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Low core w a l l  temperature and the high veloc i ty  of TlGid 
at; the  w a l l  make this vessel well suited for use as a 
r d c c t o r  c'orc. 
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INTROMTCTION AND SUMMARY 

Fai lure  of the  HFE-2 core vessel during high-power operation is 
believed t o  'nave been caused by a buildup or deposit ion of uranium 
on t h e  w a l 1 . l  
core wall, temperature of t he  w a l l ,  temperakure d i s t r ibu t ion  of f l u i d  
within t h e  vesse!l, and o s c i l l a t i o n  of core power l e v e l  are f ac to r s  
which depend d i r e c t l y  on f l u i d  flow proper t ies  of t he  core. Tests 
of s m a l l  s ca l e  flow models serve Lo screen proposed core designs 
with respect  t o  flow propert ies .  

Scrubbing of so l id s  (or heavy l i q u i d  phase) f r o m  the  

Mean f l u i d  age and ve loc i ty  t raverses  w e r e  completed i n  a small 
l u c i t e  model, approximately one-f i f th  scale ,d  of a proposed €P8-2 
replacement core vessel ,  From these data, the  s p a t i a l  tempera- 
t u r e  d i s t r ibu t ion  and t h e  core w a l l  corrosion r a t e s  were estimated 
f o r  the fill-scale core f o r  various flow rates. The nuclear 
average temperature and core side heat  t r a n s f e r  f i l m  coef f ic ien ts  
were e s t h a t e d  and so l id s  and gas removal tests were run. It w a s  
found t h a t  t he  maximum w a l l  temperature could be maintained 
below t he  o u t l e t  temperature, and t h a t  the  max im f l u i d  temperature 
would be l imi ted  t o  300°C at a flow of 87 gpm/Mw. 

Because the  cool f l u i d  enter ing the  core i s  introduced i n  a manner 
which maintains a blanket of cool f l u i d  near the  core vessel  
w a l l ,  t he  core wall. corrosion rates should be kept a t  a minimuml 

DESIGN OF FLOW MODEX, 

The Lucite flow model tested w a s  geometrically scaled from the  
proposed HRE-2 replacement core vesse l  dimensions. It i s  
bas i ca l ly  a v e r t i c a l  cyl inder  with hemispherical heads of t o t a l  
L/D = 2 .  

A sketch of the flow model Configuration showing the elevat ion 
of probe holes i s  shown i n  Fig" 1. A cross sec t ion  of the header 
and one entrance s l o t  i s  shown i n  Fig. 2, The two  f l u i d  entrance 
slots were 180* apa r t  and r a n  the  full length of t h e  cy l ind r i ca l  
section. 
Figu 2 )  whieh d i rec ted  incoming f l u i d  toward 
angle of 45' f r o m  t h e  horizontal .  
t o  t he  w a l l  and l e f t  through t h e  outlet. a t  t he  top of the  vessel;  
a s m a l l  o u t l e t  was provided at the  bottom. 
fed  by a separate  rotameter t o  equalize t h e  flow rate. 
width and header cross sec t ion  were constant a t  a l l  elevat ions,  
Dimensions of t h e  model and the  proposed f u l l  s i z e  core are 
l i s t e d  i n  t h e  fol lowing t ab le :  

Each hemispherical head had two in le t  s l o t s  (shown i n  
the  ends a t  an 

Water entered t h e  model tangent 

Each s l o t  header w a s  
The s l o t  

3 4456 0535745 I 
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Model Full-Scale Core - 
Inside diameter 5-in. 24-in. 

Inside over-al l  length 10-in. 48 - in  (I 

Single s l o t  width 0.104-in. 

Volme 0.093 f t 3  

0. 50-inO 

10.3 f t  3 

900 g p m  Flow rate 8 g P m  

Water flow rate was selected t o  give a mean residence t i m e  equal 
t o  t h a t  of the  full-scale vessel  running a t  900 gpm. 

