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Introduct ion 

Solving t h e  Boltzmann equation f o r  problems of neutron t ranspor t  i n  media 

with sources or boundaries by approximations, one f a c e s  the appearance of t h e  

t r a n s i e n t  solutions in add i t ion  t o  t h e  asymptotic so lu t ions .  

gested t h a t  i n  plane geometry f o r  i n f i n i t e l y  high o rde r  of approximation, i .e. ,  

f o r  t h e  exact treatment, these funct ions form t h e  set of solu’cions which belongs 

t o  t h e  spectrum of t h e  Boltzmann operator.  The asymptotic so lu t ions  belong t o  

t h e  d i s c r e t e  p a r t  and t h e  t r a n s i e n t s  t o  t h e  continuous p a r t  of -the spectrum. 

K. M. Case, “Annals of Physics”, 

and proved t h a t  these so lu t ions  form a complete s e t .  

E. P. Wigner(8) sug- 

1-25 (1960), u t t e r e d  t h i s  idea independently 

The analogous problem f o r  spher ica l  geometry i s  s t i l l  not  solved. S imi l a r ly  

t o  t h e  two d i f f e r e n t  kinds of so lu t ions  of t h e  e q u a t i o n d f  

has r egu la r  and s ingular  so lu t ions  a t  t h e  center  of t h e  sphere, one a l s o  has t o  

expect both kinds of so lu t ions  f o r  t h e  Boltzmann equation. 

repork t h e  s ingular  so lu t ions  a r e  derived. 

s e c t i o n  B by two s teps .  

dens i ty  on t h e  r i g h t  hand s ide  w i l l  be solved. I n  general, t h e  p a r t i a l  solution, 

Sound by t h i s  way> w i l l  

able  so lu t ion  of t h e  homogeneous d i f f e r e n t i a l  equation t o  obtain t h e  des i r ed  

densi ty .  This add i t ion  leads  to a Sonine i n t e g r a l  equation. Second, t h i s  i n t e -  

g r a l  equation has t o  be solved; it gives t h e  r i g h t  add i t iona l  solu’cion of t h e  

= K 2 f ,  f o r  which one 

In  p a r t  I of t h i s  

The Boltzmann equation i s  solved i n  

F i r s t ,  a p a r t i a l  d i f f e r e n t i a l  equation with t h e  des i r ed  

y i e l d  t h e  des i r ed  dens i ty  and one has t o  add a s u i t -  

homogeneous p a r t i a l  d i f f e r e n t i a l  equation t o  f i t  t h e  desired density. 

t i o n  C t h e  uniqueness of t h e  t o t a l  solut ion i s  shown i n  t h e  sense t h a t  a d i f f e r e n t  

choice of t h e  o r i g i n a l  p a r t i a l  so lu t ion  does not inf luence t h e  t o t a l  solut ion.  

There i s  a f u r t h e r  i n t e r e s t i n g  property of these  so lu t ions :  they do no t  involve a 

requirement to s a t i s f y a  c h a r a c t e r i s t i c  equation. This f a c t  implies t h a t  a l l  those 

I n  sec- 
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terms i n  t h e  t o t a l  solut ion which contain t h e  constant of mu l t ip l i ca t ion  c a s  a 

f a c t o r  do not contr ibute  t o  t h e  densi ty .  Hence i n  s e c t i o n  D it is shown t h a t  

the  d e n s i t i e s  a r i s i n g  from t h e  o r i g i n a l l y  chosen p a r t i a l  so lu t ion  and from i t s  

Sonine transform cancel one another.  The t o t a l  dens i ty  i s  given by a t h i r d  term 

i n  t h e  t o t a l  so lu t ion  which o r i g i n a t e s  from t h e  des i r ed  densi ty  by t h e  Sonine 

procedure. O f  course it i s  also independent from t h e  choice of t h e  p a r t i a l  solu- 

t i o n  of t h e  inhomogeneous p a r t i a l  d i f f e r e n t i a l  equation. The same f a c t  can be 

observed f o r  t h e  so lu t ions  i n  plane geometry which belong t o  t h e  continuous spec- 

trum by comparison of equations (86) and (87). This f a c t  permits so lu t ions  which 

avoid t h e  s a t i s f a c t i o n  of a c h a r a c t e r i s t i c  equation. 

I n  s e c t i o n  E a p a r t i a l  so lu t ion  containing an a r b i t r a r y  parameter i s  

given and i n  s e c t i o n  F t h r e e  d i f f e r e n t  s p e c i f i c  p a r t i a l  so lu t ions  a r e  considered. 

The p a r t i a l  so lu t ion  t r e a t e d  i n  sect ion F1 has t h e  a t t r i b u t e  t h a t  i t s  dens i ty  i s  

e a s i l y  ca lcu lab le  and t h a t  t h e  Sonine transformation can be performed a n a l y t i c a l l y .  

Hence it i s  used t o  w r i t e  down t h e  t o t a l  s ingular  so lu t ion  of t h e  Boltzmann equa- 

t i o n  i n  equation (35). The term of t h e  solution, which i s  s ingular  a t  t h e  cen te r  

of t h e  sphere, i s  

cos do c o s ( p  s in?)  

d0 p s i n $  
- e  

O f  course it i s  invar ian t  aga ins t  a r o t a t i o n  of t h e  coordinate system around t h e  

center  of t h e  sphere because do = 

ray from t h e  cen te r  of t h e  sphere. 

p s in  8 i s  t h e  invar ian t  dis tance of a neutron 

The p a r t i a l  so lu t ion  (under Fl), however, contains  two terms which a r e  solu- 

t i o n s  of t h e  homogeneous d i f f e r e n t i a l  equation. They contain a log p-term and t h e  

Sonine transform contains  them with t h e  opposite sign. Therefore they are removed 

from t h e  t o t a l  so lu t ion  and we a r e  sure  t h a t  t h e  t o t a l  so lu t ion  does not  contain a 

s ingular  term proport ional  t o  l o g  p. 
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A second par t ia l  so lu t ion  (under E) does not contain a l o g  p-term from 

the  outset ,  but  it contains  s t i l l  some presumably superfluous terms which s a t i s f y  

the  homogeneous p a r t i a l  d i f f e r e n t i a l  equation. 

t o  it i s  not easy and t h i s  so lu t ion  i s  not persued f u r t h e r .  

To ca l cu la t e  t h e  dens i ty  belonging 

Final ly ,  a t h i r d  p a r t i a l  so lu t ion  (under F3) i s  chosen, dropping a l l  

superfluous p a r t s  which s a t i s f y  the  homogeneous d i f f e r e n t i a l  equation. 

s i t y  belonging t o  it i s  the  sum of the  equations (49) and (53), which a r e  given 

i n  i n t e g r a l  form. 

lengthy i f  w r i t t e n  down e x p l i c i t l y .  O f  course it has t o  be i d e n t i c a l  with the  

so lu t ion  under F1 i n  t he  form of equation (35) or (40) according t o  the  uniqueness 

theorem. 

The den- 

The t o t a l  solution, shown i n  equation (57), would appear r a t h e r  

I n  p a r t  I1 the  so lu t ions  of t he  Boltmann equation i n  spher ica l  geometry, 

which are regular  a t  t h e  cen te r  of t he  sphere, a r e  considered. I n  s e c t i o n  A 

the  regular  so lu t ion  which s a t i s f i e s  t h e  c h a r a c t e r i s t i c  equation i s  given i n  an 

i n t e g r a l  form by equation (63). This  case d is t inguishes  i t s e l f  as the  only one 

i n  t h i s  repor t  f o r  which the  Sonine transform must not be applied; t he  so lu t ion  

(63) y i e l d s  a l ready the  des i red  dens i ty  (66) a f t e r  t he  appl ica t ion  of t h e  charac- 

t e r i s t i c  equation ( 5 ) .  

t i o n  (67) i n  which the  f i r s t  term gives  a l ready the  whole dens i ty  and s a t i s f i e s  

t h e  homogeneous d i f f e r e n t i a l  equation ( 8 ) ,  whereas the  second term gives  the  den- 

s i t y  zero and satisfies the  inhomogeneous d i f f e r e n t i a l  equation (59) with the  

r i g h t  hand s ide  (62).  

ference of t he  two s ingular  so lu t ions  f o r  IC and - K .  For instance,  one may use 

equation (35) as t h e  t o t a l  so lu t ion  f o r  -IC, reverse  t h e  s ign of K i n  it and take 

t h e  d i f fe rence  of both.  

difference l eads  quickly t o  t h e  regular  so lu t ion  (71). 

One can, however, wr i t e  t h i s  so lu t ion  i n  the  form of equa- 

This suggests t o  cons t ruc t  r e g d a r  so lu t ions  as the  d i f -  

Then the  appl ica t ion  of Besse l ‘ s  i n t e g r a l  (36) t o  t h i s  

It has a form i d e n t i c a l  
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C l + K i S  wi th  (67) with the  only exception t h a t  - l og  - 
1 - K  

t h e  meaning t h a t  t he  so lu t ion  (71) y i e l d s  t h e  des i red  

replaced by 5. This  has 
2 

dens i ty  a without t h e  
P 

requirement of f u l f i l l i n g  a c h a r a c t e r i s t i c  equation. Furthermore, the  i n t e g r a l  form 

( 7 2 )  of t h i s  so lu t ion  shows no h i n t  which excludes i t s  v a l i d i t y  over t he  whole 

complex le-plane. To show the  invariance of a l l  regular  so lu t ions  aga ins t  a 

ro t a t ion  of t h e  coordinate system around t h e  center  of t he  sphere, it i s  proved 

i n  s e c t i o n  C t h a t  they s a t i s f y  a l s o  t h e  e q u a t i o n n f  = K2f. 

Final ly ,  t he  regular  so lu t ions  i n  spher ica l  geometry a r e  constructed i n  

s e c t i o n  D by superposi t ion of so lu t ions  i n  plane geometry which belong t o  

the  same K .  Of course, t h i s  c a n  be done only with so lu t ions  which belong t o  

the  d i sc re t e  and continuous spectrum of the  Boltzmann operator  i n  plane geometry 

and, for instance,  not f o r  complex tc-values. The superposi t ion of plane solu- 

t i o n s  belonging t o  a tc-value of t he  d i s c r e t e  spectrum y i e l d s  immediately t o  

t h a t  regular  so lu t ion  i n  spher ica l  geometry which has t o  f u l f i l l  t h e  charac- 

t e r i s t i c  equation. The so lu t ions  belonging t o  t h e  continuum i n  plane geometry 

a r e  given i n  t h e  symbolic form (83) or (85) of a s e r i e s  of a Cauchy p r inc ip l e  

value and a Dirac &-funct ion.  

t i o n  i n  spher ica l  geometry removes the  symbolic form and one obta ins  f o r  t he  

regular  so lu t ion  an ordinary funct ion - see equation (100) - which i s  i d e n t i c a l  

with (71) obtained i n  

so lu t ions  f o r  IC and - K .  

The superposi t ion of those so lu t ions  t o  a solu- 

s e c t i o n  B as the  d i f fe rence  of two s ingular  spher ica l  

No method i s  given t o  obta in  the  s ingular  spher ica l  so lu t ions  by super- 

pos i t ion  of plane so lu t ions .  There i s  a l s o  no suggestion how one may f i n d  t h e  

spher ica l  so lu t ions  f o r  those K-values which a r e  d i f f e r e n t  from the  I C ' s  of the  

spectrum i n  plane geometry, as a l i n e a r  combination of so lu t ions  with K ' S  be- 

longing t o  it. Hence a statement about the  spectrum of the  Boltzmann operator  

i n  spher ica l  geometry and i t s  complete se'c of eigenfunctions i s  s t i l l  missing;. 
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In  Pa r t  I11 t he  new so lu t ions  w i l l  be compared with t h e i r  well-known 

representa t ions  by a s e r i e s  of spher ica l  harmonics. 

f o r  t he  equa l i ty  of t h e  two regular  so lu t ions .  

A simple proof i s  given 

I n  the  case of the  s ingular  

solut ions,  however, one has t o  c ross  out a l l  terms with negative powers of 

IC as f a c t o r s  i n  the  divergent s e r i e s  of spher ica l  harmonics. Then one obtains  

a convergent s e r i e s  which i s  equal t o  the  new s ingular  solut ion.  

I 

' Y  
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I. Solu t ions  of t h e  Boltzmann Equation for Monoenergetic Neutron Transport  

i n  Spher ica l  Geometry which a r e  Singular  a t  t h e  Center of t h e  Sphere. 

