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Introduction

Solving the Boltzmann equation for problems of neutron transport in media
with sources or boundaries by approximations, one faces the appearance of the
transient solutions in addition to the asymptoﬁic solutions. E. P. Wigner(8> sug-
gested that in plane geometry for infinitely high order of approximation, i.e.,
for the exact treatment, these functions form the set of solutlions which belongs
to the spectrum of the Boltzmann operator. The asymptotic solutions belong to
the discrete part and the transients to the continuous part of the spectrum.

K. M. Case, "Annals of Physics", 9, 1-23 (1960), uttered this idea independently
and proved that these solutions form a complete set.

The analogous problem for spherical geometry is still not solved. Similarly
to the two different kinds of solutions of the equationAf = mgf, for which one
has regular and singular solutions at the center of the sphere, one also has to
expect both kinds of solutions for the Boltzmann equation. In part I of this
report the singular solutions are derived. The Boltzmann equation 1s solved in
section B by two steps. First, a partial differential equation with the desired
density on the right hand side will be solved. In general, the partial solution,
found by this way, will not yield the desired density and one has to add a sult-
able solution of the homogeneous differential equation to obtain the desired
density. This addition leads to a Sonine integral equation. Second, this inte-
gral equation has to be solved; it gives the right additional solubion of the
homogeneous partiél differential equation to fit the desired density. In sec~
tion ¢ the unigueness of the total solution is shown in the sense that a different
choice of the original partial solution does not influence the total solution.
There is a further interesting property of these solutions: they do not involve a

requirement to satisfya characteristic equation. This fact implies that all those
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terms in the total solution which contain the constant of multiplication c as a
factor do not contribute to the density. Hence in section D it is shown that
the densities arising from the originally chosen partial solution and from its
Sonine transform cancel one another. The total density is given by a third term
in the total solution which originates from the desired density by the Sonine
procedure. Of course it is also independent from the choice of the partial solu-
tion of the inhomogeneous partial differential equation. The same fact can be
obgerved for the solutions in plane geometry which belong to the continuous spec-
trum by comparison of equations (86) and (87). This fact permits solutions which
avoid the satisfaction of a characteristic equation.

In section E a partial solution containing an arbitrary parameter is
given and in section F three different specific partial solutions are considered.
The partial solution treated in section Fl has the attribute that its density is
easlly calculable and that the Sonine transformation can be performed analytically.
Hence it is used to write down the total singular solution of the Boltzmann equa-
tlon in equation (55). The term of the solution, which is singular at the center

of the sphere, is

cos dg cos(p sina%)

do o) sin1}
Of course it is invariant against a rotation of the coordinate system around the
center of the sphere because dg = o sin'&‘is the invariant distance of a neutron
ray from the center of the sphere.

The partial solution (under F1), however, contains two terms which are solu-
tions of the homogeneous differential equation. They contain a log p-term and the
Sonine transform contains them with the opposite sign. Therefore they are removed
from the total solution and we are sure that the total solution does not contain a

singular term proportional to log p.
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A second partial solution (under F?) does not contain a log p-term from
the outset, but it contains still some presumably superfluous terms which satisfy
the homogeneous partial differential equation. To calculate the density belonging
to it is not easy and this solution is not persued further.

Finally, a third partial solution (under F3) is chosen, dropping all
superfluous parts which satisfy the homogeneous differential equation. The den-
sity belonging to it is the sum of the equations (L49) and (53), which are given
in integral form. The total solution, shown in equation (57), would appear rather
lengthy if written down explicitly. Of course it has to be identical with the
solution under F1l in the form of equation (35) or (40) according to the unigqueness
theorem.

In part IT the solutions of the Boltzmann equation in spherical geometry,
which are regular at the center of the sphere, are considered. In section A
the regular solution which satisfies the characteristic equation is glven in an
integral form by equation (63). This case distinguishes itself as the only one
in this report for which the Sonine transform must not be applied; the solution
(63) yields already the desired density (66) after the application of the charac-
teristic equation (5). One can, however, write this solution in the form of equa-
tion (67) in which the first term gives already the whole density and satisfies
the homogeneous differential equation (8), whereas the second term gives the den-
sity zero and satisfies the inhomogeneous differential equation (59) with the
right hand side (62). This suggests to construct regular solutions as the dif-
ference of the two singular solutions for k and -k. For instance, one may use
equation (35) as the total solutién for -k, reverse the sign of k in it and take
the difference of both. Then the application of Bessel's integral (3%6) to this

difference leads quickly to the regular solution (71). It has a form identical



T

with (67) with the only exception that ﬁ log 1+ 4s replaced by %. This has

1 -k
the meaning that the solution (71) yields the desired density 5in K0 without the
requirement of fulfilling a characteristic equation. Furthermoref the integral form
(72) of this solution shows no hint which excludes its validity over the whole
complex k-plane. To show the invariance of all regular solutions against a
rotation of the coordinate system around the center of the sphere, it is proved
in section C that they satisfy also the equation Af = k2f.

Finally, the regular solutions in spherical geometry are constructed in
sectlon D by superposition of solutions in plane geometry which belong to
the same x. Of course, this can be done only with solutions which belong to
the discrete and continuous spectrum of the Boltzmann operator in plane geometry
and, for instance, not for complex k-values. The superposition of plane solu-
tions belonging to a k-value of the discrete spectrum yields immediately to
that regular solution in spherical geometry which has to fulfill the charac-
teristic equation. The solutions belonging to the continuum in plane geometry
are given in the symbolic form (83) or (85) of a series of a Cauchy principle
value and a Dirac élfunction. The superposition of those solutions to a solu-
tion in spherical geometry removes the symbolic form and one obtains for the
regular solution an ordinary function - see edquation (lOO) - which is identical
with (71) obtained in section B as the difference of two singular spherical
solutions for k and -k.

No method is given to obtain the singular spherical solutions by super-
position of plane solutions. There is also no suggestion how one may find the
spherical solutions for those k-values which are different from the k's of the

spectrum in plane geometry, as a linear combination of solutionsg with x's be-

longing to it. Hence a statement about the spectrum of the Boltzmann operator

in spherical geometry and its complete set of eigenfunctions is still missing.
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In Part III the nevw solutions will be compared with their well-known
representations by a series of spherical harmonics. A simple proof is given
for the equality of the two regular solutions. In the case of the singular
solutions, however, one has to cross out all terms with negative powers of
k as factors in the divergent series of spherical harmonics. Then one obtains

a convergent series which is equal to the new singular solution.
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I. Solutions of the Boltzmann Equation for Monocenergetic Neutron Transport

in Spherical Geometry which are Singular at the Center of the Sphere.

A, Preliminary remarks.  The Boltzmann equation in spherical geometry has

the form
o +1
2fF 1 -p=s 2F
L e T (o) - —] £(o,p') du', (1)
2p p U -1

il scattering, absorption and multiplication are assumed to be isotropic. The

constant ¢ of multiplication

1 1 1
c = -Z-(z+v>:f-za) = E(>:S+vzf) = 1 -E(za-vzf),
in which & = Z o+ X, = I, +Z,+ Yp 1s the total macroscopic cross section,

ZS is the macroscopic cross section for pure scattering, Z, for capture, Zp for

fission, £, = Zc + Zf for absorption by capture without and with fission
together. v 1s the average number of neutrons produced in one fission process.
p = Zr is the dimensionless measure of the distance from the center of the
sphere on a radiusvector T and Moo= cosw%is the cosine of the angle &‘between
the direction 5 of & neutron and the radiusvector T.

Solutions f (p,u) of the Boltzmann egquation will be called "regular" if

they are finite and '

'singular" if they are infinite at the center of the sphere.
Examples of solutions of both kinds are well known, for instance, in the

form of a spherical harmonics series(l) for the discrete spectrum of the Boltzmann

operator. Such solutions are

f(p,u) = zgo Yy(0) Pylu), (2)

(Ds. Davison and J. B. Sykes, "Neutron Transport Theory", p, 146, Oxford Press,
1957; Alvin M. Weinberg and E. P. Wigner, "The Physical Theory of Neutron Chain
Reactors", p. 273, University of Chicago Press, 1958.




with

and

1 1 c 1
Oo(-2) = 1, G(-2) = B) - ZW, (3 For 4 = L,2,...
For a regular solution one chooses for f, the functions

fI(_ Kp) = 71 M
) 2 e

and for a singular solution the functions

K, 1(kp)
eI ep) = 2 _:ei?_i, (1)

4 T W

¢ and x are related by a characteristic eguation

c 1+ &
— log = 1 (5)
2K 1 -k

with a pair of eigenvalues + x for every ¢ > O, which represent the discrete

spectrum of the Boltzmann operator. The densities (or also the fluxes of velocity

v = 1) which belong to these solutions are proportional to
+1
P(p) = ff(p,u) du =gyy(p) = wf(-xp),
-1
i.e.,
T I1(-kp) sinh kp
I - 2 _ 1 1" .
PHp) = R\/-— = for the "regular" solution
2 \V-KpP P
and
2 Ki(xp) e P
pLI(p) - = = for the "singular" solution.

S|

3
O
©
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A representation as an integral(g) is known at least for the regular solution of
the discrete spectrum; a new one will be given here (equation 65)."

B. The Sonine transformation. The problem will be attacked now by a dif-

ferent method to find other solutions. To obtain singular solutions, one prescribes

the density P(p) = €7*P and solves the partial differential equation
o
2 -Kp
2f 1 - of c
Wi 2T (o) = ZOE . (6)
20 o 2u 2 P

One finds a partial solution fp(p,p) of this equation and has to investigate

whether it is compatible with the condition:

+1

Pp(p) = U/\fp(p,p') dp' should pve -E

_Kp

e
-1

In general, however, this will not be the cage and one has to add the suitable

solution

fr(pn) = e P go\/1 - 43) (7

of the homogeneous differential equation

2

of 1 -u= 27
H__ﬂ + — fH(p;H) = 0 (8)
2p ol K

to the original partial solution fp(p,u) of the inhomogeneous differential equa-
tion to satisfy the equation of compatibility by the sum of both:

+1

- eKp
f [fp(p,u) + e gL - ugi, du = )
P
Hence one hags to find the function ¢ in the integral equation
+1 6p
- e-
fe MR g(VL - uB) an = - Pyle) . (9)
o)
-1

i)

o
H. Stittgen, Beitraege zur Loesung von Neutronentransport - Problemen in kugel-
foermigen Medien, Diplomarbeit, Technische Hochschule Karlsruhe 1958 (unpublished).
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To have a common denominator of both terms on the right hand side of this equation

and to remember always that the partial solution fp contains % as a factor, one

must introduce another abbreviation instead of Pp(p), namely,

+1
oP () = pf; fo(pu') du' = %Dp(p) (10)

into the second term on the right hand side of egquation (9). PFurthermore, the
function P(A/L - u€) is symmetric in respect to a change of the sign of u; this
fact permits writing the equation in the form

1

ef cosh pp F(AVL - p2) du = L [e'“p - 2D (pil- (11)

2°p
0]

o |

Dp(p) is proportional to p times the density of the chosen partial solution

f.(p,u), a known function of p.

P
To solve the integral equation one puts p2 = & and chooses a new varilable
g ; = 201 .1,2
of integration t = p=(1-u<). Then one has
1 dt
B = P2 -t = s-t%, eu =T\fs-t du = "3

~\/s(s-t)

and the limits of integration become

"
Ja

t = p2 = gfory = 0 and t = O foru

The integral equation (11) takes the Sonine(3) form

/coshys - t¢ o -RVs ¢

Vo) at = e - = Dy(Vs). (12)
- 2
g W/s t

(3. Sonine, "Acta Mathematica", 4, 171 (188L).
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Following Sonine, one multiplies this equation on both sides with the factor

;fl cos\u - 8 ds
™ 0 \ju - 8

and obtains

fds ____E ,: 'N_ p(\/—] f ds 7\_7{—_11::“_—'_5_3‘/?% cosh:/_—— ¢(\/—>

S 4
t =
(2) °
LI .
6————"—9 t

An exchange of the order of integration on the right hand side of this equation

yields

i feodfi s cosVeot [ e
f&¢ [ [ ae o)

ﬂ\fu - 8 er____— 0 ’ )‘$\'t s u

because

Jf - 5 cosh\/s (1u)
a ™/u - s \/s

To release the reader from a study of Sonine's work, the proof of the last equa-

tion will be given here. One introduces a new variable of integration x by putting

s = t+ (u-t) x, x = (s-t)/(u-t)
ds = (u-t) dx
/ﬁ -5 = WJu -t \/i - x, s -t = Vu-t \/;—
with the new limits of integration x = O for s = tand x = 1 for s = u.

This transforms the integral on the left hand side of (14) into
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1
1 f cos(yV1 - x) cosh(#x)
- X
T \V/x(1-x)
with the abbreviation y = u - t. A series development of cos and cosh and

term-by-term integration yields
1

_1)4 2(2+m) 1
! S—El——X~————— (l—x)’e—é xm“% dx

7 A0 (opy1 (om)! o

+m (Y/Q)Q(Mm) (y/2)%° & s
WL, (1) *; )_[Wm)l_].__e -1+ T = Ionis) - o

g.e.d. The following formulas were used:

f(l-x)ﬁ_% -3 [(2+3) (mt3) m(22-1)¢ (2m-1)!
0 [ 4rme1) P10y ()t () s

and

éo(-l)" @) = (1-1)% = o.

