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Computer Programs Using Zonal Harmonics for Magnetic Properties of 
Current Systems with Special Reference to the IBM 7090 

M. W. Garret t '  

ABSTRACT 

T h i s  report d i s c u s s e s  the magnetic vector and 
sca la r  potent ia ls ,  magnetic f ie ld  components and 
their der ivat ives ,  and flux linkage for s ing le  cur- 
rent sys tems,  and the  mutual inductance, forces  
and torques between two such  systems,  whose 
a x e s  are coplanar but not necessar i ly  coincident. 
Each sys tem may i n c l u d e  a combination of co- 
ax ia l  loops, cyl indrical  or plane annular current 
shee ts ,  and cyl indrical  c o i l s  of rectangular sect ion.  

Working equat ions a re  listed, following an out- 
l i n e  of theory in a f o r m  tha t  has considerable  
general i ty  but i s  a t  the  s a m e  time ideally su i ted  
t o  prec ise  calculat ion.  A discuss ion  of errors 
and of means for reducing them leads t o  spec i f ic  
sugges t ions  for use of the method with any pro- 
grammed computer. A n  exis t ing comprehensive 
program for the  IRM 7090 is descr ibed i n  detai l .  

The rate  of convergence of t h e  harmonic s e r i e s  
depends on the  ratio R of the  polar radius of the 
field point t o  that  of t h e  current discont inui ty  
neares t  the origin. In some cases the precision 
reaches  1000 parts  per million even a t  R J 0.95, 

improving to 1 or 2 parts a t  R = 0.80. Since the 
origin is arbitrary, the  practical range of t h e  
method often includes the whole s p a c e  that  is 
a c c e s s i b l e  t o  experiment. For very c l o s e  approach 
t o  the  windings one must resor t  to el l ipt ic  integral 
methods or their equivalent .  

Alternat ive programs that  have been u s e d  a r e  
compared with the method of zonal harmonics, 
but they a re  s lower by more than a factor of 10 
when large numbers of f ie ld  calculat ions must b e  
mads on a complex current system. One example 
is the  problem of following individual ions through 
paths i n  the  order of 100 t u r n s  i n  a field that  is 
generated by 20 coaxial  thick coi ls ;  ava i lab le  
competing methods would hove required too much 
computer time. The zonal harmonic method also 
h a s  superior flexibility in a t tacking a wide range 
of problems. T h i s  i s  espec ia l ly  true for the  cal- 
culation of ra tes  of change,  with respect  to  co- 
ordinates  of the  f i e ld  or of the  generating system, 
and for problems in which some property of a 
system must be not only calculated,  b u t  a l so  
adjusted t o  meet a specif icat ion.  

IN T R ODU CT 1 ON 

The magnetic properties of a current systetn, 
as considered here, include the magnetic sca la r  
and vector  potent ia ls  and their  der ivat ives ,  the  
magnetic flux through the  sys tem in an appl ied 
f ie ld ,  and t h e  mutual inductance, forces ,  and 
torques between two such  sys tems.  The u s e  of 
zonal harmonics res t r ic t s  the d iscuss ion  t o  
axial ly  symmetric systems.  A system may include 

'Consu l tant ,  Swarthrnore College. 

any combination of coaxial  c i rcular  current loops, 
cylindrical or plane annular current shee ts ,  a n d  
cylindrical volume currents, which will usually 
be ca l led  loops or filaments, (thin) solenoids ,  
disks or pancakes ,  and (thick) co i l s  respect ively,  
and will be referred t o  a s  e lements  of t h e  system. 

Chapter 1 of th is  report develops the  theory i n  
outline, with t h e  working equat ions.  The theory, 
equat ions and machine programs all depend on 
a two-stage a n a l y s i s  in which t h e  field and t h e  
system that  g ives  r i s e  t o  it a r e  separately treated. 
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The  coordinates of the f i e l d  and of i t s  sources 
never appear i n  the same equat ions or the same 
subroutines. The  f i e l d  equations and the source 
equations have i n  common only a set of “source 
constants”  4 ,  and p, , whose de f i n i t i on  depends 
on the concept  o f  a “source. The  constants  
may be def ined e i ther  for a s ing le  source or for 
a complete system. T h i s  method i s  more general, 
more compact i n  formulation, and more e f f i c i en t  
in p rac t i ce  than the convent ional  approach ( 1 ,  2 ) .  
Since many of t h e  concepts and equations are 
unfamil iar, as are the new source funct ions 
and Chapter 1 i s  a necessary prelude t o  the 
desc r ip t i on  o f  the computer codes. 

Chapter 2 d iscusses modi f icat ions that  are nec- 
essary or des i rab le when the equations are em- 
bodied i n  a machine program. Al though t h i s  
sect ion conta ins some spec i f i c  references t o  an 

8 .  

ex is t i ng  zonal harmonic program and subroutines 
for the IBM 7090, most of the information should 
be use fu l  t o  anyone who  seeks t o  apply the same 
method i n  so l v ing  problems of the same or re la ted  
types w i t h  other machines, or even w i t h  a desk 
calculator. 

Chapter 3 descr ibes the 7090 codes in greater 
de ta i l  for those who  may he able t o  use them, 
w i t h  or w i thou t  changes. Many de ta i l s  i n  t h i s  
sect ion a l s o  should bc? he lp fu l  in  organiz ing 
s im i la r  programs for other computers. 

2 

2Most  o f  t h e  methods, s p e c i a l  formulas, se r ies  co- 
e f f i c i e n t s  and  other  a ids  presented in chap. 2 were de- 
ve loped  in the  cou rse  of the author’s prev ious work on 
f i e l d  des ign  problems, u s i n g  f i r s t  t h e  Burroughs E-101 
and UDEC computers and  la ter  t h e  IJNIVAC, a l l  w i t h  
f i x e d  po in t  coding. T h i s  e a r l i e r  work i n c l u d i n g  the  
c a l c u l a t i o n  o f  Table  1 (not  p rev ious l y  pub l i shed)  was  
suppor ted by the  Army Research O f f i c e  (Durham). 

4 F  PRE C l A T l  ON 

It i s  a p leasure t o  acknow ledge  my deb t  t o  a number of peop le  i n  t h e  course of t h i s  work:  t o  

Dr. I Y .  F. Gauster, who suggested the  p ro jec t  and t o  whom I owe bo th  encouragement  and  h e l p f u l  

c r i t i c i sm;  t o  C a r l  Parker, who  he lped  day by day i n  many ways,  and who  adapted the  f i r s t  ve rs ion  

of t h e  program t o  the c a l c u l a t i o n  of i on  o rb i t s  (5); t o  the  s t a f f  of operators and coord inators  for 

whom the  e f f i c i e n t  mastery of t h e  genie seemed a l w a y s  t o  be  a s  much p leasure as duty ;  and t o  

the h a l f  dozen  or more p a t i e n t  mathemat ic ians and computer  exper t s  who  cheer fu l l y  d i spensed  

f i r s t  a i d  and comfor t  t o  a newcomer whenever the  ba lance  of v i c t o r y  wavered between man and the  

machine. 
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CHAPTER 1. THEORY 

The Tradit ional Microforms. Source and F i e l d  Harmonics 

Limitat ions of space forbid the inclusion of fu l l  derivations. L i t t l e  more can be done than to l i s t  

the working equations. These however deviate suf f ic ient ly from tradit ional practice, in  form, interpreta- 

tion, and method of use that a reasonably fu l l  analysis of the underlying logic i s  indispensable. Most 

of the equations are deferred for convenience of reference to a point near the end of Chapter 1, whi le a 

summary of concepts, methods, and performance i s  f i r s t  undertaken. 

The method of expanding laplacian f ie ld  series i n  zonal harmonics i s  old and wel l  known. But  since 

shortly after Maxwell 's time a kind of underbrush has grown up i n  the zonal harmonic jungle that often 

obscures the trees. The cr i t ic ism goes far beyond an objection to cumbersome and inef f ic ient  algebraic 

forms, and implies a widespread fai lure to notice correlat ions and to establ ish uni fy ing principles. It 

has been a common practice to derive i n  isolation, and to  compute from, CI host of inf lated special forms 

for special cases that w i l l  be referred to here as microforms. A general symbolic form such as P,'(O) 

w i l l  be cal led a m a ~ r o f o r m . ~  I t s  three most commonly used microform equivalents are 5/2(7 cos3 0 -  
3 cos O ) ,  3 cos O(4 - 7 s in2  U),  and 3 r - 3 ( 4 z 3  - 3 ~ ~ 2 ) .  The third form i s  properly a power series in  

the cotangent of the polar angle. T o  write out P i 2  would require 16 terms, w i th  many coeff icients of 

about 15 digits. To compute it to two signi f icant figures, seven or eight must be carried because of the 

mutual at t r i t ion of + and -terms. 

The general term of a complete zonal harmonic series contains a product of two such harmonic func- 

tions, belonging to  a source angle of the current system and a f ie ld point angle, respectively, together 

w i th  powers of the two polar radi i .  The labor of computing from the microforms increases more rapidly 

than the square of the order, and most series are stopped even i n  derivations a t  the ninth or tenth order, 

that i s  a t  about the f i f th term of the usual al l-odd or al l-even series. 

Equal ly serious has been a fai lure t o  recognize the harmonic functions a t  a l l ,  Neglect  of analogies 

that would surely have been discerned among the several sets of macroforms, and of homologies w i th in  

the sets, accounts for many gaps and redundancies that have stood for hal f  a century. The fol lowing 

sections w i l l  attempt to define under four heads the elements of a more systematic a p p r ~ a c h . ~  

3The names were suggested b y  the terms micro-  and macro- inst ruct ion,  w h i c h  be long t o  the jargon of pro- 

'Emphasis on these e lements  may be j u s t i f i e d  by  a s l i g h t l y  overstated argument, 

gru mmi ng. 

Consider  a set  o f  magnet ic  
quant i t ies ,  7n i n  number, t o  inc lude var ious f i e l d  components, the vec tor  potent ia l ,  farce, rrlutual inductance,  etc, 
L e t  convent ional  microform ser ies be separate ly  der ived  for each of n source types  ( loop ,  solenoid, d isk,  co i l ) .  
Each harmonic  factor  o f  t h e  genera l  term, independent ly  o f  the  other, commonly occurs in any  of three equ iva len t  
farms as noted above for  P i .  Near ly  a lways  the o r i g i n  i s  res t r i c ted  i n  one of two ways, to remove terms of e i ther  

odd or even order. I f  the so lu-  
t i o n  o f  each case i s  cor r ied  out i n  t w o  stages, w i t h  the source geometry and the f i e l d  geometry segregated i n  
separate equat ions w r i t t e n  i n  inacroform, express ions  and c a l c u l a t i o n s  tha t  are common t o  severa l  cases  are not 
repeated, There need be then on ly  n~ f i e l d  equat ions and (count ing  bo th  p and q ) 2n source equations, to  rep lace  

the en t i re  set. The new equat ions  ore much shor ter  and far  more lucid, w h i l e  comput ing  t ime i s  c u t  t o  a f rac t ion  
through the use  o f  recurrence rout ines.  

Tho gaps tha t  a more order ly  system wou ld  f i l l  are e v i d e n t  i n  any  standard c o l l e c t i o n  of f i e l d  and mutual  in- 
ductance microforms. B u t  t o  trace Corre la t ions and i d e n t i f y  the redundancies, or even t o  recogn ize  the  zonal  
harmonic expansions fo r  what  they  are, requi res t ime and some a i d  such as T a b l e  1 of r e f  (I)* For  one example, 
see footnote 8, hereafter. 

T h i s  aga in  doubles the number of p o s s i b l e  microforms, w h i c h  now stands a t  18mn, 
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Res t r i c t i on  t o  Macroforms. No ta t i on  for Funct ions of Angle 

F o r  funct ions of the polar angle, apar t  from 5 for s ine and 7~ for cosine, the macroforins P n ,  P i ,  [ i n ,  

14,, P : ,  [ I : ,  and 11; w i l l  be used e x c l ~ s i v e l y . ~  Though Pl l (7 i )  I S  the Legendre polynomia l  i n  /I o f  order 

n, i n  most cases no argument w i l l  bc wri t ten,  and the de f i n ing  Eq. (1 )  does no t  con ta in  i i .  Each  se t  o f  

funct ions w i l l  be regarded a s  a set of magnitudes, character is t ic  o f  the polar angle, whose va lues af te i  

the f i r s t  or second order may be found by success ive i terat ions, and not  as po lynomia ls  i n  the sine, 

cosine, or cotangent. Thus the angle i t s e l f  w i l l  be wr i t t en  as argument, for example, P n ( 0 ) ,  i f  i t  i s  

not o therwise c lea r  what angle i s  meant. The cos ine 71 oppears i n  a l l  the recurrence re la t i ons  [ E q s .  (41- 

431. 

F u l l  Use of Series Homologies 

The microforms have usua l l y  been d i f ferent ia ted or integrated term by  term, w i t h  respect  t o  any 

coordinate, whereas such operations are performed on riiacroforms w i t h  the a i d  of general symbol ic  re la-  

t ions tha t  may be derived from the series homology. (Note again tha t  der ivat ions cannot  be inc luded 

here.) T h i s  can be seen most d i r e c t l y  i n  the 

de f i n i t i on  

The bas ic  homology i s  concerned w i t h  =-dif ferentiat ion. 

wh ich  uses the mixed cy l i nd r i ca l  and polar coordinates 2,  r ,  but  wh ich  ac tua l l y  def ines P n  as a funct ion 

of the polar angle alone. Again, i f  P,: ~ n t ' / , 2d / / ,  the fo l l ow ing  re la t ions can be proved: 

and 

For other usefu l  homologies, see ( I ,  2 ) .  See a l so  Eqs. (41-45)) s ince  the recurrence re la t i ons  used for 

a l l  ca l cu lo t i ons  f a l l  under th i s  head. In effect, they reduce func t i ons  o f  a l l  orders t o  2-term polynomia ls .  

5L'n and u/n are new func t i ons  tha t  were In t roduced i n  r e f s  ( 2 ,  2) t o  dea l  w i t h  tho t a S e  of t h i c k  co i l s .  T h e y  

permi t  t he  magnet ic  p roper t i es  of such c o i l s  t o  be c a l c u l a t e d  o s  p rec i se l y ,  and alrn2st as eas i l y ,  as t hose  of 1007s 
or so lenoids.  Fo r  the s tar red forms, see Eqs.  (4). T h e y  are mod i f i ed  fuvc t i ons  whose magni tudes never exceed  
uni ty ,  des igned  t o  r e p l a c e  P A ,  LIn ,  and \i'n, respec t i ve l y ,  when  i t e ra t i ons  are ca r r i ed  out  w i t h  a f i x e d  dec ima l  
paint, 



5 

General Origin 

All equations are referred to an arbitrary ax ia l  origin. This permits the f ie ld  of a complete coaxial 

system to  be coherently expressed by a single series, without adding up contr ibutions from mult iple 

origins. It a lso extends greatly the range of convergence of the central f i e ld  series, since calculat ions 

may be referred io different origins i n  dif ferent parts of the f ield. 

Two-Stage A n ~ l p i s .  Field and Source Equations 

The ef f ic iency of the zonal harmonic method depends on separating the variables. Since the func- 

t ions O n ,  U n ,  etc. depend only on a polar angle, whi le a l l  remaining variable factors of the harmonic 

terms are polar radi i ,  th is has already been done so far as the coordinates of each point are concerned. 

Bur there is  a great gain in eff iciency, both of formulation and of calculation, i f  the coordinates of f ie ld 

points and of sources (or in  the case of mutual inductance, of primary and secondary sources) appear 

only i n  separate equations and are processed in separate subroutines of the machine program. Both the 

generol theory and the pructical problem are c leanly cut into two simpler parts, which are concerned 

with properties of the f ie ld  and of the sources respectively (or of primary and secondary). 

The separation permits a dramatic reduction i n  the number and complexity of the equations, a point 

At the same time i t  c lar i f ies the meaning since the elements that are that i s  elaborated in  footnote 4. 
essential to correlat ions and analogies appear exp l i c i t l y  in  the equations. 

F i r s t  Stage. The F ie ld  Equations 

Two types of f ie ld are f i rs t  defined, the “central” and the “remote.” Figure 1 shows a current 

system with two stepped co i l s  numbered 1 and 2. L e t  a spherical shel l  be drawn about an arbitrary 

axial  origin, of the minimum thickness to  include a11 parts of  the current system between the spherical 

boundaries. The central f ie ld i s  then bounded by the inner sphere of radius r l l l i n r  whi le the remote f ie ld 

extends from the sphere of radius r , n a x  to inf in i ty.  Each type, of f ie ld  can be fu l l y  described by a set 

of f ie ld  series, Eqs. (8) to (13) and (16) t o  (21), that  contain no coordinates of the generating system. 

They assume only that the system has axial  symmetry. Such general f ie ld  equations are made possible 

by the severe restr ict ions imposed by Laplace’s equation, the symmetry, and the spherical boundaries. 

They must of course contain a set of adjustable coeff icients, pure numbers whose values m u s t  later be 

found from the system geometry, but except for these dimensionless magnitudes each f ie ld  series i s  the 

same for a single loop as for the most complex coaxial system. 

The adjustable constants, from the manner of their definition, might logical ly be cal led f ie ld con- 

stants. The constant of order n for the central f ie ld  is proportional to  the axial  derivative d”\’,,/d~-” 

of the magnetic scalar potential a t  the origin. The remote constant of order n i s  proportional to the 

strength of a f ic t i t ious ideal mult ipole of order n, a t  the origin, from which the uth term of the remote 

f ie ld series may be considered to arise. Individual constants of either set can be experimentally meas- 

ured without knowing the geometry of the current system, and i n  fact  the theory does not exclude ax ia l l y  

symmetric distr ibutions of magnetized mutter between the bounding spheres, 
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Fig. 1. Cen t ra l  and Remote  Fields.  Spheres o f  convergence.  

In th i s  work the constants are a lways computed from the geometry of the current system, and s o  are 

regarded as system constants. I t  w i l l  be seen i n  the next  sect ion that the con t r i bu t i on  t o  any constant  

from each uni formly wound element (each loop, solenoid, disk, or c o i l )  of a system i s  computed from 

the coordinates of one, two, or four c i r c les  tha t  mark the d i scon t inu i t i es  i n  current densi ty .  Such 

c i r c les  are ca l l ed  "sources" of the f ie ld .  The i r  cont r ibut ions t o  the system constants  o f  order T? are 

the source constants, q ,  for the centra l  f i e l d  and p ,  for the remote f ie ld .  The  system constants  are 

d imension less scalar summations over a l l  sources, t ha t  is, for any g i ven  order if, ~- z ( T ~ ,  p, - z pi. 
1 i 

From t h i s  po int  on, 4 ,  or l $ n ,  whether for a s ing le source, a complete element, or an ent i re  system, w i l l  

usua l l y  be ca l l ed  a source constant  of order n, suppressing the subscr ip t  s or i and dropping the term 

system constant. The 2 w i l l  not be writ ten, but i s  i o  be understood i m p l i c i t l y  i n  the f i e ld  equations. 

The f l u x  through a system p laced in  an arb i t rary  external  f i e l d  can be expressed i n  terms o f  the 

ax ia l  der ivat ives of the f i e l d  and the constants  p, of the systein. The f i e l d  need have no symmetry. 

From t h i s  expression, equations are derived for the mutual inductance, hence a l s o  forces and torques, 

between two a x i a l l y  syi i l lnetr ic systems, i n  terms of the y-constants of the primary and thc p-constants  

of the secondary system. These a l s o  are  f i e l d  equations, s ince they con ta in  no coordinates of sources. 