A .  Preliminary remarks. The Boltzrnann equation i n  sphe r i ca l  geometry has 

t h e  form 

2 i'.(.,p9 dP', 
af 1 - p2 af 

a P  P 2 P  
p - + - - + f ( p , I I )  = 

2 
-1 

i f  sca t te r ing ,  absorpt ion and mul t ip l ica t ion  are assumed t o  be i so t rop ic .  The 

constant  c of mu l t ip l i ca t ion  

c = -(C+Vcf-Ca) 1 = -(Cs+vCf) 1 = 1 - -(Ca-V.q, 1 c c c 

i n  which C = Cs + Ca = C s  + Cc + Cf i s  t h e  t o t a l  macroscopic c ross  section, 

Cs i s  t h e  macroscopic c ross  sec t ion  f o r  pure sca t te r ing ,  C, for capture, Cf for 

f i s s ion ,  Ca = 

toge ther .  

p = C r  i s  the  dimensionless measure of t h e  d is tance  from t h e  cen te r  of t h e  

sphere on a radiusvector  f and p 

t he  d i r e c t i o n  R of a neutron and t h e  radiusvector  ?. 

Cc + Cf f o r  absorpt ion by capture  without and with f i s s i o n  

v i s  t h e  average number of neutrons produced i n  one f i s s i o n  process .  

= cos 4. i s  t h e  cosine of t h e  angle  8 between 
+ 

Solu t ions  f (p, p) of the  Boltzmann equation w i l l  be c a l l e d  "regular"  i f  

they a r e  f i n i t e  and "s ingular"  i f  they  a r e  i n f i n i t e  a t  t h e  center  of t h e  sphere.  

Examples of  so lu t ions  of bo th  kinds a r e  w e l l  known, for instance,  i n  t h e  

form of a sphe r i ca l  harmonics series(') f o r  t h e  d i s c r e t e  spectrum of t h e  Boltzmann 

opera tor .  Such so lu t ions  a r e  

( l ) B .  Davison and J .  B .  Sykes, "Neu-tron Transport Theory", p.  146, Oxford Press,  
1957; Alvin M. Weinberg and E .  P. Wiper, "The Physical  Theory of  Neutron Chain 
Reactors", p .  273, Universi ty  of  Chicago Press,  1958. 

9 1  
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wi th  

and 

For a regular  so lu t ion  one chooses f o r  f j  t h e  func t ions  

( 3 )  

and f o r  a s ingular  so lu t ion  the  func t ions  

c and K a r e  r e l a t e d  by a c h a r a c t e r i s t i c  equation 

(5) 
c l + K  

2 K  1 - K  
- log - = 1 

with a p a i r  of eigenvalues 2 K f o r  every c 7 0, which represent  t he  d i s c r e t e  

spectrum of t h e  Boltzmann opera tor .  

v = 

The d e n s i t i e s  ( o r  a l s o  t h e  f luxes  of ve loc i ty  

1) which belong t o  these  so lu t ions  are propor t iona l  t o  

-1 

i . e . ,  

s inh  ~p 

P 
f o r  t h e  "regular'l so lu t ion  - - - 

and 

f o r  t he  "s ingular"  so lu t ion .  
P 
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A representa t ion  as an i n t e g r a l ( 2 )  i s  known a t  l e a s t  f o r  t h e  regular  so lu t ion  of  

t he  d i s c r e t e  spectrum; a new one w i l l  be given here (equat ion 63). 

B. The Sonine t ransformation.  The problem w i l l  be a,ttacked now by a d i f -  

f e r e n t  method t o  f i n d  o t h e r  so lu t ions .  To ob ta in  s ingu la r  so lu t ions ,  one presc r ibes  

e -KP t h e  dens i ty  P ( p )  = - and so lves  t h e  par t ia .1  d i r f e r e n t i a l  equation 
P 

One f i n d s  a p a r t i a l  so lu t ion  f (p,p) of t h i s  equat ion and has t o  inves t ige t e  

whether it i s  compa.tible with the  condi t ion:  

P 

-1 

I n  general, however, t h i s  w i l l  not be t h e  case and one has  t o  add the  s u i t a b l e  - 
so lu t ion  

f H (  P, p) = 

o f  t h e  homogeneous d i f f e r e n t i a l  equat ion 

(7) 

t o  t h e  o r i g i n a l  p a r t i a l  so lu t ion  f (p, p) of t h e  inhomogeneous d i f f e r e n t i a l  equa- 

t i o n  t o  s a t i s f y  t h e  equat ion of compat ib i l i ty  by t h e  sum of both:  

P 

-1 

Hence one has t o  f i n d  t h e  func t ion  $$ i n  t h e  

h 

i n t e g r a l  equation 

-1 
(9) 

H. S t i t t gen ,  Bei t raege zur Loesung von Neutronentransport - Problemen i n  kugel- 
foermigen Medien, Diplomarbeit, Technische Hochschule Karlsruhe 1958 (unpubl ished) .  

(2) I 
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To have a common denominator of both terms on t h e  r i g h t  hand s ide  of  t h i s  equation 

and t o  remember always t h a t  t h e  p a r t i a l  so lu t ion  f 

must introduce another  abbreviat ion in s t ead  of Pp( p), namely, 

contains  2 a s  a f ac to r ,  one 
P 2 

i n t o  the  second t e r m  on t h e  r i g h t  hand s ide  of equation (9 ) .  

func t ion  @ ( d E 2 )  i s  symmetric i n  respec t  t o  a change of t h e  s i g n  of v ;  t h i s  

FurLhermore, t h e  

f a c t  permits wr i t ing  t h e  equation i n  t h e  form 

Dp(p)  i s  propor t iona l  t o  p times the  dens i ty  of t h e  chosen p a r t i a l  so lu t ion  

fp(p ,p) ,  a known func t ion  of p.  

To solve the  i n t e g r a l  equation one puts  p2 = s and chooses a new va r i ab le  

of in-cegration t = p2( l -p2 ) .  Then one has 

and t h e  l i m i t s  of i n t eg ra t ion  become 

t = p2 = s f o r  p = 0 and t = 0 f o r  p = 1. 

The i n t e g r a l  equation (11) takes  t h e  Sonine(?) form 
S 

( ?IN. Sonine, "Acta Mathematical', 5, 171 (1884) . 
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Following Sonine, one mul t ip l i e s  t h i s  equation on both s ides  with t h e  f a c t o r  

and obta ins  

U skt=s 
-t 0 

An exchange of t h e  order  of i n t eg ra t ion  on t h e  r i g h t  hand s i d e  of ‘chis equation 

y i e l d s  

because 

To r e l ease  t h e  reader  from a study of Sonine’s  work, t he  proof of t he  l a s t  egua- 

t i o n  will be given here .  One introduces a new va r i ab le  of i n t eg ra t ion  x by pu t t ing  

s = t i (u-t) x, x =  ( s - t > / ( u - t >  

wi th  the  new l i m i t s  of i n t eg ra t ion  x = 0 for s = t and x = 1 f o r  s = u. 

This  transforms t h e  i n t e g r a l  on t h e  l e f t  hand s ide  of (14) i n t o  
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1 

! -  

with the  abbreviat ion y = -\/.-t. A s e r i e s  development of cos and cosh and 

term-by-term in t eg ra t ion  y i e l d s  

1 

(Y/2)2s c (-1)y;) = 1 
= 1 +  c (y/2)2(  a+m) e Q+m) !] s=l ( $ ) 2  Q=O 

q .e .d .  The following formulas were used: 

and 

The so lu t ion  of t he  i n t e g r a l  equation (12)  has now the  form 

and t h e  funct ion @ i t s e l f  w i l l  be given by d i f f e r e n t i a t i o n  i n  respect  t o  u 

-1 

and u = p 2 ( l - p 2 ) .  

I o  
1 
i 
i 

I C  
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There a r e  o the r  forms of @ which a r e  sometimes more convenient. 

i n t eg ra t ion  on the  r i g h t  hand s ide  of equation (16), one can perform the  d i f f e ren -  

t i a t i o n  d/du: 

After  a p a r t i a l  

U 

+ 2 1 s i n ( F s )  "(e -G - E D p G ) )  ds) 
ds 2 0 

d -K$ c 2 d  

T du ds 2 
- - Dp($)) ds. + - - J s i n q r s )  -(e 

0 

The second term i s  zero, because e-'$ - Dp(\/;) i s  f i n i t e .  The d i f f e r e n t i a t i o n  
2 

i n  respect  t o  u y i e l d s  now 

The las t  term of t h i s  equation vanishes because d(e -4 - 2 Dph/ ; ) )  i s  f i n i t e ,  
du 2 

and one obtains  a second form of # 
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I -  

1 -  

11 

I n  t h i s  kind of wr i t ing  the  f i r s t  term shows a s ingu la r i ty  a t  the  center  of the  

sphere, whereas the  second term i s  regular  t he re  f o r  t he  d i f f e r e n t  spec i f i c  p a r t i a l  

so lu t ions  fp, which w i l l  be considered l a t e r .  

these  f p ' s  a l s o .  

Furthermore, Dp(0) w i l l  be E f o r  

Inse r t ing  u = p2( l -p2)  = p2 sin2$we have 

One may perform the  d i f f e ren t i a t ion  i n  the  second term and may introduce another  

var iab le  of i n t eg ra t ion  v by s = p2( l -p2)  v2 t o  transform the  upper l i m i t  of  t he  

i n t e g r a l  i n t o  v = 1. Furthermore, one may introduce the  d is tance  

do = 

an abbreviat ion.  Then one obta ins  

$/l - p2 = p sin&of the  "neutron-ray" from t h e  center  of t he  sphere a s  

(19) 

. 

-I -1 



f p ( x , p ' )  i s  t h e  o r i g i n a l l y  chosen p a r t i a l  so lu t ion  fp(p ,p) ,  i n  which one has re- 

placed p by x and p by p '  ( a  va r i ab le  of i n t eg ra t ion  he re ) .  

f ( ' ) (  p, p) of t h e  Boltzmann equation f o r  monoenergetic neutron t r anspor t  with i s o -  

t rop ic  s c a t t e r i n g  and absorpt ion or mul t ip l i ca t ion  i n  an i n f i n i t e  medium i n  

Hence t h e  so lu t ion  

spher ica l  geometry, which i s  s ingular  a t  t h e  or igin,  i s  t h e  of a pa r - t i a l  solu- 

t i o n  f (p,p.) of  t h e  inhomogeneous p a r t i a l  d i f f e r e n t i a l  equation ( 6 )  and of t h e  

so lu t ion  fH( p, p) of t h e  homogeneous equation (8) containing t h e  "sonine transform" 

$(pv-) given by equation (16) or (18) o r  (lg), which corresponds t o  t h e  

chosen p a r t i a l  so lu t ion  f p :  

P 

- I  

' I  

The choice of t h e  o r i g i n a l  p a r t i a l  so lu t ion  fp (p ,p )  i s  r e s t r i c t e d  by t h e  requirement 

t h a t  1) 

C 1 1 with  a < - 1 a t  most as - i s  f i n i t e ,  and 2) - D ' (dov) diverges  a t  v = 
2 P  ( l - v ) a  2 

and has no pole  i n  t h e  remaining i n t e r v a l  0 5 v 4 1 t o  guarantee t h e  convergence 

of t h e  i n t e g r a l  i n  equation (19). 

It i s  sometimes convenient t o  s p l i t  t h e  term #(da) i n t o  i t s  

two p a r t s :  

o r i g i n a l l y  chosen p a r t i a l  so lu t ion  fp( p, p) 

t h e  f i r s t ,  which i s  produced by t h e  Sonine t ransformation from t h e  

I 

I 
. I  

. 
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and the second, which is produced by the Sonine transformation of the required 

density - f2-Kp 
1 

With this notation the singular solution may be written 

C. The effect of the Sonine-transformation upon solutions of the homogeneous 

If one has taken partial differential equation (8). 

fortunately that solution F( s, (p, p) of the inhomogeneous partial differential 

equation (6) which gives the required density, no need of an application of the 

Sonine transformation would arise at all. 

of the inhomogeneous equation will differ from F( ') (p, p) by a solution 

Uniqueness of the solution. 

Every other partial solution fp( p, p.) 

i 
I .  

of the homogeneous equation (8). It will be shown, theorem I, that the Sonine 

transform of such a function is just the opposite of itself 

Proof. The Sonine transformation applied to fH in the form of equation (16) con- 

tains the double integral 
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i n  which the  expression i n  cu r ly  bracke ts  rep laces  t h e  corresponding expression i n  

equation (16) and @H ind ica t e s  t h a t  eiH i s  t h e  transform of f H  alone. 

transform of f H  w i l l  be 

The Sonine 

where u = p2(l-p2). To evaluate  (dH(fi) one changes f i r s t  t h e  i n t e r v a l  of i n t e -  

g ra t ion  over p '  i n  0 6 p '  6 1; t h i s  y i e l d s  f o r  f H  of equation (7a) 
1 

One introduces a new va r i ab le  of i n t eg ra t ion  t = s ( l - p t 2 ) ,  p ' h  = s - t, 

dp' = - dt/(2&=) wi th  the  new l i m i t s  t = s f o r  p = 0 and t = 0 f o r  

p' = 1. Then t h e  i n t e g r a l  becomes 

I 

remembering t h a t  t h e  l a s t  i n t e g r a l  over s i s  1 by equation (14). 

of  t h i s  r e s u l t  i n t o  equation ( 2 5 )  one obta ins  t h e  Sonine t ransform of f H  

A f t e r  inser- t icn 

which i s  i n  f a c t  t h e  opposi te  of fH( p, p)  i t s e l f .  