F L U I D  AGE MEASUmNTS 

Fluid age measurements a t  points  within the  core model were obtained 
by use of conductivity probes. 
calculated from the  va r i a t ion  of l o c a l  concentration of a t r a c e r  
s a l t  with t i m e  after a s t e p  concentration change of the  i n l e t  
f lu id .  The relat ionship used i s :  

Mean f l u i d  age a t  any point  w a s  

where 7 = mean f l u i d  age or, mean t i m e  t ha t  f l u i d  a t  a 
point  has been i n  the  core before reaching 
t h a t  point, 

m 

~ ( t )  = concentration of salt a t  any t i m e ,  t, a t  
pos i t ion  of measurement, 

C(W)  = concentration of salt  as t + 00 for f l u i d  
located a t  p o s i t i o n  of measurement = 
concentration of sa l t  a t  in le t  f o r  t > 0, 

t = t i m e  i n  seconds measured f r o m t h e  in s t an t  a 
step change was introduced a t  the  core inlet .  



Assuming a constant and 
core, the  r a t i o  of mean. 
o u t l e t  i s  equivalent t o  

uniform heat  generation r a t e  throughout t he  
f l u i d  age a.t a point t o  mean age a t  the  
the  r a t i o  of mean temperature rise a t  t h a t  

point  t o  the  mean temperature rise across t h e  core. With the  core 
i n l e t  temperature and mean temperature r ise known, the  s p a t i a l  
t e rqera ture  d i s t r ibu t ion  within the  core can be estimated from 
f l u i d  age measurement traverses. 

Procedure and Apparatus 

The s tep function change i n  i n l e t  f l u i d  conductivity w a s  produced 
by pumping a KzCq07-water solut ion i n t o  the  i n l e t  water s t r a m  
a t  a point, far  enough upstream from the  model t o  insure a uniform 
mixture a t  the  inlet ,  
rotary pump was used t o  i n j e c t  sa l t  solut ion t o  provide constant 
flow. A sharp s tep  change w a s  produced by use of solenoid valves 
i n  the  s a l t  i n l e t  l i n e .  

A 1 .5  gpm Viking pos i t ive  displacement 

Conductivity probes at, the  i n l e t ,  at! the  out le t ,  and at points  of 
i n t e r e s t  within the  core were used t o  measure f l u i d  conductivity, 
which w a s  a l i n e a r  function af K ~ C r 2 0 7  concentration over t he  
range o f  concentrations used. 
ment, composed of c a r r i e r  preamplifier, d r iver  amplif ier  w i t h  power 
supply, and recorder, supplied the  2400 cps A.C. probe exc i ta t ion  
and received the  probe signal  through an external  Wheatstone 
bridge. 
t o  ca lcu la te  and record t h e  time in tegra l  of tize difference i n  
s ignals  from the  inlet  probe and the probe connected t o  t h a t  i n t e -  
grat ing channel. 'The value of the  in t eg ra l  when C ( t )  = C ( m )  was 
d i r e c t l y  proportional t o  the  mean f l u i d  age. I n  practice,  two 
values of t he  mean age wcre calculated from each run. One value 
w a s  obtained from the  s t ep  change when sa l t  w a s  in jec ted  and the  
other  when salt  in jec t ion  w a s  cut o f f .  

An eight-channel Sanborn in s t ru -  

Phi lbr ick amplif iers  were b u i l t  i n t o  three of the  channels 

Fluid Age Results 

Results of mean f l u i d  age t raverses  a t  various elevations are shown 
i n  Figures 3, 4 and 5. m e  r e l a t i v e  age r a t i o s  (mean f l u i d  age a t  
a point divided by mean age a t  o u t l e t )  are plot%,. Pd vers?~s distance 
along radii at, each elevation, Table 1 lis%s the loca t ion  of each 
probe f i t t i n g  used i n  mean age and ?relocity t raverses .  Predicted 
Tluid temperatures are plo.tted versus the  flow rate t o  core power 
ratio i n  Fig. 6 f o r  a ZgO l i t e r  core with 250°C i n l e t  f l u i d  t e m -  
perature,  
assuming uniform power density, a r e  calculated from t h e  expression 

Mean f l u i d  temperatures a t  points  within the  vessel, 

T I 'F:r 
Relative Age Ratio = - 
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where T = f l u i d  temperature a t  point of measurement 

Ti = mean f l u i d  temperature a t  point of measurement 

To = mean f l u i d  out le t  temperature 

Fluid temperatures a t  the wall of the full scale replacement vessel 
a t  10 Mwt core power (4OoC mean core temperature rise, 250°C inlet  
temperature) a r e  estimated t o  range from 266Oc j u s t  above the 
bottom head t o  286OC i n  the upper head. 
w a l l  i n  the lower head was 278Oc. 
of 2960~  was near the axis of the core i n  the upper head. Maxi- 
mum temperatures a t  each elevation were near the ax is  and varied 
only 6 ' ~  over the length of the core. 