They cover  i n  a few l i nes  a wider range of cases than the ent i re  standard repertoire o f  zonal  harmonic 

microforms for force and mutual inductance. They  f a i l  i n  the presence of magnetized matter. 
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Second Stage. The Source Equations 

The second stage of ana lys i s  i s  t o  d e r i v e  equat ions t o  ca l cu la te  the source constants  of any g i ven  

system from i t s  geometry. A se t  of constants  

q ,  or p ,  i s  f i r s t  ca l cu la ted  and stored, or i n  ce r ta in  cases punched out  on  cards for later use. If the 

problem s o  requires, se ts  of constants  are ca l cu la ted  for each of severa l  or ig ins.  Once computed, they 

are used w i thou t  further need for the system geometry, t o  ca l cu la te  a l l  f i e l d  components, the vector 

potential,  forces, mutual inductances, e tc .  

When computing, the order of the stages i s  reversed. 

The f i r s t  step i n  de r i v ing  the constants  i s  t o  expand the magnetic sca lar  po ten t i a l  o f  a s ing le  

c i r cu la r  loop a long the a x i s  by  Taylor ’s  theorem, and t o  f i t  the r e s u l t  as a boundary cond i t i on  t o  the 

corresponding centra l  or remote zonal harmonic series. Thus 7, and p, are found for the loop source. 

No further reference t o  any f i e l d  equat ion i s  necessary. The  superposi t ion theorem for l ap lac ian  f i e l d s  

leads a t  once t o  s imple express ions in c losed  form for t he  constants  q, and p, o f  a c y l i n d r i c a l  o r  an- 

nu lar  current sheet and o f  a c y l i n d r i c a l  volume current, through scalar  in tegrat ion o f  the express ions for 

dq,  and dpn over the elementary current f i laments,  w i t h  respec t  t o  z or t o  p or both. The system source 

constants  9 ,  and p , ,  as  ac tua l l y  used i n  comput ing froni the f i e l d  equations, are then e a s i l y  found by 

scalar summution over a l l  the loops, so lenoids and c o i l s  of the system. 

Sources. Algebraic Signs 

The  de f in i t e  in tegra ls  tha t  express the 7- or [)-constants for d i s t r i bu ted  currents con ta in  no  co-  

ordinates o f  in ternal  current f i laments, but on l y  those o f  the current d i scon t inu i t i es ,  that is, the bounding 

c i r cu la r  edges of the windings. t w o  in number for a n  i dea l  so lenoid 

or disk, four for a c y l i n d r i c a l  co i l ,  that  rep lace the p h y s i c a l  d i s t r i bu ted  sources for a l l  ca lcu lat ions.  

Except  for t h i n  loops carry ing f i n i t e  current, sources a lways  occur in matched pai rs  o f  opposi te  s ign  but 

w i t h  the same strength, equal t o  the sur face or volume current density. The source equat ions ure for 

s ing le  sources o f  p o s i t i v e  sign, but the subscr ip t  J of F ig .  2 i s  omitted. 

I #  Hence the concept  of “sources, 

Sign convent icns for sources are shown i n  F ig .  2. F o r  pos i t i ve  currents, sources a t  the r i g h t  ends 

Signs i n  the la t ter  case a l ternate 

The t h i c k  c o i l  w i t h  stepped sect ion requires o n l y  s i x  sources when com- 

T h i s  adds a 

of so lenoids and a t  the outer r i gh t  corners of t h i c k  c o i l s  are posit ive. 

round the sec t i on  perimeter. 

put ing by hand. 

co inc ident  redundant source pa i r  a t  S I  or a t  C,, whose s igns are shown ins ide the section. 

F o r  the machine code, it i s  subdiv ided in e i ther  of the two  ways shown. 

Range and Rate of Convergence. The Convergence Ratio R 

Several var iab les in f luence the d e t a i l s  of convergence of the zonal harmonic series, but  the terms 

of a l l  series conta in  ascending powers of R ,  a ra t i o  of two  polar  rad i i .  In a l l  cases, a f ter  a few terms 

the rate of convergence i s  dominated by the magnitude of R. T h e  series f a i l  i n  theory un less R i s  less 

than one, and  i n  pract ice it should ra re l y  exceed 0.9, occas iona l l y  perhaps 0.95. For  n l l  ser ies d i s -  

cussed i n  t h i s  paper, except  for the double summations (25, 26), the combined secondary e f f e c t  o f  a l l  

var iab les other than  R i s  t o  accelerate the smoothed rate i n  greater or lesser  degree. 
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Because o f  the separation of f i e l d  and source equations, the powers of I: do not appear e x p l i c i t l y  

unless, for example, the va l i ies  of 4 ,  from any o f  Egs. (32) t o  (34) are subst i tu ted i n to  one of the centra l  

f i e l d  Eqs. (8) t o  (13). The r a d i i  r* and rk of the equations are just the r a n d  r .  of F i g .  2, normal ized 

w i t h  respect  t o  an  arb i t rary  reference length r,,. E v i d e n t l y  normal izat ion does not  a f fec t  the ra t i o  r/r.. 

The 4’s  for a complete system are summations over a l l  sources. The source nearest the origin, whose 

rad ius i n  F igs.  1 and 3 i s  rmin, makes the dominant contr ibut ion to  the q-summations of h igh order. 

I I 

I 

I t  fo l lows that  for the centra l  f i e l d  series, R - r/rl,lin, where r i s  the polar rad ius of the f i e l d  point. 

Foi t he  remote series, R = T / T ,  where rnlCIX may be seen i n  F igs .  1 and 3. For  mutual inductance, 

force or torque, I( - T ~ ~ ~ / T , , , ~ ~ ,  where the prime belongs to  the secondary and the r o d i i  are shown i n  

F igs .  1 and 3. This means that  the secondary must be who l l y  w i t h i n  the centra l  f i e ld  o f  the primary. 

/i can be var ied over w ide  l i m i t s  by moving the origin. Thus i n  Fig. 1, a series for the force or mutual 

inductance between c o i l s  1 and 2 converges rap id l y  when the o r ig in  i s  p laced at  0, or 03, bu t  not  i f  

it remains a t  0,. Again, i f  both c o i l s  cons t i t u te  a s ing le  system, the to ta l  range of poss ib le  centra l  

f i e lds  can be great ly  extended by computing from several o r i g ins  i n  turn. B u t  t o  extend the remote f i e l d  

as far as possible, i t  i s  necessary t o  g i ve  up the s ing le  o r i g i n  and to  add two f i e l d  components a t  each 

f i e l d  point, computed separately for c o i l s  1 and 2, from or ig ins near 0, and 0,  respect ive ly .  T h e  same 

dev ice  may b e  used when computing force or mutual inductance. 

rnax 
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Fig. 3. Mutuol Inductance Between Systems Whose Axes Intersect. 

Note that convergence depends on the posi t ion of the sources and not of the physical currents. 

Consider a long solenoid of moderate wa l l  thickness, wi th origin in  the midplane. I ts central f ield, 

bounded by a sphere through the inner source circ les,  includes much of the actual wound volume and 

of t h e  space outside the coi l .  The calculat ions for 8,, and for vector potential require no correction i n  

these regions. where j ,  i s  the total  linear current 

density ,Iz/dz between the axis and the f ie ld point, whose cyl indr ical  coordinate i s  p. 

For Bz ,  it i s  only necessary to  subtract 4 7 ~ j  x 
17 

Effect of Polar Angle. Source Harmonics 

Term-by-term, as opposed t o  smoothed convergence, i s  strongly dependent on the polar angles of 

the dominant source and of the f ie ld  point. The functions P n  and J’,: occur in  f ie ld equations, P i ,  U n ,  

and 1 1 ’ ~  (or their starred relat ives) i n  source equations, a l l  combined w i th  powers of the polar radi i .  

Though only r n P n  arid T - ( ~ + ’ ) J J ~  are harmonics i n  the str ict  sense, a l l  the functions of analogous form 

show simi lar i t ies that make it convenient to  refer t o  them loosely as harmonics. A l l  the functions o f  

polar angle are quasi-sinusoidal. They vary wi th angle and with order in  a manner that paral lels roughly 

the behavior of s in n O  or of cos no, but wi th an amplitude that for large I? approaches ( n . ~ ) - ’ ’ ~  for Pn 

and ( T ) / S ) ’ ’ ~  for P:. As v increases, Lf:+2 and --Li’i-2 both approach s P n  asymptotically. 

Each term of a complete f ie ld  series contains the product of a f ie ld harmonic and a source harmonic. 

The products of angular functions alone osci l late in  sign i n  a variable sequence that depends on both 
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polar angles, w i t h  poss ib le  extreme ampl i tudes tha t  are e i ther  constant  or d iverge very s l o w l y  (near ly  

as n ) .  The equations show a lso  that  most products con ta in  one or more rec iprocals  of integers, wh ich  

converge s l o w l y  (nearly as 7 1 -  ). 1 

Convergence in Practice, The Nomogram 

Because of the minor factors d iscussed above, the rate o f  convergence for a g i ven  va lue of R va r ies  

s l i g h t l y  for d i f f e ren t  combinations o f  f i e l d  ond source equations ( I ) .  F o r  example, source types l i s t e d  

in order of decreasing rate of convergence are: F i e l d  

series for / j z  or 13, converge somewhat faster than tha t  for J~o , 'dz ,  but more s l o w l y  than the vector 

potent ia l  series. Mutual inductance series converge faster than those for force, and these i n  turn faster  

than the Bz or 13 series, provided that  the secondary o r ig in  i s  not  d isp laced [as i n  Eqs. (25) and (26)l. 

t h i c k  co i ls ,  so lenoids or d isks,  and f i laments. 

P 
T h e  nomogram o f  F ig .  4 i s  designed t o  afford an est imate of the maximum t runcat ion error t o  be 

expected for a range of va lues of R = r,'rmin, when a centra l  f i e l d  series for R z  or 13 i s  stopped a t  the 

var iab le order n, in the case  of a c o i l  w i t h  moderately th i ck  section. The f i e l d  of a t h i c k  c o i l  a r i ses  

frorii moderately d i f f use  currents, whose mean e f fec t i ve  polar rad ius i s  apprec iab ly  greater than ymin. 

T h i n  so lenoids and a fortiori i so la ted  loops are more  concentrated sources, whose series converge 

somewhat more s lowly .  A rather loose cha in  o f  reosoning i den t i f i es  the error w i t h  R " - 2 r i E / ( n  -2), 

which can b e  read from the nomogram. 

P 

Powers of R can  be read d i r e c t l y  from the r ight-hand scale, on a l i n e  through R arid the exponent 

Fo r  the f i e l d  error, mark the po in t  where t h i s  l i n e  cuts  the index l ine, and read the f rac t i ona l  n - 2. 
error on a l i n e  w i t h  t h i s  mark and [/n. 

The  nornogram predic ts  maximum errors of 4, 30, and 180 par ts  per mi l l ion,  for FZ = 33 and R =0.80, 
0.85, and 0.90. Errors observed i n  p rac t i ce  have been less  than ha l f  of these figures. A x i a l  forces 

between t h i c k  c o i l s  have been computed to  w i t h i n  a few parts per m i l l i o n  at R -0.8, 2 or 3 par ts  in  

10,000 a t  R = 0.90, and better than 4% a t  R == 0.95. T h e  resu l t s  for mutual inductance are better, about 

0.1% a t  R 20.95. 

1 

The ex tens ion  to 34 series terms, fhrougli  the use of the recurrence formulas, has extended the range 

of t he  zonal harmonic series far beyond p rev ious l y  accepted l imi ts .  Chapter 2 w i l l  d i scuss  severa l  

d i f f i c u l t i e s  that  were met i n  ach iev ing  t h i s  resu l t  w i t h  s ing le  p rec i s ion  coding. A rap id l y  increas ing 

number of orders must be added for each small  increment i n  range from t h i s  po in t  on, and it seems hard ly  

worth the e f fo r t  t o  compete w i t h  e l l i p t i c  integral methods i n  the space tha t  l i es  s t i l l  c loser  to  the wind- 

ings. 

Comparison with El l ip t ic  In tegra ls  

For prec ise ca l cu la t i on  of f i e lds  and mutual inductances o f  loops and t h i n  solenoids, w i t h  K no 

greater than 0.4 or 0.5, zonal harmonic ser ies have long been used. They  are a lmost  a lways  i n  microform 

and are frequently not recognized, and i t  i s  par t ly  for t h i s  reason that  the ca l cu la t i on  by e l l i p t i c  in-  

tegrals i s  better known. When R i s  greater than (say)  0.5, a properly chosen series  or  i t e ra t i ve  method 
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us ing  e l l i p t i c  in tegra ls  i s  usua l l y  more economical for mutual inductance or for s i n g l e  f i e l d  points. I n  

fact, the l i m i t  on convergence i s  removed and f i e lds  may be computed a t  every po in t  where the r e s u l t  

has a v a l i d  phys i ca l  meaning i nc lud ing  points  w i t h i n  the windings. 

Never the less the zonal harmonic method has s ign i f i can t  advantages. It reduces computing t ime i n  

some cases by  more than on order of magnitude. It i s  more ve rsa t i l e  in so l v ing  a w ide  range of problems 

tha t  depend on d i f f e ren t i a t i on  or in tegrat ion w i t h  respect  to f i e l d  or source coordinates. Because it 

develops the f i e l d  in  con t inu i t y  about an o r ig in  rather than by spot checks a t  a ser ies of i so la ted  points ,  

i t  permits a d i r e c t  approach t o  cer ta in  problems of f i e l d  design. These advantages depend on the use 

of the ser ies homologies, and on separation of the f i e l d  and source geometries. They  are further d i s -  

cussed i n  the fo l l ow ing  paragraphs. 

Consider the “DCX-2” system, w h i c h  generates a magnetic mirror f i e l d  for thermonuclear exper i -  

ments a t  the Oak Ridge Nat ional  !--nboratory. F i e l d s  in  t h i s  system have been computed by severa l  

methods. The  windings may be d i v ided  i n t o  20 t h i c k  coax ia l  co i l s ,  wh ich  cons t i t u te  80 sources for the 

zonal harmonic method. If n orders are retained, 80 TZ i nd i v idua l  source constants are computed by 

the recurrence formulas and summed in to  n q-constants, for each origin. F o r  th i s  h igh l y  e longated 

system, 10 to  12 or ig ins  are needed to  compute the f i e l d  components to  one or two parts per m i l l i o n  

throughout some 70% of the to ta l  volume enclosed by the windings, and to  better than /lo“. over on 

addi t ional  lo%, w i t h  il = 33. The to ta l  number of constants  to  be computed and stored i n  the f i r s t  stage 

of ana lys i s  i s  just  under 400. They  may, i f  so desired, be punched ou t  on cards for repeated use i n  

f i e l d  ca l cu la t i ons  as, for example, i n  orb i t  tracing. 

1 

All  de ta i l s  of source geometry may now be discarded. To ca lcu la te  [ j Z ,  I?,, .4, or 5B,/d7 from Q, 

a t  each f i e l d  po in t  requi res a f i e l d  ser ies that i s  truncated on the average af ter  fewer than /2 n terms, 

w i th  a further economy i n  the case o f  the l as t  three quant i t ies  s ince the Pi funct ions of Eqs. (11-13) 
are computed on ly  once for a l l .  

1 

E l l i p t i c  integral methods are slower, i n  par t  because more sources are required, bu t  p r i n c i p a l l y  

because eve ry  de ta i l  of source geometry enters af resh in to the f i e l d  ca l cu la t i ons  a t  each new point. 

The concept of an o r ig in  i s  irrelevant. The  f i e l d  at  an o f f -ax i s  po in t  i s  b u i l t  up as a sum of cont r ibu-  

t ions from elenientory c i r cu la r  current f i laments, eoch  o f  w h i c h  depends on the c y l i n d r i c a l  r a d i i  o f  the 

source and of the f i e l d  point, and on the i r  ax ia l  separation. The coordinates are not  separable. 

One formulat ion of the DCX-2 f ie ld ,  us ing  e l l i p t i c  integrals, replaced the 20 c o i l s  by 2154 loop 

sources, or about one per square inch of cross-section. At po in ts  near the windings, but s t i l l  w e l l  

w i t h i n  the range of the zonal harmonic code, the resu l t s  were subject  t o  smal l  errors, presumably be- 

cause the source net  was r e l a t i v e l y  coarse. Never the less the t ime required t o  compute a f i e l d  ne t  of 

several hundreds of po ints  w o s  estimated tn be some 30 to  50 t imes greater than for the zonal harmonic 

code.6 A n  ear l ier  ve rs ion  of the la t ter  has been adapted by Nor th and Parker ( j ) t o  trace i on  orb i ts  

through as many as 100 turns. i n  the DCX-2 f ie ld .  ‘Th is  required some thousands of f i e l d  ca lcu lat ions,  

and would scarce ly  have been pract icable w i t h  the e l l i p t i c  integral code. 

6Tirne e s t i m n t e s  a r e  approximate ,  s i n c e  for t h e s e  t e s t s  a f l e x i b l e  c lock  r o u t i n e  w a s  not a v a i l a b l e ,  
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To reduce the number of sources per coi l ,  i t  i s  desirable t o  integrate the e l l ip t i c  integral loop 

equations w i th  respect t o  the source coordinates. Integration wi th respect to i can be accomplished 

in closed form. Thus two solenoid sources a t  the ends can replace a cyl indr ical  sheet but the ex- 

pressions for mutual inductance and for B z  include an e l l ip t i c  integral of the third kind. Integration 

wi th respect to p has not been achieved, but the need can be circumvented by a Gaussian numerical 

quadrature.7 If an rr-point formula i s  used, each thick co i l  i s  i n  ef fect  replaced by 2n solenoid sources. 

Though the method has greater speed and accuracy than one that assumes a s e l  of uniformly distr ibuted 

loops, it remains comparatively slow. With a system of m coils, 2nm sets of source coordinates s t i l l  

enter the f ie ld  calculat ions a t  each point. 

The f lex ib i l i t y  of the zonal harmonic method in  evaluating derivatives, wi th respect to  linear and 

even to angular coordinatcs, i s  i l lustrated by the poss ib i l i t y  of calculat ing mutual inductances when 

the secondary i s  t i l ted  or when it i s  displaced, either ax ia l l y  or radial ly or both. Again, it required 

only s ix short l ines of Fortran coding to add the calculat ion and readout of d L ~ o ~ d z ,  when the code for 

/ ? p  and '1 had been completed. The three functions are homologous. The gradient d / 3 H / 3 ~  or any of 

several other derivatives presents no greater di f f icul ty.  

Source Constants a s  an Aid in System Des ign  

A harmonic series gives u coherent descript ion of the f ie ld  as a continuum. Since it i s  a power 

series in  the polar radius, a few nonvanishing terms of lowest order dominate the f ie ld  throughout an 

extended region near the  origin, and everywhere outside an enclosing sphere of moderate radius. There- 

fore the magnitudes of individual low-order source constants are immediately relevant to certain design 

problems. The number of orders that must be considered when the source constants are used as an aid 

to system design depends o n  the extent of the region o f  interest, more speci f ical ly on the convergence 

rat io R. As an aid to the use of the source constants for system design, the computer code includes 

an optional print of di<,2/d? and d k n / d p ,  where k stands for either q or p and the rates of change are 

computed for displacements of each of the four boundaries of individual coi ls of the system. 