This  theorem provides t h e  uniqueness of t h e  so lu t ion  of t h e  Boltzmann equa- 

t ion ,  i f  a d e f i n i t e  densi'iy i s  given. 

and fp2( p, p) of t h e  inhomogeneous d i f f e r e n t i a l  equat ion (6), d i f f e r  one from 

Two d i f f e r e n t  p a r t i a l  solut ions,  fpl(p,p) 

- i  
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another  j u s t  by a so lu t ion  f H (  p,p) of t h e  homogeneous equation. 

wri tes  down t h a t  p a r t  of t he  t o t a l  so lu t ion  ( 2 3 )  of the  Boltzmann equation which 

depends on t h e  choice of t h e  o r i g i n a l  p a r t i a l  so lu t ion  fp, namely, 

Hence, i f  one 

one recognizes t h a t  it i s  independent of t h i s  choice: If f (p,p) = fpl(p,p) + 

fH( p,p)  i s  a second p a r t i a l  solut ion,  t he  expression 

p2 

w i l l  be unchanged s ince  So(fH) = - fH. Hence the  so lu t ion  f(‘)(p,p)  i s  unique. 

If F ( S ) (  p,p), which y i e l d s  fo r tuna te ly  t h e  r i g h t  density,  conta ins  a l ready  

which s a t i s f i e s  t he  homogeneous d i f f e r e n t i a l  equation (8), i n  addi t ion  a term f H  

t o  another  term, F( ”)( p, p), which satisfies the  inhomogeneous equation (6)  
0 

0 

F ( s ) ( p , p )  = F6s)(p,p) + fHo (26) 

one may apply the  Sonine procedure t o  f i n d  fq,. 

F( s )  ( p, p) as a p a r t i a l  so lu t ion  f p  and app l i e s  t he  Sonine procedure t o  obta in  t h e  

t o t a l  so lu t ion  

One considers  t o  t h i s  a i m  
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Because F( ' ) (p ,p)  of equation (26) is in this case already the right solution, we 

have f(s)(p,p) = F(S)(p,p), and by comparison with equation (26) 

If fHg would be zero fortunately, one obtains the relation 

p-pp R ( p l l T 2 )  = - SO(FO ) .  

D. Statement about the density, The method of obtaining this solution does 

not contain any requirement to satisfy a characteristic equation. This fact must have 

the consequence that the density of this part of the solution f(s)(p,p), which 

contains c as a factor, vanishes, whereas the remaining part gives the whole den- 

sity. 

tional to c and the quantities 2 Dp(0) and 5 D (&), depending on f by the Sonine 

transformation, also contain c as a factor. Hence one has Theorem 11: ~- the re- 

The partial solution fp(p,p) of the inhomogeneous equation (6) is propor- 

2 2 p  P 

maining part R ( p G 2 )  of a(($/lT) in the form of equation (22) 

should give the whole density P("( p) 

i.e., 
+1 

1 P2( l -P2)  c o ~ & F j T s  - ds  
7/p2(1-$) - s .k 

of the total singular solution 

as \ - -  ds e - y j  

should be equal to 
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Proof. 

at the center 

(a) The first term of the integral yields the singularity of  the density 

after transformation of the variable of  integration p into a new variable s by 

p = “Zj dp = L - with the introduction of the notation 
u = s + ~~(1-112) = ~2 + t and use of equation (14). 

P 2p -$? 

(b) The second term of the integral gives the nonsingular part of the 

density. One introduces u = p2(l-p2) as a new variable of integration instead 
1 and the limits of inte- of p j  then one has p = L v G  dp = - - 

P 2p -@-T 
gration over p will be 

u = p2 for p = 0 and u = 0 for p = 1. 

Hence it follows that 
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wi th  the  same exchange of t h e  order  of i n t eg ra t ion  which was appl ied t o  t h e  

double i n t e g r a l  (13).  

ing t o  equation ( 1 4 ) .  

The l a s t  i n t e g r a l  over u from s t o  p2 i s  equal t o  1 accord- 

Therefore t h e  in t eg ra t ion  over ds y i e l d s  

This i s  indeed non-singular a t  t h e  o r ig in .  If one adds now t h e  two cont r ibu t ions  

( a )  and ( b )  one obta ins  t h e  t o t a l  cont r ibu t ion  of t he  R (  d17) -pa r t  of  @( $!-) 

t o  t he  dens i ty  

This i s  i n  f a c t  t he  whole dens i ty  P(')( p) belonging t o  the  s ingular  so lu t ion  

f (') ( p, p) . If one remembers the  representa t ion  ( 2 3 )  of f (') ( p, p), one recognizes 

t h a t  t he  dens i ty  belonging t o  

must vanish. The following Theorem I11 w i l l  be proved: t he  dens i ty  which belongs- 

t o  a p a r t i a l  so lu t ion  fp( p, p) of the  inhomogeneous d i f f e r e n t i a l  equation i s  the  

opposite of t h e  dens i ty  which belongs t o  i t s  Sonine transform 

Proof. Consider t h e  second i n t e g r a l  using the  form (17) of t h e  Sonine transform 

and remember t h a t  u = p2( l -p2 ) ,  pp = 1- dp = - d u / ( 2 d G )  and 'chat 

u = p2 f o r  p = 0, u = 0 f o r  p = 1. Then t h e  i n t e g r a l  becomes 
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I .  

and by p a r t i a l  i n t eg ra t ion  i n  t h e  i n t e r i o r  of  t h e  second i n t e g r a l  

The i n t e g r a l  i n  t h e  f i r s t  term i s  1 according t o  equation (14); t he  l i m i t  

of t he  square bracke ts  expression i n  t h e  second term i s  supposed t o  be zero along 

t h e  i n t e r v a l  0 p u 5 p2. Then the  i n t e g r a l  becomes 

The lase i n t e g r a l  over u i s  1 again, and t h e  whole expression becomes 

i .  

! 
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which i s  according t o  the  d e f i n i t i o n  (10) of Dp(p)  

Theorem I11 i s  a counterpar t  t o  Theorem T I  and provides an independent check of 

the  statement about t he  dens i ty .  

E. General so lu t ion  of  t h e  p a r t i a l  d i f f e r e n t i a l  equation (6). The general  

so lu t ion  of t he  inhomogeneous p a r t i a l  d i f f e r e n t i a l  equation 

p af - +e af + f (p ,p )  = - c 
-"P 

J P  P hJ 2 P  

w i l l  be derived by the  well-known method of Cauchy: 

d i f f e r e n t i a l  equations i s  

the  equivalent  system of 

i 
* I  

. 

From t h e  f i r s t  equation one obta ins  $/l - p2 = C 1  ( a  cons tan t ) .  This  equation 

may be used t o  e l iminate  p from the  second equation, which goes over i n t o  a l i n e a r  

d i f f e r e n t i a l  equation of f irst  order  

I t s  so lu t ion  i s  

Cgr  po, p1 a r e  constants .  
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i 
1 "  

Replacing C1 now by one obtains  f o r  t he  constant C2 

The general  so lu t ion  of the  p a r t i a l  d i f f e r e n t i a l  equation i s  given by 

with an a r b i t r a r y  funct ion W.  This y i e l d s  

The f i r s t  term i n  the  cur ly  bracket  with inclusion of t h e  exp-factor  i s  s t i l l  an 

a r b i t r a r y  funct ion of d n  so  we denote the  whole term by @ ( p v q ) .  Hence 

the  general  so lu t ion  of equation (6)  i s  

One may transform t h e  p a r t i a l  solut ion,  which occurs i n  it, namely: 

i n t o  a more convenient form, put t ing  

S - (l+K)(l-P) S 
dv ds 

- and 
1 - v' S 

1 
I 

! *  
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With t h i s  transformation of the  var iab le  of i n t eg ra t ion  the  p a r t i a l  so lu t ion  takes  

the  form 

Dif fe ren t  p a r t i a l  so lu t ions  can be chosen by giving p1 d i f f e r e n t  values .  p1 i s  

an a r b i t r a r y  constant;  one can prove, however, t h a t  p1 could a l s o  be an a r b i t r a r y  

funct ion of p- 

F. Spec i f ic  p a r t i a l  so lu t ions .  

1. Let us consider f irst  a p a r t i a l  so lu t ion ,  f o r  which the  dens i ty  can be 

czlculatet i  ea s i ly .  One obta ins  it pu t t ing  1-1 = -1 i n  equation (28). It w i l l  

turn ou t  t h a t  t h i s  p a r t i a l  so lu t ion  contains  a term l o g  p, which a c t u a l l y  wi l l  not 

1 

occur i n  t h e  t o t a l  so lu t ion .  I n  f ac t ,  t h i s  term appears i n  the  combination 

$/- hence it i s  reproduced by the  Sonine procedure with the  opposi te  sign 

and cancels  out  of t he  t o t a l  so lu t ion  f(‘)( p, 1-1) . We have no logari thmic s i n g u l a r i t y  

a t  t he  center  of t he  sphere.  

than f o r  any o the r  choice and the  e f f i c i ency  of t he  Theorem I can be shown e a s i l y  

But t he  ana lys i s  i s  simpler f o r  t h i s  p a r t i a l  so lu t ion  

a l so .  

( a )  Taking p1 = - 1 one obta ins  the  p a r t i a l  so lu t ion  of equation (6)  

* 

It i s  wel l  known t h a t  an i n t e g r a l  of t h i s  type i s  r e l a t ed  t o  a s e r i e s  of Bessel-  

func t ions .  The development of the  integrand i n  such a s e r i e s  would be inva l id  a t  

t he  lower l i m i t  s = 0 of t he  in t eg ra l .  

g ra t ion  i n  two p a r t s .  The f i rs t  p a r t  from s = 0 t o  s = with 

Therefore one s p l i t s  t he  pa th  of i n t e -  
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I -  
i 

! I  

1 - p  l + K  

@ =-&z--F 
can be in tegra ted  as it stands:  

with s = Bw 

cx3 

-h s inh  t dt -t - - c e-pp  J e with w = e 
2 

0 

h = d-') i s  an abbreviation, Soo(h) i s  the  nota t ion  for a Lommelfunction 

defined in "Higher Transcendental Functions". (4) 

In  the  second p a r t  o f  the  i n t e g r a l  one develops the  integrand i n  a s e r i e s  

of B e s s e l f u n ~ t i o n s ( ~ ) ,  and in t eg ra t e s  term by term: 

(&)A. Erdelyi,  W. Magnus, F. Oberhettinger, F,  G. Tricomi, "Higher Transcendental 
Functions", II, p . . k  formula (25), and p. 84 formula (5O), New York (1953). 

( 5 ) I b i d ,  p.  7 formula (25) .  
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According t o  page 64, formula ( 7 )  of "Higher Transcendental Functions", I&(4) t he  

l a s t  s e r i e s  represents  another Lommelfunction 

and the  d i f fe rence  of both Lommelfunctions 

i s  j u s t  ( -  s) h times t h e  Besselfunction of second kind Yo(h) [cal led No(h) by 
L 

. By t h i s  remark one ge t s  r i d  of t he  Lommelfunctions i n  the  repre-  

sen ta t ion  of t he  p a r t i a l  so lu t ion  which w i l l  be 

with h = pq(l-tc2)(l-p2) and @ 
l + p  1 - K  

( b )  We ca l cu la t e  now t h e  dens i ty  P ( p )  which belongs t o  t h i s  p a r t i a l  (-1) 
so lu t ion  

('IJahnke-Emde, "Tafeln hoeherer Funktionen", 5 t h  ed i t ion ,  p. 131 (1952).  
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Afte r  an exchange of the  order of in tegra t ion  one performs f i r s t  t h e  in tegra t ion  

over p; t h i s  y i e l d s  

1- s - (  1 - K )  p( 1-s) - ( l + " ) P T -  - l) ( e  - 1-1 - ( e  
1 

P(-1) (P)  = e - q  ds 
P 0 (1-s) [1 + K - ( 1 - K )  SI 

On replaces  i n  t h e  f i rs t  p a r t  of the  integrand t h e  var iab le  of in tegra t ion  s by 

, i n  t h e  second p a r t  by s = ('+') p . Then one obtains  ( 1 - K )  p - x 
(1-6) P 

s =  
(l+K) p + x 

03 

e -x - 1 dx 

P 

- 
2 K + X  x 

P( -1) ( P )  = - c e - " P  

( l - d P  
P 

dx 
a3 

X X 

e -x - - L lKp ,( d x - - e  X 

( l + " ) P  
2 K  P 

where El(x) i s  defined by (see  reference (4), page 143) 

03 

The expression P 

not give t h e  des i r ed  densi ty  e on account of t h e  added two terms which contain 

t h e  "exponential-integral".  

would give t h e  des i r ed  r e s u l t  under t h e  assumption of t h e  c h a r a c t e r i s t i c  equation 

for t h e  d i s c r e t e  s p e c t r w  

(p) shows t h a t  t h e  chosen p a r t i a l  solut ion f ( - l ) ( p , p )  does 

-K P 

P 

(-1) 

If both these  terms would be absent, t h e  t h i r d  term 

C l + K  

2 K  1 - K  
- log - = 1. (5) 
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( e )  We s h a l l  apply now the  Soaine t ransformation.  We show f i r s t  t h a t  

D(-l)(0) = 0, using the  s e r i e s  (33) f o r  El(x): 

+ e - K P  log - 
1 - r e  l +  ") 

[ /J+ log  p + log(l+~)] s inh  icp + 
m! 2 K  m= 1 

This  expression vanished for p + 0: D(-l)(O) = 0. 