Fluid temperature a t  the 
The maximum solution temperature 

The e q r e s s i o n  f o r  the spa t ia l  mean f l u i d  temperature within the 
core (T) was found t o  be 

Discussion of Results 

I n  extrapolating data from a 5-in. diameter model t o  a 24-in. 
diameter core, it was assumed tha t  the spatial  mean f l u i d  age dis- 
t r ibut ions were equal fo r  the two sizes. 
and the flow model are geometrically similar with a difference i n  
scale of 1:4.8. Geometrically similar vessels have equal gross 
f l u i d  flow patterns, and hydrodynamic s imilar i ty  i s  usually ex- 
pected t o  depend on equality of Reynolds Numbers. 
on a re-entrant core flow model' showed no appreciable change i n  
the re la t ive  mean f l u i d  age r a t i o  dis t r ibut ion when the  Reynolds 
number was increased by a fac tor  of 2.8. Simulated puwer t races  
from flow properties of the reverse flow HRE-2 f u l l  scale flow 
model agreed closely t o  HRE-2 power oscil lations.3 The Reynolds 
nuuiber i n  the HRE-2 was about ten  times higher than i n  the flow 
model. These tests indicate t h a t  the flow dis t r ibut ion properties 
measured are invariant with, o r  a r e  a slow function of, Reynolds 
nuniber as long as vessels operate i n  the turbulent flow regime. 

The proposed reactor core 

Previous t e s t s  

The model flow r a t e  was selected f o r  equality of mean residence 
t i m e s  (volume/flow ra t e )  i n  the two vessel s i z e s j  howeyer, the 
mean i n l e t  veloci t ies  were unequal. The higher velocity I n  the 
full scale core i s  balanced by the increased vessel circumference 
such tha t  the angular veloci t ies  (radianslsec), and the mean 
f luid ages, should remain the same. 

Temperature estimations from mean f l u i d  age data do not take 
i n t o  account the e f fec t  of changing f l u i d  physical properties 
upon the flow or heat source distributions.  
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The r e l a t i v e  age r a t i o s  calculated from t he  salt decay end of t he  
cu.zsre~ were general ly  lower than those calculated from the  salt 
buildup ends; the m a x i m  var ia t ion  between t h e  two being 20%. 
The reason far t h a t  difference has not; been deternrlned. The data 
plot ted i n  Figs, 3, 4 and 5 were the  higher values determined 
from the  salt buildup curve. 

T e s t s  on the BEE-Z flow model haxw shown t h a t  hydraulic f luc tua t -  
ions which cause changes i n  the  average residenee tlme of f l u i d  
i n  the core by changing the  f r a c t i o n  of f l u i d  shor t  c i rcu i t ing ,  
can cause neutron level fiixctuations i n  the c o r d  
of chazges i n  average f l u i d  residence time vas indicated by the  
shape 621 the  conductivity versus t i m e  curve of o u t l e t  f l u i d  after 
a step function sa l t  concentratlon change of inlet Fluid. The 
out81et probe conductivity eurves f o r  t h e  s l o t  en t ry  E l o w  model 
shbwed no f lu id  short c i r cu i t i ng  d i r e c t l y  to the o u t l e t  and no 
l a ~ g e  f luc tua t ions  durlng salt concentmtlon buildup, which ind i -  
ca tes  l i t t l e  o r  no power l eve l  f lxc tua t ions  due t o  core f l o w  con- 
d i t ions .  
model (mean age J u s t  i n s ide  the  o u t l e t  pipe varied only 0.6% from 
wall t o  center )  and minor f luctua, t iom within the  model would 
not change the  mean age o f  t h e  mi.xed stream appreciably. 