In the fo l lowing examples i t  w i l l  be assumed that a l l  currents are symmetrical about the midplane, 

which restr icts the source constants to odd orders. There are also important coses of antisymmetry, 

the so-called cusp geometries, wi th a corresponding restr ict ion to even orders. The uniformity of a 

central f ie ld increases w i th  the number of successive constants q 3 ,  q 5 ,  . . . , etc., that are suppressed. 

'Th is  exped ien t  was  used to check  the f i r s t  p i l o t  c a l c u l a t i o n s  made w i t h  the  func t i ons  ci and lii a g a i n s t  

r e s u l t s  obta ined from the  so leno id  func t i ons  P* [ re f  ( I ) ,  p 11021. D o w n i n g  has avo ided  the use  o f ~ l l i p t i c n n t e g r a l s  

altogether, I-le s u b s t i t u t e s  a Gauss ian  quadrature for t he  i n teg ra t i on  in  az imu th  around a c i r c u l a r  loop, and corn- 
and A for a so leno id  sourcea More r e c e n t l y  he b ines  i t  w i t h  a n  a x i a l  i n teg ra t i on  in c losed  form t o  find u 

has addeJ a second Gauss ian  quadrature in r a d i a l  depth, t hus  ex tend ing  the  use o f  h i s  method t o  t h i c k  c o i l s .  T h e  
wr i t e r  has  completed, and e x p e c t s  t o  repor t  on  a program and sub rou t ines  t h a t  compute Nz, Up, and A ,  together  

w i t h  mutual  i nduc tance  and a x i a l  forces, for sys tems  of loops, so lenoids,  and t h i c k  co i ls .  T h i s  code uses a 
Gauss ian  quadrature o f  va r iab le  order in r a d i a l  depth, but  r e l i e s  o the rw ise  on e l l ip t ic  i n teg ra l s  throughout. B o t h  
programs d i scussed  in t h i s  n2 te  c a n  c a l c u l a t e  f i e l d s  a t  p o i n t s  w i t h i n  the  w i n d i n g  space, and t h e  second o n e c a n  
c a l c u l o t e  the force and mutuul  i nduc tance  be tween  two  sec t i ons  of a s ing le  c o i l  t h a t  i s  d i v i d e d  b y  a t ransve rse  
plane. 

ZI 5% 



Homogeneity to  \o";l out  t o  R = 0.54 on the ax i s  and 0.63 i n  the midplane has been achieved by e l i m i -  

nat ing three orders [ref ( I ) ,  p 11071. Several hundred centra l  f i e l d  systems have been computed, us ing  

from two t o  four t h i c k  rectangular co i ls ,  t o  generate strong f i e l d s  i n  wh ich  from one to  three success ive 

odd orders vanish. 

A system for w h i c h  p 3 ,  p 5 ,  . . . , etc., are made to  van ish  generates a remote f i e l d  tha t  departs 

appreciably from tha t  o f  an ideal  d ipo le on l y  a t  short d is tances.  At the same time, the f l u x  through the 

system i n  an arbitrary imposed f i e l d  becomes more near ly  proport ional t o  the a x i a l  component of R a t  

the center of the system, ignor ing f i e l d  inhoinogeneity. B y  suppressing three constants  i n  a large search 

co i l ,  used t o  report the va lue of H a t  a po in t  i n  a nonuniform f ie ld ,  sens i t i v i t y  can be increased severa l  

hundredfold over tha t  of a convent ional  smal l  co i l ,  for the same error. Mot t  has app l i ed  the concept o f  

the mul t ipo le moments i n  a d i f ferent  way. He has s imulated the reinotc f i e l d  of DCX-2 by ad jus t i ng  the 

currents and ax ia l  separations of two iden t i ca l  pa i r s  of p re -ex i s t i ng  c o i l s  t o  match the constants  p ,  

through [ I ,  (SI. 

F ina l l y ,  l e t  it be required to  des ign the primary and secondary systems of a mutual inductor so that 

,AI i s  accurate ly  proport ional t o  cos ;', where ;y i s  the angle of i nc l i na t i on  of the axes. It i s  a l so  des i red 

that  , \ I  be near ly  independent of moderate vector d isp lacements of the secondary, wh ich  necessa r i l y  

means that the force 17 on the d isp laced secondary i s  negl ig ib le .  The  main term o f  Jlo(;.j i s  propor t ional  

t o  I T , [ ] ;  cos y, w i t h  error terms proport ional t o  y 3 p i ,  q 5 / i , ! ,  ... , etc. The  main error term o f  , \ f ( r , o )  for 

a displacement r, 6 i s  proport ional t o  ( j 3 ! b ; r  P 2 ( 8 ) ,  and the ana lys i s  i s  read i l y  extended to  higher orders. 

[See Egs. (23) to  (2h) .]  of the primary ond [I , :  o f  the secondary are q u i t e  i n -  

dependent, w h i l e  the products vanish w i th  either factor, there i s  a considerable la t i tude for des ign even 

when several orders must be suppressed for both types of error. 

2 

Since the constants q 

Units and Notation 

M K S  un i t s  are used i n  a l l  the equations of Chapter 1. The programs as wr i t t en  use the gauss and 

the centimeter for a l l  the i i iuynetic quant i t ies ,  but  w i t h  the opt ion o f  desc r ib ing  the geometry i n  inches 

i f  so desired. These de ta i l s  are not re levant  here, hot  are d i scussed  i n  Chapter 3, under the heads 

o f  Scal ing and Uni ts  and of Nor i i ia l izat ion (data card f i e lds  R X  and 5Z1). 

For i l ivst equations the zonal polar coordinates r ,  0 are appropriate, though for input  and output data, 

f i e ld  compcnents, and de r i va t i ves  the cy l i nd r i ca l  coordinates z, p a r e  more convenient  (F ig .  2) .  The sub- 

scr ip t  j ,  wh ich  belongs to  the j t h  source, usua l l y  serves merely t o  i den t i f y  a coordinate as that  of a 

source rather than of a f i e l d  point. Thus 3 and 0 .  of ten appear as the arguments o f  harmonic func t i ons  

of the polar  angles o f  f i e l d  po in ts  and sources, respect ive ly .  T h e  subscr ip t  may be dropped from any 

variable, and i n  the case of angles the argument also, whenever the omiss ion can cause no confusion. 

In  any case the notat ion P n ( 0 ) ,  / ' :(6),  etc., never s ign i f i es  a po lynoin ia l  i n  0. The  symbol s i s  used 

for sine, and 71 for cosine; IC may have e i ther  sign, but s i s  necessar i ly  pos i t ive.  

1 

Most  lengths are scaled i n  terms of a su i tab ly  chosen u n i t  or reference length r,,. Leng ths  so normal- 

It i s  usual ly  convenient  t o  make the starred source rad i i  somewhat i zed  are i den t i f i ed  by  an aster isk .  
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l ess  than un i t y  in centra l  f i e lds  ( r o  C; 7,,,) and somewhat greater in remote f i e l d s  ( io  > r , , , o x ) .  The  

dominant 7- or p-constants are then s l i g h t l y  l ess  than uni ty .  T h e  f i na l  resu l t s  of the two-stage ca l cu la -  

t i o n  are of course independent of the choice o f  r O ,  but the intermediate magnitudes are sens i t i ve  t o  it. 

A n  en t i re l y  d i s t i n c t  use of the aster isk  i s  t o  d i s t i ngu ish  three se ts  o f  funct ions of polar angles tha t  

oppear i n  the f i e l d  and source equat ions as they are l i s t e d  below, rep lac ing  P,’ and the source funct ions 

1 1 ~ ~  and \v,! of ( I )  and (2): 

(4) 

P” z= 5 2 1 ’ f : / n  , 

w; = k i y ( 7 L  + 2) . 

ri;: :z ( j n / ( t z  - 1) , 

The  modi f ied funct ions are preferred for the computer program, for reasons that are expla ined i n  

Chapter 2. The i r  magnitudes never exceed unity. 

T h e  equations assume tha t  the same current i f l o w s  i n  each turn of the system. Thus  the s t rength 

of an  ideal  c i r cu la r  current f i lament  i s  Ni ,  where the :Y turns co inc ide and I?‘ i s  n o t  in general on integer. 

The strength of  a t h i n  so lenoid source i s  the sur face current dens i t y  N’i, where ,\‘’ is the turn count  

per meter. The  strength o f  a t h i c k  c o i l  source i s  the volume current  densi ty  V ” i ,  where : \ i ” is  the 

winding dens i t y  i n  turns/meter2. Since the equat ions assume idea l i zed  uniform current sheets or volume 

currents, the d imensions of h e l i c a l  or t h i c k  c y l i n d r i c a l  wind ings inc lude the i nsu la t i on  of  the outer  

turns. Every source must  be given i t s  proper sign, as p rev ious l y  def ined and CIS shown i n  F ig .  2. F o r  

a more complete l i s t  of work ing equat ions that cannot  be inc luded i n  the fo l l ow ing  sections, and for 

der ivat ions,  ( I )  and (2) may be consulted. 

Central  F ie ld  Series. The Constants y7, 

The  central f i e l d  i s  def ined as  a source-free a x i a l l y  symmetric l ap lac ion  f i e l d  t h a t  i s  bounded b y  

a sphere w i th  center a t  t he  origin. I t s  scalar potent ia l  can a lways  be expanded i n  the form 

’v 

where the 1 ’ s  are constants  tha t  depend on the generating 

express ion must reduce on  the  a x i s  to  the Tay lo r  ser ies 

system and on the u n i t s  employed. Th is  

i n  wh ich  the  zero subscr ip t  ind icates that I t  i s  con- 

venient  t o  rep lace the 4 ‘ s  of Eq. (5) b y  a se t  o f  d imension less constants  y,, so de f i ned  tha t  each i s  

proport ional to the a x i a l  de r i va t i ve  of  corresponding order, w i t h  cer ta in  arb i t rary  factors :  

and i t s  de r i va t i ves  are evaluated a t  the origin. 
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On the ax is ,  T ~ / ’ ~ ( O )  o f  Eq. (5) reduces to zn. When the l a s t  three equations are combined, I ’ ~  i s  

set  equal t o  0, and r+ i s  wr i t ten for the d imensionless r a t i o  T / T ~ ,  t h e w  resu l t s  

The meaning and use of the constants  

already been discussed. 

determined if a l l  the ax ia l  de r i va t i ves  c‘n\.O’/d=n are known a t  the or ig in .  

source geometry i s  necessary. 

Froni Eqs. (8) and (2), 

and the reasons for c a l l i n g  them “source constants,” have 

Equat ions (7) and (8) express the f a c t  that an arb i t rary  centra l  f i e l d  i s  f u l l y  

No d i r e c t  reference t o  the 

This reduces when : 1 to  

B y  se t t i ng  m = 2 ,  it i s  easy t o  f ind the gradient d R Z / d z .  

Froli i Eq. (8) and a known re la t i on  between the scalar  and vector potentials, 

The convent ional  notat ion for . s - ’Pz would be ( l / n )  s i n  

(11) w i t h  respect  t o  z y ie ld :  

[Eq.  (4)1. Success ive d i f f e ren t i a t i ons  of 

Equat ion (12) f o l l ows  also from Eqs. (8) and (3). 
d i f f i c u l t y  for higher der ivat ives,  and for de r i va t i ves  w i t h  respect  t o  polar coordinates. 

Series s im i la r  t o  those l i s ted  can be der ived w i thou t  

R ~ ~ T I Q ~ C  Field Series. The Constants  p, 

The remote f i e l d  ser ies ore der ived i n  analogous manner. The current ly  completed 9090 program 

computes for the remote f i e l d  on l y  the source constants  p, ,  b u t  it would be easy to  inc lude f i e l d  ca l cu la -  

t ions by us ing  the equations below. It i s  w e l l  known that  the remote scalar  potent ia l  can be expanded 

in  the form 



where the 11’s a r e  cons tan ts .  T h e y  a re  often regarded a s  equivalent  to  a s e t  of ideal multipoles a t  the 

origin; /lo is a magnetic pole, p ,  a dipole, and s o  on. As before, it is convenient  to replace the (1’s by 

a s e t  of dimensionless  cons tan ts ,  arbitrarily defined. In th i s  c a s e ,  

p, ~ ( n  + 1)pn/2ir x 1 0 - ~ i ~ ; + l  . (15) 

The p o  is retained for generality. It appears  for example i n  the  f i rs t  term of a mutual inductance series 

when, to acce lera te  convergence, the contributions from the  two e n d  planes of a s ingle  secondary so- 

lenoid or coil are referred to separa te  origins, each in i t s  own plane. In passing,  it should be noted 

that, when computing external fields c l o s e  to the  windings of a long system, b e s t  convergence is 

achieved by calculat ing the  f ie ld  of each coil separately,  using a s e t  of p-constants  referred t o  an origin 

a t  the center  of the  coil. The zero order d o e s  not appear  un less  two origins a r e  used for the f ie ld  o f  a 

s ingle  coil, for example, one  in each endplane. 

The remote f ie ld  equat ions,  analogous to  Eqs. (8-13) are: 

Flux. Mutual Inductance. Force and Torque 

The flux of a central field through a coaxial  c i rc le  is 27rp4, where p is the radius  of the  circle ,  and 

A can  be found from Eq. (11). The flux that  l i n k s  a complete axial ly  symmetric sys tem can  be ca lcu la ted  

from the external  coeff ic ients  / I , ~  of the  sys tem and the axial  der ivat ives  3 7 2 V 0 / ~ z n ,  evaluated a t  the 

origin, of any external field in which it may be placed. All sources  of the  flux m u s t  be ‘‘remote” a s  

previously de f ined ,  but the external  f i e ld  is otherwise arbitrary and may be devoid of symmetry. It is 

of course  irrelevant whether the coil is energized. To derive Eq. (22), equate  the energy of a n  arbitrary 

remote pole, a t  a point r, 1-3 in the potential f ie ld  (16) of the  current system, to  the  energy of t h e  system 
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i n  the f i e l d  of the pole. The der ivat ives of  the po le  f i e l d  are found from (1). The equation reduces 

to  

which impl ies that each $-constant responds, a s  it were by resonance, t o  a s ing le  f i e l d  der ivat ive.  The 

pr inc ip le  has been appl ied t o  the des ign of large search c o i l s  which report the f ie ld ,  f ie ld  gradient, etc., 

a t  a s ing le po int  of a n  inhomogeneous f ie ld  ( 2 ,  7). 

The mutual inductance between two complete a x i a l l y  symmetric systems can be e f f i c i e n t l y  computed 

i f  the axes of  the two systems are co inc ident  or paral lel,  or, i f  they in tersect  i n  a common origin, as i n  

Fig. 3. The mutual inductance between coaxia l  systems fo l lows a t  once from Eq. (22), when the p’s 

belong t o  the inner or secondary system, wh i le  the der ivat ives dnV,/3zn depend only  on the 7’s of the 

outer primary system, as g iven by Eq. (7). When the express ion i s  general ized t o  inc lude the case i n  

which the axes intersect in the origin, a t  angle y, i t  becoii ies ( 3 )  

The zero order tern1 reduces t o  p i q o ,  s ince the n i n  the denominator i s  to  be dropped. T h i s  term i s  

omitted except i n  the spec ia l  case d iscussed i n  the next  paragraph. The primed quant i t ies  be long to  

the secondary, and the uni t  for :\I i s  the henry. If the  axes coincide, omit P,(y). For the torque about 

a transverse a x i s  through the origin, change P n  t o  s p i ,  and mul t ip ly  by zi’. The equation assumes 

r0 = T ; ;  i f  i n  a specia l  case the constants have been ca lcu la ted  w i th  d i f ferent  reference r a d i i  for primary 

nnd secondary, inser t  the factor before P n .  

Equut ion (23) assumes that  an or ig in  can be found such that the secondary l ies  who l ly  w i t h i n  the 

central f i e l d  of the primary, a s  i n  F ig .  3. Sometimes t h i s  requirement con be par t ia l l y  relaxed by adding 

together components of 12.1  computed from two or more origins, usua l ly  p laced in  the end p lanes of  the 

secondary. For  each origin, only the secondary sources in i t s  own plane ore then required t o  l i e  in the 

centra l  f i e l d  of the primary. The zero order must be retained when, and only  when, mul t ip le  or ig ins are 

used, and the summation must inc lude every combination of  a primary and a secondary source. Again, 

i t  i s  always permiss ib le  t o  interchange the complete se t  o f  z-coordinates of any primary element (loop, 

solenoid, or co i l )  w i th  those of  a secondary element, when computing the mutual inductance between the 

two. T h i s  dev ice often extends the range of convergence. 

When the values of  q,  and p, for loop sources are subst i tu ted from Eq. (32) and Eq. (37) in to  (23), 

the latter reduces t o  
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This w i th  minor changes i n  notat ion i s  Maxwell’s formula for the mutual inductance between two loops 

whose axes intersect (6).* Equation (23) i s  a versati le generalization o f  Maxwell ’s formula, from which, 

in fact, i t  can be derived by a superposition pr inciple based on the concept of source constants. For 

the mutual inductance between two complete systems must be calculable as a scalar summation over a l l  

combinations o f  the elementary circular filament pairs. The angle y i s  common to  a l l  such pairs, wh i le  

each product /r;y7z of the source constants for the complete systems i s  just the sca!ar 5um of a l l  ele- 

mentary products d p n  $4,. 

When the secondary system is  arbitrari ly displaced without rotation, the mutual inductance M and 

the axial  force pZ on the secondary are laplacian scalar functions of the coordinates r, Oof the dis- 

placed secondary origin. I t  i s  therefore possible to  f ind expressions for ,VI(?, 0)  and for i t s  derivatives by 

reasoning that paral lels the derivation of Eqs.  (8) through (13). Since only the case o f  paral lel axes w i l l  

be considered here, M o  i s  given by Eq. (23) without P,(y). On the r ight  side, 4, alone i s  a function of r 

and 0. Substitute ‘$1 for I/ i n  Eqs. (5) and ( 6 ) ,  but omit Eq. (7) and evaluate the derivatives of v , ~  wi th  

the aid of Eq. (28). The resul t  i s  

This equation reduces t o  (23) when ill - 0 or r - 0, and for moderate displacements, i t  suff ices to 

retain the f i rs t  few orders only of ut. Drop the zero order of n unless mult ip le origins are used. 

Forces and torques depend on the derivatives of ill, with a factor ii: The axial  and radial forces 

are related to iZ1 as 1 3 ~  and f $ p  of Eqs. (10) and (12) are to 1’ of Eq.  (8): 

For F o ( r ,  O ) ,  m > 0, and P 1 1 2 ( 0 )  must be changed to r -  m/’(rn t l ) Is-’Pz or [ - l / ( ~ /  7 1 ) I . 5 1 ’ i L .  When the 

primary and secondary origins coincide f ’ ,  -- 0 and the axial  force reduces to 

The un i t  of force i n  these equations i s  the newton. 

mult iple origins are used. 

As before, the zero order of n i s  omitted unless 

The Source Equations. Calculat ion of 4 ,  and [)7z 

In th is section a l l  equations for source constants apply to single posi t ive sources, but the subscript 

The source j appears only on the coordinates, to avoid possible confusion w i th  f ie ld coordinates. 

8The redundancy and lack  of correlat ion that were discussed i n  footnote 4 may be i l lus t ra ted  by the microforms 
for special  cases of Eq. (23) to  be found i n  any standard co l lec t ion  of working formulas, Counting only the cornbi- 
nat ion of two th in  solenoids and of loop and solenoid there are near ly a dozen, including formulas considered t o  
be d is t inc t  and at t r ibuted t o  Lorenz, Gray, Searle and Airey, Rosa, Roiti, Grover, Clem, Dwight, Snow, and others. 
Except for Snow’s formula, a l l  have sets of polynomials i n  the s ine or cotangent that do not seem to have been 
recognized as harmonics, and even the except ion has been s imi la r ly  expanded for computing. 
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constants of the f ie ld equations are surnmations, wi th due regard to algebraic sign, over a l l  sources. 