Furthermore, one needs the  der iva t ive  of D (p)  i n  t he  Sonine transform (-1) 

(1-9) 

c 1  
- D 

t h a t  it diverges l i k e  -e l o g  v f o r  v '0. 

ever, a much s t ronger  divergence l i k e  l. 

of t he  i n t e g r a l  and one obta ins  from equatipn (19) 

(d v)  i s  regular  i n  the  i n t e r v a l  0 .= v 5 1 and t h e  s e r i e s  development shows 2 (-1) 0 

The Sonine t ransformation allows, how- 

with a < l. This ensures the  convergence 7 



- 29 - 

I 

‘1 . ~ 

wi th  do = $- = p s i n g .  

Hence t h e  t o t a l  so lu t ion  f ( ‘ ) ( p , p )  of t he  Boltzmann equation (l), which i s  

, may be repre-  
- K P  

P 
e 7 = 

0 and has the  dens i ty  f ( S ) ( p , p )  dp = - s ingular  a t  

sented by 

\ 

wi th  do = p7/1 - p2 (d i s t ance  of  t h e  neutron ray from t h e  o r ig in )  

h = pi-) = do-. 

This i s  t h e  des i red  solut ion;  one sees, however, t h a t  i n  t h e  o r i g i n a l l y  

chosen p a r t i a l  so lu t ion  f (  -1)( p, p )  t h e  terms 

I *  

are funct ions of t h e  va r i ab le s  $3 alone and s a t i s f y  t h e  homogeneous p a r t i a l  

d i f f e r e n t i a l  equation (8) .  They a r e  of t h e  type f H .  Hence t h e  Sonine transform 

I -  
* 
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w i l l  contain these terms with t h e  negative s ign.  They a r e  superfluous i n  pr inciple ,  

but by removing them one obtains  a r a t h e r  lengthy expression i n t o  t h e  Sonine 

transform. We s h a l l  be contented here with t h e  removal of t h e  l o g  p-term which 

i s  e a s i l y  recognized i n  t h e  Sonine transform. Using t h e  s e r i e s  development o f  

one f inds  

x Y o ( h )  = - (8'  l o g  1) Jo(h)  + 
A ( 1)" 

2 m = l  (m!>2 

m z l  1 1  = 1 + - + - + . . .  + -  2 3  m 

1 i m  
m-*a3 (%-log m) = 0.577216 . . . 

7T - - Yo(h) - Jo(h)  log?? = - [f + l o g  do + log(l+K) - l o g  23 Jo(h) 
2 - I C  

With Bessel s i n t e g r a l  (7)  

t h i s  expression may be wr i t t en  

- - Yo(h) - Jo(h) l o d G  
l - r ;  

cos(d3 ' l  - s2) 
= z j  d s  [- f - log do - log(l+r;) + l o g  21 cosh r;dos G-2 7r 

0 

- i  
I 
~ 

. i  

1 7 ) G .  N .  Watson, "A T r e a t i s e  on t h e  Theory ofBest;elNn&ions' ' ,  p. 21 equation (11, 
Cambridge University Press  (1948). 
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1 

i 

Furthermore, using the series development :(33) of El(x) to express the E1-functions 

in the Sonine transform, one finds I 

i 
i 

03 ~ hm[( l + ~ ) ~  + (l-~)~] d: sm 
C l  - - e -dos  1 

2 m= 1 
i m! 

~ 

The log p-par’c is contained in log do in ’60th expressions but with the opposite 

sign. The log p-terms are omitted at alllfrom the total solution, if one writes 

the corresponding part of the solution 

~ 

I 
~ 

i , I El( L1-J des) - log - 
i 1 - K  + + e -“OS I 

- - e  - 
2 

00 hm[(l+K)m + (l-~)~] d: 
cos(  do-) emdoS c 

1 

T r  lllY-3 m= 1 m! 
- k j  ds  

0 
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The removal of superfluous terms occuring i n  f i S ) ( p , p )  i s  not complete because the  

f i r s t  term of t he  th ree  terms above w i l l  be contained i n  t h e  o the r  two terms with 

- 

the  opposite s ign.  

t o t a l  so lu t ion  f o r  

P, P) 

But f i s ) ( p , p )  contains  now only pos i t i ve  powers of p. The 

K < 1 may be represented 

with f i s ) ( p , p )  i n  the  form (39) and with 

and f i n a l l y  

The nota t ions  d h, B have the  meaning: 
0’ 

= d z ,  h = d d z 2 ,  B = -/r- . The s i n g u l a r i t y  of f ( ‘ ) ( p , p )  
0 l + p  1 

a t  t h e  center  of t he  sphere p = 0 i s  given by 

No o the r  s ingular  term does occur with importance a t  p = 0 .  

2 .  There e x i s t s  a way t o  f i n d  another p a r t i a l  so lu t ion  which does not have 

a log  p-term. One obta ins  it by in se r t ion  of K for p i n t o  t h e  lower l i m i t  of the  1 
i n t e g r a l  (28 ) .  It i s  for 1.1 c 1 

i 
U I  
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1 . .  i 

I 

i 
I 

I 

~ 

I .  

I 

Th is  so lu t ion  does not contain a log  p-term from t h e  ou t se t  because t h e  Lommel- 

funct ion so0(z) ,  which i s  propor t iona l  [ f o r  t h e  ind ices  (O,O)] t o  t h e  Weber func- 

t i o n E o ( z )  - see reference ( 4 )  page 42 formula (Sj), page 40 formula ( T O ) ,  and 

page 36 formula (37): 

i s  a power series around z = 0. 

under l (a )  was caused j u s t  by t h e  lower l i m i t  s 

disadvantage of t h e  p a r t i a l  so lu t ion  f (  

s i t y  i s  not more e a s i l y  ca lcu lab le .  

The l o g  p- te rm i n  t h e  p a r t i a l  so lu t ion  f ( - l ) (p ,p )  

= 0 of t he  i n t e g r a l  (29). 

(p,p) on the  o the r  hand i s  t h a t  t he  den- 

The 

K )  

Furthermore, it also contains  ,superfluous 

terms which depend on $fl - p2 only, namely, 

These would be reproduced with t h e  opposite s ign by the  Sonine t ransformation.  

course, if t h i s  p a r t i a l  so lu t ion  would give  t h e  des i red  dens i ty  for tuna te ly ,  one 

would not have t o  apply t h e  Sonine t ransformation a t  a l l .  It remains a problem t o  

be solved which se l ec t ion  of t h e  lower l i m i t  p 1  y i e l d s  the  des i red  dens i ty  without 

t h e  appl ica t ion  of t h e  Sonine t ransformation.  

O f  

3. Applying t h e  Sonine transformation, it seems reasonable t o  r e l a t e  t h e  

p a r t i a l  so lu t ion  not  more t o  the  i n t e g r a l  (28) and a spec ia l  choice of pl, but  t o  

t ake  j u s t  t h e  func t ion  
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for the original partial solution. The other terms of f ( S ) ( p , p )  in equation (40) 

are solutions of the homogeneous partial differential equation because they have 

the form fH( p, P) of equation (7). Hence f$!)( p, p) is indeed a partial solution 

of the inhomogeneous differential equation (6). An advantage of this solution is 

that its region of validity can be extended to the whole complex K-plane. 

As a check, which is independent of all calculations done before, one may 

verify that I*$.:)( p, p) is a solution of equation (6). For  this check remember 

I \ 

I’ = ;I Then the derivatives involved in the equation will be 

J 

Insertion of these expressions into the left hand side of equation (6) yields 
0 

2 
&) 1 - p2 

+ - - (SI - P- + p2 + fII - ( r p  - 1 
JP  P AP 
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I 

I 
I .  

1 -  

4 

. Hence it remains t o  show t h a t  The l a s t  term should be equal t o  ~ 

e‘Kp 
P 

Veri f ica t ion :  Put x = l - ~ p ,  y = p-K and consequently B = E and h = p w .  

Then the  l e f t  hand s ide  of the  equation w i l l  t ake  the  form 

,e= 0 

One can include the  f i r s t  s e r i e s  i n t o  the  second double ser ies ,  obtaining 

A change of t he  ind ices  of summation t o  S = n + 2R, 3 = S - 2R y i e l d s  

S - f o r  S even 
2 

f o r  S odd 2 

with 

S 
The f a c t o r  1 - c f  ensures t h a t  t he  term R = occurs only f o r  even S and 

only ha l f  as of ten  as the  o the r  process;  so the  sm over S i s  j u s t  a binominal 

2 S,2R 

s e r i e s  
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To recognize t h a t  t h i s  p a r t i a l  so lu t ion  i s  general ly  v a l i d  i n  t h e  whole complex 

ri-plane one may transform t h e  ser ies ,  contained i n  it, i n t o  an i n t e g r a l  by ap- 

p l i c a t i o n  of t h e  formula ( 8 )  

1 

It y i e l d s  

1 
n-1 

O3 hn J o ( h t )  t ( l  - t2) d t  
n = l  2 n! 

1 t d t  J o ( h t )  
- e  

= -/ e J , ( h G ) [ e =  h V  - e 
V 

0 

/ G. Petiau,  'La Theorie des Fonctions de Bessel:' P a r i s  1955, p. 21, fo rmula  (115). ( 8 )  

I 

- i  
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h 
remembering The - sign between t h e  ex- 

ponent ia ls  ensures the  convergence of the  i n t e g r a l  a t  v = 0; t h i s  i n t e g r a l  i s  

convergent i n  the  whole complex ic-plane. 

= p(1- ic ) ( l+p)  and @ = p ( l + ~ ) ( l - p ) .  

In se r t ing  it i n t o  equation (41), t he  

p a r t i a l  so lu t ion  f!.) ( p, p)  becomes 

i -  

The dens i ty  which belongs t o  t h i s  p a r t i a l  so lu t ion  

+1 

cons i s t s  of the  following two terms: 

1 r-- 

The las t  expression shows t h a t  P a ( p )  depends on ic2 and i s  negative f o r  pos i t i ve  p. 

One may represent  t h e  log-term by 
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and one obta ins  from t h e  f i r s t  equation 

0 -1 

The appl ica t ion  of an a i d  formula t o  the  second in tegra t ion  

2 2 2  +1 
s i n h y t  - ( ~ - I c  ) p  

( p 7 / ( 1 - ~ ~ ) (  1-p2) dp. = 2 It2-( 1-ICqp2 
-1 

with t = p + v respec t ive ly  t = p - v, y i e l d s  

The integrand vanishes a t  the  upper l i m i t  v = a3 proport ional  t o  and the  

expression i n  t h e  cur ly  brackets  contains  a f a c t o r  v, which counterbalances t h e  
7 

corresponding f a c t o r  v i n  the  denominator of  t he  integrand. 

for a l l  values  of IC and p. 

Proof of t he  a i d  formula (48): 

The i n t e g r a l  e x i s t s  

+1 

I = Jo(pq(l-IC2)( l -p2)  dp. 

-1 

= 2 I cosh p.t J ( p q ( l - ~ ~ ~ ) ( l - p ~ )  dp. 
0 

0 
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t h e  i n t e g r a l  I w i l l  become 

a3 
(-l)R(l-K2)R(Il+Rj! t 2n p 2R 1 = 2  c 

and a change of t h e  ind ices  of summation t o  S = n + Q and R y i e l d s  

; [q ( - l ) J ( l - K * ) R  14'" co t2S 
1 = 2  c 

(2S+1)! JJ=o s=o 

= 2  c 03 t2S [I - (l-?) (:I2] = 2 c M - 1 2 s  
s=o (2S+1)! s= 0 (2s+1) ! 