The solution of the integral equation (12) has now the form

fszﬁ(/’?) - - fds e {e"%\/— D, (Ve) (15)

u - 8

and the function 52_5 itself will be given by differentiation in respect to u

R L T

0

with

ngfp s,u') dp!
1

and u = p©(l-u®).
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There are other forms of ¢ which are sometimes more convenient. After a partial
integration on the right hand side of equation (16), one can perform the differen-

tiation d/du:

gJfu) = {[—2 sinffu - s)<€ —K.\/S—— %Dp(\/g))} :;l

5 1+

d
du

+ 2 fsm u - s) ——<€_N— pé\/s—)) ds}
2 si_{gsﬂr(l-lm 0

2 El-um sin(-\/:l—_s)J (e A g Dpé\ﬁl))

+
SR

a [ d oV e
—u[ 51n(u-\/————é) ;(e "2 Dp('\/g)> ds.

The second term is zero, because e “¥YY - % Dp(\/a) is finite. The differentiation

in respect to u yields now

o) = = SR [ o0)
1 ucosu-s d -m/g ¢
+;f———;(e - S D,0/) ds

2 114 i d - c
+ = [ st/ s):l (e A = Do)

The last term of this equation vanishes because §-_<e _K\/l—JL -2 Dpé\[{l» is finite,
du 2

and one obtains a second form of ¢




+1
. C 14 t
with 2 D,(0) = pig(pfl £ (pyu') du)-

In this kind of writing the first term shows a singularity at the center of the
sphere, whereas the second term is regular there for the different specific partial
solutions fp, which will be considered later. Furthermore, Dp(O) will be zero for
these fp's also.
Inserting u = p2(1-pu2) = o2 singzﬂwe have

o 1 cos(p/1l - ug) c

Blofr - w2) - = ZEPAL BN LS (o) (18)
T /1 - pz 2

o 02 (1-p2) cosh /o2 (1-42) - s) a [e-m/s_ %o (\/g)} ds.
) D) s 2 "

One may perform the differentiation in the second term and may introduce another

variable of integration v by s = pg(l-pg) v2 to transform the upper 1limit of the
integral into v = 1. Furthermore, one may introduce the distance
dy = @AV1 - u2 = o sindof the "neutron-ray" from the center of the sphere as
an abbreviation. Then one obtains
1 (19)
2
2\ L _ 1 cos dp c 1 cos(AV1 - vE) | ~kdnv , C s
Fp/1-12) = @(ap) = C T [1- E%(oi' - %fdv —\/1_2 R€™"C0Y + S D(dgv)
o -V
where
+1
dD d
Ep(x) = < (x) = —<x df fp(x,u ) !
2 2 dx dx v
+1 _ +1
= T (xp") du' + x = fo(xp') ap’
P x ¥
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fp(x,u') is the originally chosen partial solution fp(p,p), in which one has re-
placed p by x and p by p' (a variable of integration here). Hence the solution
f(s)(pzu) of the Boltzmann equation for monoenergetic neutron transport with iso-
tropic scattering and absorption or multiplication in an infinite medium in

spherical geometry, which is singular at the origin, is the sum of a partial solu-

tion fp(p,p) of the inhomogeneous partial differential equation (6) and of the

solution fH(p,u) of the homogeneous equation (8) containing the '‘Sonine transform"

¢(le - pg) given by equation (16) or (18) or (19), which corresponds to the

chosen partial solution fp:

208X (o) = z(pu) + 0 gL - B). (20)

The choice of the original partial solution fp(p,p) is restricted by the requirement
that 1)
. +1
c lim
=D (0) = T d
© py(0) Vﬂh“gw>ﬂ
-1
c 1 1
is finite, and 2) = D '(dov) diverges at v = 1 at most as ——— with o < =

and has no pole in the remaining interval 0 < v < 1 to guarantee the convergence
of the integral in equation (19).

It is sometimes convenient to split the term e HP ¢(le - “2) into its
two parts: the first, which is produced by the Sonine transformation from the

originally chosen partial solution fp(p,p)

52

-2 02(1-p2)  cod\p(1-u°) - ¢ 4

) = -Le—up{ED(o) cos(AVL- ) | ds —
AL - ue 4 p?(1-42) - s ds

~/ 2

1 cos d cos(dW1l -

:-—e“p{po(o)———O+fdv VL - ) 2y,
0

CEAYD)

— = Dyagn)( (21)
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and the second, which is produced by the Sonine transformation of the required

density Le-rp

o
2(1-u5)
N NP .

e M0 (/T - 1B) = Lgrhe cos(dVL - pf) | g5 SONOTAT) -8 4 enlE

™ Y1 - p2 A Vo (1-u2) - s ds

-Lp jcos cos - _
= = gHe __E_K/ v oVl - v7) o -kdgv (22)
T d‘O 0 Vl - VE

With this notation the singular solution may be written
050 (p,u) = fleom) + 8o(,) + € M R - uB). (23)

Ce The effect of the Sonine-transformation upon solutions of the homogeneous

partial differential equation (8). Uniqueness of the solution. If one has taken

fortunately that solution F(S)(p,u) of the inhomogeneocus partial differential
equation (6) which gives the required density, no need of an application of the
Sonine transformation would arise at all. Every other partial solution fp(p,u)

of the inhomogeneous equation will differ from F(S)(p,u) by a solution

frlosn) = e ™y (a1 - ue) (7a)

of the homogeneous equation (8). It will be shown, theorem I, that the Sonine

transform of such a function is just the opposite of itself

Solfy) = - Ty (ek)

Proof. The Sonine transformation applied to fy in the form of equation (16) con-

tains the double integral

u +1
- - i Q;. < coNu - s -1 _uxvg 1o 75y .
Fe\2) Wdu{d———____u_s V’le v(We(1-n ) an
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in which the expression in curly brackets replaces the corresponding expression: in
equation (16) and ¢H indicates that ¢H is the transform of fy alone. The Sonine

transform of fp will be

so(fr) = e ' gutvu) (25)

where u = p°(1-p2). To evaluate @y(7u) one changes first the interval of inte-

gration over p' in 0 £ u' £ 1; this yields for Ty of equation (7a)

u) = - 2 4 4- s cos s(1 - u< n,
Fut) Wduo 2B \/‘f n(uVE) yiVe(T - p2) au

One introduces a new variable of integration t = s(l-u'g), u'JE = s - t,
dp' = - at/(evs(s-t)) with the new limits t = s forp’ = Oandt = O for
' = 1. Then the integral becomes

¢HQ/E) _ E i_ ds cos\yu - 8 T{% coshys - t'WO/—) at
T du 3 Vu-s ‘/g 5 Vs -

dt W‘Vﬁb M oeodVu - & cosAVs - t ds
A wu - s Ve - t

]

du

1l

"\lf(\/l:) = '\V(&l 'p'e)

remembering that the last integral over s is 1 by equation (14). After inserticn

of this result into equation (25) one obtains the Sonine transform of fy

So(fy) = - € M y(V1 - pe) = - rgle,u),

which is in fact the opposite of fy(p,u) itself.

This theorem provides the uniqueness of the solution of the Boltzmann equa-

tion, if a definite density is given. Two different partial solutions, fp (o, 1)
1

and fpg(p,u) of the inhomogeneous differential equation (6), differ one from
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another just by a solution fH(p,u) of the homogeneous equation. Hence, if one
writes down that part of the total solution (23) of the Boltzmann egquation which

depends on the choice of the original partial solution fp, namely,
folost) + Sol(2),

one recognizes that it is independent of this choice: If fp2<p’“) = fpl(p,u) +

fH(p,u) is a second partial solution, the expression

fpz(p:}i) + So(fpg) = fpl(p)“) + fH(Q)F-’-) + So(fpl) + So<fH)

o (oru) + So(fpl)

will be unchanged since So(fg) - fg. Hence the solution f(s)(p,u) is unique.
If F(S)(p,p), which yields fortunately the right density, contains already

a term fg, which satisfies the homogeneous differential egquation (8), in addition

to another term, Fés)(p,u), which satisfies the inhomogeneous eguation (6)

?(5)(pu) = FLE)(ou) + £ (26)

one may apply the Sonine procedure to find fHO. One considers to this aim
F(S)(p,u) as a partial solution fp and applies the Sonine procedure to obtain the

total solution

#(8)(o,u) = F(E)(p,u) + 5o(8(8)) + € P R(PVL - 1)

F(e)(p,) + g, + So(FY™)) + Soleyy) + € MO (A1 - 1P
which is by equation (24)

Fés)(p,u) + SO(FéS)) + €7PP R(V1 - ).
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Because F(S)(p,p) of equation (26) is in this case already the right solution, we

have f(s)(p,p) = F(S)(p,p), and by comparison with equation (26)

Py, = sO(FéS)) + e HP R(p/T - uo).

If fgy would be zero fortunately, one obtains the relation

e THPR(eJL - 1B) = - (S))

D. ©Statement about the density. The method of obtaining this solution does

not contain any requirement to satisfy a characteristic equation. This fact must have

the consequence that the density of this part of the solution f<s)(p,p), which

contains c¢ as a factor, vanishes, whereas the remaining part gives the whole den-

sity. The partial solution fp(p,u) of the inhomogeneous equation (6) is propor-

tional to ¢ and the guantities % Dp(O) and £ DP(VE), depending on f, by the Sonine
2

iy

transformation, also contain c¢ as a factor. Hence one has Theorem II: the re-

maining part R(VL - p2) of G(AV1 - u) in the form of equation (22)

c - 2) cos 2(1— 2) - 8 a
oy - b R 3 A0, AT s (2 )
R W]O Vo) s \as ©

should give the whole density P(S)(p) of the total singular solution f(s)(p,p),

il.e.,

+1
f e~HP R(PVL - 1?) du

+ 2(1-p?) )
2[ au cosh pol S2S(AVL - 1) f 4s SOOVER(1-p8) - s ( a g S)
i 3 — €
© VL - w2 0 p2(1-p°) - s  ds

should be equal to
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+

S)(O f f(s) (pyp) dp = e—mp.

/1 p

Proof. (a) The first term of the integral yields the singularity of the density

at the center

2
1 P+t
2[ cos(pVL - u?2) - 5. 1 coshys - t codlu - s

du cosh pp

0 YL - ue 2 Ve -t MNu - s

E/u cod\lu - s cosh\s - tds _ E
Py 7?\/u-s \/s—t P

after transformation of the variable of integration p into a new varlable s by

b= L \fe - t, du = L ds with the introduction of the notation
P 20 /s - t
u = s+ p°(1-u2) = p2 + t and use of equation (1L).

(b) The second term of the integral gives the nonsingular part of the
density. One introduces u = pg(l—ue) as a new variable of integration instead
of u, then one has p = L p2 -u du = - l—— L and the limits of inte-

P 20 V2 - 4
gration over p will be
u=p2forp=0andu=0foru=l.

Hence it follows that

1 02(1-p?) V- TE e —
2] dp cosh up ds <98 o= (1-p ) 5 (d_ e r S)
0 o Mp2(1-p2) - s \as

1 coshyp u cosfu - s /d -K\/s
-l 'V gs SoNVu - s (e )
D]O u 77\/1: ds

2

p
1._[ ds -K{‘)f COSth - u cosVu - s
0

p -u u - 8
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with the same exchange of the order of integration which was applied to the
double integral (13). The last integral over u from s to p2 is equal to 1 accord-

ing to equation (14). Therefore the integration over ds yields

=02
_ 1 e—m’s‘ s=p= _ 1 (e—np_l )
P P

8=0

This is indeed non-singular at the origin. If one adds now the two contributions
(a) and (b) one obtains the total contribution of the R(pVL - ug)—part of ¢(p 1- ug)

to the density

+

1
f e ™MP R(gj1 - p?) au = e (27)
1

P

This is in fact the whole density P(s)(p) belonging to the singular solution
f(s)(p,u). If one remembers the representation (23) of f(s)(p,p), one recognizes

that the density belonging to

fp(pJU) + So(fp)

must vanish. The following Theorem IIT will be proved: +the density which belongs

to a partial solution fD(p,u) of the inhomogeneous differential equation is the

opposite of the density which belongs to its Sonine transform

+1 +1
o) a = - [ so(ey) a.
=1 ‘ -1

Proof. Consider the second integral using the form (17) of the Sonine transform

+1 +1 u
1 -up @ -
] So(2p) au = = ;f w e upa_f as 2V 2 p (y8)
_l —l U O HU. - 8

and remember that u = p2(1-pu2), pu = Vp2 - uw, du = - du/(2A/p° - u) and that

u = p2 forpy = 0, u = O forp = 1. Then the integral becomes




D (VE) ds

and by partial integration in the interior of the second integral

5=U

_ é COSh“’ -~ 2 %[snﬂ/t—l———:D 9] [“ a smm(_p %)

l [¢]

- u =0 0

I o8

h\/2 - u {cos
o8 p \J_ p / ds simu - s—-D (+5)
- u 2\/— o

o‘\

2
P cosh\fp2 - u cosYu

du

C
2p 0 \/pg - u ™I

il
|
L]
—~
(@]
~

+
I

2
c COS\/Q—U. im . ucsu—s
[ =S fin e 52008 - | R (5 20 2o

The integral in the first term is 1 according to equation (14); the limit
of the square brackets expression in the second term is supposed to be zero along

the interval 0= u= pg. Then the integral becomes

[¢]

c D.(0) + p° a cosh\/p2 - u M codVu - (\/-> de
2p 2pJg Vo2 - u o T™u-s dS

e c 02 l: ] coshV cod\fu - s
as |— D, /
0

du.