The zero order qo i s  rarely used. It appears only i n  mutual inductance and force formulas, and then only 

when mult iple origins are used, as explained in the last section. 

Two general dif ferential relat ions may be derived from Eqs. (7) and (15) respectively. They hold 

for an elementary current loop or for a complete ax ia l l y  symmetric system, and they have been used in  

the computer code to calculate rates of change of the source constants when a single source plane or 

a complete co i l  i s  displaced along the axis: 

Two further relat ions are physical ly obvious since a small axial  increment to a thin solenoid i s  just 

a filament, whi le a radial increment to a thick c o i l  i s  a th in solenoid. I f  F, S, and C identi fy the source 

as filament, th in solenoid, or th ick co i l  respectively, whi le k n  i s  used in  place of q ,  or p ,  since the 

equations are equally va l id  for either set, 

r\'dk,(.~)/dz = X ' r 0  k n ( p )  , 

N 'dkn (  C ) /dp  = i\' " r o  k n ( S )  . 
(30)  

(31 1 

Equation (31) i s  used to calculate the effect on the source constants of displacing a cyl indr ical  co i l  

boundary radial ly. 

The elementary q-constants are those of a filamentary circular current element Ni a t  r ,  0, whose mag- 

The axial  derivatives of th is netic potential on the oxis in the central f ie ld i s  27i x 10-7!Vi(l - u . ) .  

potential can be found from Eq. ( 3 ) ,  and when they are substituted into Eq. (7) the result i s  
I 

q o ( F )  = - N u .  ; (n > 0) , q, (F)  = N ~ T *  - n t ' y i ,  . (32)  
I 7 

This basic resul t  can be integrated with respect to z to f ind q,(.y) for a thin solenoid. Introduction of 

the l imi ts of integration suggests at once that the ideal ized hel ix can he replaced by a pair of f i c t i t ious  

equal sources, each of strength !V'i but of opposite sign, coinciding w i th  the circular edges of the 

equivalent current sheet. 
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When Eqs.  (33) are integrated i n  radial depth, that i s  w i th  respect to  p, the resul t  for a th ick co i l  i s  

four equivalent sources, each of strength N " i ,  with signs that alternate round the perimeter, beginning 

w i th  + at the outer r ight  corner: 9 

For hand computation, the function /(01) can he read from a table of s inh - '  x. When computing it from 

the second logarithmic form, omit In 7 which vanishes in  summation for each end plane. 

T o  derive Eqs. (33) without an integration, substi tute Eq. (28) into Eq. (30), to y ie ld  
-1' 

n N F . V 1 2 + , ( C )  - - V ; T O q n ( F )  I (35) 

and then replace q l l ( F )  by the r ight  side of Eq. (32). Th is  method of arr iving at Eqs. (33) suggests that 

the y-constants of a plane annular or d i s k  winding (D) can be found a t  once by  treating it as a th in s l i ce  

of a th ick co i l  (0: 

'Y;,'rOqr,(D) - -nfJ'; q , J d  (36)  

With the aid of th is equation the source functions [/: can be used to calculate the y-constants of d isk  

co i l s  (2). 

The external source constants p, can be developed by c losely similar reasoning. Only the resul ts 

w i l l  be given here. All formulas include the zero order. 

9 T h e  func t i ons  (1  f i r s t  appeared i n  re f  ( l ) ,  and lVn in r e f  (2). [An error occu rs  in Eq. (54)  of r e f  ( I ) ;  every th ing  

f o l l o w i n g  u-' shouldnbe enc losed  i n  b r a c k e t s d  F o r  tab les  o f  t hese  func t i ons  see footnote 10. The mod i f i ed  func -  
t ions U *  and !Vi o f  E g .  (4), as used  here, are c a l c u l a t e d  f rom Eqs.  (44) and (45). See o l s o  Eq.  (46). 
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Much t ime can be saved i n  inanual ca l cu la t i ons  i f  i t  i s  poss ib le  to  p lace the or ig in  i n  a p lane of 

symmetry or antisymmetry o f  the c o i l  system, or a l t e rna t i ve l y  i n  the plone o f  the f i e l d  point, thereby 

e l im ina t i ng  e i ther  odd or even terms of the complete harmonic series. Many types of problems, espec ia l l y  

design problems, can be so l ved  completely i n  t h i s  way. T h e  7090 prograin as wr i t t en  prov ides th i s  

economy automat ica l ly  when i t  i s  poss ib le ,  i n  the sect ions tha t  compute y, and !in. But  t h i s  ref inement 

was omitted from the program for the f i e ld  equations, wh ich  was wr i t t en  alter exper ience had shown the 

extreme speed of the machine. 

The Recurrence Formulas 

Four  recurrence formulas for the harmonic funct ions o f  the angular coordinate of a source or of a 

f i e l d  po in t  are used i n  t h i s  work [Eq. (42) i s  g iven for reference only l .  

P , = l ,  P ,  - 7 f ,  

P* - -  0, P* = s 2 ,  0 -  1 

Proofs  are omitted. Although the f i r s t  two have been w e l l  known i n  theory for more than a century, 

the recurrence re la t ions do no t  appear t o  have been used to ca l cu la te  the magnetic propert ies of a x i a l l y  

symmetric systems un t i l  1950. T h e  f i r s t  two formulas are given i n  the standard form. The  las t  three 

conform c lose ly  to  the  arrangement that  was ac tua l l y  used for f i x e d  p o i n t  machine coding. T h e  reason 

for these specia l  forms i s  d iscussed i n  Chapter 2. T h e  recurrence formulas y i e l d  a t  the f i r s t  appl icat ion:  

P 2  = 1/2(3"2 - I ) ,  P ;  = 371, 1'; = 3+2, ' 1 ;  - V2(1 - s3)/71, It'; z +3 .  

The fo l l ow ing  equation i s  exac t  for a l l  orders i n  the p lane of the or ig in  ( u  = 0), and i s  a good ap- 

proximation a t  h igh orders for a l l  angles: 

( n  i> 1) , P i t 2  2 2 SL',. (46) 
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CHAPTER 2. MQDlFlCATlONS FOR USE WITH COMPUTERS 

The theory of Chapter 1 has been developed, 
and the equations have been written, i n  forms 
thut need l i t t le  change for practical use, w i th  
either a desk calctllator or a programmed com- 
puter.'* They have proved to  be highly ef f ic ient  
in solving a wide range of field, force, and mutual 
inductance problems, including design problems. 

It i s  the purpose of th is section t o  discuss 
certain points of numerical analysis, including the 
avoidance of d i f f i cu l t ies  that are capable of 
causing large rounding errors and the methods 
that were used to test  the results. The proce- 
dures and numerical checks that are described 
here have proved useful w i th  several computers, 
but the discussion refers speci f ical ly to  the 
program as writ ten for the IBM 7090. In the f ina l  
section, th is exist ing code i s  used to  i l lustrate 
some general features that might be found in any 
versati  le zonal  harmonic computer program, but 
the detai ls of the 7090 code are deferred for 
consideration in  Chapter 3. 

Fixed and Float ing Point  

A l l  parts of the working program use single 
precision routines. The maior portion i s  con- 
veniently writ ten in  the Fortran interpretive lan- 
guage, which employs f loating point arithmetic 
wi th a precision of 27 bits or about 8.1 decimal 
digits. It i s  necessary, however, when the highest 
precision i s  demanded, t o  use f ixed point wi th 
i t s  ab i l i t y  to  retuin 35 b i t s  or 10.5 decimal digits, 
t o  compute both harmonic and logarithmic func- 
tions of the polar angles. Also, f loat ing point 
conversion of non-integra I input coordinates of 
the co i l  system from decimal to  binary form, prior 
to  their entry into the f i xed  paint section, i s  
avoided by so scal ing the coordinates that they 
are expressed as  integers. The f ixed point section 
i s  coded in  the FAP system (essential ly the direct 

machine language) and i t  includes the square 
root, the logarithm (for and q 2 ) ,  and s i x  re- 
currence routines based on Eqs. (41) to (45). 

and N'; of Eq. 
(4) were defined expressly for f ixed point machine 
calculat ion, s ince they remain between l imits + 1 
and -1 for a l l  orders and a l l  palar angles. But t o  
avoid overflow, the recurrence formulas also m u s t  
be recast into forms such that no intermediate 
product or sum exceeds unity. Equations (43) to 
(45) satisfy th is condition, but (41) fa i l s  to  com- 
pute P 2  since 3/2u2 can overflow. Th is  equation 
must be divided through by n + 1 and then re- 
arranged l ike (431, wi th three terms on the r ight  
side, the f i rst  and last containing u!',. The 
reciprocals of integers (l/n) are computed once 
for a l l  and stored, a t  the start of the f i rst  pass 
through the f ixed point subroutine. 

The modified functions f':, 

Calculation by Reverse Recurrence (u  < 0.5) 

Equation (44) for U : ,  alone among the recur- 
rence formulas, presents a serious problem in  
the progressive loss of s igni f icant digits, i f  
the argument 71 i s  smal l . ' '  The repeated mult i-  
pl icat ions by l /u amplify the early rounding errors 
intolerably. The normal use of th is equation i s  
therefore restr icted t o  arguments greater than 
0.5. For smaller arguments, (1; of highest re- 
quired order i s  f i rst  computed from a power series 
in  2i1. The functions of lower order are then found 
by successive iterations, using Eq. (44) in re- 
verse, unt i l  (': i s  reached, The necessary values 
of Pi are f i rst  of a l l  computed in  the usual way 
from (43). 

Eight options are provided, whose maximum 
order ranges in steps of 4 from 5 t o  33. Table 1 
l i s ts  coeff icients of the powers of 2 u  for these 
series. The entire table i s  stored i n  the f ixed 
point section of the IBM 7090 code, and the 
l imi t ing order for any problem is selected by a 
data card entry. As the order advances, there i s  
a progressive loss of signif icant digi ts in the 
series sum, from the mutual cancel lat ion of + and 
- terms. The magnitudes of the coefficients in 

"For hand calculat ions the u e of alternate- 
currencc f o r m u l a s  i s  c o n v e n i e n t l R e f  (I), p 1095Y~;:L 
functions U ,  are tabulated in (2) through n = 17, 8 to 

5 decimals, at  interval 0.001 of the cosine argument, 
with second differences. There 15 a l s o  a brief  p i lo t  
tab le  of MTrZ through n - 17, 10 decimals, a t  interval 
0.1. 

- -____ ~ 

"Reference ( I )  p 1102 and  T a b l e  VII ,  and (2) p 7.  



the work ing series requi re c r i t i c a l  adjustment to  
r i i i i i imize th i s  l o s s  w h i l e  a t  the same t ime  avoid-  
i ng  overf lows. Each coe f f i c i en t  conta ins a factor 
220 l O - P ,  w i t h  p separately ad justed for each 
column. T h e  ser ies sum must then b e  d i v ided  by 
(n - 1)2” 10-p s ince the coe f f i c i en ts  were ac- 
tua l l y  computed f o i  f i n  = (n - 1)L;:. The  d i v i so r  
i s  l i s t e d  a t  the foot  o f  each column, together w i t h  
the sum o f  coe f f i c i en ts  (dividend) and the  quo- 
t ient .  T h e  quotient i s  the va lue of l‘z(0.5) s ince  
for t h i s  argument all powers of 2 1 ~  are unity. Fo r  
t h i s  l im i t i ng  va lue the prec is ion is least, and  the 
progressive loss w i t h  advancing order i s  meas- 
ured by the dec l i n ing  prec is ion of the sums of 
success ive columns. 

Der i va t i on  of the Coefficients 

- 
l o  compute the data for Tab le  ca l cu la t i ons  

based on E q s .  (42) and (44) were carr ied through 
the 43rd order, re ta in ing  22 decimal  d ig i ts ,  In 
p lace of (44), the corresponding formula i n  [in 
was used, nnd  both t h i s  and (42) were rewr i t ten 
w i th  II’ = 27) as the var iab le The recurrence for- 
mulas were repeatedly appl ied, no t  t o  the suc- 
cess i ve  orders of funct ions of a spsc i f i c  argument, 
but t o  the  coe f f i c i en ts  of the corresponding 40- 
term ser ies expansions for the funct ions of the 
general argument. The  i n i t i a l  funct ions were 
s3P;(71)  = ( 1  - 1 / 4 ~ ’ ) ~ ’ ~ ,  expanded t o  40 terms 
by the b inomia l  theorem, and l i2=  1, both mul- 
t i p l i e d  by 2” x lo -* .  At each step, coe f f i c i en ts  
of l i k e  powers were added before proceeding. 
The ind i v idua l  coe f f i c i en ts  and the series t o t a l s  
were stored and carr ied through t o  the h ighest  
order. ,4t e igh t  se lected points  i n  the i terat ion, 
contents of the ent i re  work ing storage b lock  were 
sh i f t ed  l e f t  one p lace t o  avo id  loss of poss ib l y  
s ign i f i can t  f igures, w h i l e  t o  est imate the f i n a l  
prec is ion the complete set  of ca l cu la t i ons  was 
repeated w i t h  a sh i f t ed  input  decimal point. 

The  coef f ic ients  and ser ies s i m s  computed by 
th is  method are bel ieved to be re l i ab le  t o  ten 
dec imal  d i g i t s  even a t  the 43rd order. When used 
w i t h  the reverse recurrence routine, the coe f f i -  

1 2 T h i s  par t  of t h e  work w a s  c a r r i e d  out  on UNIVAC, 
using t h e  d i r e c t  m a c h i n e  language and a d o u b l e  pre- 
c i s i o n  f i x e d - d e c i m a l  rout ine .  T h e  author i s  indebted t o  
t h e  comput ing c e n t e r  of t h e  U n i v e r s i t y  of  P e n n s y l v a n i a  
for a c c e s s  t o  UNIVAC, w h i l e  t h e  c o s t  of  much ine  t i m e  
w a s  met i n  p a r t  by  t h e  N a t i o n a l  S c i e n c e  Foundat ion.  

c ien ts  as tabulated should permit a work ing 
prec is ion o f  four s ign i f i can t  f igures i n  the least  
favorable casc, ii = 0.5 and ii‘ = 33, tak ing  account  
of rounding errors. The error i n  the series for 
h ighest  order (33, 29, 25, etc.) i s  attenuated i n  
the course o f  the i terat ions by success i ve  mul- 
t i p l i ca t i ons  by i i ,  f o l l owed  by the addi t ion of 
terms compotcd f rom (43). Since these added 
terms have full 10-decimal prec is ion a t  the lowest  
orders, and never lose as many as two s ign i f i can t  
d ig i t s  through cumulat ive rounding errors, t he  
overa l l  r a te  of a t tenuat ion of error i s  more than 
adequate t o  ensure the f u l l  usuble prec is ion a t  
a l l  lower orders. I h e  funct ions ( ’ z  are a lways  
less than unity, a n d  the i r  magnitudes decrease 
s low ly  w i t h  increas ing T I .  They enter the ex- 
press ion for the source constants 4 ,  with  t he  

decreasing factor  l /(n - 2), and are f i n a l l y  mul- 
t i p l i e d  i n  the  f i e l d  ser ies by ascending powers 
of t he  r a t i o  R o f  polar rad i i ,  upon wh ich  the  ra te  
of convergence o f  the series p r i n c i p a l l y  depends. 
When the series i s  truncated, even one s ign i f i can t  
f igure usual ly  su f f i ces  for t hc  h ighest  order re- 
tained. These considerat ions would j us t i f y  car-  
r y i n g  the method of reversc recurrence a t  least  
t o  12 = 41, us ing s ing le  p rec i s ion  w i th  a 10 or 
11 d i g i t  machine and  res t r i c t i ng  the range, a s  

here, t o  71 - 0.5. 

- 

Limitat ion ora Forward Recurrence 

T h e  cumulat ive rounding errors in computing 4 ,  
for t h i c k  c o i l  sources are more serious when Eq. 
(44) i s  used iii the forward direct ion. When 7/ = 
0.5, they may approach 4 or 5 Fcrcent a t  n .= 33, 
and they would be bare ly  to lerable a t  n = 37. To 
equal ize the maximum errors of forward and back- 
ward iteration, the d i rec t  range of Eq. (44) might  
be ended a t  (say) 0.45, w h i l e  t o  cover the vacated 
range Tab le  1 would be recalcu lated w i f h  2.2571 
as var iab le in p lace of 271, In t h i s  way the  maxi -  
mum order cou ld  he ra ised t o  41 or even t o  4.5, 
Rut the considerable labor i s  d i f f i c u l t  t o  j us t i f y  
in v iew  o f  the rather l im i ted  increment t o  the  
p rac t i ca l  work ing range of the convergence r a t i o  
R .  The  probable extens ion can be roughly iudged 
from the noinoyrarn (F ig ,  4). 

No te  tha t  Eqs.  (41) slid (43), wh ich  su f f i ce  for 
loops and  t h i n  solenoids, and even (45) for the  
external  constants  of t h i c k  co i l s ,  permi t  good 
prec is ion c r t  much higher orders. I t  i s  in  fac t  
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Table  1 .  Coer f i c i ent s  for Series Expansion of 2" U: Y 10-f' in Powers  of 2 u t  

Power q 
1 -.29&91 200000 
3 + 13926 400000 
5 - 960 000000 
7 - 42 2M000 
c1' - 4 100000 

1 1  - 525000 
13 - 77730 
15 - 12675 
17 - 2206 
19 - 402 
21 - 94 

135 

31 
33 

"4 
-.07031 630000 

- 12785 472000 

- 128 559+38 

+ 20772 864000 

+ 2694 672000 

- 4 580187 - 387967 
I 451 89 ... 6258 - 767 

34 

. 00338 6osooo 

161 

+. 01 51 6 807798 
+.i8081 7580 

9 5  -. 00&3 590303 
c 1115 708114 - 7601 837348 
+ 2 ~ 3 1  836938 - &Z@3 727912 + 46266 197k92 - 32715 132626 
+ 15395 9375% - 4u31 023151 
+ 307 053850 - 123 161362 
+ 8 017799 -. 153395 - 261 7 - 130 

.00025 165m4 
+.ooooi 074084. 
+.04263 0246 

"3 
-.01691 239600 
+ 9241 689600 - 14458 5NlOO 
i 9572 806100 - 2970 278695 + 402 09236 - 14 066006 - 338636 - 28336 - 2874 - 3.56 

59 

.01258 Z7l2OO 
+. 00081 945273 

I 

+.06512 4252 

Uh9 -. 00006 13501 9 + 193 0145i8 

+ 7907 673052 - 19579 857493 
+ 30399 44-5643 

+ 22422 386217 

- 1807 265939 

- 31431 361636 

- 11238 005508 
+ 3970 901413 - 977 276878 + 162 02m92 - 16 855453 + 9351 81 - 1 5T52 - 

.00002 93601 3 
-.OOOOO 40350.2 
-.I3743 2099 

77 -. 0 2 2 5  ~ 0 0 0 0  
+ 26157 560000 

- 68093 850356 
+ 25597 L160S39 
- 5373 5902.38 + 535 152364 
- 14 6rj4135 
I 34221~5 - 20637 - 1831 - 232 
.01677 721 600 -. 00303 231 170 -. 18372 0094 

- 76223 1$1JjO 
+ 99b9  709563 

"3 -. 00000 75067 7 
+ 30 996056 
- 381 662553 + 2206 079235 

+ 15186 289059 - 21w 409483 
+ 21321 622670 

+ 8049 :?33113 

+ 87d 47y11 

- 7270 013131; 

- 15303 970292 

- 3111 51596j 

2 177 7114387 
+ 24 78W21 - 2 2lO&?I + 1 0i5.361 

1939 

.00000 335544 

- 

+.00000 030907 
+.09211 1223 

?The d ig i t s  are properly a l igned ,  but c o e f f i c i e n t s  after t h e  f irst  o r d e r  are multipl ied by l o 1 ' ,  that is, the d e c i m a l  
point and leading z e r o s  are  s u p p r e s s e d .  

entirely pract ical  t o  use higher orders i f  i t  i s  
necessary to  work somewhat closer t o  CI th in 
winding. Analysis of the integer factors in  the 
source Eqs. (32-34) and (37-39) for coil, so- 
lenoid, and f i lament sources suggests that the 
rate of convergence of the f i e ld  series should 
decrease appreciably i n  the order named. The 
inference i s  confirmed by experience. 