The presence 

I n  addition, the fluid was w e l l  -mixed as it l e f t  t h e  

?"ne mxlmwn so lu t ion  tempera-hure carve i n  Fig, 6 i l l u s t r a t e s  that 
t h e  core f l a w  rate must be higher .tlnan 87 @m/W.& t o  keep the  
maximum solu t ion  temperature below ~ O O O C  for  a n  inlet  f l u i d  t e m -  
perature  of 250Oc. 

It i s  bel ieved t h a t  the a x i a l  va r i a t ion  i n  temperature a t  the 
w a l l  coiild be reduced '13y varying t,he header cross section, o r  
i n l e t  s l o t  width, over i t s  length 

Fluid velocit,y p r o f i l e s  w s r e  measured using 0.120-in. diameter, 
3-dimnsional (type DA) probes mnufactured by the  United Sensor 
and Control- eo-qerati on, Glastoabury, Connecticut These probes 
inillcate tangent ia l ,  axial, and I -ad laL ve loc i ty  components a The 
probe was positioned by the  manufacturer ' s manual t raverse  u n i t  
with which the  radial d.ic-t;ance CGUM he read t o  O-Ol-in. and the 
yaw angle t o  0.2". 

P l o t s  of velact ty  components versus radial. p o z i t l o n  f o r  various 
elevat ions are shown i n  Figs- 7 and 8. 
tial. a n d  axial. veloc i ty  components are p l o t t e d  versus pos i t ion  i n  
Fig. 9. 

The vector sums of tmgen-  
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One ve loc i ty  traverse,  6-5, was taken on the  row of probe f i t t i n g s  
j u s t  behind an  i n l e t  s l o t .  Minimum f l u i d  w a l l  ve loc i ty  w a s  e s t i -  
mated from these data. The low w a l l  welocity found i n  t raverse  
A-8 is considered t o  be due t o  the  gap between the  i n l e t  s l o t s  i n  
the head and i n  the  cylinder.  T o  eliminate a low veloci ty  region 
a t  t h i s  elevation, a full scale  core would probably have inlet  
s l o t s  extending continuously i n t o  the  heads. 

The d i r ec t ion  of r a d i a l  flow, as determined by DA probes (Fig. 7), 
was toward the w a l l  for t raverses  A-1 and A-5 up t o  a pos i t ion  
near the  centero 
showed a r ad ia l  flow toward the  center  at these posi t ions.  
reason f o r  the  contradictory r e s u l t s  has not been determined. 

A minimum f l u i d  ve loc i ty  of 1.1 f'ps near the  wall  ( tangent ia l  plus 
a x i a l  components a t  C - 5 )  was considered a good estimate f o r  the  
flow model. 

Tests w i t h  1/16-in. diameter dye in j ec t ion  probes 
The 

CORROSION RATE ESTZMTE 

Estimated core s ide  corrosion r a t e s  of a full scale  core w a l l ,  p lo t t ed  
versus core flow ra te ,  a r e  shown i n  Fig. 10. These estimates were 
made using GI H. Jenks' cor re la t ion  of i n -p i l e  loop and autoclave 
data  f o r  t he  corrosion o f  Zircaloy-2. 

4 

The re la t ionship  i s :  

11, >OO/T 
Q +  2.25 x e' .. E =  Pa 

4.8 + 1 a =  pz where 

V = f l u i d  w a l l  velocity,  fps 

P = power densi ty  a t  wall, watts/cc 

T = w a l l  temperature, K 0 

R = corrosion rate, npy 

Fluid ve loc i ty  a t  t he  w a l l  of a full-scale core with 900 gpm flow 
rate was taken t o  be a f ac to r  of four  ( the r a t i o  of core t o  model 
mean i n l e t  v e l o c i t i e s )  higher than t h a t  found i n  t h e  model, 
other  flow rates ,  ve loc i ty  was assumed t o  vary d i r e c t l y  w i t h  flow 
r a t e .  
maximum fluid temperature (row C )  f o r  each elevat ion i n  order t o  
estimate the maximum corrosion r a t e s .  