(0) + —
P ' —u 7TVu—s

2p 2p

The last integral over u is 1 again, and the whole expression becomes
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which is according to the definition (10) of Dp(p)

+1

= £.(pp) du d.e.d.
-1

Theorem III is a counterpart to Theorem II and provides an independent check of
the statement about the density.

F. General solution of the partial differential equation (6). The general

golution of the inhomogeneous partial differential equation

£ 1-p2 of c -kp
i %_ I Nl §_ + flp,u) = = e

ép P éu 2 o

will be derived by the well-known method of Cauchy: the equivalent system of

differential equations is

dp dp af
M Lopm - —f+Ee—Kp.

From the first equation one obtains PVl - p2 C1 (a constant). This equation

may be used to eliminate p from the second equation, which goes over into a linear

differential equation of first order

ar cq c e'ﬂcl/\fi - u?

f
i (l'HE)B/Q e 1 -2

Its solution is

Cqn c M (v-k) Cqy av - Ciko
f = exp(- —————f:) —:/’ exp . + Cp exp |——/———
V1 - p2’ |2 1 -ve ] 1-+° Vl-ug

Cos Bps My are constants.
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Replacing Cl now by le - ug one obtains for the constant C,

o -u AL - 2 up c M (v-x) le - ul av
p = exp|————| [P ¢ exp .
V1 - v2 1 - v2

Vi - ug 2
The general solution of the partial differential equation is given by

ol

cp = W(Cq)

with an arbitrary function W. This yields

“ 2 o4 2
- I V1 - (v-k) V1 - p dv
f(p,u) = e Hp w<p 1 - ug) exp M) + Sf exp ‘p .
Vi - MS Vi - v@ 1 - ve

The first term in the curly bracket with inclusion of the exp-factor 1s still an

arbitrary function of AVl - u?; so we denote the whole term by ¢(PV1 - u2). Hence

the general solution of equation (6) is

V=K -l v
£(o,u) = e'“p{¢(pw/l_u2)+0fu op | (7R) AL - W)@ }

2 1 - 9P 1-v°
My

One may transform the partial solution, which occurs in it, namely:

i —
£ (on) = = g™HP [ exp (ve) BV - 12 v
LA 2 Vi-v@ ) 1.4

Ll

into a more convenient form, putting

. (1+u) 52 - (1-p) \/ T Lrv
v o= or s = 5

(1+p) 82 + (1-p) 1+p 1-v

v IS V=K - 2
: a ov-e) V1 - w2 B[u-K)(m) s - (1) (1o0)

= and
1l - v2 s V1 - v2 2

w -
[ SR
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With this transformation of the variable of integration the partial solution takes

the form

1
: oo B[R ) o - ) 3] a5 (g
T T S
I+ 1-pq

fp(o,u) = f(pl)(p,u)

Different partial solutions can be chosen by giving My different values. My is

an arbitrary constant; one can prove, however, that up could also be an arbitrary

function of V1 - “2.

F. Specific partial solutions.

1. Let us consider first a partial solution, for which the density can be
calculated easily. One obtains it putting By = -1 in equation (28). It will
turn out that this partial solution contains a term log p, which actually will not
occur in the total solution. In fact, this term appears in the combination
Vi - uB; hence it is reproduced by the Sonine procedure with the opposite sign
and cancels out of the total solution f(s)(p,u). We have no logarithmic singularity
at the center of the sphere. But the analysis is simpler for this partial solution
than for any other choice and the efficlency of the Theorem I can be shown easily
also.

(a) Taking uy = - 1 one obtains the partial solution of equation (6)

1

e'”pj eg[(l—m)(lﬂl) s - (L+x)(1-p) !-s_] ds . (29)
0

frylep) = %

s
It is well known that an integral of this type is related to a series of Bessel-
functions. The development of the integrand in such a series would be invalid at
the lower limit s = O of the integral. Therefore one splits the path of inte-

gration in two parts. The first part froms = O to s = P with



B = (30)

can be integrated as it stands:

p
c -k B[ . ; i, i}
e / p 2l(1-6) (1) 5 - (146)(1-p) 3| s
0 ]
1
. _ he,_ L
. =%e“pfe'g‘(w ¥ av with s = Bw
o W
- ©
i
! - - i -
= S egHP ehsmhtdt withw = ¢°°
2
0]
¢
= = o MHpP
= e Soo(h).
h = o (l-ne)(l-pe) is an abbreviation, Soo(h) is the notation for a Lommelfunction

defined in "Higher Transcendental Functions”, ()

In the second part of the integral one develops the integrand in a series

(5),

of Besselfunctions and integrates term by term:

1

1
_g_ e-up[ . -g-[(l—m)(lﬂj.) s - (1+k)(1-p) 5] :_S
B
. L
) % e-upjﬁe%(w-%) dw
- l w
c e édw 5 (—l)n
T2 ¢ ] v Joln) + nz-ll To(B) |3+ wh

1

(F)a. Erdelyi, W. Magnus, F. Oberhettinger, F, G. Tricomi, "Higher Transcendental
Functions", II, p..40 formula (25), and p. 84 formula (50), New York (1953%).

(5)Ibia, p. 7 formula (25).
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W=
oo n =
- & _,-dp 1 n (-1)
= Ze Jo(h) log w + nzi = J(h) |w = .
<o oo J (h)
:E MR YL g (n) 1 ZiJh L__n_gz_%li_.
X o) tog B+ & Za(n) |- (B)7 -2 2 EEE

According to page 64, formula (7) of "Higher Transcendental Functions", I

last series represents another Lommelfunction

’ 3? Jon+1(h)

S h) =
OO( ) n=0 on + 1

and the difference of both Lommelfunctions

Soo(h) - spo(n) = - g Yo(n)

is just (- g) times the Besselfunction of second kind Yq(h) [called No(h) by
Jahnke-Emde(6)]. By this remark one gets rid of the Lommelfunctions in the repre-

sentation of the partial solution which will be

A % e ™HP { gmh) - Jo(h) log B + nifl % Jn(h)[é‘-ﬁ - (-B)n} (31)

with h = QV(l'KE)(l-ME) and g =‘\/FL_KL .
1l +p 1 -x

(b) We calculate now the density P(_l)(p) which belongs to this partial

solution

- . top ) s - (1+6)(1-p) =
P1y(e) = /l £y (o) @ - EJ due-upjeg[(l-n)(l B) s - (1) (1ou) S]%E.
- -1 0

<65Jahm«:e-Emde, "Tafeln hoeherer Funktionen', 5th edition, p. 131 (1952).
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After an exchange of the order of integration one performs first the integration

over p; this yields

1

~(1-6)p(1-5) ~(1+6) ke S
Py(p) = = e-mpf 0 i - 1) - (e - 1)
P

0

(1-5) [1 £k - (1ex) s]

On replaces in the first part of the integrand the variable of integration s by

s = (A-e) o - x , in the second part by s = _ () o . Then one obtains
(1-r) o (1+k) p + x
fod
P(_l)(p) = -C eg7kP j .._e_:_x___l ax
+ X
P (l-K)p 2K 5 ble
@ x oo x (1+x)p
:-i-erfdxe -e_Kpfdxe +e'Kp[ dx
2k0 X b's X
(1+s)p (12k)p (1-x)p
(32)
= = e"P E,( [l+n] p) - e P E( [l—n] p) + € "FP 1og 1+ k<1l
2rp 1-x
where E{(x) is defined by (see reference (4), page 143)
©
~u _ o }C'I’Il
El(x) = J[ € _du = - [* + log x] + e * 3 ‘Em,__ . (33)
u =l !
X

The expression P<_l)(p) shows that the chosen partial solution f( _l>(p,u) does

e P

not give the desired density on account of the added two terms which contain

o)
the "exponential-integral'. If both these terms would be absent, the third term

would give the desired result under the assumption of the characteristic equation
for the discrete spectrum

c 1l + &

2K 1 -k
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{¢) We shall apply now the Sonine transformation. We show first that

D(_l)(O) = 0, using the series (33) for Ey(x):
. . o 5 @ hm(lﬂc)m o
S D-)(P) = e Pryle) = g{[-]- log((lﬂ)o)}e re mgl -
R h (1-k)® o0
i ko _ oo . 3 m T O
+[J} + Llog([1-d p)Je e 2o
+ e P log—————l ks K}
1 -r
o 1 1 m _ 1- m m
= = —E[JH log p + log(l-m)] sinh kp +&7P 2 m[( ud (%) J 0 .
2K m=1 m!
This expression vanished for p—~ O: D(_l)(o) = 0.

Furthermore, one needs the derivative of D(_l)(p) in the Sonine transform

(19)
. D(' l)(p) = Z{e"E ([1+k]p) + e P B ([1-x]p) -e P 10g — }
2 AT 2 1 1 L
- % -2 [(YJ“ Log(l+k) p] cosh kp + € -pmgl hm[(l+K) + (1-k) ] .

m.

c
D(' _l)(dov) is regular in the interval O = v = 1 and the series development shows

no|

that it diverges like -c log v for v = 0. The Sonine transformation allows, how-

ever, a much stronger divergence like %755 with ¢ <= 1. This ensures the convergence

of the integral and one obtainsg from equation (19)

1
Solf(.1)) = - = e _Hpj gy C08(dQVL - vB) | rdov

o Eq ( [1+4] dgv)

e
0 Vi - 2 (31)

+e TR0V l:El( L-d agv) - log 1t

1 -
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with do = oVl - ug = p sin'!g“.

Hence the total solution f(s>(p,u) of the Boltzmann equation (1), which is

+1 -Kp
singular at ? = 0O and has the density] f(S)(p,u) du = € , may be repre-
p
-1
sented by
(&) (o) = £y (en) + Sp(f( 1)) + P R(JL - 1)

3
il

%e-uo - ;—TYO(h) - Jo(h) log B + n§1 -rl; Tn(h) [é—ﬁ - (_B)nJ

1
X cos(dgyl - s2) kdos
ds — = {e By ( [L+] aos)
0 - 5

+ e _KdOS[El( [l-n] dos) - log Lt K]
1 -k

1
1 _-up [ cos dg cos(dgV1 - s2) ks
+ ze — - K = ¢ O ds (35)
do V- s
0
with do = pVl - uE (distance of the neutron ray from the origin)

ho= Af1-u")(1-k2) = gV - «Z.

1 - 1+ k
p = =

1+ 1l -«
/K‘./< 1.

N This is the desired solution; one sees, however, that in the originally

chosen partial solution f( _l)(p,p) the terms

1l +x
- —Ya(h) - Jo(n log\ /4 &
2 0 O) gl—K

are functions of the variables V1 - ug alone and satisfy the homogeneous partial

differential equation (8). They are of the type fg. Hence the Sonine transform
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will contain these terms with the negative sign. They are superfluous in principle,
but by removing them one obtains a rather lengthy expression into the Sonine
transform. We shall be contented here with the removal of the log p-term which

is easily recognized in the Sonine transform. Using the series development of

Y5(h)
h = (-0 hyem
_T-EEYO(h) = - (p+log3) Jo(h)+m§lm—)_§?-m <_2_>
withhm=l+%+%+ +% m=1

and f = llm " (hp-log m) = 0.577216 ...

one finds

- gYo(h) - Jo(h) log\ /li J: : = - D} + log dg + log(l+k) - log QJ Jo(h)

+m:Z°l 1)7?2 <>

With Bessel's integral( 7)

Jolh) = cosh kdgs (36)

1
2j 5 cos(dgVL - s2)
- s
Tr o _vi - 52

this expression may be written

- — Yo(n) - Jo(n) 1og\ /-;5—-’:—:

2]1(1 cos(aV1 - &°)
= = s
" 0 Vi - &

[— J - log dg - log(l+k) + log 2] cosh kdys

co (_1\m 2m
> (17 By E) (37)
m=1 (m.')2 2

(7)(} N. Watson, "A Treatise on the Theory of Bessel Functions', . 21 equation (l,
Cambridge University Press (1948).
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Furthermore, using the series development

in the Sonine transform, one finds

ljl 5 cos(dgVl - s2)

8
WO Vl—82

s cos(dV1 - s@)
ds [ + log dn + 1
j V1 - 82 (j) 0

1 _ (%Y
-= e 98 3
e m=1

The log p-part is contained in log do in b
sign. The log p-terms are omitted at all

the corresponding part of the solution

(33) of Eq(x) to express the E;-functions

:
|
i
)
{
]
|
]
)
)

{EKdOS El([lﬂc] difos) + e~rdoS [El( EL—K] dgs) - log l_f_'“j’%

1l -«

og(l+m) + log a cosh rdps

[ (L) + (1-0)7] o o } (56)

m!

oth expressions but with the opposite

from the total solution, if one writes

(s) C _-up T 1+«
£A7/( = =—e - —Ya(n) - Jn(h) 108
1 (oy1) - > Yo 0 1.
lj cos(do\/l —:2 s
- =] ds 0% B, ( [k ] dps
3| T (€% B D] doe)
f + e ~kdps [El( [l—m_] dos) - log L+r KB
i 1l -x
m 2]
_oe e L e B
2 m=1 (1)@ 5
5 1 cos(aVii- s°) ( o6) .
+ }jo’ ds '\/I__——_é log 2s5) cosh & 08
(39)
1 5 oo m m| ;m m
1 cos(dVl - 5%) _g.s h, (1+6)™ + (1-x) dy s
- = ds 0 e (0] Z
m ‘\/l - 52 m=1 m!
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(s

The removal of superfluous terms occuring in f1 >(p,u) is not complete because the

first term of the three terms above will be contained in the other two terms with

(s)
I

total solution for k < 1 may be represented

the opposite sign. But £ /(p,u) contains now only positive powers of p. The

f(s)(o,u) = f§s)(o,u) + fg)(o,u) + @ P R(gh - 1) (%0)

with f(s)(p,u) in the form (39) and with

I
£{&)(o,u) - Le '“p{JO<h> og /it ) foongyi) (b2)

and finally

e P R(gh - pB) = Lewe {——QCOS 0 f cos(agt - <) e "90® g } (L2)
0

u dy VL - s°

The notations do, h, B have the meaning:

_ _‘[—‘2‘ ~ 2 Cl-p L+ ) : (s)
= OVl -, b o= 4Vl -5, B = 5 . TR The singularity of £'°/(p,u)
at the center of the sphere p = 0 is given by

1 cos dy cos(le - ug)

yia do ) T ﬁVl - HE

No other singular term does occur with importance at p = O.