2 2  
q.e.d. s i n h q t 2  - (1-K ) p  = 2  

I t 2  - (l-KPjp2 

For t = p we have simply 

The f i r s t  p a r t  P,(p) of t h e  dens i ty  may be represented by some power s e r i e s  of p 
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or 

which show that P (p)  is proportional p for small p and vanishes at p = 0. 

fore, the corresponding expression c Da( p) = pPa( p) is proportional p2 for small p. 

This stronger kind of going to zero at p = 0 is a benefit of taking a partial solu- 

tion, in which the variable S of integration - compare equations (29a, 29) - does 

not meet the essential singularity of the integrand at S = 0. 

There- a 

2 

(b) The second part of the density is 

0 J J 
-1 

If one changes the order of integration, one may apply the aid formula (48) in- 

'+' v) for t. This serting p7/1-v for p and p ( 1  - - v) respectively p ( 1  - - 
yields 

1 - K  

2 2 

1 P( 1- K)V 

sinh [ p d l  -[%?]v)2 - (i.-~~)(l-v) 41 - [q,' - ( 1 - K  2 ) ( l - v )  



= Lisinh K P  [Shi(l+K)p + Shi(1-K)p] - cosh rzp [Gi(l+tc)p - 
K P  

! -  
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cn 2n+l s inh  t X d t  E c 
n=O ( 2n+1) (2n+1) ! 

i n  which Shi  x = 

and 

Using once more t h e  i n t e g r a l  representat ions for Shi  x and C x  x one obtains  

Shi ( l+r ; )p  + Shi(l-lc)p = 2 cosh(r;u) d" and 
U 

P 
du - 

C%i(l+IC)p - Chi(1-u)p = 2 Jo (sinh u)sinh( ICU) _. 
U 

If one i n s e r t s  these  expressions i n t o  t h e  l as t  vers ion (52) of Pb(p)  one g e t s  

a shor t  i n t e g r a l  representat ion 

P 
Pb( p) = % 1 % (sinh u)sinh( IC [p-u] ) . 

K P  0 
(53) 

This i n t e g r a l  i s  proport ional  p for small p and 

p2 s imi la r  t o  c Da( p). Hence c e r t a i n l y  Db( 0) = 0. One obta ins  a l toge the r  

Db(p)  = p Pb(p) i s  proport ional  
2 

2 2 

and 

E 
* I  
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I 

! -  

I .  
I 

Hence the  Sonine transform (21)  i s  

with do = p-. 

dov ins tead  of p i n  t he  de r iva t ive  before in se r t ing  it i n t o  the  integrand of 

t he  l a s t  in t eg ra l .  

One has t o  der ive D ( s ) ( p )  i n  respec t  t o  p and t o  i n s e r t  
I1 

The t o t a l  solut ion,  s ingular  a t  t h e  cent re  p = 0, i s  now 

with E(s)(p,p.) from equation (41) i n  the  form of a s e r i e s  of Bessel funct ions 

or from equation (45) i n  an i n t e g r a l  representat ion.  Then one has t o  add the  

Sonine transform S 

d = p-. 

density,  remains untouched by the  choice of t he  o r i g i n a l  p a r t i a l  solut ion;  

according t o  equation (22)  it c a r r i e s  t h e  important s ingu la r i ty  a t  t he  cent re  

of t he  sphere e-pp R( p m )  

I1 

f ( S ) )  from equation (56), which i s  of course a func t ion  of o( I1 
The l a s t  terms e-pp R ( p G ) ,  which i s  caused by t h e  des i red  

0 

This  amount i s  given i r r e spec t ive  t o  the  value of t he  constant  c of  mul t ip l ica-  

t ion ,  whereas the  o the r  two terms f(‘)(p,p)  + S ( f ( S ) )  contain c as a f a c t o r .  

Furthermore, t he  term e -pp R( p m )  gives  the  whole density,  whereas the  

d e n s i t i e s  belonging t o  f(’) and S ( f ( s ) )  cancel  one another i n  consequence of 

I1 0 I1 

I1 0 11 
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t h e  theorem 111. 

No r e l a t i o n  between K and c i s  imposed upon t h e  solution, i .e .  no 

c h a r a c t e r i s t i c  equation i s  necessary for these so lu t ions .  They a r e  v a l i d  

f o r  any value i n  t h e  complex K-plane. 

11. The Solut ions whichareRegular a t  t h e  Centre of t h e  Sphere. 

A. Regular so lu t ions  belonging t o  t h e  d i s c r e t e  spectrum. 

(59) 

1. If one puts  a = I., then one has da = 0 and t h e  exponent i n  t h e  l as t  
dP 

f a c t o r  on t h e  r i g h t  hand s ide becomes 

i s  a p a r t i a l  solut ion of t h e  d i f f e r e n t i a l  equation above with t h e  right-hand 

s ide  - e- . This i s  our previous result i n  equation (29). 
-K P c 

2 P  

dao = 0 again, but t h e  exponent i n  2 .  If one puts  a = - then one has 
14% 
1 - K  ’ dP 

t h e  l a s t  f a c t o r  on t h e  right-hand s ide  becomes 
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~ l + K  

(61) s Therefore f (  p,p;+~) = 2 
2 J e 2  

0 

i s  a p a r t i a l  so lu t ion  of t h e  d i f f e r e n t i a l  equation above with the  right-hand 

s ide - e . K P  
C 

2 P  

3. Half t h e  d i f fe rence  of t h e  second and the  f i r s t  i n t e g r a l  s a t i s f i e s  there-  

f o r e  t h e  d i f f e r e n t i a l  equation above with t h e  right-hand s ide 

c s inh  KP 
2 P  
- 

It i s  t h e  solut ion f ! r ) (p ,p )  which i s  regular  a t  t h e  cent re  p = 0, i n  t h e  form 

of t h e  following in tegra l ,  which i s  v a l i d  for /k/ c= I: 

I -  
t 
I -  

I 

Whereas t h e  two p a r t i a l  so lu t ions  f(p,p;rz) and f (p ,p ; - r ; . )  do - not  s a t i s f y  t h e i r  

compat ibi l i ty  equations, because t h e i r  d e n s i t i e s  

\ 

+1 

and 

+1 

+KP - K P  

P P 
e. a r e  not equal t o  - respect ively t o  e- , t h e i r  difference f ( r ) (  p,p) does 

i t .  The terms containing an E1-function drop out of i t s  densi ty  P(')(P) = 

p ; ~ )  - P( p; -K) , which becomes 3 
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+1 

P(')(p) = 1, f(r)(p,y)dp = ( 
1 - K  

The factor in brackets on the right-hand side of this equation must be equal to 

1, to give the desired result. This is just the characteristic equation 

C l+K 
2 K  1 - K  

log - - - 1. 

Its two roots K = 2 K form the discrete spectrum of the Boltzmann-operator. 0 

Here the Sonin e-transformation must not be applied, because f (.) ( p, y )  is 

fortunately that partial solution which also fulfills the equation of compati- 

bility, if the validity of the characteristic equation is supposed. 

It will be shown later, however, that there exist regular solutions also, 

for every K of the whole complex K-plane. 

To proceed in this direction, the regular solution f(r)(p,p) above will 

be written in a form, in which the first term gives the whole density 

P ( r ) (  p) = sinh Kp, whereas the second term gives just  the density 0. If one 
P 

puts again S = t v z  the equation ( 6 3 )  for f ( r ) ( p , p )  will become 
1+p L - K  

1 1-p 1 - K  g(t - 5) 

(5) 

i 

1+y 1 - K  F 1-y l + K  

with h = p7/( 1-i~~) ( 1-y2). 

! 



- 47 - 

The expansion of t h e  integrand i n  a s e r i e s  of Bessel funct ions and term by 

term in t eg ra t ion  y i e l d s  

Using the  a i d  formula (48a) one recognizes t h a t  t h e  f i r s t - te rm of t he  curly 

bracket  gives  a l ready the  whole dens i ty  

i f  t he  c h a r a c t e r i s t i c  equation ( 5 )  i s  supposed. 

It i s  easy t o  show, t h a t  t he  second term of f(')( p,p) ,  namely the  s e r i e s  

from n=l  through n = 00, has zero-density. This  w i l l  be proved i n  the  following 

qu i t e  independently. Using formula (44) one may w r i t e  
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\ 

a f t e r  a transformation of t h e  var iab le  of i n t eg ra t ion  t o  v = 1 - t2 and a f t e r  

arranging t h e  terlns i n  such a way t h a t  t h e  second square bracket  i n  t h e  i n -  

tegrand can be obtained from t h e  f i r s t  by exchanging ic with - K .  

We know, however, a l ready t h e  density,  which belongs t o  t h e  second square 

bracket by comparison with Pb( p) i n  equation (51) and (53), it i s  jus t  

- 7 1 PJp) = - - % (sinh u)sinh( ~ [ p - p ]  ) . 
K P  

0 

This expression remains unchanged, i f  one replaces  ic by -K; it gives  t h e  con- 

t r i b u t i o n  of t h e  f i r s t  square bracket, and t h e  d i f f e rence  of both i s  zero. 

Hence t h e  dens i ty  0 belongs t o  t h e  s e r i e s  i n  f( ')(p,p). 

B. Regular solut ions,  belonging t o  every ic i n  t h e  complex ic-plane, We 

s t a r t  from t h e  s ingu la r  solut ion f k ) ( p , p )  i n  t h e  form (41) a s  a sum and i n  

t h e  form (45) a s  an i n t e g r a l .  L e t  us denote it now by 

t o  show t h a t  it i s  a so lu t ion  of t h e  inhomogeneous p a r t i a l  d i f f e r e n t i a l  equation 
- v i  P 

( 6 )  with c e on t h e  right-hand s ide .  Reversing t h e  sign of K i n  t h i s  
2 P  

- t  
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I -  

t .  

I 1 
i 

I 

I .  

so lu t ion  one obta ins  a so lu t ion  f(')( p , p ; ~ )  of t h e  p a r t i a l  d i f f e r e n t i a l  equa- 
K P  

t i o n  with t h e  same le f t -hand  s ide  a s  (6), but  with - - e on the  right-hand 

s ide .  F ina l ly  

TI 

2 P  

w i l l  s a t i s f y  t h i s  d i f f e r e n t i a l  equation with t h e  right-hand s ide  

- e s inh  K P  

2 P 

as a p a r t i a l  so lu t ion  which i s  regular  a t  t he  cen te r  of t he  sphere.  It i s  i n  

ser ies  and i n  i n t e g r a l  representat ion 

The las t  expression i s  i d e n t i c a l  with the  i n t e g r a l  i n  equation (68) t o  which 

the  dens i ty  0 belongs. Hence t h e  p a r t i a l  so lu t ion  fi:)(p,p) does - not  eon- 

t r i b u t e  t o  the  whole des i red  dens i ty  

s inh  ~p 

P 

and i t s  Sonine transform vanishes 
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Only t h e  term e R (  p G 2 )  of f(’)( p,p) gives  a contribution, namely 

8 e { R( p G 2 ;  IC) - R( p a ;  -IC)) 

cos do 
The term - , which i s  s ingu la r  a t  p = 0, 

The dens i ty  which corresponds t o  t h i s  p a r t  of t h e  

by app l i ca t ion  of formula ( 3 6 ) .  

drops out of t h e  so lu t ion .  

solut ion i s  

9 1  e - p P [ R ( p G ; r c )  - R(~-;-Ic)] dp = E 

a, 

+I. +1 
@-IJ.p Jo(h)dp = sinh ‘P 

P -1 

according t o  equation (48a).  

c e n t e r  of t h e  sphere and which i s  v a l i d  for a r b i t r a r y  IC’s, becomes 

Hence t h e  t o t a l  solution, which i s  r egu la r  a t  t h e  

i n  t h e  form containing a ser ies ,  or 
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i n  the  form containing an in t eg ra l .  

K i s  not r e s t r i c t e d  by a c h a r a c t e r i s t i c  equation, it can be every IC of 

the  complex Ic-plane. 

c h a r a c t e r i s t i c  equation (5), t h e  so lu t ion  f(’)( p, p; K )  i s  i d e n t i c a l  with t h e  

so lu t ion  f ( r ) ( p , p ) ,  which i s  represented i n  equation (67). 

place 

c h a r a c t e r i s t i c  equation 

For t h a t  spec ia l  K, however, which s a t i s f i e s  t he  

One has t o  re- 

i n  the  f i r s t  term of f(‘)( p ’ p ; ~ )  just by the  value which the  
2 

K C  l + K  - -  - - l og  - 
2 4  1 - K  

gives .  