Monitoring the Convergence 

Computing time can be saved by truncating the 
f ie ld  series when a convergence test i s  satisfied, 

but u simple test  of magnitude cannot be safely 
applied. (See the discussion of convergence in  
Chapter 1.) Each series term is the product of a 
source harmonic and a f ie ld  harmonic. The prod- 
ucts osci l late wi th in predictable l imi ts whose 
smoothed rate of decrease depends mainly on the 
convergence ra t io  R .  The short-range variat ion 
of signs and magnitudes, though amenable to  
analysis, may conform to no very obvious pattern. 
Two or three successive near-zero terms may be 
followed by others of appreciable magnitude, even 
though there i s  no r i sk  of eventual divergence. 

For this reason a running sum of the absolute 
magnitudes of the last s ix  terms i s  carried, and 
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the f i e l d  ser ies i s  stopped when th i s  sum f a l l s  
be low some va lue  that  i s  preset on a data card. 
The running suii i and the order a t  wh ich  t runcat ion 
occurs are printed. There i s  a l s o  an opt ional  
pr in t  of t he  i n i t i a l  t e rns ,  or of the f i n a l  terms, or 
both. A study o f  the f i n a l  terms supports the 
assumption tha t  the running sum affords a con- 
servat ive est imate o f  the maximum t runcat ion 
error. 

The Logar i thmic Funct ions 

The lowest-order source consturi ts q 1  and q ,  
for t h i ck -co i l  sources con ta in  logarithmic factors. 
( E q .  34.) Where a c o i l  i s  far from the o r ig in  and 
the l inear  dimensions of i t s  sec t i on  are coni- 
parat ive ly  small ,  t w o  or more s ign i f i can t  f igures 
can be l os t  i n  the summation of + and -. q-con- 
stants of neor ly  equal  magnitudes over i t s  four 
sources. Logar i thms were a t  f i r s t  computed i n  
the For t ran sec t i on  of the 7090 program by the 
standard routine, wh ich  i s  subject  to  errors of 
3 in the 8th s ign i f i can t  decimal d ig i t .  I n i t i a l  
convers ion of i npu t  data from decimal  t o  b inary 
may introduce errors of one u n i t  i n  the same 
place. Unexpectedly  large d iscrepancies a?- 
peared on comparing sets  of values of R Z  com- 
puted for a f i x e d  ne t  of f i e l d  po ints  but from two 
or more origins, espec ia l l y  when f i e l d  contr i -  
but ions from d i s tan t  c o i l s  were s ign i f icant .  Errors 
were found, o f  the order of 5 parts per mi l l ion,  
thiit were nearly constant  over the  whole net  for 
a g iven origin, but  were random from o r i g i n  t o  
origin. The d i f f i c u l t y  was t raced t o  the f i r s t  
term of t h e  f i e l d  series, that i s  t o  q l .  

The  d iscrepancies were reduced t o  one or two 
parts i n  l o 7  by recoding parts of t he  program 
in f i x e d  po in t  and  incorporat ing them i n t o  the  
FAP subroutine, w h i c h  resul ted i n  a ga in  o f  
nearly 8 s ign i f i can t  h i ts .  The  a l tered code in- 
troduces an  arb i t rary  sca l i ng  factor  RS (usual ly  
a power of 10) by wh ich  a l l  l inear coordinates o f  
ci system are rnu l t ip l ied so tha t  they appear as  
integers on the data cards. In  the FAP section, 

the source coordinates z j ,  p .  of each source enter 
a t  once a rout ine tha t  preserves only the i r  rat io, 
w h i l e  conver t ing the larger quant i ty  t o  a f rac t i on  
w i t h  35 s ign i f i can t  b i ts ,  that  is, one whose may- 
n i tude i s  a t  least  0.5 bu t  less than 1.0. T h e  
normal iz ing factor i s  discarded. The r a t i o  i s  
used t o  compute the s ine and cos ine  of the polar  
angle, from wh ich  a l l  remain ing angular funct ions 
are ca l cu la ted  i n  f i x e d  point. 

The  logarithm i s  computed once only for each 
source plane, or tw ice  for a completc  co i l .  T h a t  
is, i n  p lace of the d i f ference in  logarithms of 
(1 + s ) / u  for the two  sources, the logarithm o f  
the r a t i o  i s  computed, us ing a 4-term Has t ings  
approximotion tha t  is good t o  2 x lo-’’. Con- 
stants are summed over the  t w o  source planes o f  
each c o i l  before convers ion t o  27-bit f l oa t i ng  
point, w h i l e  remo\/al of the factor RS and a l l  
further ca l cu la t i ons  i nvo l v ing  l inear magnitudes 
are done in the For t ran sections. 

1 

Concurrent ly  w i t h  thc change% discussed i n  t h e  
l as t  section, t es ts  were made in  w h i c h  the con- 
s tant  q ,  for a t h i c k  c o i l  was der ived f rom tha t  
of i t s  cen t ra l  f i lament  by a series expansion. 
T h i s  was done by wr i t i ng  a two-dimensional 
Tay lor ’s  series i n  powers of 0 and D, i n  w h i c h  
the zero-order term i s  g i ven  by Eq.  (32) (n 2 l ) ,  
and higher orders are derived from Eq, (3) and 
re la ted general express ions for pa r t i a l  de r i va t i ves  
of the zonal  harmonics. E and D arc respec t i ve l y  
the a x i a l  breadth and  rad ia l  depth of the cross-  
section, normal ized by  d i v i d i n g  by the  mean 
c y l i n d r i c a l  rad ius po .  

In t h i s  way an  express ion was obtained for t h e  
general order q n ,  but q 1  only  w i l l  be considered 
here, s ince  h igher  orders were n o t  used in t h i s  
work. Res idua l  errors are of the s i x t h  order, 
s ince  the  second and  four th  a re  retained, and  
odd orders van ish  by symmetry” 

When n - 1, the general express ion reduces t o  

1 

8640 
I ( 4 0 B 2 D 2  - 3 3 D 4 ) s 2 P j  . (4’7’) 



27 

Compare Eq. (32). The expression enclosed i n  
brackets in  Eq, (47) i s  the rat io of q ,  for the 
co i l  to that for an ideal filament of Y”BDp2 
turns at the center of the section. Equation (47) 
is  an approximation that i s  similar in pr inciple 
t o  that of Lyle’s we l l  known f ~ r m u l a , ’ ~  which 
gives much the same resul t  as the f i rs t  l ine of 
(47). Inclusion of the fourth-order terms i n  the 
second and third l ines greatly improves the 
precis ion 

Although this expression was coded ent i re ly 
in  27-bit f loat ing point Fortran i t s  use leads, 
as expected, t o  errors even smaller than those 
of the 35-bit f i xed  point logarithmic routine, in  
the case of co i l s  very far from the origin, A t  
intermediate distances, the two methods are 
equally precise, but of course when coi ls of large 
section are placed so close to  the origin that 
terms in ??‘ and D 6  are signif icant, the calculat ion 
by logarithms is  the more precise. Since in 
practice the modified logarithmic code proved to  
be adequate, the method of section expansion 
was dropped, and it was never coded for q2 or 
higher orders, However, hand calculat ions estab- 
l ished the va l id i ty  of the general form for odd 
orders through YL = 7. 

Numerical Checks 

The systematic character of the theory and of 
the machine programs makes it easy t o  devise 
internal checks, to  test  the self-consistency and 
precision of the overal l  procedure. Three ex- 
amples of somewhat dif ferent types may be men- 
tioned. A very severe test i s  the agreement of 
resul ts calculated from two or more origins. 
Hundreds of such comparisons for f ie ld com- 
ponents, forces, and mutual inductances have 
shown agreement t o  seven signi f icant figures, 
though the high-order source constants may change 

13Ly le ’s  approximation i s  ideal ly  simple and sur- 
pr isingly accurate when the  cross sect ion i s  square. 
I t  then concentrates a l l  ampere turns in a single f i la-  
ment, but a t  the  root-mean-square rather than the mean 
radius. If the extreme rad i i  are p1 and p2, the squared 

equivalent  f i lament radius i s  pF  = 1/3(pl + p , p 2  t p2). 
T h i s  approximation removes a l l  second-order errors of 

f in i te  sect ion (i.e., terms wl th  the foetor 13 = D ) from 
the ser ies expansion o f  q, or p, o f  any order n. When 

the sect ion i s  not  square, two  loops are required, and 
the error increases rapidly with the larger dimension of 
the section. 

2 2 2 

2 2  

by many orders of magnitude. Signif icant dis-  
crepancies occur only when the series referred 
to one or both origins has run through to  the 
maximum order. Such discrepancies are cam- 
parable i n  magnitude to the running sum referred 
to above, and to  the errors predicted by the 
nomogram. A second k ind  o f  internal test i s  to  
compute the constants of a thin cyl indr ical  co i l  
from the equations for both solenoid and co i l  
source types. A third i s  to compare computed 
values of dBo/dz  with the computed ef fect  of 
f in i te  z-increments on !I,, or of p-increments on 

Several hundred comparisons made on the f ie ld  
of the DCX-2 system, w i th  BZ and H values 
computed by Downing’s code,’ showed agreement 
w i th in  one or two units in  the 7th signi f icant 
figure. More recently, the author’s e l l i p t i c  in- 
tegral code’ was used to check values of HZ, 
B A ,  F ,  and if, wi th  comparable results. Both OP’ the comparison codes are slower than the 
zonal harmonic program, probably by about one 
order of magnitude. 

The harmonic functions as computed in the 
f ixed point section using the recurrence formulas, 
were checked to  high orders against values 
previously calculated on other machines. The 
precision of the logarithmic functions and of 
the values of y, computed by section expansion 
from a central filament were checked by analysis 
of fourth differences, as fol lows. 

BZ. 

P 

Sets of logarithms were calculated for the 
successive terms of several geometric series, 
over the basic binary range 0.5 to  1, using a 
constant rat io 1 i a. In theory, a l l  differences 
except the f i rst  should vanish. The entire cal-  
culation, including the fourth difference routine, 
was carried out i n  f ixed point in the FAP section, 
and the termino I fourth differences a lone were 
printed out after decimal conversion. Values of 
4 ,  through yg  for several single th ick coi ls were 
computed for origins arranged in 8 or 10 sets of 
12 each. The sets were far apart, but origins 
were equally spaced at a small interval w i th in  
each set. Fourth differences were computed 
w i th in  each set. Here q ,  was computed by the 
revised logarithmic code as described above, by 
a straight Fortran program, and by section ex- 
pansion. By these tests i t  was veri f ied that both 
the logarithm i tse l f  and the complete routine in  
which it i s  used resul t  as expected in a gain of 
two signi f icant decimal d ig i ts  when compared t o  



a st ra ight  For t ran code. It seems a l s o  that  there of harmomic funct ions of the polar ang le  for  a 
i s  n o  need t o  resor t  to  the  method of sect ion ex- As noted above, it a l s o  computes 
pansion, except  perhaps in  a h igh  prec is ion in-  the logar i thmic source funct ions q ,  and q 2  for 
ves t i ga t i on  of the f i e l d  of an i n f i n i t e  array of each pair of coplanar Souices and sums them for 
co i l s .  a complete co i l .  It i s  c a l l e d  by  two other sub- 

routines, w h i c h  complete tl ie ca lcu lat ions for  
the source equat ions and the f i e l d  equations re- 
spec t i ve  ly. 

s ing le  source. 

A Flexible  Zanal Harmonic Computes Program 

A few general suggestions based on experience 
in organiz ing the e x i s t i n g  7090 program may make 
it eas ier  t o  adapt the method developed i n  t h i s  
report for use w i t h  other machines. The  de ta i l s  
that are needed for the e f fec t i ve  use o f  the 
ac tua l  program are d i scussed  in  Chapter 3. 

The  current ly  coriipleted code inc ludes most 
of the range o f  ca l cu la t i ons  tha t  i s  d iscussed in  
Chapter 1. The  force and mutual inductance, 
however, are res t r i c ted  t o  coax ia l  systems. Also,  
though the  remote source constants  p, are com- 
puted for a l l  systems, the remote f i e l d  components 
of E q s  (18) t o  (21) have not  been coded, D i s k  
or pancake c o i l s  are no t  now included. T h e  
miss ing parts might  be added w i t h  very l i t t l e  
labor, s ince  a l l  the harinonic funct ions that  they 
require are computed i n  the e x i s t i n g  routines. 

A11 dnta cards conform t o  a s ing le  pattern that  
provides four f i e lds  for smal l  integers and s i x  
for dec imal  data. F l e x i b i l i t y  of operations re- 
sides i n  the inany sw i t ch ing  options, exerc ised 
by s ing le  d i g i t s  i n  the  integer f i e lds .  These 
contro l  the reading of data, t he  sequence of op- 
erat ions i nc lud ing  a t  t imes the  c a l l i n g  of s u b -  
routines, the qunnt i t ies  t o  be computed, and  the 
extent  and form of output data t o  be pr in ted or 
punched, 'Io s imp l i f y  the input, t he  most f re-  
quent ly  used opt ion i s  i n  niost cases a b lank 
f ie ld .  

Several vers ions already e x i s t  for cer ta in  s u h -  
routines. To prov ide for addi t ions and spec ia l  
smal l  problems or tests, t he  sequence opt ions 
a l s o  inc lude c a l l s  for severa l  dummy subroutines. 
A reduced opt ional  form o f  t he  main program 
(abstract) re ta ins on ly  a card read and a set  of 
sequence options. These  three features permit 
the so lu t i on  of a w ide  range of problems w i t h  a 
minimum of recoding. E s s e n t i a l  par ts  of the 
complete system are l i s t e d  i n  the fo l l ow ing  para- 
graphs, w i t h  the  hierarchy of con t ro l  in reverse 
order. 

T h e  f i x e d  point  subroutine uses the appropriate 
recurrence formula t o  compute any required s e t  

The  source rout ine computes e i ther  4, or p,, 
and on demand a l so  t he i r  rates of change w i t h  
respect  t o  source coordinates, for a s i n g l e  e l e -  
ment of the system. This i s  ca l cu la ted  as a t h i c k  
rectangular c o i l  i f  the a x i a l  breadth R and rad ia l  
depth n are f i n i t e ,  as  a so lenoid i f  D = 0, and  
as a loop i f  R = D = 0. This subroutine suppl ies 
the proper number of sources (4, 2, or 1) and sums 
the constants  over a l l  sources. T h e  rates of 
change are for I J S ~  i n  so l v ing  des ign problems. 

One f i e l d  subroutine reads in one or more sets  
of o r i g ins  (by ord ina l  number), parameters for 
one or more nets  of f i e l d  po ints  t o  be associated 
w i t h  each origin, and spec i f i ca t i ons  o f  t he  f i e l d  
components thot  are required, together w i t h  out- 
put pr in t  options. Another vers ion accepts  co- 
ordinates ol[ ci s i ng le  f i e l d  po int  or of a complete 
ne t  of points, a n d  automat ica l ly  computes froii i  
the nearest or ig in  for each point. T h i s  i s  the 
proper f i e ld  rout ine t o  use when t rac ing  i on  orbits. 
A third f i e l d  subrout ine computes mutual induct- 
ances and a x i a l  forces between coax ia l  systems. 
Each  o f  t he  three vers ions requires a complete 
set of source constants q ,  for coch  origin, pre- 
v ious l y  suinmed over the ent i re  system and stored, 
w h i l e  the  t h i r d  requires a l s o  the' p-constants of 
the secondary systein. 

The  main program contro ls  the  sequence of  op- 
erat ions. It reads in  the  geometry of the current 
system and absc i ssas  of one or inore se ts  o f  
equal ly  spaced origins, c a l l s  for the source con- 
stants of ench element i n  turn, sums the  constants  
over the en t i re  system for each origin, pr in ts  
and stores the suiiis, and exerc ises var ious 
options under control of the data cards-  

It i s  c lear  from a s tudy of the f i e ld  equations 
that  s ign i f i can t  sect ions of coding can be common 
t o  two  or more f i e l d  components. S imi lar  econo- 
mies can be made in the source Subroutine, w i t h  
respect  t o  d i f ferent  source types, and  a l s o  i n  
the ca l cu la t i on  of der ivat ives.  [See Eqs. (28- 
31), (35-36), (40).1 
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CHAPTER 3. ZONAL HARMONIC CODES FOR THE 4BM 7090 

Chapter 3 assumes that the reader has a working 
knowledge of 7090 Fortran. The exist ing 7090 
codes comprise a main program, a program ab- 
stract, and eight subroutines, some of which 
have several versions. Only single precision 
routines are used, though one major section that 
i s  cal led by a l l  the others i s  writ ten in the FAP 
language, mainly because it requires the 35wbit 
precision of f ixed point arithmetic. A l l  other 
parts are coded in  Fortran. Ident ical  sets of 
COMMON and DIMENSION cards are used in a l l  
Fortran source decks, and a l l  variables are trans- 
mitted from one section to another through 
COMMON storage. 

All data cards conform to a standard pattern 
w i th  eleven avai lable f ie lds (6H ,413,6F9.4). 
The four integers are avai lable for counts or 
l imits, and t o  specify switching options, The 
s ix  decimal f ie lds may be used for numerical 
data, or t o  select various options, Table 3 sum- 
marizes the uses of data f ields on the f i ve  cards 
that are read i n  by the main program and by sub- 
routine ZEBRA, which are treated more fu l l y  in  
the next two sections. The f i rst  column of the 
table ident i f ies the card by type, whi le the 
second column gives the number of the Fortran 
statement that reads in  the card, Of the 46 f ie lds 
listed, ubout two-thirds have zero options, which 
i n  practice means a blank f ie ld  on the card 
Wherever possible, the blank i s  assigned t o  the 
most common option. Parentheses in  the table 
identi fy f ie lds that may be blank, wh i le  double 
parentheses enclose dummy symbols that are 
always blank, The f i rs t  Hol ler i th space of some 
data cards is  used t o  control l ine spacing or 
paging of the output print.  Thus a 1 i s  usually 
entered i n  column 1 of START and ZEBRA cards, 
to  begin a page, whi le the remaining cards begin 
wi th 0. The remaining f ive Hol ler i th spaces of 
any card may carry some brief code t o  identi fy 
either the card or the problem (in place of the 
letters START, etc., of Table 3). 

Special data forms and a master card or template 
have been made up to  fac i l i ta te  the preparation 
and checking of the data cards. As each card is  
read in, i t  i s  reproduced at once on the output 
tape. With these aids it i s  easy in  spite of the 
many options to  wr i te and check a set of data 
cards after one or two problems have been run. 