For 

Calculations were f o r  the region of minimum veloci ty  and 
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Wall temperatures w ~ r e  estimated from the spa+,ial d i s t r ibu t ion  of  
f l u i d  temperature and  veloci ty  by lisp o f  H. w.. Poppendiek's 
analyses5 of forced con-veetion heat, t r ans fe r  with a voliune heat, 
source within t h ~  f lu id .  
i n  the w a l l  was removed by blanket s i d e  cooling (Appendix B) and 
t h a t  no uranium-b-aring scalp w a s  present  on the w a l l .  

It w a s  assumed t h a t  gamma hzat generated 

F i l m  Coefficients of Heat Transfer 

Core-side beat  txansfer  f i l m  coef f ic ien ts  were estimated from a 
p l o t  of NusseLt modulus -rersus Reynolds modulus f o r  turbulent  
heat  t r ans fe r  between p r a l l e l  ~ l a t ~ s 5  f o r  a core flow ra t e  of 900 
gpm. 
of the model by use OF a x  equi-Jal-?nt p a r a l l e l  p l a t e  system w i t h  
distance between p l a t z s  eqLlal t o  twice th-.- distanca from tbe  model 
w a l l  to the  ve loc i ty  peak nea r  the  w a l l .  
nietr-ically scaled up t o  cor2 size. 
fu l l - s i z?  reac tor  w a s  estimated t o  be f o u r  t i m e s  tho mean vr loc i ty  
from vessel w a l l  t o  th3 vcloc i ty  peak found i n  the  model, 

P5ynolds modulus w a s  calculated P r o m t 5 F  ve loc i ty  p r o f i l e s  

This distance w a s  geo- 
Mean channel ve loc i ty  i n  the 

F i l m  coef f ic ien ts  a t  h i g h  teqerature  for locat ions i n  the  core 
corresponding t o  Fro-be locat ions i n  t h e  model a r e  l i s t e d  i n  the  
following t ab le  : 

Film Coefficient 

Location Ftxu/hl". f t 2  OF 

C-l and C - 5  186~1 

A-l an3 A-5 2620 

SOLIDS AND GAS REMOTTAL 

The a b i i i t y  t r _ ,  remove so l id s  w a s  t?s-t,?d by the ad3i t ion of sand t o  
on? inlet pipe of tGle m o ~ d e l .  When fl1Jid 12ft  kblrough the top of the  
model  only, most of t h e  so l id s  reminsd  i n  f,hc vessel, swirling 
around i n  t h e  bott,om iIlea5. When l.C% ,'.? +_h- flow left through t he  
dra in  l i n e  a t  thn bottom, thc  solids w e r ?  quickly s w q t  out of tht. 
model. 

fir, continuo7~sly injpcted info the model, swirled towards %he 
center  and was removed through t he  ogtlet at  the to? without 
acwmulafing i n  the  model. 

Tests on a l / 5  sca le  model indicated that t,he s lot-entry core con- 
f igura t ion  w i l l  s a t i s f y  a l l  known hydrodynamic c r i t e r i a  f o r  a 
homogeneous reactor  core vessel. Wall t , ? m p e r a t u r ? s  w e r ?  b ~ l o w  t h e  
mean outJet  temperature a.n? a rFeommendpd flow ra t?  of 90 gpm/Mwt 



would keep the  maximum solut ion temperature below 3OO0C. 
flow r a t e  t he  m x i m u m  corrosion r a t e  would be 11 and 20 mpy 
fo r  5 and 10 Mw thermal power, respectively, with a 25OOC i n l e t  
temperature. A minimum core s ide  heat t r ans fe r  f i l m  coef f ic ien t  
of 1860 Btu/hr f t2  ?F was calculated from H. F. Poppendiek's 
analysis5 f o r  a core flow rate of 900 gpm. 
s p a t i a l  mean f l u i d  temperature was found t o  be 

A t  t h i s  

The expression f o r  the  

!F - T, 
1 = 0.74, 

To .. Ti 

The test  completed showed continuous removal of so l id s  and gas w i t h  
no accumulation i n  the vessel  when 10% of the  flow went through 
the  bottom out le t .  More complete tests, using s ized p a r t i c l e s  of 
known density, t o  determine minimum flow r a t e s  f o r  so l id s  removal 
would be necessary i f  work i s  continued on a core of t h i s  type. 