The d i s c r e t e  spectrum i s  therefore  completely embedded i n  a continuous 

manifold of so lu t ions  with neighboring K-parameters i n  sphe r i ca l  geometry. 

The dens i ty  belonging t o  a so lu t ion  i s  given by the  f i r s t  term i n  (67) or 

(7l), whereas t h e  dens i ty  of t h e  second term i s  zero. 

C .  

1. 

Proof t h a t  t h e  regular  so lu t ions  s a t i s f y  the  equation N = K e f .  

The operator  A expressed by our coordinates  p and p. Remember the  

d e f i n i t i o n  of p = d- and IJ. = cos 3 where a i s  t h e  angle between t h e  
--f --f -+ 

d i rec t ion  of t h e  neutron v 

we have pp = p 

( w i L h  Ivl = 1) and the  rad ius  vec tor  p. Therefore 

- + 4  

v = xvx + yvy + zvz 

r 
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2 
+ (vx - - - +  2'"vxx p2 "i 2f 

P2 P 3 7-3 

and f i n a l l y  

2. It is easy t o  show t h a t  t h e  s o l u t i o n  dr)(p,p) of  equation ( 6 3 ) ,  which 

belongs t o  t h e  d i s c r e t e  spectrum, s a t i s f i e s  t h e  equation Af = 2 f .  Denoting 

t h e  exponent i n  i t s  integrand by E fo r  abbreviat ion 

we have l+K - 

J 
1 

and by applying d i f f e r e n t i a t i o n  under t h e  i n t e g r a l  sign 
1 f K  

1 J 



- 53 - 

i 

i 

P a r t i a l  i n t eg ra t ion  of t he  - - term y i e l d s  
P 

s =  1 
l+K - 

= K 2 f ( r )  + c s inh  rtp - c  sinh K p  = K~ f ( r ) (p ,p )  q .e .  d. 
P P 

3. To show t h a t  a l s o  the  r egu la r  so lu t ions  f ( r ) ( p , p . ; - K )  of equation (71) 

s a t i s f y  the  equation Df = K 2 f ,  it i s  now s u f f i c i e n t  t o  show t h a t  i t s  f i r s t  

term - 

s a t i s f i e s  t h i s  equation. Then one recognizes t h a t  a l s o  the  second term i n  

the  s e r i e s  development (67) of f ( r ) ( p , y )  s a t i s f i e s  t h i s  equation. 

second term i s  i d e n t i c a l  with the  corresponding i n  the  s e r i e s  development 

(71) of f (  ”)( p, p.; - K )  . 
f ( r ) ( p , p . ; - K )  w i t h  c o n t i n u o u s  IC s a t i s f y  the  equation Af = K 2 f .  

But t h i s  

Hence it i s  t r u e  t h a t  a l s o  the  regular  so lu t ions  

One has the re fo re  t o  ve r i fy  f i n a l l y  
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af = K. 2 f f o r  f = e -W Jo(h)  with h = p7/(1-pP)(1-~*) 

One f i n d s  

= f - ( l - ~ ~ )  e-pp Jo(h) = f - ( 1 - K 2 ) f  = K 2 f  q.e.d. 

D. Representation of t he  regular  so lu t ions  i n  spher ica l  geometry by 

superposi t ion of so lu t ions  i n  plane geometry. 

1. The so lu t ions  belonging t o  the  d i s c r e t e  spectrum. The Boltzmann 

equation i n  plane geometry may be wr i t t en  
+l 

where i s  t h e  d is tance  i n  space on an a x i s  perpendicular  t o  t h e  planes from 
3 

a chosen or igin,  and 7 = cos 0 i s  the  cosine of t h e  angle between t h e  e-axis  
3 

and the  d i r ec t ion  v of t he  ve loc i ty  of a neutron. A so lu t ion  belonging t o  

the  d i s c r e t e  spectrum i s  the  angular d i s t r i b u t i o n  of neutrons 

To construct  a so lu t ion  i n  spher ica l  geometry one has t o  f i x  the  cent re  of t he  

sphere and t o  measure the  d is tance  i n  space by t h e  d is tance  5 of t h e  plane 

from the  cent re  of t he  sphere. If one wants t h e  angular  d i s t r i b u t i o n  i n  

spher ica l  geometry a t  a chosen point  A with t h e  d is tance  p from the  centre,  
-+ 

one draws the  rad ius  vec tor  p through A. The angle between t h i s  rad ius  vec tor  

and the  5-d i rec t ion  may be denoted by J'; then the  d is tance  of t he  plane 
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through A from the  cent re  of t he  sphere i s  

( = p cos 4'. (76) 

I -  

1 

It i s  a measure f o r  t he  "phase, I' wi th  which a plane so lu t ion  cont r ibu tes  t o  

the  spherical .  

of t he  neutron-velocity v, one has t o  superpose plane solutions,  which belong 

t o  t h i s  f ixed  d i r ec t ion  of veloci ty ,  whereas the  normal ( of the  plane runs 

a l l  over t he  d i r ec t ions  of space. The parameter 7 = cos 0 i n  the  plane 

To ge t  a so lu t ion  i n  spher ica l  geometry with a f ixed  d i r ec t ion  
3 

-+ 

3 
3 

so lu t ion  i s  the  sca l a r  product of t h e  u n i t  vec tors  i n  (: and v-direct ions.  

If one supposes a Cartesian coordinate system with the  z-axis i n  p-direct ion 

and the  x,z-plane i d e n t i c a l  with the  v,p-plane, t he  d i r ec t ion  of t h e  (-axis 

may be described by the  angle 4.' between 

the  x,z-plane and ( ,z-plane,  

( i n  these  Cartesian coordinate systems w i l l  be 

3 

-+ -++ 

3 -+ 
and z and by the  angle cp '  between 

3 - +  -+ 
Then the  components of a u n i t  vec tor  e along 

-+ 

e = s i n  Q/ cos cp' e = s i n  3' s i n  cp '  e = c o s 3 :  
X J Y  I Z  

-+ 
and the  components of a u n i t  vector  v i n  the  f ixed  d i r ec t ion  of t h e  ve loc i ty  

w i l l  be 

v = s i n  J = G 2  v = 0 v Z = cos$= p. 
X Y 

Hence the  s c a l a r  product of both i s  

+ 3  

7 = cos 0 = e * v = p cos 3 ' + 6 2  s i n  $'cos cp ' .  (77) 

Therefore one gives  the  plane solut ions,  which s h a l l  cont r ibu te  a t  a d e f i n i t e  

po in t  A with the  d is tance  p from t h e  cent re  of t he  sphere t o  a so lu t ion  i n  

spher ica l  geometry with a f ixed  d i r ec t ion  of neutron-velocity,  t he  form 
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By superposi t ion of such so lu t ions  for a l l  d i rec t ions ,  i .e .  by in t eg ra t ion  over 

cp‘ from 0 t o  2~ and over #‘from 0 t o  T one obta ins  a so lu t ion  S(p,p) i n  

sphe r i ca l  geometry f o r  / K / S  1 

dv e -‘Pv 
+1 

J 1 2 ( 1 - p 2 )  - 2K pv + K2 v2’ 

The t ransformation of t he  va r i ab le  of i n t eg ra t ion  

i n t o  a new va r i ab le  S transforms t h e  upper l i m i t  vI = 1 i n t o  s = 1 and t h e  1 
l+K lower l i m i t  v2 = -1 i n t o  S g  = - . 

t h e  integrand becomes 

The square root  i n  t h e  denominator of 
1 - K  

, 
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I -  

and the differential dv = - 1 [(l-~)(l+p) + ( l + ~ ) ( l - p ) L ]  dS. 
2 K  s2 

This leads to the remarkably simple expression for 

and the solution takes the form 

1 

which is identical with the regular solution (63) belonging to the discrete 

spectrum of the Boltzmann operator in spherical geometry. 

2. Superposition of the solutions belonging to the continuous spectrum 

in plane geometry. 

of Nuclear Reactor Theory that the Boltzmann operator for monoenergetic neutron 

E. P. Wigner(9showed in his lecture on Mathematical Problems 

transport in plane geometry has a continuous spectrum. In approximations, for 

instance by the Gauss quadrature or by the spherical harmonics method, this con- 

tinuous spectrum makes itself conspicuous by thase eigenvalues of the approximate 

I -  

characteristic equation, which belong to the transient solutions. 

The continuous spectrum of the Boltzmann operator extends from 1.1 = 1 

until / l c /  = OD on both sides of the real axis in the complex K-plane. The eigen- 

(9)E. P. Wigner at the Meeting on Mathematical Aspects of Reactor Theory in New 
York, April 23-24, 1959. It is published in a Colloquium Publication of the 
American Mathematical Society under the title, "Nuclear Reactor Theory", 
Garrett Birkhoff and E. P. Wigner, editors, p. 89 (1961). 
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function belonging to a specific K-value of this spectrum may be written in a 

symbolic form 

with the coefficients 

Trc c = - - + i  
2 IC -1 1 

E is a small real (positive) quantity; ( is the space coordinate and 7 = cos 0 

is the cosine of the angle 0 of direction of the neutrons against the (-axis in 

the supposed plane geometry as in the preceding section 1. 

Inserting the coefficients c1 and c the symbolic eigen-function takes the 2 

form 

After multiplication with an arbitrary weight function g -, which ensures the 
convergence of the integral, the contribution of the continuous spectrum to a 

!:I 
total solution of  the Boltzmann equation may be represented by the following in- 

tegral over the continuous spectrum 
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I 

I 

, 

( 86) 

and the corresponding contribution to the density ( o r  flux at velocity v = 1) 

by 

By comparison of the last two equations one recognizes that only that term of 
the angular distribution @( (, 7) contributes to the density @( [), which does 

- not contain the constant of multiplication c as a factor. I owe Dr. E. Inonu 

the observation of this fact. The same fact was noticed already at the solu- 

tions in spherical geometry for all K-values which do not satisfy the charac- 

teristic equation. 

In spherical geometry, however, it is not necessary to write the solution 

for a specific K in a symbolic form, as equation (83) is in plane geometry, 

and one has not to integrate over at least a part of the continuous spectrum 

to obtain ordinary functions for every single ic. In spherical geometry the 

solutions are already ordinary functions for every single ic. Furthermore, 

there are certainly two different kinds of solutions for every [IC], one, which 

behaves regular at the origin, and another which is singular at the origin of 

the sphere. It will be shown in the following that a superposition of solu- 

tions belonging to the continuous spectrum of the Boltzmann operator in plane 

geometry for a specific ic-value ( I K ~  2 l), similar to the superposition in the 

last section, yields the corresponding regular solution in spherical geometry. 

It is interesting to observe how the integration over all space directions 

already leads to the elimination of the 6 for every single specific K. 

I .  



- 60 - 

We superpose so lu t ions  of t he  kind (83) i n  t h e  way descr ibed t o  obta in  a 

so lu t ion  i n  sphe r i ca l  geometry 

Noticing tha t  c = c* for r e a l  K and 
2 1  

/ 
pu-tt ing a = -1 + K V  c o s f i ,  b = K-\G~ sin-$"as an abbreviation, one has 

i e* 1 + a-iEK+bcoscp ' 

2du It i s  transformed by u = 9 e 9 dy'  = - 
2 1+u* 

dcp'. 