2. There exists a way to find another partial solution which does not have
a log p-term. One obtains it by insertion of x for Hy into the lower limit of the

integral (28). It is for |k] <1

2
s

1
foyom) = e'upfeg[(l—m)(lﬂx) s - (146)(10) 3] as (298)
B

- -g- e““p{ J,(h) log B + Zi Iy(h) h) [Bn (-6)n] - soo(h)} i
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This solution does not contain a log p-term from the outset because the Lommel-
function SOO(Z), which is proportional [for the indices (0,0)} to the Weber func-
tionEEo(z) - see reference (4) page 42 formula (83), page 40 formula (70), and

page 36 formula (37):

zZ

soolz) = - LB = T [YO<Z)I Jolz) dz - JO(Z)f Yo(z) dz}
0

2 2
“0
_ll’lZEn+l
oy (D)
n=0 [1- 3.5. ... (2n+1ﬂ e
is a power series around z = 0. The log p-term in the partial solution f(_l)(p,u)
under 1(a) was caused just by the lower limit s = O of the integral (29). The

disadvantage of the partial solution f(K)(p,u) on the other hand is that the den-
sity i1s not more easily calculable. Furthermore, it also contains superfluous

terms which depend on oVl - ue only, namely,

1+
- Jo(h) 1og n 5 - s5p0(h).
- R

These would be reproduced with the opposite sign by the Sonine transformation. Of

course, if this partial solutlon would give the desired density fortunately, one
would not have to apply the Sonine transformation at all. It remains a problem to
be solved which selection of the lower limit 41 yilelds the desired density without

the application of the Sonine transformation.

3. Applying the Sonine transformation, it seems reasonable to relate the
partial solution not more to the integral (28) and a special choice of My, but to

take Just the function

NETRRI g B log\/_ll___-__—:i_ﬁ ., a [;_n : <_a>n] (1)
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for the original partial s;lution. The other terms of f(s)(p,u) in equation (L40)
are solutions of the homogeneous partial differential equation because they have
the form fH(p,u) of equation (7). Hence fgﬁ)(p,p) is indeed a partial solution
of the inhomogeneous differential equation (6). An advantage of this solution is

that 1ts region of validity can be extended to the whole complex k-plane.

As a check, which is independent of all calculations done before, one may

verifly that fgi)(p,u) is a solution of equation (6). For this check remember

- L +k
no= AV(1-p2)(1-x2), B = B2t
1l+up 1-xk
L+ L
3b _ b 3 _ _ ph B _ B dlogyrtt 1
- ) - - J - - 2 -
d o du 1-pl W 1 -8 du 1- 2
Then the derivatives involved in the equation will be ( gL
h
(s)
of h | % J,(n)
I - . uféi) + 2 el 1og\—l + “) olh) + Z — - (-p)"
Bp 2 o) 1 - n=1
»2(s) — %
T c - wh 1 Jdnlh
= - pfg) = @He (- Log\=~ “)Jo(h) e 3 BT gy
du 2 1 - P 1-p n=1 pn

Insertion of these expressions into the left hand side of equation (6) yields

Bf&%) 1 - u° 3f§§) Q
(s) _ 2 2 (s)
3 + e " + fII = (jru -1+ +AI) fII
_ 2
L2 e-uo{@Jrl a (- hh )} [f!
2 P p 1- 2
S— -
0
-up oo
¢ & 1 n|
el ORI (an Sk (h>J




The last term should be equal to % i) . Hence it remains to show that
1 n -K
30+ L S ()7 ) - eliee (43)
n=1

X_
Verification: Put x = l-ky, y = p-k and consequently B :\/;:§ and h = p ng—ye.

Then the left hand side of the equation will take the form

n/e n/o
ACEd S RS o aF (p\/??)
n=1 X n
o () 2 o n/2 n/2 (—1)15(8)“22 »
- - £ 2\ 4 Xty n|X=Y X2—2
= g?o (E1>2 (2) (X -y ) nz‘l[x—y (' ) (x+y) ;' 2l(£+n).’ ( A ) .
£=0

ool Fﬁ[ n+f 2
2 n+ 24 1 X X %
n,%zo )(n+22)1 ( 4 ) (1—2 A;lo) [(l ’ Y) (l 3’) ¥ (l y

o

change of the indices of summation to S=n + 24, n =S - 24 ylelds

2]

E s ZOk-ahdl

1l

2 for S even

for S odd

S
The factor 1 - % J\S Y ensures that the term £ = 5 occurs only for even S and
2

only half as often as the other process; so the sum over § is Jjust a binominal

series



s s S-2
= % <—EL) L % (S) 1+ E) (
s=0 S! B p=0 14 y
(o) ey elp-k)
= % —g¥¥- =2 =8 q. €.4.
s=0 5!

To recognize that this partial solution is generally valid in the whole complex

k-plane one may transform the series, contained in it, into an integral by ap-

(8)

plication of the formula

Zn
I (2) = —=
1 2 - 1)
It yields
In(n !
@ nln) [é-a - (-8)"
n=1 -

1

1
n-1

f Jo(zt) (1 - £°)  at. ()

0

n-1

_ hi [;L-I; - ()] J 3, (mt) #(1 - £9)  at

n-
n=1 2 ni 4 70

1 tdt Jo(ht)
0
h
1 tat 3, (nt) 25 (1-t9)
=2 —_
J 1 - t° €
0

(8)

1 J[n N hp n
2,[ 1 - 2 n§1 n! [g(l-t)] _[-—2(1-1;9)]

I
—
|
<
=
B
]
g
Q)
B/
<
l
g
1
ol
—

G. Petiau, 'Ta Théorie des Fonctions de Bessel, Paris 1955, p. 21, formula (115).
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1 o P(1-k)(1+u)v -g(l+w)(l-u)v

= j = Jo(h 1-v) 62 -e
0

h
remembering g = o(1-k)(1+p) and BB = p(l+k){(1l-p). The - sign between the ex-
ponentials ensures the convergence of the integral at v = 0; this integral is
convergent in the whole complex k-plane. Inserting it into equation (41), the

(s)

partial solution fyp (p,u) becomes

(s) c _ -up 1
o (eu) =z e To(B) Log\[To

1 Lig(l—x)(l+u)v -g(l+n)(l-u)V}

+f & g (aVi-v) - . (u5)
0
The densiby which belongs to this partial solution
+1
p(s) = £(s) dp = P + P L6
H@>flnmmuam () (46)

consists of the following two terms:

+1
() 2l =% [ ey 0B /Tha (47)

-1

1-p

1 _—
= -2 . % -Jr (sinh pp)JO <p V(l—ue)(l—m2)> log = du.
0]

2

The last expression shows that Pa(p) depends on k= and is negative for positive p.

One may represent the log-term by
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and one obtains from the first equation

o) +1
Pa(p) Sy f g%e-v f au [e—u(ow) ) e-u(p-v)] Jo<p1/(l_K2)(l_u2))
0 -1

The application of an aild formula to the second integration

+1 .o/ 42 2y .2

~ut g TPV (1o08) dy = p SinbV® -(1-%%)p L8
[e (e V(1-6%)(1-p2) ap = 2 VAT (48)
21

with t = p + v respectively t = p - v, yields

(%9)

@
Pa(p) = - % dv eV sinh Vv2+2pv+m202 _ sinh VV2-20V+K2p2
M w/V2+QD’V + kep2 VVE-20V+K2p2

The integrand vanishes at the upper limit v = oo proportional to Lg and the

v
expression in the curly brackets contains a factor v, which counterbalances the
corresponding factor v in the denominator of the integrand. The integral exists

for all values of k and p.

Proof of the aid formula (48):

+1
1= [ sV () a
21 ‘

20 Lﬂ_ﬁ_(E)gz (1-x2)* Jl n2n(1-2) fay

1
2~[~cosh ut Jo(p V(1-52)(1-p2) du
0
3
2
( ¥ 2
n, £=0 en)e (41)

2
0




1 , . 1
+ 2 .
With j W12 ap = £ Mo +2) 2! 1&5
0 2 Rn + 4 + '2')

22£+l(2n—l)l(n+£)l 2

(n-1)!(2n+24+1) !

the integral I will become

@ 2 2 , .en 28
Too v (1)7(1-k2)"(ne8)l £
n, £=0 n! fi1(en+ep+l)!

and & change of the indices of summation to S = n + £ and £ yields

S) (-1)%(1-x2)*

P 24
t

o8
- %o ﬁ_ [1 - (1-k29) 8)2} ® — %O 2 (l—ng)og]
§=0 (284+1)! E §=0 (25+1)!

5 sinh“/cc2 - (1-%%) g2

g.e.d.
Y42 - (1-62)0°

For t = p we have simply

+1 :
J[ éa_upJo (pWJ(l-KE)(l-HQ)) du = o sinh kp
-1

Kp

The first part Pa(p) of the densgity may be represented by some power series

of

(482)
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P(o) = -pep & (DI (eponi) s (prmemna)s 20 (50)
& L,myn=0  (2£+1) !m!(4+n) ! (20+om+en+5) ! on+l
or
n-1
(o] [TJ n—2j-—2 nl(gn oy t 2j .
. ' H(en-23-2m-L) ! 2 om - 2( 5+
=-bep2l X L (o) Hm-2j-m-2) o mmr © P (3om),

n=0 j=0 m=0

which show that Pa(p) is proportional p for small p and vanishes at p = 0. There-
fore, the corresponding expression % D (p) = pPa(p) is proportional p° for small p.
This stronger kind of going to zero at p = 0 is a benefit of taking a partial solu-
tion, in which the variable 5 of integration - compare equations (29&, 29) - does
not meet the essential singularity of the integrand at € = 0.

(b) The second part of the density is

+1

au e M

S(1e) (1op)v  -B(140) (1 >v]
o) -3 o g, [ [E 0 F O]

o\

-1

If one changes the order of integration, one may apply the aid formula (48) in-
serting pV1-v for p and p(l - Eéi v) respectively p(1l - l%ﬁ v) for t. This

yields

1

P. -K)v -
P (p) =< f av eg(l A (o\/(l [F92 - (1-)(1-v)
R I = Y
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_e—g(lﬂc)v sinh (p\/(l - %ﬁ v)e - (l—mg)(l—v)')

Vi - BT () (1) |

1
c -kp av JePf [2K+(1'K)VJ_ 1 P [EK—(lfl‘-K)VJ o1
= E e _—KF -
o ok+(1-k)v 2x-{1+k)v
(1-¢)po (1+¢)p (1=x)o
c +Kp ( (cosh u)-1 (cosh u)-1 sinh u
= e f du — j d + U
2K0 u u u
AN 0 0 0
(l+m)p
: a sinh u
[ G
e
(1+x)p '(l—w)p
_e kP /’ ay Leosh u)-1 /’ gy {cosh u)-1
u u
26p 2Kkp
(1+x)p -(1-x)p
+ f qy Sinh u _ [ a sinh u
u u
2Kkp 26p

= E%B Eg“p {éhi(l+m)p + Shi(l-k)p - [5£E(l+n)p - 5£1<l-ﬂ)p{}

_ e*“‘p {Shi(l—l—m)p + Shi(l-k)p + {C/Ei(lﬂc)p - évﬁ(l—m)p]}]

_ %{smh ¢p [Snt(1ax)p + 811(1-k)p] - cosh p [GHi(1rdp - @iﬂ-“p]}: (52)
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2 sinh t© ® x2n+l
in which Shi x = T dat = —_—
o neo (2n+1)(2n+l)!
X
o0 2n
and Chi x = (cosh 6)-1 g = 3 — .
o + =0 2n.(2n) .