Most options w i l l  be blank, and w i th  few ex- 
ceptions, it is simplest to  omit decimal points 
i n  the numerical f ields. 

A considerable variety of problems may be 
solved by suitable combinations of the f i ve  
types of data card. The f low of the program, 
including the reading and processing of data and 
the sequence of subroutines, i s  control led by 
the switching entr ies on the cards, either in the 
main program or in certain subroutines, notably 
ZEBRA. Thus i t  i s  possible without changing 
the main program t o  add sections of coding, t o  
make special tests, or t o  introduce major varia- 
tions or new problems, by using new card se- 
quences and changing the content and sometimes 
also the function of one or more of the named 
subroutines. Several of these are normally dum- 
mies for any part icular problem. 

The fol lowing paragraphs outline brief ly the 
functions of the most commonly used sections of 
Fortran coding. Discussion of the FAP section, 
and of the remaining Fortran subroutines, is de- 
ferred wh i le  three other sections of the text are 
developed. The f i rs t  two describe some detai ls 
of the COMMON storage area, and of the f i ve  
types of data card that are required by the main 
program and by subroutine ZEBRA. The third 
describes the complete sequence of cards for 
solving two t yp ica l  problems. 

The main program abstract (MPA) may be con- 
veniently used for tests, and for occasional new 
problems or variations. It includes only the 
standard COMMON and DIMENSION l ists, plus 
a set of switching options, It reads in  a START 
card, as shown in the f i rs t  l ine of Table 3, in i -  
t i a l l y  and again at each return from any sub- 
routine. Th is  card transfers, as shown under the 
f i rst  entry IX, t o  any of six  subroutines or to 
EXIT. It provides nine addit ional f ie lds to carry 
data or switching options to  the selected sub- 
routines. Note that a l l  ten f ields of the START 
card load into COMMON storage locations. For 
increased f lexibi l i ty ,  the meaning of some of 
these symbols may be safely changed t o  f i t  new 
variants of the subroutines. 

The main program (M,P.), besides performing the 
control function just described, carries out the 
f i rs t  stage of problem solving as discussed in 
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Chapter 1, namely the ca l cu la t i on  of source con- 
stants q ,  or p ,  from the source equations. 

It reads in the geometry of one or more com- 
p le te systems or subsystems, and t he  absc i ssas  
of one or more sets of or ig ins that  are t o  be used. 
Far each o r ig in  (subscr ip t  J )  it computes, prints, 
and stores i n  QS(J,N) a set of source constants  
for the system or subsystem, and p r in t s  a l s o  i f 
required the contr ibut ions from separate elements 
of the system, w i t h  or wi thou t  t he  rates o f  change 
of such contr ibut ions w i t h  respect  t o  z or t o  p .  
It c a l l s  FlNDQK for most of the ac tua l  ca l cu la -  
t ion. 

FlNDQK computes q ,  or p, up t o  the maximum 
order MAXN, for a s ing le  eleinent of the system, 
referred t o  a s ing le  origin. Each element i s  iden- 
t i f i e d  by a subscr ip t  K, hence QK i n  the  t i t l e .  
A n  element of the system may be a loop, a thin 
solenoid, or a rectangular co i l .  E i the r  of t he  
last  two may be serni- inf ini ts. Opt ional  Iy, FlNDQK 
can a l s o  compute der ivat ives of the source con- 
stants. T h i s  subroutine reads no cards and pr in ts  
no  resu l t s .  It c a l l s  the FAP sect ion t o  compute 
funct ions of the source angles. 

ZEBRA ( I )  (a skewed mnemonic for BE,ER,A) 
employs the f i e l d  equations t o  carry out t he  
second stage of so lu t i on  as defined in Chapter 1. 
It reads in one or more sets of or ig in  subscr ip ts  
(J), w i t h  the corresponding absc issas,  and one 
or more nets  of f i e l d  po ints  t o  be referred t o  each 
set of origins, a l s o  information about the f i e l d  
components that  are des i red and cer ta in  spec i f i -  
cat ions of output pr in t  options. I t  refers t o  the  
source constants  prev ious ly  stored in  QS(J,N), 
c a l l s  the FAP sect ion t o  ca l cu la te  funct ions of 
the f i e l d  angles, computes and pr in ts  the f i e l d  
information required. On demand, i t  a l s o  stores 
in BN sets of va lues of a spec i f i ed  f i e l d  com- 
ponent, for each po in t  of a prescribed f i e l d  net, 
for each of a g i ven  number of subsystems. These 
values are for use in an opt imizat ion routine. (See 
BEST). 

COMMON S T O R A G E .  T H E  M A I N  P R O G R A M  (M.P. )  

The COMMON storage area o f  4714 c e l l s  i s  
mapped in Tab le  2. H o r i r o n t a l  spaces d i v ide  
sect ions that are treated as separate un i t s  i n  
PDUMP operations i n i t i a t e d  by the inst ruct ion 
C A L L  OPEN and contro l led by the  X f i e l d  of 
cer ta in  datu cards. (See below.) References 

t o  the source constants  q ,  in the last  column 
of the tab le  inc lude p, as  an  alternative. These 
remote source constants  are computed in p lace  
of q ,  when I X  7 1. DIMENSIONS of the var iab les 
are l i s t e d  i n  the f i r s t  column. 

The reader w i l l  need t o  refer constant ly  t o  
Tab les  2 and 3 when reading t h i s  and the fo l -  
l ow ing  sect ions.  It w i l l  be assumed that many 
entr ies i n  the tab les are self-explanatory. T a b l e  3 
i s  intended t o  be the  rout ine source of a l l  informa- 
t i o n  that  w i l l  normal ly  be needed to  assemble a 
data card deck. 

T h e  START Card 

IX, K. - A nega t i ve  entry i n  I X  causes an imme- 
d ia te transfer t o  one o f  several subroutines, a s  
moy be seen froin Tab le  3. A blank or 1 star ts  a 
pass through M.?. On each pass he program com- 
putes, stores, and  p r in t s  a set of source constants  
for a complete system or subsystem, and then e i ther  
transfers to ZEBRA or c a l l s  for a new START card, 
depending upon IB ( 4 . u . ) .  A blank in I X  produces 

q-constants, w h i l e  I X  = 1 generates p-constants. 
Each pass through M.P. requires a START card, 
K K-cards, and one or more ORlGN cards, one 
for each set  of equal ly  spaced or ig ins.  K i s  the 
number o f  elements, or pa i rs  o f  elements, in the 
system or subsystem, and the minimum number 
of cards i s  K + 2 .  

The J- or Origin Count. - Stored information 
for each o r ig in  inc ludes i t s  absc i ssa  O(i) ,  the 
rninimum or maximum polar source rad ius RX2(.1) 
that determines i t s  sphere o f  convergence, and  
a set of source constants  QS(J,N) tha t  may b e  
either 4, or p,. A f l e x i b l e  contro l  over the  sub- 
scr ip t  J a l l o w s  such data t o  be computed and  
stored i n  o va r iab le  sequence IJP t o  a maximum 
value J = MXJ of 24, The  stored data may b e  
accumulated dur ing severa l  passes through M.P., 
or i t  may be read, in whole or i n  part, From cards 
punched by a prev ious program. Data t o  wh ich  
d i f ferent  subscr ip ts  J are ass igned  may belong 
t o  severa l  systems or subsystems, and may in- 
c lude  q-constants w i t h  minimum source r a d i i  
for some or ig ins and p-constants wi th  maximum 
source r a d i i  for others. See for example the d i s -  
cuss ion of TEST (M), and of the second problem 
be I ow. 

Subroutines PUNCH and READ, wh ich  permit 
intermediate storage of problem data on cards, 
a lways  begin a t  J = 1 and  end a t  J = MXJ. PUNCH 

J. 
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T a b l e  2. Guide  to COMMON Storage 

D imens ions  Subscr ip ts  T o t a l  B e g i n  

8, 100 

40, 34 
4, 34 

4, 18 
16, 18 
16, 18 
16, 18 
16, 18 

24, 33 

L 
1. 

8 00 

1360 
136 

72 
288 

288 
288 

288 
16 
16 

7 92 

24 
24 

40 
40 
40 
40 
40 

4 
A 

N 43 

N 48 

66 310 

67  750 
72 470 

72 700 
73 010 
73 450 
74 110 
74 550 
75 210 
75 230 

7 5  250 

76 700 
76 730 

76 770 
77 040 
77 110 
77 160 
77 230 

7 7  302 
77 306 

77 325 

77 402 

Symbol End 

R N  

QK 
Q 

DA 
D A 2  
DA 1 
D Z 2  
DZ 1 
I A  
IZ 

QS 

RX2 
0 
Q10 
RZ 1 
R S  
RO 
M X J  
M1 
I 
X 

CD 
D 
B '  
A 0  
zo 

J 
K 
A 
Z 
MX D 
I X  
RX 
OR 
WN 
S P N l  
PN 
A C  
zc 
U 
S 
RCP 
L 
MAXN 
QF 

6 7  747 

72 467 
72 677 

7 3  007 

74 1071 

75 7 4  207 5 4 7 1  
75 227 
75 247 

76 677 

76 727 
76 757 
76 760 
76 761 
76 762 
76 763 
76 764 
76 765 
76 766 
76 767 

7 7  037 
77 107 
7 7  157 
77 227 
77 277 

77 300 
77 301 
77 305 
7 7  311 
77 312 
77 313 
77 314 
77 315 
77 316 
77 317 
77 320 
77 321 
77 322 
7 7  323 
77 324 
77 377 
7 7  400 
77 401 
7 7  461 

73 4471 

Exp lana t ion  
_I .. . . . . 

Da ta  for o p t i m i z a t i o n  

q, , separote c o i l s  

q,, separate sources 

Der i va t i ves ,  separate sources 

R a d i a l  d e r i v a t i v e s  of q, 

A x i a l  de r i va t i ves  o f  q, 

Switch, r a d i a l  d e r i v a t i v e s  

Switch, a x i a l  de r i va t i ves  

q for system, each o r i g i n  

M in  or m o x  po la r  rad ius  

z coord ina te  o f  o r i g i n  

q 1  for c e n t r a l  o r i g i n  

Hz for c e n t r a l  o r i g i n  

Scale factor, i npu t  geometry 

U n i t  or re ference length (ro) 
L i m i t i n g  va lue  o f  J 
Sw i t ch  (severa l  uses )  

Count  of sub-systerns 

Sw i t ch  for PDUMP 

Current  dens i t y  

R a d i a l  depth o f  c o i l  s e c t i o n  

A x i a l  breadth o f  c o i l  s e c t i o n  

Mean r a d i a l  coord inote 

Mean a x i a l  coo rd ina te  

Or ig in  coun t  

System elernerit ( c o i l )  coun t  

R a d i a l  source coord inote 

A x i a l  source coord inote 

L i m i t i n g  order, de r i va t i ves  

Eilain sequence s w i t c h  

Current  m in  or niax polar  r 
z coord ina te  of current  o r i g i n  

Sw i t ches  for FAP op t ions  

Cyl. rad ius  

A x i a l  coord inate 

Cos ine  

Sine 
Rec ip roca ls  of in tegers 

Source count, 1 to 4 
L i m i t i n g  order, 5 t o  33 
F u n c t i o n s  of  ong le  (from FAP)  

( input  t o  FAP)  I 
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ZEBRA 

FIELD 

'CARD 

START 

CODE 

il! 

K 

CRiGN (5 )  

Table 3. Outl ine of Datu Card Fie lds  
~~ ~ ~~~ ~~ 

( I X )  (4 K 
-7  EXIT -3 READ 
-6 OPEN -2 PUNCH + 
-5  BEST -'I ZEBRA 0 or (+) J l  = J + 1 (J / s  subsys:e*:! 
- 4  TEST ! 

-2  Set J l  ~ MXJ + 1 
- 1  Set J I  = JM + 1 

Number of cards i n  the set 
( f3r  a g iven system or 

!he or ig in count: and 
j l  i s  its i n i t i c l  value) 0 CONTt Centrol 

1 CONTt Remote 

((IK)! ilC) (IZ! 
D u m m y .  Output pr int  here 0 Symmetrical pair 0 Omit D/DZ 

i s  the K count 1 Single co i l  'I Compute D/DZ 
2 Opposed pair 

(JO) (13) (MPJj 
(+:I Set JR (ref) fo ordinal 

3 JR = number 1 in  f i rs t  

(-) R E P E A T  t Max i count (origins) for 
output pr int  of DZ, DA, 
QK 

number JG i n  current set 

set < I )  START 

0 CONT, out to  ZEBRA 
1 CONT, then back to 

> 1  Set I and IA(15)$ 
CONT, O L ~  to ZEBRA 

(I K!$ J l  MX: 
Sejects function for 

3 BZ or BR 
4 RBR 3 RA 
8 A or DBR/DZ 

ln i t io l  or ig in J for f ie ld  F i n a l  or ig in J for f ie ld  n e i  
PUNCH (OPT) net 

(IBZ) (IBR) (IS! 
- 2  RETURN to M. P. 0 No series pr in i  
- 1  New ZEBRA card 1 Do 32 ond A 1 ln i t ia j  series 

2 F i n a i  series 
3 Both series $ 

0 Omit BR and A 

2 Do 32 and DBR/DZ 0 No BZ, REPEAT t 
1 Do BZ, REPEAT t 

Main Program 

MAXN RO 

Max order N = 5(4)33 for 
the source constonts 

Un i t  lerigth for calculat ion 
of source constcnts 
(order of mogni tude of  

the min source rudius) 

j iA) zo* 
0 Omit  D/DA 
7 Compute D/DA 

Mean Z of co i i  seci ion 

(MPK) (DMX) 
Max K couni (coi ls)  io r  Max N to l im i t  colculaf ion 

o i  DZ a n d  DA, and out- 
put pr int  of 32,  DA, QK 

ourput pr int  of DZ, 
DA, QK 

Subroutine Z E B R A  (1) 

MAXN E PS 
Max order N = 5(4)33 for L i m i t i n g  sum o f  6 terns, 

:o end the f ie ld series 
( in parts per z i l l i o n )  

the f ie ld  series 

((DMY)) DLZ 

Dummy Z increment for f ie ld net 
M u s t  be ( I )  

RS* (BZl\ ( R X )  (X)  ((OR)! 
Scale fuctor (= RG scoled - 1  Normalize for M or force ( ) Lengths ore given in  cm (+) PDUM? (see beiow) Dummy 

the same os ZC, AO, B, 
D, DLO, and 51) 

(+\ Normaiize or: vcltie of 
BZ as entered 

0 Same o s  -: 

AO* IS)*  

Mean A o f  co i l  section A x i a l  breadth of section 

(DLO*) ( D L J )  
increment to origin Number o f  cr ig ins i n  th is 

set 

ZHM (RH?) 
Max 8/?X io: f i e i c  series M in  R / R X  For prin: of the 

(percent) end terms$ (percent) 

ZMX i Z l )  
Maximum Z In i t ia l  Z 

2.54 Le;lgths ure in  inches 0 No PDUMP 

(D)* (CD! 
Current density Radio1 depth of section 

(O'l)* (X )  
ln i t io l  or ig in 4 QS, CD-ZO 

3 DA-IZ 
2 Q<-Q 
1 J-QF, etc. 

0 No PDUMP 
(cumulative) 

( R X )  (X:) 
( ) F i e l d  lengths are given 

2.54 bengihs are in  inches 

( + )  ?DUMP (see obove) 
in cm 0 ?40 PDUMP 

D L A  (AMX) ( A I )  
A increment for f ie ld  net Maximum A In i t ia l  A 
Must be ( + j  

$ TEST {M) ccrd must define MAXN anc RX, 
? CONT means continue the propram. WEPEAT ca l l s  :or a fo i iowins card of the same type. 
f PUNCH card m u s t  define MAXN and RO. 
$ Fino1 series pr ints only when R/RX > RHP. 
* The seven lengths thus marked are scaled up by ari arbitrary common factor. 
$ IB = Number o f  subsystems for an  OPT routine. The foi lowing ZEBRA card requires a (+) 

entry i n  IK, which automatical ly causes a skip Sack to START for the (le-1) subsystems 
after ;he First4 bypassing ORIGN, ZEBRA, and FIELD cards after ?he f i rs t  set. Enter oniy 
START and K cards far these subsystems. The is count i s  i n  I, l imi ted t y  IA(i5). 

Sequence of Sources 

Subscript L j 
A 

L i s t  of Subrou:ines 

PNUM, PNU, PUN, LIM, FTEST, LN, LNT (these are in  the FAP section) 
FIf4DQK, ZEBRA, PUNCH, READ, TEST, BEST, OPEN 
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reads the value of MXJ from COMMON, wh i le  
READ obtains it from the f i r s t  card. Data com- 
puted i n  any one pass through M.P. are stored 
w i th  subscripts in  ascending order, in  successive 
sets each of which i s  generated by  a single 
ORIGN card and corresponds t o  a set of equally 
spaced origins. The .I-count proceeds from J1 
t o  a current maximum JM, both of which occupy 
ce l l s  in the M.P. storage area. 

At  the end of each such pass, MXJ in  COMMON 
i s  replaced by JM only if JM i s  the larger. MXJ 
i s  thus an overal l  maximum count, cumulative for 
an entire problem and in fact for a set of prob- 
lems. It can be reset only by the entry J = -1 on 
the START card. The count starts a t  J1 = MXJ + 
1 i f  J = -2, a t  JM + 1 i f  J = -1, and a t  J i- 1 i f  
J i s  blank or (+). The blank i s  regarded as 

normal,” that is, the count normally begins a t  
J = 1. Examples of other options are given in 
the section on problem setup. 

MAXN. - This  i s  the l imi t ing order for q,z or 

p,,. It must always l i e  in the range 5 to  33, 
and i t  i s  further restr icted i f  q-constants are to 
be computed for th ick coi ls,  It must then be one 
of the 8 integers, 5,9, . . . , 33 in steps of 4 
w i th in  th is range, since the reverse recurrence 
routine for the source functions must start 
wi th one of the 8 power series of Table 1. The 
higher values of MAXN are necessury only when 
f ie lds must be computed close t o  the windings, 
or when mutua1 inductance and farces are cnl- 
culated for co i l s  close together. (See the nomo- 
gram, Fig.  4). 

RO, RS, R X .  Scaling and Units. - RO i s  the 
unit or reference radius ro  of Chapter 1. It should 
be roughly of the same order as the radius of 
the sphere of convergence, that i s  the minimum 
polar source radius of a central f ie ld  or the 
max;mum source radius of a remote f ield. Other- 
wise the constants y, or ti, of high orders may 
asziume inconveniently large or small  numerical 
values, as may a l so  the high powers of t h e  
normalized rad i i  in the f ie ld equations. Ev i -  
dently u mismatch by a factor of 10 can generate 
extreme magnitudes of the order l o M A X N  and 

Though this may not of i t se l f  lead 
to errors of calculation, such magnitudes are in- 
compatible wi th the F-type decimal conversion 
which has been found convenient for part of the 
output print. 

RS i s  just RO scaled up by the arbitrary factor 
RS,/RO (usually a power of 10) which i s  common 
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to the entire input geometry, tha t  i s  to Z0, AO, 
B, D, DLQ, and 01, and which i s  divided out 
in FINDQK, before y, or p ,  are calculated. It 
may be unity, or it may be so  chosen that the 
input geometry can be described by a set of 
integers (which may safely include mixed num- 
bers that contain only exact binary fractions). 
Th is  precaution is  necessary only i n  c r i t i ca l  
cases, when it i s  desired to avoid random con, 
version errors that  may lead to  discontinuit ies 
of the order of some 5 or IO parts per mi l l ion  i n  
the f ie lds of extended systems, as computed f rcm 
mult iple origins, The reasons are discussed i n  
Chapter 2, and are considered again below when 
the FAP section i s  described. 