It i s  believed t h a t  the  favorable r e s u l t s  from the model t e s t ed  
j u s t i f y  construction of a ful l -scale  flow model upon resumption 
of the homogeneous reac tor  project .  Extrapolation of r e s u l t s  from 
the  model tests should be ve r i f i ed  by fu l l - sca l e  core t e s t s  due t o  
the  undetermined e f f e c t s  of vesse l  scaleup. 

Signif icant  contributions t o  t h i s  pro jec t  were made by S. J. Ball, 
I and C Division, who designed the  in tegra tes  c i r c u i t s  and by 
B. J, Young, who a s s i s t ed  i n  running the experiments and ca lcu la t -  
i n g  the data.. The or ig ina l  development vork of t he  conductivity 
probes wzs performed- bj M. Richardson. 
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APPENDIX A 

Sample Calculations 

A. Mean Fluid Age 

Typical Sanborn t r aces  of the  i n l e t  probe, t he  t raverse  (or  o u t l e t )  
probe, and the  integrat ing c i r c u i t  output a r e  represented i n  
Fig. 11 "Probe Factor" and "Bias" potentiometers i n  the  in tegra t -  
i n g  c i r c u i t  were s e t  t o  make the  Phi lbr ick amplifier input  s ignals  
from channels 1 and 2 equal when C1 = C2 = 0 and when 
c1 = cz = c(=J). 

The equation f o r  mean f l u i d  age a t  a point  within the  vesse l  i s  

T 

C ( t )  = C(m) when .t 2 T 

Assuming t h a t  C ( m )  i s  a constant and C ( t )  i s  a function o f  time 
only, the  equation reduces t o  

c ( 4  c (4 
t d C ( t )  s t d C ( t )  

0 - .- 0 -. 
'm - C ( t )  C (..) 

J t  a C ( t )  
0 

Considering the i n l e t  probe t r ace  a per fec t  s tep  function and 
in tegra t ing  by p a r t s  gives 

c ( 4  
TC(m)  - $ C ( t )  d t  

0 A 
= c(""> 

- 5 n  - C (m) 
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Fig. 11. Typical Sanborn Traces Prom Which Mean F l u i d  Age Was Calculated. 
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w h p r e  : A = arra bounded 5y t he  i n l e t  s tep  function, t he  

l i n e s  t = 0 and t, = T, and the  curve C ( t )  

The oxtput  of t he  in tegra tor  c i r c u i t  i s  proportional t o  t h e  area, 
A. 

wI2el-e R = the char t  reading of the  integratos  channel of 
equilibrium, when C ( 5 )  = C(W), 

is = p.~qpar t iona l i ty  constant 

To evaluate k, consider t h e  area under t h e  step function alone 
(~(t) = 0 ) .  

m and the  chart  reading, r2 a t  any timp, t, i s  equal t o  at. Then 

m t  = kA = kt C ( w )  

The trace of t b e  in tegra l  i s  a s t r a igh t  l i n e  of slope 

w h e  rF Ti = the  -Lime in t e rva l  from t h e  beginning of the  
step function u n t i l  r = ~ ( 0 0 )  when ~ ( t )  = o 
(r and ~ ( 0 0 )  measured i n  cm above t h e  char t  
base line), 

and. 

In practice,  R and C'(w]p were r e a d  from the  recorder t r aces  and T 
w a s  calnujat?d from the  slope of the  in t zg ra l  t r ace  dllring the 
t i m e  t%at ~ ( t )  = o f o r  each mn .  

i 

B. Estimation of W a l l  Temperature and k a t  Transfer F i l m  Cs- .- -~ 
e f f i c i e n t  

This sampl\-. calculat-ion i s  f o r  pos j t ion  C-5 i n  the flow model. 