2 1-u , coscpf = - i n t o  the form 
1+u* 

= L l i m  
2-r &+o 

0 

+ "E 
a+b - iE. K+ ( a-b - ifK ) 

. !  
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, 

, -  

I -  

The integrand vanishes f o r  l a rge  u s u f f i c i e n t l y  s t rong t h a t  the  path of i n -  

t eg ra t ion  can be closed by a half  c i r c l e  i n  the  i n f i n i t e  of t he  upper ha l f  

complex u-plane. The denominator of t he  f i r s t  term of the  integrand has a 

p a i r  of roo t s  u and -u i n  which 0 0’ 

The second term of t h e  integrand i s  the  complex conjugate of t he  f i r s t  and 

t h e  roo t s  of i t s  denominator a r e  u* and -u* . 
of a rec tangle  synnnetric aga ins t  t he  r e a l  and complex axis of t h e  u-plane. 

second expression f o r  u 

because b i s  pos i t i ve  f o r  O-=#LT, i f  one chooses furthermore a pos i t i ve  K from 

A l l  4 roo t s  l i e  i n  the  4 corners  

The 
0 0 

i n  ( 9 0 )  shows, t h a t  t he  imaginary p a r t  of u2 i s  pos i t ive ,  0 0 

t he  continuous spectrum. 

and t h e  two roo t s  u and -u* l i e  i n  the  upper half  of the  complex u-plane, where- 

as the  o the r  two roo t s  -u and u* l i e  i n  the  lower plane.  Only the  poles  a t  u 

and -u* cont r ibu te  t o  the  i n t e g r a l  with t h e i r  res idues by appl ica t ion  of Cauchy’s 

theorem t o  t h e  upper ha l f  plane, which i s  enclosed by the  pa th  C of in tegra t ion :  

Then the  imaginary p a r t  of u i t s e l f  i s  pos i t i ve  a l s o  
0 

r,lf 0 

0 0 

0 0 

0 

+ “P 
(a-b- i f  K)U* 

0 

I 
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i i c l  - i c r  
= - K L i m  J s i n 8 d 8  e ( a-b+igic)uo + (a-b-i&K)u;f 'i 7r 

I - K P C O S  

E* 
0 

One may s t i l l  apply the  same transformation of t he  va r i ab le  of i n t eg ra t ion  4' 
i n t o  a new va r i ab le  S 

/ = '{. + 5 1 [(K-l)(l+p)s + ( K + l ) ( l - p ) g ]  1 
K 

as i n  the  preceding sec t ion  t o  perform t h e  second in t eg ra t ion .  One has t o  

remember, however, t h a t  ~ 2 1  holds t h i s  t ime: t he  pa th  of i n t eg ra t ion  i n  the  

'+' on the  S-plane starts f o r  8 = 0 a t  S = 1 and ends for & = T a t  S = - - 
K -1 

I I 

I 
o the r  s ide  of the  o r ig in .  When f i ' increases  from 0 t o  "rf, cos& decreases 

monotonously from 1 t o  -1. To maintain t h i s  property a l s o  on t h e  pa th  of in -  

t eg ra t ion  i n  the  complex S-plane, we have t o  proceed along the  r e a l  axis from 

the  o r ig in  of t he  $-plane u n t i l S 2  = -SI and f i n a l l y  from -SI u n t i l  t h e  end- 

point  of t he  pa th  a t  S = - !%? on the  r e a l  ax is .  SI t h e  

expression on the  r i g h t  hand s ide  of equation (80) has an extremum, because 

A t  t h e  po in t s  S = 
K - 1  

- 1  



j 
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i n  zero a t  S = 2 S1 with 

s1=7/- K + 1  

K - 1  l+w 

i 
1 -  

i 

~- 
I -  

and the  quant i ty  a2 - b2, which occurs i n  the  radicands of the  square roots i n  

t he  denominators of t he  integrand 

I I 
a2-b2 = l - ~ ~ ( l - p ~ )  - 2 ~ p  C O S &  + K ~ C O S ~ ~  

(94) 

I 
We denote tile corresponding 8'- i s  zero j u s t  a t  t h e  same two poin ts  S = +Si. 

values with 4 f o r  S = Sl and 4' f o r  S = S2 = -Si. Equation (81) y ie lds  2 

and 

I I  
I n  the  i n t e r v a l  'tf-3- { t he  quant i ty  a2-b2 i s  negative; t h i s  follows from 

the  f i r s t  expression of equation (94) f o r  instance by in se r t ing  t h e  mean value 

c o s t  = E of both values a t  the  boundary of t he  in t e rva l ;  one obta ins  f o r  t h i s  
I 

K 

angle (a2-b2) = - ( ~ ~ - l ) ( l - p ~ ) .  The second expression of equation (94) obta ins  
3= 4" 

indeed negative values  f o r  complex values  of S. Hence we assume f i n a l l y  

K+l ) S1.t a)  f o r  t he  r e a l  S - in t e rva l s  (1,s 1 ) and (-%, - r;-l 

i K  Sl'e b)  f o r  t he  h a l f - c i r c l e  O s X s T  

. 
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This  supposit ion y i e l d s  on t h e  corresponding p a r t s  of t he  path of i n t eg ra t ion  

The pa th  of i n t eg ra t ion  i n  the  complex S-plane looks d i f f e r e n t  f o r  5 regions 

of p-values. The following t a b l e  shows it: 

region of p corner a t  pos i t i ve  S corner a t  negative S 

lb) i - = p - =  1 

p = 1  
K 

O<Sl-= 1 

s1 = 1 
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1 1 3 )  ---=p<- 
Fi IC 

1 
4) p = - c  

ri +1 
K -1 

1-=s1= - 

K +1 
K -1 

s1 = - 

K +1 1 
K K -1 

--= sl< co 5a) - 1 C p e -  - K+l 
K -1 -a< sg<- - 

s = - 0 3  2 5b) p = -1 s1 = 00 

To obtain t h e  whole in tegra l ,  which i s  real ,  one has t o  add t h e  i n t e g r a l  over t h e  

conjugate complex path. 

Then t h e  i n t e g r a l  t akes  t h e  form 

-d( 2-1) (1-p’) cos% + j  a x e  1 1  
0 

(95) 

I C  
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C With c1 + c* = - TC and i(cl - e*) = -2 [K - - log e] it becomes 

K -1 1 1 2 

(t + L) 
t dt 

t 
- 

+ [ K  --log=] C 
- J e  - P I 4  K 2 - 1 )  (1-p2> cosx 

2 K - 1  

0 

The first integrand may be represented by a series of modified Bessel-functions 

using the formula 

and its integrals give S( p, IJ.;K) the following contributions 



1 
I 
! -  
I 
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of the  f i r s t  K +1 and i t s  second p a r t  cancels  just  t he  term with the  f a c t o r  l og  - 
K -1 

i n t e g r a l .  The t o t a l  i n t e g r a l  i s  now 

By comparison wi th  equation (71) one recognizes t h a t  

i s  27~ t imes the  t o t a l  so lu t ion  f(r)(p,p;K) for t he  regular  case of t h e  Boltzmann 

equation i n  spher ica l  geometry. 

To complete t h i s  in tegra t ion ,  one has t o  j u s t i f y  t h a t  the  in t eg ra t ion  through 

the  "corners," i n  which the  ha l f  c i r c l e  meets t he  r e a l  axis i n  the  S-plane and 

a -b changes i t s  sign, does not give a cont r ibu t ion .  It w i l l  be s u f f i c i e n t  t o  

show t h i s  i n  one corner, which may l i e  a t  S1<l. 

a c i r c l e  with the  rad ius  6 

along t h i s  qua r t e r  of a c i r c l e  by 

2 2  

We enc i r c l e  it by a qua r t e r  of 
I 

and i t s  center  a t  SI. Hence S may be represented 

s =1-(1 +Ele ia)  
K - 1  1+p 

K + l  1-p and S = vl+?(l - - -Eteia + $12 e2 ia  + 

The quant i t ies ,  involved i n  the  in tegra l ,  a r e  by t h i s  supposit ion 
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2 2 2 2 i a  a2-b2 = (IC - l ) ( l - p  ) & '  e 

and the  f i r s t  p a r t  of t h e  i n t e g r a l  (92) along t h e  qua r t e r  of t h e  c i r c l e  around 

the  corner  a t  3' = si, w i l l  be 

-cp cos 4' s i n  3' a$' 

2 
6, 6 '  a r e  a r b i t r a r y  small constants ;  i f  we choose ( & I )  = C - € ( C  = cons t . ) ,  we 

jo in  t h e i r  l i m i t s  f o r  &+O.  

t o  zero.  

S a t  a l l  corners  (see equation ( 9 3 ) ) ,  i n  consequence of which t h e  d i f f e r e n t i a l  

s i n  

The i n t e g r a l  w i l l  tend t o  zero, when E' =* tends 

The cause of t h i s  behavior i s  t h a t  cos$' i s  s t a t iona ry  i n  respec t  t o  

d4'  a t  t h e  corners  i s  quadrat ic  i n  6 ' .  Hence one obta ins  no cont r ibu t ion  

t o  t h e  i n t e g r a l  from t h e  neighborhood of t h e  corners .  
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111. Comparison of t h e  New Solu t ions  wi th  t h e i r  Representations 

by a S e r i e s  of Spher ica l  Harmonics 

A. Proof of t h e  equa l i ty  of two so lu t ions  of t h e  Boltzmann equat ion which y i e l d  

t h e  same dens i ty .  

(1) with t h e  same dens i ty  satisfies t h e  homogeneous p a r t i a l  d i f f e r e n t i a l  equation (8). 

The d i f fe rence  6(p,p) of two so lu t ions  of t h e  Boltzmann equation 

with some funct ion F of p m ,  about which one knows t h a t  it y i e l d s  t h e  dens i ty  zero: 

6 +1 J’ 6(p,p) dp = 

-1 -1 0 

e - ” F ( p / l T )  dp = 2 (cosh yp) F ( p , / l q  dp = 0. 

This  i s  a Sonine i n t e g r a l  equation again.  If we replace zero on the  r i g h t  hand s ide  

of t h i s  equation by a constant C, i t s  so lu t ion  would be 

with u = p2(l-p2)  

One recognizes by t h i s  ca l cu la t ion  t h a t  t h e  expression accompanying C does not diverge. 

Hence t h e  difference 6(p,p) of both  so lu t ions  vanishes toge ther  with C = 0. This  
I ’  

means t h a t  two so lu t ions  of (1) with equal  d e n s i t i e s  are equal. O f  course the  theorem 

i s  not appl icable  t o  t h e  comparison of  two solut ions,  which d i f f e r  by a diverging p a r t ,  

Such a case appears i n  sec t ion  D of t h i s  chapter .  
! 

B. Applicat ion of t h e  theorem of e q u a l i t y  t o  two r egu la r  so lu t ions  of t he  

Boltzmann equation wi th  t h e  same density. 

t h e  development of t h e  r egu la r  so lu t ion  i n  a series o f  sphe r i ca l  harmonics i s  

According t o  t h e  equations (2) and (3)  
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(102a) 

(102b) 

I t s  dens i ty  i n t e g r a l  becomes 

On the  o the r  hand, our corresponding r egu la r  so lu t ion  i s  fer) (p ,p;~)  i n  t h e  form 

of  t he  equations (71) o r  (72) .  

dens i ty  (103). 

s e r i e s  (102a).  

t h e  f a c t o r  c and a second between the  p a r t s  with t h e  f a c t o r  e :  

It y i e l d s  by the  use of t he  i n t e g r a l  (48) the  same 

Therefore our regular  so lu t ion  i s  equal t o  t h e  sphe r i ca l  harmonics 

This  equa l i ty  gives  two r e l a t ions ,  a f i rs t  between the  p a r t s  without 

wi th  h = pdl-p2)(1- ic2) .  We obtained two equations because c and I$. a r e  independent 
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I .  

I 1  

var i ab le s  i n  both  representa t ions  of t h e  regular  so lu t ion .  A connection between c and 

1 c ,  i .e. ,  a c h a r a c t e r i s t i c  equation GL+l(- -) = 0, would appear spontaneously only by 

t runca t ion  of t h e  s e r i e s  (102a) a f te r  t h e  L-th term. The ex t rapola t ion  t o  L -+co i n  

t h i s  c h a r a c t e r i s t i c  equation can be made or not.  If one performs the  ex t rapola t ion ,  

then  t h e  d i s c r e t e  and t h e  continuous spectrum fol low a t  l e a s t  i n  t h e  case of plane 

geometry. 

t h e  q u a l i t i e s  of t h e  material and does not depend on t h e  geometry a s  long as one con- 

s i d e r s  only so lu t ions  i n  t h e  i n f i n i t e  space without boundaries and sources. The t run -  

ca t ion  of t h e  sphe r i ca l  harmonics so lu t ion  a f t e r  t h e  L-th term means i n  f a c t  t h e  addi- 

t i o n  of a source, namely of an error-source term(10), t o  t h e  o r i g i n a l  Boltzmann equa- 

t i o n  (1). 

l a t i o n  t o  L+co one obta ins  the  h i n t  a t  t he  spectrum. But f o r  t h e  untruncated s e r i e s  

(102a) and the  so lu t ion  (71) o r  (72) t h e  e r r o r  source does not  e x i s t  or has l o s t  i t s  

importance - i n  t he  view from t h e  ex t rapola t ion  of f i n i t e  L - because of t h e  conver- 

gence of t h e  s e r i e s  (102a) f o r  a problem without boundaries. 

f o r  every K, for which they  are convergent and d i f f e r e n t i a b l e  i n  respec t  t o  15 and p. 

K 

Eveqbody expects t h a t  t h e  spectrum of the  Boltzmann-operator depends on 

To t h i s  hidden addi t ion  one owes t h e  c h a r a c t e r i s t i c  equation and by extrapo-  

Hence they  a r e  so lu t ions  

C. Direct  v e r i f i c a t i o n  of equation (104). Of c o w s e  a v e r i f i c a t i o n  o f  equations 

(104) and (105) a s  a check of t h e  ca l cu la t ions  would be of  some value. 

myself t o  t,he v e r i f i c a t i o n  of t h e  simpler equation (104) because I found only i n  t h i s  

case a s u i t a b l e  a i d  formula. I n  absence of a complete a i d  formula f o r  a t reatment  of 

(lO5), however, one could use t h e  developments of G.  Bauer f o r  a v e r i f i c a t i o n  of (105) 

by s t eps  from pn t o  pn+’ similar t o  t h a t  which w i l l  be used i n  sec t ion  E .  

