generates one of two series of
fixed point functions and loads them into the
internal array PX, while the second stage delivers
one of five series of floating-point functions to
the COMMON array QF, Fortran notation, with
subscript (N), will be used here for both arrays,
while the order of the functions is shown by the
usual subscript #.

Table 4 shows the effect of setting PN, SPNI,
or WN to non-zero (NZ) as a switch instruction
before the CALL statement. The switch must be
reset for cach entry, since all three locations are
automatically zeroed before return. The functions
that are stored in PX and in QF are listed in the
second and third columns, respectively.

In the first case, when the switch instruction is
PN = NZ, the functions P are first generated
and stored in PX(N), beginning with P, = u in
PX. The same functions are then floated and
stored in QF(N + 1). In all the other cases, the
first step loads —P* into PX(N), beginning with

—-s2 in PX, while the second step loads one of



Table 4. Effect of Switeh Options

Switch Fix Float N{QF) N{QF)
(= NZ) BX (M) QF(N) Min Max
PN P P 2 MAXN + 2
n 12 e

SPNT (+) -P* -P¥* 2 MAXM + 2
n 72w 1

SPNT (=) wP*  —p’ 2 MAXN -+ 2
4 n 77

WN ~P¥ W 9 2 MAXN + 2
n -

None ~p* u* 3 MA XM
n n

four different series into the array QF without
disturbing the amay PX. The integer MAXN,
whose permissible values 5(4)33 have been pre-
vicusly noted, limits the range of all five recur-
rence routines.

Evidently if the calculation of UF or W*

or both,
is to follow that of either set of the P’ functions
for the same argument, it would be redundant to
repeat the iterations of the first step, that is,
the calculation of —P2. For this reason a re-
entry instruction, CALL UM, is provided, which
may of may not be preceded by the switch in-
struction WM = NZ. I the switch is set, the
re-entry sequence computes W;; if it is omitted,
U*.  Both options may be used if desired, in
either order, and the redundant first step is by-
passed each time.

The Logarithmic Functions

The logarithms required for ¢, and g,, in the
case of a coil of rectangular section, are com-
puted with a precision of 3 x 10=9 by a 4 term
series approximation adapted from Hastings. Also,
the fixed point constants g, ond g, are summed
within the FAP section over the four sources of
the coil. Only the sums are floated, and stored
in QF(1) and QF(2).
is controlled by the subscript L. This steps from
1 to 4 as the vertices of the coil cross-section are
scanned by FINDQK in the order outer right (+),
inner right (~), outer left (=), inner left (+). The
L-sequence is diagramed in the box at the foot of

Table 3.

The sequence of operations
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Actually only two logarithms are computed,
that of the ratio of (1 + s)/u for the sources 2
and 1 and again for 4 and 3. To compute ¢, these
logarithms must be multiplied by z, and =z, re-
spectively. This operation is carried out in
fixed point after proper scaling of z, and 2z,
using the same normalizing routine as was de-
scribed above for ZC and AC. In this case, how-
ever, the scaling factor must be preserved, to be
multiplied in floating point by the final sum after
conversion. The logarithm routine computes one-
fourth of the true value in fixed point, and thus
it is limited to arguments between 1 and ™%,
Therefore, the ratic of outer to inner cylindrical
radius cannot exceed e? for any coil, or about
54.5.

if it does an overflow signal is printed and the

coil can be subdivided.

So high a ratio is unlikely to occur, but

Test Entry Points

The entry points FTEST, LN, and LNT were
provided for use with several versions of sub-
routine  TEST, to permit critical testing of the
FAP section beyond the limits of the 27 bit
precision of floating point arithmetic. Details
are omitted.

OTHER SUBROUTINES

ZEBRA (2) was written to supply values of
B, and B for single points whose cylindrical
coordinates are placed in ZC and AC, although
it can also read in a complete field net, compute
and print the field at each point. It uses the
source constants stored in GS(J, N). It refers each
field point automatically to the nearest origin,
whether the origins are equally spaced or not,
and it prints optionally.

PUNCH will punch out on data cards, six octal
words to a card, either the complete set of origins
with corresponding sets of source constants
Q5(J, N), or sets of field values {BN) as described
under the IB field of the ORIGN card.

There may be a recurring need for the source con-

above

stants of a particular system, for example, as
input data for the calculation of particle orbits
under various initial conditions. There is no need
to recalculate the constants if they have been
once punched out on cards, nor to reload the
original data cards or any part of the zonal har-
monic coding except subroutines READ and

ZEBRA (2), for this purpose. The cards produced



by PUNCH are loaded at the top of the data card
deck.

Each of the two PUNCH options produces first
an index card with a distinctive pattern for instant
recognition. [t is convenient to replace this card
before use by a printed duplicate, as produced on
In the case of the field
data (BN), a separate index card is punched for

each of the IB subsystems. This makes it easy

a standard keypunch.

to check the deck for completeness, after which
all the index cards except the first must be re-
moved. Each of the IB sets of field data is further
divided by entries on the index card into M4
groups of M3 values each, representing field
points at M3 values of z for each of M4 values
of p, as prescribed by the original FIELD card.

READ accepts sets of data cards produced by
PUNCH and restores all variables to their original
locations in COMMON.
check list of the data, which duplicates the print
of the original problem.

TEST was originally written in several versions,

It also prints an indexed

to test the precision of all parts of the program
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and to tabulate the several functions of polar
angle, to cosing, cotangent, or tangent arguments.
Details are omitted. TEST (M), which computes
mutual inductances and axial forces between co-
axial systems, was described in the section on

problem setup.

OPEN A completed

version, offering a flexible PDUMP option, was

is for general reserve.
discussed under heading X of the main program.

BEST is currently a dummy subroutine, to be
used in coding one or more field optimization
Two such

the present programs were written, but

programs. routines were available
before
they will require revision of certain details, to
accept the field data stored in BN or recorded
on cards by PUNCH. Note that BN has been
placed at the end of COMMON storage, and that
it is omitted from the list except in Subroutines
ZEBRA, PUNCH, and READ. This makes it
easy to alter its DIMENSION statement, if the

present assignment (8,100) proves inadequate.
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