Using once more the integral representations for Shi x and Chi x one obtains

Shi(l+k)p + Shi(l-k)p

i

P
Ef(sinh U.)COSh(KZU.) du and
u
0

évfl;i.(lﬂﬁ)p - Cﬁ(l—u)p

p
2] (sinh u)sinh(nu) du,
u

0

If one inserts these expressions into the last version (52) of Py(p) one gets

a short integral representation

&

Pb(p) = 2¢ f d_u.(sinh u)sinh(m[p— ]) (53)
0

KO u

This integral is proportional p for small p and & Dy(p) = p P (p) is proportional

1o Ke)

0. One obtains altogether

02 similar to % D.(p). Hence certainly % D, (0)

2 0(8)(0) = 21m [o 5] = & [p,(0) + 2,(0)]- o. (5)
and
% Dgi)(p) = p Péi)(p) =

+

(o]
[2 22 L. 2
-¢c oo f du o-u sinh\fu +2putk p _ sinh Yu —2pu+K2p2
2 u
0 V u2+2 pu+|<2p2 Vug- 2pu+m202



Hence the Sonine transform (21) is

(28)y o _e e L - cos(agh-v) (S>{ ) )
s (£ =-% ¢ = —_———D d v)dv (56
0" II 2 T J[ ‘/l_vg' II "0

0
with dy = o 1-u2. One has to derive Déi)(p) in respect to p and to insert
dov instead of p in the derivative before inserting it into the integrand of

the last integral.

The total solution, singular at the centre p = 0, 1is now

f(s)(p,u) = f.fusz)(p,u) + 8, (f%i )+ o ™P R(p\/1-p2)

with f&i)(p,p) from equation (41) in the form of a series of Bessel functions
or from equation (45) in an integral representation. Then one has to add the
Sonine transform So(f§§>) from equation (56), which is of course a function of
do = oV1-y2. The last terms @7HP R(BJI:JE), which is caused by the desired

density, remains untouched by the choice of the original partial solution;

according to equation (22) it carries the important singularity at the centre

of the sphere € ~MP R(QV1-u2)

1
o -Hp cos(V1-pf) [ cos(dV1-p2)(1-5°) oEAV1-p%s 4o
2 152

1
T
pVl-p
0
This amount is given irrespective to the value of the constant ¢ of multiplica-
tion, whereas the other two terms f§;)(p,u) + SO(fgi)) contain ¢ as a factor.
Furthermore, the term e “HP R(le—ug) gives the whole density, whereas the

densities belonging to fgi) and So(f§§)> cancel one another in consequence of
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the theorem III.

No relation between k and c is imposed upon the solution, i.e. no
characteristic equation is necessary for these solutions. They are valid
for ahy value in the complex k-plane.

II. The Solutions which are Regular at the Centre of the Sphere.

A. Regular solutions belonging to the discrete spectrum.

a(p) g—[(l-x)(lw)S - (l+K)(l-u)§]

(o) = 2P e s (58)

s
0

satisfies the differential equation

= -K +HL)a - K - 1
L2 L 1R gt o e ey, da(w )eg[u ) (L)) -(Lee) (1) 2]

% p U 2 p du
(59)
l. If one puts a = 1, then one has %i = 0 and the exponent in the last
")
factor on the right hand side becomes
e {(m)(w) - (l+n)(l-u)]= o)
-6)(1+)8 - (14+x)(1-p) =

2 51 as (60)

Therefore f(p,u;—m) = E-e'up‘/’e
0

no

=

is a partial solution of the differential equation above with the right-hand

side % € . This is our previous result in equation (29).
P

14k d
2. If one puts a = Tk » then one has —%ﬁﬁl = 0 again, but the exponent in

the last factor on the right-hand side becomes

o [(1#e) (1) - (1) (1-0)] = plse).
2
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-k pl(1-r)(14+p)s - (1+k)(1-p)E
Therefore f(p,p;+x) = %;-up f e 2[ ™ ' g Sl% (61)
0

is a partial solution of the differential equation above with the right-hand
kP
side & €__ .
2 p
%. Half the difference of the second and the first integral satisfies there-
fore the differential equation above with the right-hand side
¢ sinh kp (62)
2 o

It is the solution f(-r)(p,u) which is regular at the centre p = 0, in the form

of the following integral, which is valid for [k/ < 1:

)

z [ £(pyusk (p,u,-K)]

o5 1)

=0

) -

148

7 8[(1-r) (115 - (l+w)(l—u)-é—] (63)
1

Whereas the two partial solutions f(p,u;k) and £(p,u;-x) do not satisfy their

compatibility equations, because thelr densities

+1
sk) = ; = & ot ek - O] o 2K
P(p;x) —’f £(p,u;sk)dp = 5es (8 El([l+n]p) e *PE ( [1-x] 0)+€™*Plog T

-1

(6k)

and

+1
P(p;-k) = MJ (pyps-r)dp = —S{eP B ([L+x)p) -€ 7 B ([1-c) o)+ €™"P log i+K
2kp 1 K

-1

+kp Lye)
S respectively to =
Y

it. The terms containing an El—function drop out of its density P(r)(p) =

are not equal to , their difference f(r)(p,p) does

%[P(p;m) - P(p;—ﬁ)] , which becomes
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+1
(T) _ r _lc_ 14k
P (p) = f_l £(7) (o, p)ap _(em log X

sinh xp
&

(66)

The factor in brackets on the right-hand side of this equation must be equal to

1, to give the desired result. This is just the characteristic equation

S log M _ 1.

2K 1-k

Its two roots k = + k_ form the discrete spectrum of the Boltzmann-operator.

0]

Here the Sonine-transformation must not be applied, because f(r)(p,p) is

fortunately that partial solution which also fulfills the equation of compati-

bility, if the validity of the characteristic equation is supposed.

It will be shown later, however, that there exist regular sclutions also,
for every k of the whole complex k-plane.

To proceed in this direction, the regular solution f(r)(p,u) above will
be written in a form, in which the first term gives the whole density

P(r)(p) = 5inh KO whereas the second term gives just the density 0. If one
P

puts again S = tl/&:ﬁ Lth  the equation (63) for f(r)(p,p) will become
1+p L=k

o /1 L4k

1-p 1-8
(r) c p-i %(t - %)
£ (oyp) = &7HP & ¢ .

/l+H 1-r
- 14k

=

with h = o V(1-k2)(1-pe).

(5)
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The expansion of the integrand in a series of Bessel functions and term by

term integration yields

£(r) (o) = S ™0 3 (n) log 15

-k 1-k
o 0 ) [t BT 2
IniB Ltk 2 _ [Ll- 1+ VR [Lep z
' nzi n ﬁl'ﬁ) (EIE } Hija) + (1) EIE)_] ‘ (67)

Using the aid formula (48a) one recognizes that the first-term of the curly

bracket gives already the whole density

+1
+K - c 1+k
T (log T e He Jo(h)du =3 (log ij;

sinh kp
KD

_ sinh «p
P

2

if the characteristic equation (5) is supposed.
It is easy to show, that the second term of f(r)(p,u), namely the series
from n=1 through n = ®, has zero-density. This will be proved in the following

quite independently. Using formula (44) one may write

n n P‘. E
Poa [aed® e’ 2"+ =]
n=1 n 1-& 1+x 1-p 14y
_ l I (nt)t at g(lﬂxlwxl’tg) 2(1-6) (140) (1-t7)
. -2 [ ot ar e
0 l—t2
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= P(2re) (1-p)(1-42)  5(1-k)(1-p)(1-2)
e ° -2

1 [ £(Lre) (Ls) v -%(l-n)<l-H)VJ

- J’ & g (Biv){le -e

0

SQee) (v B(1e) (1-n)v
-1ée -e (68)

after a transformation of the variable of integration to v=1 - t° and after
arranging the terms in such a way that the second square bracket in the in-
tegrand can be obtained from the first by exchanging x with -k.

We know, however, already the density, which belongs to the second square

bracket by comparison with Pb(p) in equation (51) and (53), it is just

P

-1 Pb(p) = - ;i_ .d_i(sinh u)sinh(m[p-p.]) .

This expression remains unchanged, if one replaces k by -k; it glves the con-
tribution of the first square bracket, and the difference of both is zero.

Hence the density O belongs to the series in f(r)(p,p).

B. Regular solutions, belonging to every k in the complex k-plane. We

start from the singular solution £§S>(p,u) in the form (41) as a sum and in -

the form (45) as an integral. Let us denote it now by

()

T (oyp;-x)

to show that it is a solution of the inhomogeneous partial differential equation
(6) with % e on the right-hand side. Reversing the sign of k in this
e
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solution one obtains & solution fgi)(p,u;m) of the partial differential equa-

kP
tion with the same left-hand side as (6), but with % e on the right-hand
side. Finally
r 1 S (s)
fFgu) - L [f]g)(p,w) o mwﬂ (69)

will satisfy this differential equation with the right-hand side

¢ sinh kp
2 P

as a partial solution which is regular at the center of the sphere. It is in

series and in integral representation

(r) ¢ e ng In(n) (E‘L_“' E“L_‘“)g - (-1 G:H_ kﬁ)g

f =
1 (p,u) n l-p 1-x 1+u 1+k
n n
(R LAE L, gyn (Lo 1)
L-p L+x 1+u 1-%
X e
_C p kP dv [ %(1+K)(1+H)V - §(l-m)(l—u)v}
=5 e f 7 Jo(iyL-v) e - e
0

_'[eg(l_m)um)v . Er(lﬂ)(l-u)V:l

The last expression is identical with the integral in equation (68) to which

(r)

the density O belongs. Hence the partial solution fII (p,u) does not con-

tribute to the whole desired density

sinh kp
8]

and its Sonine transform vanishes

so(f%)) =0 .
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Only the term e PP R(P 1-p@) of £( S)(p,u) gives a contribution, nemely

Ze "“Q{R( V1-p25k) - R(le-ugs-K)}

B T

1 Y
_ e THP %{1 cos do , & cos (do 1-5 2} ®d S 5g
i

0

1 2
_F cos d & f cos(dV/1-8%) LS ds{l}
T d T 2
o) Vl-S
0
-2 e o) (70)

cos d
by application of formula (36). The term PR which is singular at p = O,

drops out of the solution. The density which corresponds to this part of the

solution is

+1 +1
%f e-“p[R(p 1-u=;k) - R(p l-ugg-m)] dp = % j e "HP Jo(h)dp = &hp’“_p
-1 -1

according to equation (48a). Hence the total solution, which is regular at the

center of the sphere and which is valid for arbitrary k's, becomes

f(r)(p,HEK) = -MD{R(O 1-p :K') - R( pVl- ; }"" fII)(D:u)

A 4 n n
cetefigmyae § R® (Eﬁ)g (}:.".12 {(}i&)z + (—l)n(-l:_“J2 (71)
2 n=1 n 1-x 1+k 1-p 1

in the form containing a series, or
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SYES

1 B K v -1« v
Jon) + & | & Jo(ﬁ\/]:) . e2(l+ ) (L) e A(1-1) (1-1) }
N o v

-e (72)

[gu-n)uw)v —g(lﬂ)(l-u)‘f”
-e
in the form containing an integral.

% is not restricted by a characteristic equation, it can be every k of
the complex k-plane. For that special x, however, which satisTies the
characteristic equation (5), the solution f(r)(p,p;m) is identical with the
solution f(r)(p,p), which is represented in eguation (67). One has to re-

place % in the first term of f(r)(p,u;n) just by the value which the

characteristic equation

o=

gives.

The discrete spectrum is therefore completely embedded in a continuous
manifold of solutions with neighboring w-parameters in spherical geometry.
The density belonging to a solution is given by the Tirst term in (67) or
(71), whereas the density of the second term is zero.

C. Proof that the regular solutions satisfy the equation N = Kgf.

1. The operator A expressed by our coordinates p and p. Remember the
definition of p = Vx2+y2+Z2 and p = cos é% where J}is the angle between the
-
direction of the neutron v (with.lgl = 1) and the radius vector Z. Therefore

— —
we have p = p « V = XVy + yvy + zv,

aew) o gm U Vx o px

e sy - = -
E:a_f_éﬂ+é£§_&=2§9_f+<v_x—i}i> f
JX  dp ax M X p 9P P 2/ du



&_(L_ﬁ)£+§32f+ -224—5&%-&_ Q_f_+(v_-ﬂ?532f
B 2 2
‘)XE p p5 D P X3P 05 5 o B o, 2%
2
g arax gt [N wd) ot (E u(ePond)) ae
o o P 2p° 0 2 | amap p3 o n
v 2UV X 2 2} 2
+[ X + B X Jaf
2 ot /au
and finally
1 _a..<23f 2y af
A = 3 2+ 2 |(1- 91
egap o L)+ 2 [(®) & (73)

2, It is easy to show that the solution f(r)(p,p.) of equation (63), which
belongs to the discrete spectrum, satisfies the equation Af = k°f, Denoting

the exponent in its integrand by E for abbreviation

E = exp g[(l-l{)(lﬂj,)s - (l+n)(l-p.)é-]

we have
1+kr

1-x
f(r)<p;u)=ﬁ- e HP f Ei:—
1

and by applying differentiation under the integral sign

14k
Tk

aelT) _ o) e o f B %[% [(l-K.)S - (l+n)-§—] - [(l—m)(lﬂJ.)S + (l+|€)(l—u)%]
1

2
+ E—QL (1+)8° + E;—f- <1-u)§§ }



.