I r e s t r i c t  

Multiplying both s ides  of (104) with one of t h e  spher ica l  harmonics and using 

t h e i r  orthonormality re la t ions,  one obta ins  

(106) 

Kofink, Oak Ridge Nat ional  Laboratory repor t  2358, p. 3 (1957) and Nuovo Cimen’Go 
Supplement 2 t o  Vol. 9, p. 499 (1958). 

. 
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The proof of (106) i s  equivalent t o  t h e  proof of (104). 

from t h e  following extension of t h e  aid-formula (48) by pu t t ing  t 

Equation (106) can be derived 

p: = 

-1 

The equation (107) will be proved by complete induction. 

with equation (48). For L? = 1 it i s  t h e  de r iva t ive  - a/& of equation (48). Sup- 

posing furthermore t h e  v a l i d i t y  of t h e  equation (107) u n t i l  a, one has f i n a l l y  t o  show 

For a = 0 it i s  i d e n t i c a l  

i t s  v a l i d i t y  f o r  R + 1. The lef t -hand s ide i s  i n  t h i s  case 

with x = , / t 2 - ( l - K 2 )  p2 a s  abbreviation. This expression should be equal t o  t h e  

right-hand s ide  of equation (107) f o r  R + 1. Hence it remains t o  show t h a t  

I . 

. 
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The right-hand s ide  of t h i s  equation i s  
r 

The f i r s t  cu r ly  bracket  i s  zero, whereas t h e  second cu r ly  bracket  g ives  t h e  desired 

r e s u l t .  It i s  

D. Comparison of  two s i n g u l a r  so lu t ions ,  The following theorem w i l l  be suggested 

and p a r t i a l l y  v e r i f i e d :  

by a series of sphe r i ca l  harmonics a l l  terms which contain negat ive powers of K a s  

f ac to r s ,  one obta ins  t h e  new s ingular  so lu t ion  (35) o r  (40) .  

i f  one omits from t h e  s ingular  so lu t ion  i n  i t s  representa t ion  

Some evidence exists f o r  t h e  v a l i d i t y  o f  t h i s  theorem. The dens i ty - in t eg ra l  f o r  

t h e  new so lu t ion  i s  

as it was shown i n  equation (27). 

equation i n  t h i s  case i n  a power s e r i e s  of K 

If one develops t h e  right-hand s ide  of t h e  Boltzmann 



- 74 - 

and i f  one supposes a so lu t ion  as a power s e r i e s  of K 

one recognizes t h a t  t he re  i s  no need i n  f f o r  terms with negative powers of is. because 

t h e  right-hand s ide  of ( lQ9) contains  only the  non-negative powers of IC. 

so lu t ion  of (1) i n  spher ica l  harmonics 

The s ingular  

wi th  t h e  modified Bessel funct ions of t h e  second kind 

contains,  however, i n  t he  f i rs t  term of (112)  negative powers of IC. This  may be seen 

i n  the  power s e r i e s  

The s ingular  so lu t ion  (111) i n  spher ica l  harmonics y i e l d s  the  same dens i ty- in tegra l  

as t h e  so lu t ion  (35), namely, 

According t o  t h e  theorem i n  sec t ion  A of t h i s  chapter  both so lu t ions  (111) and (35) 

should be equal if the  s e r i e s  (111) would be convergent. 

o r ig ina t e s  i n  t h e  use less  terms which contain K i n  negative powers. 

l e s s  conclusion which i s  compatible with t h e  f a c t s  t h a t  the  new so lu t ion  (35) i s  con- 

vergent, contains  only non-negative powers of IC and y i e l d s  the  same densi ty .  

one has t o  c ross  out a l l  terms i n  the  s ingular  so lu t ion  (111) which have negative powers 

of K as fac to r s .  The remainder of t he  s e r i e s  i s  supposed t o  converge and t o  be equal 

Consequently i t s  divergence 

This i s  t h e  match- 

Therefore 
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I 

1 .  

t,o the new solution (35) and (40). 

Using (112) one may write the total solution in spherical harmonics (111) as the 

sum of a singular solution with the density-integral (cosh ~ p ) / p  and of a regular 

solution with the density-integral ( - sinh K p)/p : 

Because of 

the second series in (115) is just the regular solution (102a) with the opposite sign. 

It contains only positive odd powers of K and, using equations (104) and (lOga), one 

easily finds its contributions to the new singular solution (40). To recognize them 

in the equation (b), one writes one part of (b), namely (42), in the following form: 

COS do K R! ( 2 ~ ~ d ~ )  a 
= e -Izp {x - - Jo(h) + K *  

2 rn R=O ( 2 R - 4 1  

in which h = do ,/- = p The second term in the curly brackets 

of (116) contains the odd powers of K and is the contribution of (104) 

to equation (42 

gives that part 

all terms which 

. 
OP the equation (41) which is odd in K. 

contain the positive odd powers of x as factors in the series of 

The second contribution is the more lengthy expression (lO5a); it 

Hence the identification of 
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sphe r i ca l  harmonics (lll), with t h e  corresponding terms i n  the  new so lu t ion  (40) i s  

simple and complete: 

odd i n  ic of f (S.H.) 

= 

i n  (111); thus the re  is o f  course nothing t o  cross  out. 

- f(')(p,p;K) according t o  equation (71).  Negative odd powers of IC do not occur 

Furthermore one has t o  compare the  p a r t s  of t h e  s ingular  so lu t ions  (111) and (40) 

which a r e  even i n  K .  The s e r i e s  of spher ica l  harmonics has the  

P a r t  even i n  ic of f p,p { I ( )} 

It i s  the  f i r s t  s e r i e s  i n  t h e  curly bracket  of (115). A glance a t  

. 

shows t h a t  (118) contains  two par t s ,  one without a f a c t o r  c and a second with a f a c t o r  

C :  

even i n  IC of f 
(S.H.) 
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1 

1 -  
i 

I -  
~ 

Here t h e  superfluous terms wi th  negative powers of K a r i s e  from the  introduct ion of 

t he  power s e r i e s  (113) f o r  t he  modified Bessel funct ions i n t o  (1.19). O f  course the  

rearrangement of t h e  double s e r i e s  i n  a power s e r i e s  i s  only a formal way. It leads  

nevertheless  t o  something reasonable, namely t o  t h e  new s ingular  so lu t ion  (40) a f t e r  

dropping a l l  terms with negative powers of K .  

R-th term of (119) i s  ,cm2'. 

those w i t h  IC-2R, ,-2.8+2 

the  terms with the  non-negative powers IC , IC , IC , . . . i n  (119). 

The l a r g e s t  negative power of K i n  t h e  

One has t o  omit R expressions i n  the  R-th term, namely 

It i s  s u f f i c i e n t  t o  keep -2R+4 , ... IC-4, K-2 as f a c t o r s .  

0 2 4  

3. Veri f ica t ion  of statement of s ec t ion  D about t he  even p a r t s  i n  v i  of' t he  singu- 

l a r  so lu t ions  i n  the  two d i f f e r e n t  representa t ions .  We consider f i r s t  t he  p a r t  of 

(119) which i s  independent of e: 

2p (\s=l ' 2  ' r=O 

S [i] i s  the  l a r g e s t  i n t ege r  < -; e.g., f o r  s = 0 it i s  [z] = - 1, f o r  s = 1 or 2 
2 

it i s  0, f o r  s = 3 or 4 it i s  1 and so on. The f i r s t  s e r i e s  of (120) contains  only 

negative powers of IC; hence we omit it. 

We inves t iga t e  only the  second s e r i e s  of (120) and wr i t e  down i t s  f i r s t  fou r  terms 

It does not a l s o  contr ibute  t o  the  dens i ty .  
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Afte r  t h e  omission of a l l  terms with negative powers of IC i n  (121) these  fou r  terms 

should be equal t o  t h e  corresponding fou r  terms i n  the  development of t h a t  p a r t  of 

t h e  new solut ion (40) which i s  even i n  IC and does not contain e .  This p a r t  i n  (40) i s  

G.  Bauer'l') has derived t h r e e  formulas which may be used advantageously f o r  t h e  

comparison of equations (121) and (122): 

(ll)G. Bauer, Journal  f u e r  d i e  re ine und angewandte Mathematik, Berlin,  Vol. 56, 
p. 101 (1859). 
Harmonics, Cambridge Universi ty  Press, 2nd pr int ing,  p. 49 (1955). 

See also E. W. Hobson, t h e  Theory of Spherical  and E l l i p s o i d a l  
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Applying t h e  recursion formula f o r  Legendre polynomials 

' I  

I .  

2 $  t hese  formulas may be extended t o  a r b i t r a r y  powers pn as f a c t o r s  of (1-p ) 

( l - p 2 ) - ~ ,  f o r  ins tance  t o  

o r  
1 

5 9 11 
1. V J S  = 2 P,(p) - - 7 P3(p) - - P 5 h )  - 3 -  5 *  P7(P) - ... 
7r 8 32 1024 4096 

(126) 

Therefore our comparison of t h e  c o e f f i c i e n t s  of (121) and (122) could be continued 

t o  a r b i t r a r y  l a r g e  powers of  p. 

( 2 )  We s tar t  with t h e  comparison of t h e  coe f f i c i en t  of p - l  i n  t h e  equat ions 

(121) and (122).  We obta in  from (121) 

2 r = O  r! r( -r++) 

- - 
1 - - 1 [ .... 1 + >  [....'I - + ... 

T J 1 K - p  K2 
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using t h e  formula (123). 

i d e n t i c a l  with the  corresponding coe f f i c i en t  i n  (122) a f t e r  t he  omission of a l l  terms 

Hence we see t h a t  t h e  coe f f i c i en t  o f  p - l  i n  (121) i s  

with negative powers of ic. as fac to r s .  

0 
(b)  We compare now the  corresponding coe f f i c i en t  of p . We obta in  from (121) 

1 

ic.2 + 2 35K 

using the  formula (125).  

t h e  c o e f f i c i e n t s  of po i n  (121) and (122) a r e  equal.  

Af te r  t h e  omission of a l l  terms with negative powers of K 

( c )  We compare now the  corresponding c o e f f i c i e n t s  of p. We obta in  from (121) 
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I 

I -  

1 
! J  

using the  formulas (123) and (124).  

of K t h e  c o e f f i c i e n t s  of p i n  (121) and (122) a r e  equal .  

Af t e r  omission of a l l  terms with negat ive powers 

(d) Fina l ly  we compare t h e  corresponding coe f f i c i en t s  of p2. We obta in  from 

(121) 

+ %  [....I - > 1 .... ] + - ... 
K 
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using t h e  formulas (125) and (126). 

powers of is. t h e  c o e f f i c i e n t s  of p2 i n  (121) and. (122) a r e  equal.  

Af t e r  t h e  omission of a l l  terms with negative 

We t u r n  now t o  t h e  p a r t  of  (119) which has t h e  f a c t o r  c :  

. 

= (terms with negative powers of is. only) + 

+ p [- 5.3 P2(p) - - 5 p4(p)  - ...I 
16 128 

7 11 

72 720 
P1(p) - - P+) - - 

G. Bauer ('*) gives  t h e  formula . 
p 2 ( d  + - P3(p) - + . * *  l og  (l+p) = ( l o g  2) - 1 + - P & L )  - - (133) 3 

1 . 2  2 . 3  3 O 4  

from which one der ives  the  extensions 
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and so on, i f  one wants t o  proceed wi th  f u r t h e r  s t eps  of  t h e  comparison. 

t h e  new s ingular  solution (b), which i s  even i n  K and contains  the  f a c t o r  e ,  i s  

The p a r t  of 

+ ds (2(1og 2 s )  cosh( icdos) 

0 7r 

- e-dos c" 
m = l  

b l + ~ ) ~  + (1-K)"] d: s.) 
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Applying the  a i d  formulas (124), (126), (134-156) t o  (l37b) one f i n d s  (132) i f  one 

omits t he  negative powers of K i n  (132). 

powers of p, but  never completed i n  t h i s  manner. If the re  e x i s t s  any ju s t i ce ,  how- 

ever, t h e  following r e l a t i o n  between t h e  s ingular  so lu t ion  i n  spher ica l  harmonics 

(111) and the  new form (40) should hold: 

This procedure could be continued t o  higher 

Omitting a l l  terms with negative powers of ic i n  t h e  spher ica l  harmonics solu-  

t ion ,  (111) and (40) become equal.  

Remark. Presumably the  same method could be appl ied t o  t h e  c y l i n d r i c a l  case 

for t he  construct ion of a converging s ingular  so lu t ion  from the  corresponding 

spher ica l  harmonics s e r i e s .  

. 
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