R X  is  blank i f  the system geometry i s  expressed 
in  centimeters, 2.54 i f  i t  i s  measured in  inches. 
In either case, though the output prini i s  based 
on the same unit of length as the input for the 
geometry of the system and of the field, the 
magnetic units are based on the centimeter and 
the gauss. That is, the vector potential i s  in 
gauss cm, f lux in gauss cm2 or maxweIIs, d ~ ~ / c j z  
in gauss/cm, etc. 

Normalization. - The scal ing factors for 
f ie ld  components, mutual inductance and forces 
a l l  depend on the scal ing or normalizing factor 
for the source constants, which i s  determined by 
the BZ1 entry on the START card and the JO 
entry on the ORIGN card. 

The special code entry BZ1 -= -1. generates 
direct ly the constants y, and P , ~  of Eqs. (32-34) 
and (37-39), without special scaling, The f ie lds 
B z  and f 3 0  are then computed in gauss (or i n  
ki logauss i f  currents ore in kiloamperes), 121 i s  
in  henrys and f: i n  newtons. This i s  the correct 
normalizing option when computing absolute 
f ie ld  values from known currents, or when the 
constants are t o  be used in  TEST(M) t o  compute 
hi and t;. Any other magnitude assigned to  BZ1 
serves to  define B z  at the origin selected by the 
Jo entry (y...), and the source constants are 
scaled accordingly. For convenience a blank 
BZ1 f ie ld i s  equivalent to  + l . ,  which covers the 
very common case in which a l l  f ie ld  magnitudes 
are scaled t o  the arbitrary value l?z = l . ,  assigned 
at any selected origin. 

Control of P-DUMP. - A control led P-DUMP 
can be made avai lable at any point in the program 
or subroutines, by insert ing the instruction CALL 
OPEN. I t  can a lso  be init iated without th is in- 
struction, by the entry I X  = -6 on a START card. 

BZI. 

X. 
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It operates only  when X i s  set equal t o  I . ,  2.' 
3.) or 4. Each  opt ion dumps the storage areas o f  
MP and of subroutines FAP, FINDQK, and ZEBRA, 
in addi t ion t o  COMMON storage J through QF, 
w h i l e  options 2 t o  4 inc lude addi t ional  areas of 
COMMON as l i s t e d  under X i n  Tab le  3. The  four 
opt ions are l im i ted  by separate counts i n  OPEN, 
i n  such a wuy that  not  more than four dunips can 
be obta ined froil l  any one va lue ass igned t o  XI 
a t  each loading of the machine. 

The K-Cards 

IC. - One K-card i s  requi red for each element 
or matched pair of the magnetic system If IC 
i s  b lank the loop, solenoid, or c o i l  i s  dup l i ca ted  
i n  memory as  a symmetr ica l  pair, t o  wh ich  suc- 
cess i ve  subscr ip ts  K are assigned. IC = 1 s ign i -  
f i es  a s ing le  element, IC = 2 an opposed pair. 
When the last  K-card has been read in, the to ta l  
number of elements, count ing each pai r  as 2, i s  
entered i n  MXK. T h i s  may not  exceed 40. 
IZ, IA, DMX. - In addi t ion t o  the source con- 

stants of any g iven element or pair, z -der ivat ives 
o f  the constants  are computed i f  IZ = 1, and p 

der i va t i ves  i f  I A  = 1. Such de r i va t i ves  are of ten 
usefu l  as  an a i d  t o  system design. The l i m i t i n g  
order DMX for such der ivat ives cannot exceed 18, 
and of course cannot exceed MAXN. The IZ opt ion 
i s  l im i ted  t o  elements whose K-subscr ip t  i s  16 or 
lower, as for example, the  f i r s t  8 pairs. The I A  
option i s  res t r i c ted  to  K-va lues o f  13 or less, 
s ince memory c e l l s  IA(14) through (16) are pre- 
empted. 

ZO, AO, Pa, B, - These c o i l  dimeilsions are 
expla ined i n  T a b l e  3. A l l  are expressed t o  the 
same sca le  as RS. If D a lone i s  blank, the e le-  
ment i s  computed a s  a t h i n  solenoid, w h i l e  for 
a loop both 3 arid D are blank. F i n a l l y ,  the entry 
9 = -1 causes the program t o  geneiate constants  
for an i n f i n i t e  t h i n  or t h i c k  so lenoid extending 
from z = ZO t o  p lus  i n f i n i t y .  

CD, - If CD i s  blank, it i s  taken t o  be + 1 .  
T h i s  i s  e i ther  a current, a l inear current density, 
or a space current density, depending on whether 
the  eleinent i s  a loop, t h i n  solenoid, or t h i c k  c o i l  
The uni t  o f  length for current densi t ies i s  the 
cii i  i f  R X  i s  blank, the inch i f  R X  = 2.54. Turn 
counts rep lace currents  and turn densi t ies re- 
p lace current densi t ies,  i f  muti ial  inductances 
a lone are t o  be computed. 

The ORlGN Card 

JO. - o n e  card i s  required for each set o f  equul ly  
spaced origins. The  program ass igns subscr ip ts  
J t o  the or ig ins in the order of entry, beginn ing 
w i t h  J1 as  described above under J-count. I f  
JO i s  blank, the o r ig in  of reference for normali- 
za t i on  of system constants  (subscr ip t  JR) i s  iden- 
t i f i e d  w i t h  the f i r s t  or ig in  o f  t he  f i r s t  ORIGN 
card. JO i s  a l s o  b lank when BZI - - I ,  s i n c s  
then nor ina l izat ion does not  occur. A (-t-) va lue  
of JO on any card resets  JFZ t o  the ord ina l  num- 
ber JO of the set Thai i s  spec i f i ed  by that  card. 
IB. - The f i e l d  I5 i s  a sequence swi tch.  I f  

negative, it c a l l s  for a new ORlGN card, t o  read 
i n  a new set  o f  equa l l y  spaced or ig ins before 
proceeding. When it i s  non-iiegaiive, the program 
goes on t o  compute source c o n s t ~ n t s  for a l l  
or ig ins.  If IB i s  zero, or greater than 1, t he  
sequence then leads out t o  ZEBRA, but i f  I5 = 1, 
the main progtarri rever ts  t o  s tep  (1) and reads 
in a nevi START curd. 

Any va lue  of IB from 2 t o  8 causes S U ~ ~ O U -  

t i ne  ZEBRA t o  pr in t  and punch out on cards IS 
separate sets o f  data representing the contr ibu- 
t i ons  t o  a chosen f i e l d  component that  a r i se  from 
subsystems or i nd i v idua l  elements of a generating 
system. Such information i s  needed for any 
opt imizat ion rout ine tha t  must od jus t  currents in  
the IE3 independent subsystems, i n  order to  sa t i s f y  
some condi t ior i  itnposed on the combined f i e ld .  
'The f i e ld  component t o  be coinputed ( f i r ,  R,, p4, 
eic.) i s  spec i f i ed  by  IK on the fo l l ow ing  ZEBRA 
card ( q . ~ . ) .  The network of f i e l d  po ints  i s  de- 
f ined once only, s ince  i t  must be the same for 
a l l  subsystems. 

Sw i t ch ing  for t h i s  case i s  automat ica l ly  con- 
t ro l l ed  by the ID entry, wh ich  supprasses the 
reading of le-I sets  of ORIGN, ZEBRA, and  
F I E L D  cards, though IB complete passes are 
made through MP and ZEBRA. Each  pass after 
the f i r s t  requires only  a START card and  a set  
of K-cards, t o  descr ibe the geometry o f  a new 
element or subsystem. 

MPJ, MPK, WAX. - These f i e l d s  l i m i t  respec-  
t i v e l y  the number of origins, the number of ele- 
ments of the generating system, and the order, 
for wh ich  separate sets o f  source constunts, w i t h  
the i r  a x i a l  or rad ia l  der ivat ives,  are printed out. 
Source constants  only are pr in ted for any e le-  
ment un less  IZ, IA or both are non-zero for t ha t  
element, w h i l e  i f  MPJ or MPK i s  blank, on ly  the 
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source constants for the complete system are 
printed. 

DLO, DLJ, 01, X. - The f i rs t  three f ields de- 
f ine a set of DLO origins on the axis, beginning 
ut z = 01, with constant interval DLJ. The X-  
f ie ld  has already been discussed. 

SUBROUTINE Z E B R A  ( 1 )  

ZEBRA and F l E L D  Cards 

IBZ. - At least three cards are required by sub- 
routine ZEBRA. The f i r s t  i s  a ZEBRA card, in the 

notation of Table 3, I t  defines a set of origins, 
beginning with the origin of subscript J1 and 
ending w i th  MXJ, The second or FIELD card, 
w i th  IBZ = 0 or 1, prescribes a net of points to 
be set up about each origin i n  turn, a t  which 
certain f ie ld  functions are to  be computed. The 
last two cards must be of th is  type, since the 
calculat ion of a f ie ld  net always returns t o  (3) 
for cx new FIELD card. For exit  t o  M.P., set 
1BZ = -2, on an otherwise blank card. To  com- 
pute a second OF th i rd f ie ld net from the same 
origins, set again IBZ = 0 or 1. To change t o  
a fresh set of origins, c a l l  a new ZEBRA card 
by set t ing IBZ = -1. 

Apart from the switching function, non-negative 
entr ies in  IBZ and IBR specify the f ie ld  func- 
t ions that are to  be computed. A l l  functions 
cal led forr whether by lBZ or IBR, are computed 
before returning to  (3) for a new FIELD card. 
The Z- and p- intervals, and the range of CO- 

ordinates are prescribed by the last s i x  entr ies 
on the card (see Table 3). Dimensions are in  
inches if R X  : 2.54, in  cm i f  R X  i s  blank. The 
f ie ld  calculat ions are further restr icted by RHM, 
which l imi ts the ratio, in  percent, of the polar 
radius of the f i e ld  point t o  that of the source 
nearest the origin. 

The f ie ld  series are truncated a t  order MAXN, 
or earl ier i f  the sum of absolute magnitudes of 
the last 6 terms computed, when expressed in 
parts per mil l ion, i s  less than EPS. Th is  moni- 
toring sum i s  printed in  either case. If i t  should 
be desired to  study the detai ls of convergence, 
either i n i t i a l  or f ina l  series terms may be printed 
by making an entry in  IS, as specif ied in  Table 3. 
The high-order series w i l l  not print in  any case 
unless the rat io of polar rad i i  exceeds RHP. 

THE P R O B L E M  S E T U P .  F I R S T  P R O B L E M  

Two typical  problems of different types w i l l  be 
considered. The f i rs t  requires a calculat ion of 
the axial  and radial components of the magnetic 
field, and the vector potential, at a number of 
points distr ibuted throughout the interior of a 
system having a plane of symmetry, and con- 
s ist ing of f i ve  coaxial  pairs of th ick cyl indr ical  
coi ls. All f ie lds are t o  be scaled t o  the value 
f i Z  = 1. a t  L = 0, p = 0. Suppose further that 
the system i s  comparatively long, wi th “mirror” 
co i l s  of small  diameter a t  the ends, and that i t  
i s  desired t o  compute the f ie ld  w i th  high precision 
quite close to the windings. Having visual ized 
the spheres of convergencc, we may f ind i t  con- 
venient t o  set up two ranges of equally spaced 
origins, for example from z = 0 t o  z = 30 at &in. 
intervals, and from z - 33 to z = 11.5 a t  3-in in- 
terva Is.  

The main program requires a START card, f ive 
K-cards, and two OR1GN cards, On the START 
card, IX, J, BZ1, and X rnoy be blunk. Also JO 
i s  blank on both ORlGN cards. That is,  q-con- 
stants are wanted, the f i rs t  origin i s  assigned to 
J - 1, f ie lds are normalized to 13, - 1. a t  the 
origin J = 1, and no P-DUMP i s  desired. K = 5, 
MAXN L- 33, R X  - 2.54, since the co i l  dimen- 
sions were measured in  inches. I f  the inner rad i i  
are of the order of 12 in., the choice RO 10. 
w i l l  lead to  source constants that are conveniently 
printed by F-conversion. I f  dimensions were 
measured t o  “01 in., a scale factor of 100 w i l l  
convert them a l l  to  integers, t o  ensure maximum 
precision. Th is  factor, which i s  also applied 
below t o  ZQ, AO, B, D, DLO, and 01, yields 
RS = 11000. 

Since no derivatives are required and a l l  the 
coi ls are paired, the four integer f ie lds are  lef t  
blank on each K-card. The current densit ies are 
i n  amp/in.2. On the f i rs t  ORlGN card, IB 7 -1, 
DLO - 600., DLJ = 6., whi le 01 and a l l  the rest  
are blank. On the second card, DLO = 300., 
DLJ = 5., 01 = 3300., and the rest  are blank. 

Sometimes only the source constants are re- 
quired, without immediate f ie ld ca Iculations. 
[See the sections on PUNCH, READ, and TEST 
(M), below.1 To bypass ZEBRA and return to 
START, set 18 = 1 on the last ORlGN card. (The 
PUNCH option may then be exercised, by sett ing 
I X  = -2, not forgetting MAXN and RO.) I f  IB 
is  blank, ZEBRA i s  called, but i n  either case 
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source constants  a re  f i r s t  computed and pr in ted 
for a l l  or igins. 

If the f i e l d  nets  prescr ibed for the t w o  ranges 
of or ig in  are dif ferent, ZEBRA needs s i x  cards 
t o  complete the  problem, otherwise three suf f ice.  
T o  prescr ibe two  t ypes  o f  f i e l d  net, the f i r s t  
ZEBRA card may read J 1 = 1 ,  MXJ = 6, MAXN = 
33, EPS = l., RHM = 90., R X  = 2.54, w i t h  t h e  
rest  blank. These  options, w i t h  the h ighest  pos- 
s ib le  order 33, h igh  l im i t i ng  convergence r a t i o  
0.90, and error t es t  of 1 part per mi l l ion,  assume 
a need to  compute the f i e l d  w i t h  h igh  p rec i s ion  
and t o  inc lude po in ts  qu i te  c lose  t o  the windings.  

T o  ca l cu la te  a l l  three f i e l d  funct ions bu t  omi t  
a l l  extra pr in t  of t he  ser ies terms, the f i r s t  FIELD 
card should read IBZ = 1 ,  I R R  = 1, w i t h  IS and 
DMY blank. The  s i x  numer ica l  f i e l d s  speci fy  
the des i red ranges and in terva ls  of the coordi- 
nates. These are t rue values, no t  scaled. Such 
o combination as DLZ = 2., ZMX = 6., Z1 blank, 
computes f i e lds  at  four points, w i th  2-in. a x i a l  
intervals, for each va lue of p ( H X  = 2.54). Every 
fourth ca l cu la t i on  i s  redundant, s ince  z = 6 for 
one o r ig in  i s  the same as z = 0 for the next. T h e  
f i e l d  series, however, are qu i te  d i s t i n c t  in the  
two cases, and a t  po ints  very c lose  t o  ci f i e l d  
source, d iscrepancies a r i se  frorii the t runcat ion 
of the series, espec ia l l y  of the one for wh ich  the 
r a t i o  R1-IO of polar r a d i i  i s  larger. Such checks 
are unnecessary, s ince  in  any cose  the p r in t  
inc ludes RHO, the terminal  order N, and the  
monitoring SUM of magnitudes of the l a s t  s i x  
terms. It w i l l  be found, i f  a discrepancy occurs, 
that one se i ies a t  least  shows N - MAXN, and a 
SUM that  i s  comparable t o  the  observed error. 

The  program steps pa ra l l e l  t o  the  ax i s  through 
the whole runge of z ,  inc lud ing points  referred t o  
a l l  or igins, before p i s  incremented. If o second 
f i e l d  net  i s  des i red for the sonic origins, e i ther  
t o  a l l o w  va r iab le  spacing or t o  compute df ip , /dz in  
addi t ion t o  ‘4, add a second FIELD card, I f  not, 
an  otherwise b lank card that reads IBZ 2 -1  w i l l  
c a l l  a new Z E S R A  card. T h i s  may read the same 
as before, except  t ha t  for the second range o f  
or ig ins J1 -- 7, MXJ - 11. T h i s  card i s  f o l l owed  
by one or more FIELD cards, then by an EXIT  
card w i t h  the s ing le  ent ry  IBZ - -2, which returns 
t o  statement (1) of M.P. for a new START card. 
The  PUNCH opt ion may again b e  exerc ised a t  
t h i s  t i  me. 

S E C O N D  P R O B L E M  

The second problem i s  t o  compute the mutual 
inductance and a x i a l  force between one or more 

pairs o f  c o i l s  or of complete coax ia l  systems, 
Here the second stage of the problem is invariant, 
nnd  it w i l l  be d iscussed f i r s t .  It i s  carr ied out  
by TEST (M), us ing the f i e l d  Eqs.  (23) and (27) 
of Chapter 1, w h i l e  ZEBRA i s  no t  c a l l e d  a t  a l l .  
TEST (M) begins by computing MJ = MXJ/2 and 
i t  ossumes  that subscr ip ts  J = 1, 2, _.. , MJ idcn- 
t i f y  the q-constants and minimum rad i i  o f  a s e t  
of primary systems, w h i l e  MJ + 1, MJ + 2, ” . .  , 
MXJ iden t i f y  t he  p-constants and maximuni r a d i i  
of the corresponding secondary systems. T h e  
stored data are thus matched by J subscr ip t  in 
paired s e t s ,  and  a milximum of 12 mutual induct -  
ances and  forces (each between a pair of elements 
or of complete systems) can be computed in one 
pass. 
i s  less than uni ty ,  F and M are computed, and 
are pr in ted together w i t h  RHO. If not, F and M 
are set t o  zero.  Opt ional ly ,  the complete series 
may be printed; no ser ies print,  F series only, 
or both, depending on whether X = O., l., or 2. 

Mutual inductances are computed i n  henrys 
and forces i n  R ~ W ~ O ~ S .  If the CD entr ies on the 
data cards are current densities, the force may 
be read d i rect ly ,  but  M must be d i v ided  by the 
product o f  t he  currents. I f  they are turn densi t ies,  
F must be mu l t i p l i ed  by the product of currents. 

There i s  great f l e x i b i l i t y  i n  assembl ing data 
cards for M. P., t o  compute and store the con- 
stants in  the f i r s t  stage of these problems. The  
J-count must  be regulated t o  pa i r  the system sub- 
scr ip ts  properly. 411 START cards for prii-nary 
systems, J = 1 through ’/,MXJ, must  have I X  = 0 
for q-constants, w h i l e  a l l  the secondary cards 
have IX = I for p-constants. The un i t s  used 
require BZ1 = -1 i n  both cases. Each system 
may have from 1 t o  40 elernerits, but  w i t h  due 
regard t o  the convergence I imi ta t ions on polar 
rad i i .  ORlGN cards a l s o  if lust be carefu l ly  mntched, 
s ince  the  f i e l d  equat ions accept on ly  4 ’ s  and 
p ’ s  computed for the samr origin. 