Partial integration of the L. term yilelds
P

14k
. - =T
ar(T) 2 o) e o)L Mao)s + (1+0)1] B
re p[( k)8 + ( K)S]
S = 1
1t
l-k

+ o THP f 2o -[(l—K)(lﬂJ,)S + “*““'“%J E 9%
1

Ltk
1=k
. _ KEf(r) + sinh kp ¢ o ~HP 2 d g ds
P g e as
1

B K2f(r) r o sinh kp o Sinhkp _ 2 f(r>

(pyn) gq.e. a.
P P

3« To show that also the regular solutions f(r)(p,p;-m) of equation (T71)

satisfy the equation Af = Hgf, it 1s now sufficient to show that its first

term
=Mp
e Jo(h)

satisfies this equation. Then one recognizes that also the second term in
the series development (67) of f(r)(p,u) satisfies this equation. But this
second term is identical with the corresponding in the series development
(71) of f(r)(p,u;—m). Hence it is true that also the regular solutions
fﬁq(@ppn) with continuous k satisfy the equation Af = k°f.

One has therefore to verify finally
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O(h) with h = o V(1-p2)(1-5°)

Af = k2f for f=e "y

One finds
/32
a=J (n) a J (n)
AP =+ (1k®) oo [0 ° L 07
an® h dh

i

£ - (1-x2) o 7HP g(m) =1 - (1-x2)f = k7 q.e.d.

D. Representation of the regular solutions in spherical geometry by

superposition of solutions in plane geometry.

1. The solutions belonging to the discrete spectrum. The Boltzmann

equation in plane geometry may be written

+1
£,n)
n @ﬂngﬁL.+ ¥(g,m) = 2 J[ ¥(E,nt)an’! (74)
-1

where { is the distance in space on an axls perpendicular to the planes from
—
a chosen origin, and 1 = cos © 1s the cosine of the angle between the f-axis
-
and. the direction v of the velocity of a neutron. A solution belonging to

the discrete spectrum is the angular distribution of neutrons

W) = 2.8 xR (75)
bir 2 1-rky

To construct a solution in spherical geometry one has to fix the centre of the
sphere and to measure the distance in space by the distance { of the plane

from the centre of the sphere. If one wants the angular distribution in
spherical geometry at a chosen point A with the distance p from the centre,

one draws the radius vector ; through A. The angle between this radius vector

/
and the £-direction may be denoted by’ngg then the distance of the plane
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through A from the centre of the sphere is

t =op cos JH. (76)

It is a measure for the "phase,”

with which a plane solution contributes to
the spherical. To get a solution in spherical gecmetry with a fixed direction
of the neutron-velocity ;, one has to superpose plane solutions, which belong
to this fixed direction of velocity, whereas the normal E of the plane runs
all over the directions of space. The parameter 7 = cos © in the plane
solution is the scalar product of the unit vectors in E; and. ;—directions.

If one supposes a Cartesian coordinate system with the z-axis in ;—direction

- —

and the x,z-plane identical with the v,p-plane, the direction of the {-axis

—_

may be described by the angle 49' between { and z and by the angle @' between
- =

the x,z-plane and {,z-plane. Then the components of a unit vector g‘along

{ in these Cartesian coordinate systems will be

, / { . /., , _ B
eX—Sll'l’ly, cos q)l ﬁy—snl'} sin @' ez—cos ;

-
and the components of a unit vector v in the fixed direction of the velocity

will be

v:sin'\p'= l—ug v =20 v=cos¢9=p.
x Y Z

Hence the scalar product of both is

N=cos®=€ "+ v=yu cos 1}/+ 1-p2 sin 1¢ cos @', (717)

Therefore one gives the plane solutions, which shall contribute at a definite
point A with the distance p from the centre of the sphere to a solution in

spherical geometry with a fixed direction of neutron-velocity, the form
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(¢, ) =\1;(pcos '\9{ L cos #/Jr \/ZI_—LL2 sin ﬁ‘/coscp'). (78)

E

/
o eke cos 19'

1
L / - - (79)
1-k []J. cos A +'\/l—p sin ¥ cos CPﬂ

By superposition of such solutions for all directions, i.e. by integration over
/
@' from O to 27 and over /19’ from O to T one obtains a solution S(p,u) in

spherical geometry for Iel < 1

o 2T
S(Q;H) =J/ sin #ldﬂ’a’ f de' \V(C,ﬂ)
0 0
T em

/
p ~Kp cOS &

1 cx ] Y [
= = sin d do'
b2 0 0 1-k(p cos «9/+ \/l-u2 sin ’\}Ucos o)

T tﬂ/
_ ke J sin F af? ¢ 7P °°F
o o [(l-m w cos 32 - k2(1-p2) gin® 49‘571'/2

v e KRRV

+1
KC f d
1
B -1 Q\/ l-—mg(l-p.g) - 28 Jv + ng v2

The transformation of the variable of integration

Tk

v =21 gu -3 [(l—m)(lﬂi)s - (1+K)(1'H)'S]::|} (80)

into a new variable 5 transforms the upper limit vy o= 1 into Sl = 1 and the

lower limit Vp = -1 into 82 = lﬁ . The square root in the denominator of

1l-x
the integrand becomes

\/l-mg(l-pe) - Ok Uy + kEVE = % [(l—K)(l+p)S + (l+m)(l—u)%}
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and the differential dv = - 1_ [(l-K)(l+p) + (1+K)(l-u)£§] as.
2K g

This leads to the remarkably simple expression for

av 1l as
VL1-k2(1-p2) - 2kpv + kove £ 8

and the solution takes the form

Te gl - o]
(o) = ¢ e ™ f =e (81)
1

which is identical with the regular solution (63) belonging to the discrete

spectrum of the Boltzmann operator in spherical geometry.

(o) = £ (p,u). (82)

2. BSuperposition of the solutions belonging to the continuous spectrum

in plane geometry. L. P. Wignelﬁjshowed in his lecture on Mathematical Problems

of Nuclear Reactor Theory that the Boltzmann operator for monoenergetic neutron
transport in plane geometry has a continuous spectrum. In approximations, for
instance by the Gauss quadrature or by the spherical harmonics method, this con-
tinuous spectrum makes itself conspicuous by those elgenvalues of the approximate
characteristic equation, which belong to the transient solutions.

The continuous spectrum of the Boltzmann operator extends from [x/ = 1

until /k/ = @ on both sides of the real axis in the complex k-plane. The eigen-

(9)E. P. Wigner at the Meeting on Mathematical Aspects of Reactor Theory in New
York, April 23-24, 1959. Itis published in a Colloquium Publication of the
American Mathematical Society under the title, "Nuclear Reactor Theory",
Garrett Birkhoff and E. P. Wigner, editors, p. 89 (1961).
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function belonging to a specific k-value of this spectrum may be written in a

symbolic form

Cc.K Cc K

1im 1 2 -
V(6 nse) = + e ¢
€0 \kn-1 + 1€« k=1 - 1€k (83)
with the coefficients
c. = -IC 44 [K - S log Eii] (8ha)
1 2 2 k-1
e . c K+1

ey, = -1 _ 5 ik - £ log ___}. 8ip)
2 2 [ 2 k=1 (

€ is a small real (positive) quantity; { is the space coordinate and 7 = cos ©
is the cosine of the angle © of direction of the neutrons against the {-axis in
the supposed plane geometry as in the preceding section 1.

Inserting the coefficients cq and c,. the symbolic eigen-function takes the

2

form

lim 1~k + o) 2 -
v(&,nsk) = ek gn + |k - & 10g 8FL Egc 5> /€ g
&0 (1-km)® + £%° 2 K=l (1-kn)® + £5%°
(85)
After multiplication with an arbitrary weight function g(%), which ensures the
convergence of the integral, the contribution of the continuous spectrum to a

total solution of the Boltzmann equation may be represented by the following in-

tegral over the continuous spectrum




- 59 -

+1 (%
o(t,n) = Ter 2 oot qdy 4 o[- 2 r0g 2] o(n) @/ (86)
1 1-x7 K n 2 1-7

and the corresponding contribution to the density (or flux at velocity v = 1)

by
+1 +1
() =3 [eewars [ e e Man. (87)
A1 E

By comparison of the last two equations one recognizes that only that term of
the angular distribution ¢(f,n) contributes to the density ¢(¢), which does
not contain the constant of multiplication ¢ as a factor. I owe Dr. E. Indnu
the observation of this fact. The same fact was noticed already at the solu-
tions in spherical geometry for all k-values which do not satisfy the charac-
teristic equation.

In spherical geometry, however, it is not necessary to write the solution
for a specific x in a symbolic form, as equation (83) is in plane geometry,
and one has not to integrate over at least a part of the continuous spectrum
to obtain ordinary functions for every single x. In spherical geometry the
solutions are already ordinary functions for every single k. Furthermore,
there are certainly two different kinds of solutions for every |x|, one, which
behaves regular at the origin, and another which is singular at the origin of
the sphere. It will be shown in the following that a superposition of solu-
tions belonging to the continuous spectrum of the Boltzmann operator in plane
geometry for a specific k-value (|k] = 1), similar to the superposition in the
last section, yields the corresponding regular solution in spherical geometry.
It is interesting to observe how the integration over all space directions

already leads to the elimination of the & for every single specific x.
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We superpose solutions of the kind (83) in the way described to obtain a

solution in spherical geometry

T 21 ' ‘9’/ -
-KpCOoSs
S(p,psk) = i— J sim}d&dcp' e P lim - l, y
T £-0 | apcos B riV1-12 sindFloso' -1+igx
0 0
% \
Cqk
[ =4 . 7 (88)
Kucos'19‘+m\/l-u sincosp'-1-1&xr
Noticing that 02 = ci for real k and
/ 7 !
putting a = -1 + &kp cosva', b=« \'l-ug sin've’ as an abbreviation, one has
b / / pcos'lg'l v c1
K -K
. A . . e —————
SCABLY s ?‘_I’no j sind dv/a' j a+igk+bcos®’
0 =T
¥
_.._-l____ dcp1 .
a-1&k+bcosy’
, o' 2du 1-u°
It is transformed by u = J? —, do' = , cosp' = into the form
2 1+u 1+u?
m I +o0
"oal . A
= 5 lin j sinfaaf e TFPCOS f au 1
= €50 a+b+igk+(a-b+ifr)u’
0 -0
¥
1
+ . (89)

a+b-igwr+(a-b-1fk Jue |
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The integrand vanishes for large u sufficiently strong that the path of in-
tegration can be closed by a half circle in the infinite of the upper half

complex u-plane. The denominator of the first term of the integrand has a

0

uo +a+1£n =\/Q 2. £2:2+21€kb (90)

-a-igk + 62 ©2

pair of roots uo and -u., in which

The second term of the integrand is the complex conjugate of the first and
the roots of its denominator are ué and —ué . All 4 roots lie in the 4 corners
of a rectangle symmetric against the real and complex axis of the u-plane. The

second expression for u in (90) shows, that the imaginary part of ug

is positive,
: . éL/ . ‘s
because b is poesitive for O=<7v <7, 1if one chooses furthermore a positive k from
the continuous spectrum. Then the imaginary part of uo itself is positive also
and the two roots uo and -u¥* lie in the upper half of the complex u-plane, where-
alf

as the other two roots —uO and ué lie in the lower}%lane. Only the poles at uO
and —ug contribute to the integral with thelr residues by application of Cauchy's

theorem to the upper half plane, which is enclosed by the path C of integration:

' I
S(pyusk) = f lim s:.n&dvna KpCOS'l} [du (a—b+1£m) ( LS — )
0

b €0 U-uy U
0
c¥
’ 'l * ufu* i uiﬁ* (91)
(a—b—lim)uo o o
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' . .
- E . 1916.19/ -Kpcos‘lg’ icy . -ic¥
) &ig s € (a—b+i£m)uo (a-b-iix)ué
0
T [ al !
= 5 3im sim9'd19' e'npcos‘} €1 o
=2 7 .
€-0 Val p2+018ka-E2%2  Vaf-02-pigra-£242 (92)
0

One may still apply the same transformation of the variable of integration -ﬂ’{

into a new variable 8

[
cosa¥ = %{“ + % [(K_u(lm)s + (n+l)(l-u)é] (80)

as in the preceding section to perform the second integration. One has to
remember, however, that k=1 holds this time: the path of integration in the
8-plane starts for 19'I =0 at 8 = 1 and ends for 1}’= TatS = - % on the
other side of the origin. When 49” increases from O to 7, cos &ldecreases
monotonously from 1 to -1. To maintain this property also on the path of in-
tegration in the complex S~plane, we have to proceed along the real axis from

S =1 to Sl =\ /m'l l-p , then along & half circle with the radius Sy around
k=1 1+p

the origin of the S-plane until Sp = ~57 and finally from -8y until the end-

point of the path at § = - ﬂ on the real axis. At the points S = + 37 the
k=1 -

expression on the right hand side of equation (80) hag an extremum, because

geosv' 1 [(n-l)(lw) - (K+l)(l—u)}§J (93)
35 2K S




- 63 -

in zero at S = + 57 with

K+l 1~

S =
1 k-1 1l+u

and the quantity a? - b% which occurs in the radicands of the square roots in

the denominators of the integrand

!
8202 = 1-k2(1-p?) - 2ku cos'ﬂ'/ﬁ- wgcosg'i}

1 2
T {(n-l)(lm)s - (n+l)(l-u)§} (9k)

/
is zero Jjust at the same two points S = +85; . We denote the corresponding -

/ /
values with 1% for 8 = 57 and 1% for S = 5p = =57, Equation (8]_) yields

!
cosnﬂ’ -1 [p ¥ V(mg—l)(l-ug)] for 8 = 8
1 K 1
and
/
cos'l% = %[H “V(k2-1)(1-4%) | for s = Sp = =57

In the interval 'l9/l/>19i %lthe quantity al.p2 is negative; this follows from

the first expression of equation (94) for instance by inserting the mean value
cos19;: = -"i of both values at the boundary of the interval; one obtains for this
angle (a2-b2) = - (k2-1)(1-u2). The second expression of equation (94) obtains

323,
indeed negative values for complex values of S. Hence we assume finally

8.t a) for the real S-intervals (l,Sl) and (-8, - 2—4_'%)

1 X
Sl'e b) for the half-circle O=X=T
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This supposition yields on the corresponding parts of the path of integration

%<{u F EVEL)(18) (v + %)} (a)
cosal' =

%{M +_\/(KT’1-)—(1_'“§) cos)\.’} (v)
L (21)(12) (5 - 1) (=)

2212 -
- (6P1)(1-pB) ein?X (v)
/! - Ldt a
sinJ' d'vd" - ot (=)

a1 .