In order t o  mab? use of published correlat ions5 .for forced con- 
v c t i o n  beat t ransfer  w i t h  volume k a t  sources within the  f luids ,  
t he  flow near the  wall was considered analogous t o  flow between 
pa ra l l e l  plates. T h e  distance from the  model w a l l  t o  t he  veloci ty  
peak Gear the w a l l ,  rOs w a s  taken as 112 t he  distance between 
p l a t e s ,  A mpan velocity,  umz i n  the  cbannel w a s  estimated from 
the measur4 veloci ty  p r o f i l e .  A t  posi t ion C-5 i n  th?  model 



r 0.2Q in. 

u 

0 

1.1 fps  (axjal  a n d  tangent ia l  components) m 

To extrapolate these data t o  _ ~ T l - s c a l e  core conditions, r 

and %was increased hy a faetol- equal. t o  +,he r a t i o  o f  mean i n l e t  
ve loc i t i e s  ,, 

w a s  scaled up geometrically by a fac to r  equal t o  t h e  r a t i o  of vessel. 0 diameters 

z 0.20)(4.8) R = -of channel thickness fo r  full scale  core = 
0 2  12 

.= 8.08 f t o  

LI = mean velocity f o r  f ~ l l  scale  core = (1.13(4)(60) m 

= 0.264 ft1h-r 
4 R  LA o m  Reynolds modulus R e  = -- 

V 

The Prandtl modulus, Pr ?or f u e l  so l s t ion  was ea.lculated t o  be 
0.73. .By use of the calcu1ati.d rraalues o f  Pr and  R e  and Fig. 5 
of Reference 5, i t  w a s  -folLnd t h a t  

L A  w :r 

?or reactor  core power of IQ MA, a f l u i d  -;cxlume heat s o w e  of 
37 wa-tt.s/cc was u s e d  to find 
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The value of tm was calculated from t h e  measured value of the  
r e l a t i v e  age r a t i o  (equal t o  0.60) a t  C-5, 1/8-in. from the  
wall f o r  a 250°C f l u i d  i n l e t  temperature and 290°C f l u i d  ou t l e t  
temperature. Then 

t = (O.60)(40) + 250 = 27OoC 
m 

and to = 276'~ 

By use of Fig. 6 of Reference 5, it w a s  found t h a t  

0 3 = 1.7 x io 
4 h r  

k 

where h F heat  t r ans fe r  film coef f ic ien t  

h = 1860 Btu/hr*ft2*oF 

C.  Corrosion Rate E s t i m a t e  

Corrosion r a t e s  of t he  inside w a l l  surface of t h e  reactor  core 
vessel  were estimated from the  cor re la t ion  4 

- -  1 - + 2.25 x 10 -11 e11,500/T 
R P a  

408 -t. 1 V0.E; with a = 

The corrosion rate a t  each flow rate w a s  based on an in le t  f l u i d  
temperature of 250°C and power dens i t i e s  a t  t h e  wall of 37 and 25 
w/cc i n  the  cy l indr ica l  sect ion and i n  the  heads respectively.  
For a pos i t ion  i n  the  reactor  core corresponding t o  pos i t ion  C-5  
i n  t he  model it was found (from the  previous calculat ion)  t h a t  

v = 4.4 ms 

T = 276'~ = 5 4 9 O K  

f o r  a flow rate of 900 gpm gnd a core QT of 40°C. 

then R = 20.4 mpy 

For other flow rates ,  t he  ve loc i ty  of f l u i d  a t  the  w a l l  w a s  
assumed t o  vary i n  proportion t o  the  change i n  flow ra t e .  



APPENDIX B 

Removal of Gamma H e a t  by Blanket Side Cooling 

The minimum blanket side f i l m  coef f ic ien t  of heat  t ransfer ,  hg, 
necessary t o  remove a l l  gamma heat  generated i n  t h e  core w a l l  w a s  
estimated from the  following conditions: 

Blanket mean temperature, tB = 482'F 

Core side w a l l  temperature, tc, a t  midplane = 525 F 

y heat i n  w a l l ,  considered uniform = 3.7 w/cc 

Core power = 10 Mwt 

0 

Wall thickness, h, = 7/16 in .  

Thermal conductivity of Zircaloy = 7 Btu/hr- ft-OF 

3 
Total heat f l ux  t o  blanket, A9 = (7 heat)(L) = 13,060 Btu/hr*ft" 

Considering the  core s ide of t h e  w a l l  per fec t ly  insulated, then 

tC - t B  

5 2 k  
L + -  A 9 =  1 

525 - 482 
( 7/16 ) (i/iz ) 13,060 = 

2 x 7  
+ -. 

hB 

and hB = 1450 Etu/hr.*ft2*oF 
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