If the ra t i o  RHO of polar rad i i  ( T G ~ ~ / T ~ ~ ~ ~ ,  1 

Case 1 

- 
I he mutual inductance and a x i a l  force are t o  

be computed for a s ing le  pair of f i x e d  coax ia l  
co i ls ,  us ing  o se r ies  of d i s t i n c t  origins. T h i s  
severe test, a f ter  one or two  t r i a l s  have  con- 
f irmed the v a l i d i t y  of the method, w i l l  be reserved 
for c r i t i c a l  cases in wh ich  the convergence r a t i o  
i s  very c lose  t o  un i t y  and a check on errors of 
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t runca t ion  is d e s i r e d .  I f  two  coils a r e  close to- 
gether ,  the c o n v e r g e n c e  i s  b e s t  when t h e  origin 
i s  near  t h e  point  that  l e a d s  to  t h e  smallest v a l u e  
of RHO. The optimurn point  c a n  Le located a p -  
proximately by e y e  or by drawing a r c s  wi th  a 
c o m p a s s .  When c u l c u l a t i o n s  a r e  made  f r o m  
s e v e r a l  o r ig ins ,  fa i r ly  far  a p a r t  a n d  lying on 
both sides of t h e  c h o s e n  point,  it i s  found t h a t  
the optimum i s  qu i t e  f l a t .  

T\ie problem requ i r e s  the  s t a n d a r d  s e t  of t h r e e  
c a r d s  each for primary a n d  secondary ,  p l u s  o n e  
ca rd  to call TEST (M). T h e  two START c a r d s  
d i f fe r  only in I X  and J .  The ove ra l l  r a n g e  of 

magni tudes  of t h e  s o u r c e  c o n s t a n t s ,  cons ide r ing  
both q,  a n d  p,, is least when RO is in t e rmed ia t e  
be tween  t h e  ex t r eme  radi i  of primary a n d  sec- 
ondary.  K = 1, BZ1 - -1, and  i f  d imens ions  are 
in i n c h e s  R X  = 2.54. For t h e  primary, I X  a n d  
4 a r e  b l ank ,  wh ich  calls for  q -cons t an t s  a n d  
a s s i g n s  J 1  = 1. For the secondary ,  I X  = 1, J = 

-1 .  T h i s  c o n t i n u e s  t h e  J-count  w i th  J 1  = DLJ + 1, 
where  DLJ is t h e  c o u n t  on the OKlGN ca rd ,  but  
it a l so  r e s e t s  t h e  cumula t ive  maximum MXJ, which  
i s  n e c e s s a r y  for  proper funct ioning of TEST (M) 
i f  a n y  e a r l i e r  problem in t h e  s a m e  d e c k  h a s  set 
MXJ too high. O the rwise ,  e i t h e r  J = DLJ or 
J = -2 would s e r v e  equa l ly  we l l .  This ques t ion  
does not  a r i5e  after MXJ has been  o n c e  r e s e t ,  
bu t  for t h e  s e c o n d  START of a mutual i nduc tance  
problem 4 -= -1 i s  the u s u a l  cho ice .  

There i s  o n e  K-card in e a c h  s e t .  T h e  two  ORlGN 
cards are iden t i ca l ,  wi th  JO blank,  IB = 1 to  re- 
turn to  START, a n d  t h e  o r ig ins  s t epped  a s  re- 
quired.  The l a s t  ca rd  calls TEST through I X  = -4. 
It must  r e p e a t  MAXN a n d  RX, whi le  X = blank,  
1.0 or 2.0 c o n t r o l s  t h e  op t iona l  series print. 

Case 2 

I f  i n s t e a d  of c h e c k i n g  from s e v e r a l  or igins ,  it 
is des i red  to compute  M and  F for a pair  of coils 
wi th  v a r i a b l e  a x i a l  s p a c i n g ,  t h e  only c h a n g e  re- 
quired is t o  e n t e r  s e p a r a t e  v a l u e s  of DLO on the 
t h e  t w o  ORlGN c a r d s ,  w h o s e  d i f f e rence  i s  t h e  
d e s i r e d  a x i a l  increment .  

Case 3 

As many a s  12 i ndependen t  pa i r s  of e l e m e n t s  
or  of comple t e  s y s t e m s  or s u b s y s t e m s  c a n  be  
e n t e r e d  a t  one  t ime,  u s ing  up to 24 sets of START, 

K-, a n d  ORlGN cards, before c a l l i n g  TEST (M). 
I f  a s i n g l e  primury or secondary  s u b s y s t e m  is 
t o  be combined in turn wi th  s e v e r a l  o the r s ,  the 
r epea ted  s y s t e m  n e e d s  only o n e  set  of c a r d s .  
The ORlGN c a r d  then  c a r r i e s  in 0L.l t h e  number 
of combina t ions ,  w h i l e  DLO i s  blank. 

T H E  F A P  S E C T I O N  

O n e  e s s e n t i a l  sub rou t ine  is a F'AP a s s e m b l y  
of a b o u t  1000 words.  All  t h e  Furtran s e c t i o n s  
car1 b e  e f f e c t i v e l y  used ,  and  e v e n  modified for. 
s p e c i a l  problems,  without  a n y  detailed knowledge  
of t h i s  s l a v e  rout ine.  It is called by FINDQK 
a n d  Z E B R A ,  and by s e v e r a l  ve r s ions  of TEST 
t h a t  w e r e  wri t ten to  t a b u l u t e  t h e  v a r i o u s  zona l  
har mon i c fun c t i on s . 

E x c e p t  for s o m e  dozen words, t h e  e n t i r e  FAP 
s e c t i o n  i s  writ ten in f ixed point,  so  as to re ta in  35 
s i g n i f i c a n t  bits  in t h e  co lcu ia+ ions ,  u p  t u  the point  
of return to t h e  Fortran coding.  It c o n t a i n s ,  in ad- 
di t ion to short s e c t i o n s  for c o n v e r s i o n s  a n d  tests, 
t h e  series and  r ecu r rence  rou t ines  for c a l c u l a t i n g  the 
func t ions  o f  polar  a n g l e ,  namely P,2  I 1'; , Uf I Wi, 
and  log [ ( I  t s ) / u ] .  it a l so  s u m s  the con t r ibu t ions  
to 7, ,  namely z,, log [ ( I  -t s j i u J L , ,  a n d  to  y2# over  
t h e  f o u r  s o u r c e s  of a rec t angu la r  cu i !  ( L  1 to 
4) with t h e  f u l l  p r ec i s ion  of t h e  Fixed point ar i th -  
met ic ,  before  f loa t ing  t h e  results far s t o r a g e  in 
COMMON" 

Normal Entry Points 

S p e c i a l  en t ry  po in t s  for t e s t i n g  are not con-  
sidered he re ,  TO c a l c u l a t e  t h e  func t ions  of polar  
ang le ,  t h e  FAP s e c t i o n  i s  e n t e r e d  a t  PNU, PNUM, 
or PUN, with s u i t a b l e  da t a  in each case to  de f ine  
the polar a n g l e .  In sub rou t ine  Z E B R A ,  which 
c a l c u l a t e s  v a r i o u s  f ie ld  componen t s  f r o m  the 
s t o r e d  s y s t e m  c o n s t a n t s ,  the normal 27-bit f loa t ing  
point  p rec i s ion  s u f f i c e s ,  The c a l l i n g  s e q u e n c e  
is then:  

U = d r  

S = p / r  

(Switch) 

CALL PNU 

The f i r s t  t w o  s t a t e m e n t s ,  with the coord ina te s  on 
t h e  r ight  side rep laced  by the i r  symbolic  For t r an  
e q u i v a l e n t s ,  compute  t h e  c o s i n e  a n d  s i n e  of t h e  
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f ie ld-point  polar angle. The “swi tch”  i s  n fvnc-  
t i o n  se lector  that  spec i f i es  an  output option (see 
below). Here the  27-bit f l oa t i ng  point  cos ine I J  
defines the  angular argument. T o  ensure the in- 
ternal  cons i s tency  of s ine  and cos ine  t o  35 bits, 
the FAP scc t i on  conta ins a one-step square root  
ext ract ion on 1 - u2, using the input  va lue of 
S as a f r i u l  d iv isor .  The  improved va lue i s  a l s o  
re-f loated and returned t o  S. 

In c r i t i c a l  cases, espec ia l l y  when ca lcu lat i r ig  
the source constants  of long c o i l  systems for a 
series of origins, i t  i s  des i rab le t o  use t h e  f u l l  
p rec i s ion  o f  the f i x e d  po in t  ari thmetic. T h i s  re- 
qu i res tha t  the polar angle be def ined from the 
r a t i o  o f  t w o  coordinates tha t  have been converted 
t o  exact  f l oa t i ng  p o i n t  b inary numbers from inte- 
gral dimensions on  the data cards, thus avo id ing  
the error inherent in  a dec imal  to binary f ract ion 
conversion. The  system geometry i s  descr ibed 
by a se t  of integers (exact b inary f ract ions are 
a l s o  a l l owed)  through the  use of the arbitrary 
sca le factor  HS/RO,  usua l l y  a power of 10. The 
input lengths sca led  t o  RS are used so le l y  t Q  

t ransmi t  exact ra t ios,  through subroutine FINDQK, 
t o  the FAP sect ion.  The  For t ran sect ions use 
thereafter lengths normal ized on RO, w h i c h  cor- 
responds t o  the u n i t  or reference length ro o f  
Chapters 1 and 2. 

Subroutine FINDQK transmits the sca led  i npu t  
c y l i n d r i c a l  coordinates o f  each source t o  the 
FAP section, thus def in ing the angle through i t s  
tangent or cotangent: 

z c = z  
AC = p 

(Switch) 

CALL  PPIUM 

For p rec i s ion  test ing, and for reserve f l e x i b i l i t y ,  
a t h i r d  c a l l i n g  sequence i s  prov ided tha t  i s  cur- 
ren t l y  used only  in a polar vers ion of subroutine 
TEST: 

Z C = e  

AC = r (polar) 

(Switch) 

CALL PUN 

In e i ther  case the smaller of the scaled lengths 
ZC and A C  i s  converted t o  a f loat ing point  m ixed  
number (usual ly  w i t h  one or more zero b i t s  f o l -  

lowing the b inary po int )  hav ing  the same char- 
ac te r i s t i c  as h e  larger length. The la t ter  re ta ins  
i t s  o r i g ina l  form, in  w h i c h  the f ract ional  part i s  
a lways  normalized. Both numbers are now con- 
verted t o  exact  f i x e d  point  b inary f ract ions by  
sh i f t i ng  l e f t  8 b i t s  t o  drop the character is t ic ,  In 
effect, both are sca led  down by the same unre- 
corded power of 2: T h i s  normal iz ing rout ine pre- 
serves on ly  the r a t i o  of lengths, w h i l e  ensur ing 
tha t  the larger one conta ins 35 s ign i f i can t  b i ts .  

The ca l cu la t i on  of s ine  and cos ine i s  now 
e a s i l y  completed i n  f i x e d  point, f o l l owed  by  tha t  
of the remain ing funct ions of polar angle. E v i -  
dent ly  the PNUM sequence can generate v a l i d  
35-bit binary equiva lents  of cotangent or tangent 
arguments for such functions, and the PUN se- 

quence s im i la r  equiva lents  of cos ine arguments, 
when the  arguments can be expressed ns rn t i os  
of integers. I n  part icular, 35-bit convers ion o f  
such dec imal  f ract ions os 0.57 or 0.4192 i s  cor- 
rect ly  carr ied out. 

Output Options 

The funct ions that  arc transmitted t o  COMMON 
depend only on the s w i t c h  inst ruct ion o f  the 
c a l l i n g  seqiience and no t  on wh ich  o f  the t l i ree 
sequences i s  used. I n  any case the  FAP op- 
erat ions may be d i v ided  i n f o  t w o  stages, the 
f i r s t  of w h i c h  generates one of two series o f  
f i x e d  po in t  funct ions and loads them in to  the 
in ternal  array PX, w h i l e  the  second stage de l i ve rs  
one o f  f i v e  series of f loat ing-point  funct ions to  
the COMMON array QF. For t ran notat ion, w i t h  
subscr ip t  (N), w i l l  be used here for both arrays, 
w h i l e  the order of t he  funct ions i s  shown by the 
usual  subscr ip t  n. 

Tab le  4 shows the e f f e c t  of se t t i ng  PN, SPNI, 
or WN t o  non-zero (NZ) as  a s w i t c h  i ns t ruc t i on  
before the CALL statement. The  s w i t c h  must be 
rese t  for each entry, s ince  a l l  three locat ions are 
automat ica l ly  zeroed before return. T h e  funct ions 
that are s tored in  PX and i n  QF are l i s ted  i n  the  
secsnd and t h i r d  columns, respect ive ly .  

In the f i r s t  case, when the s w i t c h  inst ruct ion i s  

PN = NZ, the funct ions Pn are f i r s t  generated 
and stored i n  PX(N), beginning w i t h  P ,  = u in 
PX.  T h e  same funct ions are then f loated and 
stored in QF(N + 1). In  a l l  t he  other cases, the 
f i r s t  s tep  loads - P i  i n t o  PX(N), beginning with 
- s 2  in  PX, w h i l e  t h e  second s tep  loads one of 
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Table  4. Effec t  of Switch O p t i o n s  

Floa t  N(QF) N(QF) 
I.______._ ._I-_ -- Swi tch F i x  

(-NZ) PX(N) QF(N) Min Max 
.̂__I_ 

.̂._.-....-__I.. __  ~ ~ ~ 

2 MAXN +- 2 PN pn p n -  1 

2 M A X N  + 2 SPNI (+) -P,: -",*- 1 

SPNl (-) -P: - - P n - ,  ' ,  2 M A X N  1- 2 
?l 

w N -r* 2 M A X N  + 2 
P 2 

None -P* (1; 3 M A X N  

four dif ferent series into the array QF without 
disturbing the array PX. The integer MAXN, 
whose permissible values 5(4)33 hove been pre- 
v iously noted, l i m i t s  the range of a i !  f i v e  TeCIJi- 
rence routines. 

Evident ly if the calculat ion of "/d or K'," or both, 
i s  to follow that of either set of the ''I functions 
fnr the same argument, i t  would be redundant t o  
repeat the i terat ions of the f i r s t  step, that  is, 
the calculat ion of -P:. For th is reason u ae- 
entry instruction, CALL UM, i s  provided, which 
n a y  or may not be preceded by the switch in- 
struct ion WM = NZ- I f  the switch i s  sef, the 
re-onTry sequence computes WE;  if it is omitted, 
(1;- Both options may be used i f  desired, in  
either order, and the redundant f i rst  step i s  by- 
passed each time. 

The Logarithmic Functions 

The logarithms required for q 1  and q 2 ,  i n  the 
case of a co i l  of rectangular section, are com- 
puted with a precis ion of 3 x lo-" by a 4 term 
series approximation adapted from Wastings. Also, 
the f ixed point constants '7, and q 2  are summed 
within the FAP section over the four sources of 
the coi l .  Only the sums are floated, and stored 
i n  QF(1) ond QF(2). The sequence of operotions 
i s  control led by the subscript L. This steps from 
1 to 4 as  the vert ices of the co i l  cross-section are 
scanned by FlNDQK i n  the order outer r ight  (+), 
inner r ight  (-), outer le f t  (-), inner le f t  ( t ) .  The 
L-sequence i s  diagramed i n  the box a t  the foot of 
Table 3. 

Actual ly only two logarithms are computed, 
that of the rat io of (1 i S ) / I L  for the sources 2 
ond 1 and again for 4 and 3, To compute (I] these 
logarithms must be mult ip l ied by z 2  and z,, re- 
spectively. This operation i s  carried out in  
f ixed point after proper scal ing of z 2  and 2,' 
using the sume normalizing routine as was de- 
scribed above for ZC and AC. In thjs case, how- 
ever, the scal ing factor must be preserved, t o  be 
mult ip l ied i n  f ioating point by the f inal  SIJIII after 
conversion. The logarithm routine computes one- 
fourth o f  the true value in f ixed point, and thus 
i t  i s  l imi ted to  arguments between 1 and e-'. 

Therefore, the rat io of outer to inner cyl indr ical  
radius cannot exceed e 4  for any coi l ,  or about 
54.5. So high a rat io i s  unl ikely io  occur, but 
i f  it does an overflow signal is printed and the  
co i l  can be subdivided. 

Test Entry Points 

The entry points FTEST, LN, and LNT were 
provided for use wi th  several versions of sub- 
routine TEST, t o  permit c r i t i ca l  test ing of the 
FAP section beyond the lirnits of the  27 b i t  
precision of f loat ing point arithmetic. Detai js 
are  omitted. 

O T H E R  SUBRQUTlNES 

ZEBRA (2) was writ ten t o  supply values of 
Bz and 6 ,  for single points whose cyl indr ical  
coordinates are placed in Zc and AC, although 
it con a lso  read in  a complete f ie ld net, compute 
and print the f i e ld  a t  each point. I t  uses the 
source constants stored in QS(J, N). It refers each 
f ie ld point automatical ly t o  the nearest origin, 
whether the origins are equally spaced or not, 
and ii prints optionally. 

PUNCH w i l l  punch out on data cards, s i x  octal 
words to a card, either the complete set o f  origins 
w i th  corresponding sets of source constants 

QS(J, N), or sets of f ie ld  values (BN) as described 
above under the IB f ie ld of the ORIGN card. 
There may be a recurring need for the source con- 
stants of c1 part icular system, for example, as 
input data for the calculat ion of part ic le orbits 
under various i n i t i a l  conditions. There is  no need 
t o  recalculate the constants i f  they have been 
once punched out on cards, nor to reload the 
original data cards or any part of the zonal har- 
monic coding except subroutines READ and 
ZEBRA (2), for t h i s  purpose. The cards produced 
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by PUNCI-1 ore loaded at the top of the data card 
deck. 

Each of the two PUNCH options produces f i rs t  
an index card wi th a dist inct ive pattern for instant 
recognition. It i s  convenient to  replace this card 
before use by a printed duplicate, as produced on 
a standard keypunch. In the case of the f ie ld 
data (BN), a separate index card i s  punched for 
each of the IB subsystems. This makes i t  easy 
to  check the deck for completeness, after which 
all the index cards except the f i rst  must be re- 
moved. Each of the IB sets of f ie ld  data i s  further 
divided by entries on the index card into M4 
groups of M3 values each, representing f ie ld 
points at M3 values of z for each of M4 values 
of p, as prescribed by the original FIELD card. 

READ accepts sets of data curds produced by 
PUNCH and restores al l  variables to  their original 
locations in  COMMON. It also prints an indexed 
check l i s t  of the data, which duplicates the print 
of the original problem. 

TEST was original ly writ ten in  several versions, 
t o  test  the precision of a l l  parts of the program 

and to tabulate the several functions of polar 
angle, to  cosine, catangent, or tangent arguments. 
Detai ls are omitted. TEST (M), which computes 
illutual inductances and axial  forces between CO- 

axial  systems, was described in the section on 
problem setup. 

OPEN i s  for geriernl reserve. A completed 
version, offering a f lexible PDUMP option, was 
discussed under heading X of the main program. 

BEST i s  currently a dummy subroutine, to be 
used in coding one or more f ie ld  optimization 
programs. Two such routines were avai lnble 
before the present programs were written, but 
they w i l l  require revis ion of certciin details, to 
accept the f ie ld  data stored in BN or recorded 
on cards by PUNCH. Note that BN has been 
placed at the end of COMMON storage, and that 
i t i s  omitted from the l i s t  except in Subroutines 
ZEBRA, PUNCH, and READ, Th is  makes it 
easy to alter i t s  DIMENSION statement, i f  the 
present assignment (8,100) proves inadequate. 
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