:% ax (v)

The path of integration in the complex S~plane looks different for 5 regions

of p-values. The following table shows it:

region of . corner at positive S corner at negative S

PR
e =
la) p=1 81 = + 0 So = -0 s poA

ﬂ
) Eep=<1 0=S1= 1 S B legpe0 ST ’ -

k-1 k+t -1 S2 O Si

-
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N
1 1 K+l K+1
- = = l=87 = == - — <S5 -1
5) K‘.<H<K‘. ==L k-1 K-1< 2= k+1 S, 11 +1 Sy ket
k-1 -1
1 K+1 K+1
J.{. = = e S = m— S = e ——
) a 3 ] 2 )
58.) ~l=l=<- ']‘.' -K‘%< 1= o0 =0 Sg< - E
K K= -
5b) o= -1 Sy = o 8, = - @

To obtain the whole integral, which is real, one has to add the Integral over the

conjugate complex path.

Then the integral takes the form

k+l 1
L= kz s - &R (6 D)

S(pyusk) = % e P [ + 9.2_ e T (cq+et
1

p -pV(k2-1)(1-u2) cosx
+f ax é g i(cl—ci) . (95)

0
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With cq + c¢¥ = - ¢ and i(cl - ci) -2 [ - c log 2= kL1l it pecomes
1 k-1
1 arl L
o | e - BV (s )
S(pyusk) = € = + j e =
£l Lo
K+l 1-u -1
T
-pV(k2.1) (1-p2 X
+ [K - % log Ei%} . v[ e )(1-15) cos axy. (96)
K=
0]

The first integrand may be represented by a series of modified Bessel-functions

using the formula

-5 (t+ 1) ©
e ° t - IO(Z) + L (&R« }—r—l-)(-l)nln(z) (97)
n=1 t

and its integrals give S(p,p;m) the following contributions

e 12 f1,(VGE (145 10g ik

K+ 1-p

L (V21102 | [ q\2/2 [ el \n/2 N
+ e ~ = - T =) + (-1)

The second integral yields

e HP [n - g log ﬂ]n'l (V ke-1)(1-p )) (99)
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and its second part cancels just the term with the factor log Ei£ of the first

K=-1

integral. The total integral is now

S(pypsk) = eme ™ {% Io(m
% ;o n<m—)>[m+l)n/2 _ (%) n/g][(%f/ . (a1 )n }(lOO

By comparison with equation (71) one recognizes that

s(pyuse) = 2r £(T) (p,usk) (101)

is 27 times the total solution f(r)(p,ugn) for the regular case of the Boltzmann
equation in spherical geometry.

To complete this integration, one has to justify that the integration through
the "corners," in which the half circle meets the real axis in the S-plane and
aE—b2 changes its sign, does not give a contridbution. It will be sufficient to
show this in one corner, which may lie at Sl< 1. We encircle it by a quarter of

t
a circle with the radius & and its center at 5,. Hence S may be represented
along this quarter of a circle by

s AL L-u (1 + € elOt) ()
K- l 1+
L . fe-L 1L L ia 12 2ia &
and S = el 1-u ) (1 - £'e@ 4 E e +oual). o .

S "
The quantities, involved in the integral, are by this supposition

/
cos19'= %b{u + %WJZEE:I§Z1:;§S7(2 + 5’2 €2ia2}
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sin A @ (ng—l)(l—ug) g2 eEiot dor

I
[}
ENT

2 21
250" = (P-1)(1%) e e

and the first part of the integral (92) along the quarter of the circle around

! 1
the corner at 49 = »\9‘1, will be

-kp cos ¥ sin 3 dad

1im €
&0 2.2 . 22
(corne'er) \/;-b +21ex a-€
at "9'1
. T/2 2 _pin
1im e—np cos "9'1 f‘ £ e da
&0 2 28 . K 1 H
0 £ - e~ 21 - =
'\/Kz—l k-1 1-u
2
€, &' are arbitrary small constants; if we choose (g') = C- € (c = const.), we

Join their limits for €¢—»0. The integral will tend to zero, when g' =+/CE€ tends

¥

to zero. The cause of this behavior is that cos "y is stationary in respect to

S at all corners (see equation (93)), in consequence of which the differential
sin mQ’ d‘ﬂ' at the corners is quadratic in g'. Hence one obtains no contribution

to the integral from the neighborhood of the corners.
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III. Comparison of the New Solutions with thelr Representations

by a Series of Spherical Harmonics

A. Proof of the equallty of two solutions of the Boltzmann equation which yield

the same density. The difference 6(p,p) of two solutions of the Boltzmann equation

(l) with the same density satisfies the homogeneous partial differential equation (8).
Therefore it has the form

5(o,u) = e MP P(p/1-u2)

with some function F of p E—pg, about which one knows that it yields the density zero:

+1 +1 1
/ 3(p, 1) = f e ™" F(p/l-uB) au = 2[ (cosn pp) Flpf1-p®) au = oO.
1 1 v

0]

This is a Sonine integral equation again. If we replace zero on the right hand side

of this equation by a constant C, 1ts solution would be

1
4 f SO8VUS f5T as with u = p2(1-p2)

F(p/1-p2) ~
0 yu-s

I
«Q
q I

5 5
_ ol COS(p A-p2) (A7) g0 = o . L5 (oAdB).
T 2 0

o o

One recognizes by this calculation that the expression accompanying C does not diverge.
Hence the difference S(p,u) of both solutions vanishes together with € = 0. This

means that two solutions of (l) with equal densities are equal. Of course the theorem
ig not applicable to the comparison of two solutions, which differ by a diverging part.

Such a case appears in section D of this chapler.

B. Application of the theorem of equality to two regular solutions of the

Boltzmann equation with the same density. According to the equations (2) and (3)

the development of the regular solution in a series of spherical harmonics 1is
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)

“(s.1.)

E b

I,.1(-kp)
() = ST 2 e o- B (1028)
-

I,.1 (kp)
i /71 ?V_;D (24+1) P (- Ly “4eg P P, (1)
2 4=0 K

(102b)
@® I,,1 (kp)
c L% \EP
—J/#— 2y (2s) (- %) —=——P,(1).
2 k= Jeo
Its density integral becomes
+1 (I’) Il (K‘.p) sinh kp
f T (pyp) du = f . (103)
ol (s.H.) o

On the other hand, our corresponding regular solution is f(r) (p,p;n) in the form
of the equations (71) or (72). It yields by the use of the integral (48) the same
density (103). Therefore our regular solution is equal to the spherical harmonics
series (lOQa). This equality gives two relations, a first between the parts without

the factor c and a second between the parts with the factor c:

-~ o 1,4 (<o)
D [T ) -1 50 HEEE e gyl (108)

o 3 (s0)
2) Jor 3 (21) W, (- 1) py() 2210

KO
e @ J(h) |/1 +x % /l - K % 14+ % aft - %
= e I < ) - ) ) + (- 1) > (1052)
n=l n 1 -k \1 +x 1-u L+

1
oo f 20 5 (o) {e B (1) v o= B(1o6) (L) v
¢

C e B (@) v, g - B(Les) (1n) v}

Il

(105v)

with h = p/(l-pg)(l-ng). We obtained two equations because ¢ and k are independent
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variables in both representations of the regular solution. A connection between c and
k, i.e., a characteristic equation G (- %) = 0, would appear spontaneously only by
truncation of the series (102a) after the L-th term. The extrapolation to L — oo in
this characteristic equation can be made or not. If one performs the extrapolation,
then the discrete and the continuous spectrum follow at least in the case of plane
geometry. Everybody expects that the spectrum of the Boltzmann-operator depends on
the qualities of the material and does not depend on the geometry as long as one con-
siders only solutions in the infinite space without boundaries and sources. The trun-
cation of the spherical harmonics solution after the L-th term means in fact the addi-
tion of a source, namely of an error-source term(lo>, to the original Boltzmann equa-
tion (1). To this hidden addition one owes the characteristic equation and by extrapo-
lation to L— o one obtains the hint at the spectrum. But for the untruncated series
(102a) and the solution (71L) or (72) the error source does not exist or has lost its
importance - in the view from the extrapolation of finite L - because of the conver-
gence of the series (lOEa) for a problem without boundaries. Hence they are solutions
for every k, for which they are convergent and differentiable in respect to x and u.

C. Direct verification of equation (104). Of course a verification of equations

(10k) and (105) as a check of the calculations would be of some value. I restrict

myself to the verification of the simpler equation (104) because I found only in this
case a suitable aid formula. In absence of a complete aid formula for & treatment of
(105), however, one could use the developments of G. Bauer for a verification of (105)

+1

by steps from o to o similar to that which will be used in section E.

Multiplying both sides of (104) with one of the spherical harmonics and using

their orthonormality relations, one obtains

+1

1 (xp)
%_fle'“p 7o (oD (1-2) Byu) an = [T (- >—f§_p—p—. (106)

(10) .
00y, Kofink, Oak Ridge National Laboratory report 2358, p. 3 (1957) and Nuovo Cimento
Supplement 2 to Vol. 9, p. 499 (1958)
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The proof of (106) is eguivalent to the proof of (104). Eguation (106) can be derived

from the following extension of the aid-formula (48) by putting t = p:

+1
i f e 5 (o [1-42)(1-2)) P,(n) an
-1
P( >ﬁz+ﬁ<\/t (lmg)p)
te- (l -k2

(107)
[2-e2) 5
The equation (107) will be proved by complete induction. For £ = O it is identical
with equation (48). For £ = 1 it is the derivative - 3/dt of equation (48). Sup-

posing furthermore the validity of the equation (107) until £, one has finally to show

its validity for £+ 1, The left-hand side is in this case

+1
1 -1t
= h) P d
. fe Io(n) P, (k) au
-1
+1
1 _ 26 + 1 Y/
- 2 [ e o {——ur) - P, (n)y au
el £+ 1 L+ 1
20 +1 2 1 " Z I
+ - -b l - t
- - 2 —f e ™M g (n) B,k au - —f e ayn) 2, (w)
L +1 2t 2 Y1 £+ 1 2 Ml
I
=_2z+l_2_{pz(_3)\/i gy s (__)”E!i;z(i)
£+ 1 Dt x V2 Jx L+ 1 Jx
with x \/t (1- ng) p as abbreviation. This expression should be equal to the

right-hand side of eguation (107) for £ + 1. Hence it remains to show that
4
£+1) P -=) I b4
(51 g (- 8) 1y, G0

y (x)
= - (2001) fx %[Pz(-i) Iy 7L e, (-1 ) (=),
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The right-hand side of this equation is
t2 . x2
X

= - (2001) 42, () - T Ty )+ B <__> '

" (ig) P <_X:e) - (sm1) Ly '—E} T (-

The first curly bracket is zero, whereas the second curly bracket gives the desired

result. It is

= (4+1) Pyt <:;E> Iz+g (x). q.e.d,

D. Comparison of two singular solutions. The following theorem will be suggested

and partielly verified: if one omits from the singular solution in its representation
by a series of spherical harmonics all terms which contain negative powers of k as
factors, one obtains the new singular solution (35) or (40).

Some evidence exists for the validity of this theorem. The density-integral for

the new solution is

+1 +1 -
p(e)(p) = f #(8) (o) ap = f e M R(p - 1P) dp = ep - (108)
) -1 -1

as 1t was shown in equation (27). If one develops the right-hand side of the Boltzmann

equation in this case in a power series of

g P

Y
©
©
[\
-
O
~
T~
~—r
|
|
O

n
1. Kk + % Kgp -+ L.+ L:—él— e pn'l + ,..:} (109)
O
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and if one supposes a solution as a power series of
n=+oo

f(pu) = X« (o) (110)

n=-0o

one recognizes that there is no need in f for terms with negative powers of k because
the right-hand side of (109) contains only the non-negative powers of k. The singular

solution of (1) in spherical harmonics

oo}
s Ky.1 (kp)
2elg o) = = T (e) gy (- 1) 2B g () (111)
' o 40 lo
with the modified Bessel functions of the second kind
Ko (s0) = = (-1% [t | (ko) - 1,1 (xp) (112)
b3 2 -(4+3) bz

contains, however, in the first term of (112) negative powers of k. This may be seen

in the power series

00  ,ko\2m-
o Ly (w0 EZ _(E_E?_E_z_ : (113)
J2 Jeo Oy T M(m-2+3)

The singular solution (lll) in spherical harmonics yields the same density-integral

as the solution (35), namely,

+1 ~Kp
Z K (kp) e

(s) du = « [= = . i
/l” fiay (Prk) ;e - (114)

According to the theorem in section A of this chapter both solutions (111) and (35)
should be equal if the series (111) would be convérgent. Consequently its divergence
originates in the useless terms which contain k in negative powers. This is the match-
less conclusion which is compatible with the facts that the new solution (35) is con-
vergent, contains only non-negative powers of k and yilelds the same density. Therefore
one has to cross out all terms in the singular solution (111) which have negative powers

of k as factors. The remainder of the series is supposed to converge and to be equal
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to the new solution (35) and (40).
Using (112) one may write the total solution in spherical harmonics (111) as the
sum of a singular solution with the density-integral (cosh Kb)/p and of a regular

solution with the density-integral (- sinh xp)/p:

(s) . o ~(ard) (#0)
5w, (pyp) = 5\/; {zgo (- 1)%(2041) G,(- K) ————j{_;————— Py(w)

.3 (- 1)%(2041) 6y(- L) Ly (v0) Py(u)p - (115)

£=0 K m

I

Because of

(- 1) Tpes (v0) _ L (-xp)

Jro -/ wp

the second series in (115) is just the regular solution (102a) with the opposite sign.

It contains only positive odd powers of « and, using equations (104) and (105a), one
easily finds its contributions to the new singular solution (4%0). To recognize them

in the equation (L40), one writes one part of (L40), namely (42), in the following form:

e MP R(p /1 - uB)

1
- dnfl - 2
e "HP [bos do E.jp ds cos ( Q ° ) (cosh kdys - sinh Kdosﬂ
Tl—do T JL - S
0

. cos d K / OO 2! (2x24, y
= £ pe J222 70 % h) + k2 ¢ O) Jpel (do) (116)
Td4 2 (24+1)1 2
in which b = 4, /1 - k2 = o [(1-u2)(1-k°). The second term in the curly brackets

of {116) contains the odd powers of k and is the contribution of (1O4)

o1

TS
- e J
2
to equation (42). The second contribution is the more lengthy expression (105a); it

gives that part of the equation (Ml) which is odd in k. Hence the identification of

all terms which contain the positive odd powers of k as factors in the series of
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spherical harmonics (111), with the corresponding terms in the new solution (40) is

simple and complete:

{%art odd in k of fE;?H-)(p,u?}

1

- ;ioo (- * (oon) ay(- &) Tk () p ) (117)
‘= K K’D

o fe sy e B2 LB eeBramd e
reolzat -2 B SB[ (R o (2]

= - f(r)(p,p;K) according to equation (71). Negative odd powers of k do not occur

in (111); thus there is of course nothing to cross out.
Furthermore one has to compare the parts of the singular solutions (111) and (L0)

which are even in k. The series of gpherical harmonics has the

{%art even in g of f{é?H_)(p,uj}

) s0)
o L (2,“1)“__)__(2_\/&1__2_ P,k (126)

It is the first series in the curly bracket of (llS). A glance at

Go(- ) = 1
-1 e-D = Cfr@ eSO
= PZ(- %) + = Wz 1(- —) for £ 2=

shows that (118) contains two parts, one without a factor ¢ and a second with a factor

{Part even in k of fE;?H')(p,p)}




| —
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_ /f {f Y (2se1) py(- Ly Eeed) (50) 5 ()
> \2 40 . Jos

(119)
L (2001) W, (- 3) Lad) (0 ()

c
2 4=1 JQE;

Here the superfluous terms with negative powers of k arise from the introduction of
the power series (113) for the modified Bessel functions into (119). Of course the
rearrangement of the double series in a power series is only a formal way. It leads
nevertheless to something reasonable, namely to the new singular solution (40) after
dropping all terms with negative powers of k. The largest negative power of k in the

24

£-th term of (119) is " One has to omit £ expressions in the f-th term, namely

those with K-Ez, n'2£+2, m‘25+h, e m’h, k"2 as factors. It is sufficient to keep

the terms with the non-negative powers KO, KE, nu, vss in (119).

®. Verification of statement of section D about the even parts in k of the singu-~

lar solutions in the two different representations. We consider first the part of

(119) which is independent of c:

@
k [T I 1y (kp)
LT (ape1) p(- Iy () VR
<2 2 (en) 2yt- b )
Kp
VG? X s 2 (br+2s+1) P2r+s (- L) P2r+s (w)
= —<J L (kB v K (120)
2p (5=l 2 r=0 ri [(-g-r+d)
® KOy S Y PEr-s (- %) P2r-s (u)
+ (5_) Y (br-2s+1) .
5=0 = [g] a1 ri ['(s-r+3)
Eﬂ is the largest integer < 2; e.g., for s = 0 1t is [g] = -1, for s = 1l or 2
it is 0, for s = 3 or 4 it is 1 and so on. The first series of (120) contains only

negative powers of k; hence we omit it. It does not also contribute to the density.

We investigate only the second series of (120) and write down its first four terms
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Al 2 (uen) P, £) Poln)

2 =0 rl N(-r+3)

1
+ O‘/——K i(&r_l) PQI-_]_(" E) Pgr_l(u)
= r! r'(-r%) (121)

_;:—

1
o PQI‘ 2(_ E) PET—E(H)
r-3

8 = r! I—‘(—r%)

1
@ Pop_5(- %) Porz(k)
RYL3 T (hyosy 222 1 T2ro3
6 w2 vt [(-rsd)

+ ose. ,

After the omission of all terms with negative powers of k in (121) these four terms
should be equal to the corresponding four terms in the development of that part of

the new solution (40) which is even in k_and does not contain c. This part in (L40) is

1 o - {cos(g/l-p.e) i f‘ . cos(p /(l-ue)(l-v2)>
T D/J-_-F 0 vi - Ve

sinh (mq/l - u2 v)

_j_' 1 0 - M

1
— t p —————t p + — [—————
Tl - w8 T/L - p2 <2/1 —
+02%[6- +(—-1-c2>u/l-uJ+... .

1= P

- (1- wﬁ)/lT)

(122)

(11)

G. Bauer has derived three formulas which may be used advantageously for the

comparison of equations (121) and (122):
—2 __ _ L2 L:305)2
= = Bolw) 5 D palu) + 9z ) B(n) + B(FE2) pelu) + oon (122)

(g, sauer
),

Bauer, Journal fuer die reine und angewandte Mathematik, Berlin, Vol. 56,
p. 101 (1859). See also E, W. Hobson, the Theory of Spherical and Ellipsoidal
Harmonics, Cambridge University Press, 2nd printing, p. 49 (1955).
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2 1.3 \2
7% L-wts -;;Po(u) 2 (2} Pol)- 9'2 (5}—17 Puw)-15+ % <2 b 6> Pel) -
(124)

2 B

o2

I'OII*—‘

2.k
(125)

Applying the recursion formula for Legendre polynomials

p P (p) =

[(42) g (i) + m 2y ()]

2m + 1

1
these formulas may be extended to arbitrary powers u” as factors of (1-p®)® or

1
(1-p2) 2, for instance to

= - = 2P - 4P - P - P - eee
lJ.\/ 84 ](H) 52 5(}-"-) o2 5(“) 7(“)

4096
(126)
Therefore our comparison of the coefficients of (121) and (122) could be continued
to arbitrary large powers of p.
(a) We start with the comparison of the coefficient of p'l in the equations

(121) and (122). We obtain from (121)

/_ Z (4 +l) PET( ) Pgr(u>

2 2=0 rt [(-7+3)
- L (320122 1-3 _ 10,35
= E{Pom +5 - (3) (1-;—2—) (u) + 9( ) (1 > *Ku)PN) +
2
Le3+5 21 @ 231
+ 13 - ——) Pgln)
<2 .4.6) < )-l- 5K6 6

6 198 1 16 128
+ 17 (l 501 @. 52 i 7 7) Po(i) + «..
2.6 8 kS K 5m

:[;...;] -+ vee (127)

§F4F

c el
7Tl—[J.2 |{2

B+ 7+ 2 (3) Byl v e 2 (23 m (e (23 R (5 o
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using the formula (123). Hence we see that the coefficient of o=l in (121) is

identical with the corresponding coefficient in (122) after the omission of all terms

with negative powers of k as factors.

(b) We compare now the corresponding coefficient of po. We obtain from (121)

1
z:j g? (4r-1) Por-y (- %) PQr )
r=1 (il )

{5 . -%Pl(u) + 7 %(—;—)2( --35—) Pz(p) + 11 - -Z—<;L i>2<1 - i—e—+ 'i‘b? Ps (1)

N2
7/L.3 -5 9 .99 _ k29
15 « = =—ruw—) (1 - £ = - P P
" 5 8<2 . ll- . 6> < KE * 5K 55K‘.6> 7(“‘) * }

|
1
N f-

- U
= ——

By 5:-5 [} -—EZ [] F s (128)

using the formula (125). After the omission of all terms with negative powers of &

the coefficients of p® in (121) and (122) are equal.

(¢c) We compare now the corresponding coefficients of p. We obtain from (121)

1
- E) Pgr_g (M)

/T2 § (ips) Tez=2 |
8 =1 r! r'(-r%)
- %{EKEPO(M) - E (k2-3) P(n) - Z_Lé <K2'10+2—i2) Py (w)
- —?.—'i (k2 -21+ —-—);> Pg(n)
i e
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- %[Po(u)+ 5 . (%)2 PQ(H)4-9<1 : i)g Py (1) + 13(i?{—f}f—%)2 P6(M>4_17<i?f_i : Z : 7)2

2 . 8
Pgln) + ]
- i(l <) [L Po -5 (3) Rl- o 2 <g - 4>2 P =13 - 3 <2 — 6>2P6(“)
_17.I_O<21 LLB 65 8>2P8(u)—— ] —i—é[ ]+i-—h[ ] -t (129)

/ 1
= Lf_l__(l_KQ) l_MQ .1 [....:I +_l:[““:| T (129)
T LQ AR ke K
using the formulas (123) and (124). After omission of all terms with negative powers
of k the coefficients of p in (121) and (122) are equal,
(a) Finally we compare the corresponding coefficients of p2. We obtain from

(121)

er-3 (%) Pow-s (W)

A o0 P
-/1-}45 2 (hr-5)

1 r2 rd [ —r+%)
_ L 2 T (=2, 1L (152 0y, 82
- L { 52 7y ¢ L 025) 2400) + B 5o ) 70
2 (55x2—315+—§22-E§2) Po(p) + --- :}
512 k2 &
_ 2.2y .13 Lo o511, 35T ) J
G- - L [2n0 - Lry - 221 e
1L [5.1 5 (1 5 (L3 7(1:3:5Y ]
- [5 SR 2(5) B en 2 (2 pyw s T (222 nh) +
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(130)

[<_-K) W MJ% [+] % o]+ e

using the formulas (125) and (126). After the omission of all terms with negative
powers of & the coefficients of 02 in (121) and (122) are equal.

We turn now to the part of (119) which has the factor c:

_(£+ ) (kp)
e

T

feg

(22+1) W, (- -]H:)

P, (1)

<
2 )

(131)
-£-1+2r
(201) Wy (- 2) 2y() (80)

'FY Y- )

c =5 5
:Zﬁzlo

=L =
= (terms with negative powers of « only) +
. OO[ 2By () ¢ Lo p() + oz - ]
1.2 3 -4 56

vo [ 22rw - 2 mw) - -]
16 128

(132)

e /1> ) 11 -4 v
+p [( o6 5(“) + o . 108 PS(H) + )

+K2<8P(u)-?P5()—YEOP(H)— )] +} .

(12) gives the formula

G. Bauer

log (1+u) = (log 2) - 1 +

Pr(h) - —2— Byu) +

Py(u) -+ »»o (133)
1.2 23 3 ek

from which one deriveg the extensions

i\J‘EjLoc. cit.
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log o g? (bn+3) Popyy (1) (134)
1-u n=0  (2n+1)(2n+2)
N
o log e o 1 [1 LT (bord) Ppp (H)] (135)
1-p 2 p=l (piL)(en-1)
Me log 1 + - u+ -]: i‘) n(2n+5)(ll-n+5) P2n+l (M) (156)
1-p 2 2=L (111 (n+2) (2n-1) (2n+1)

and so on, if one wants to proceed with further steps of the comparison. The part of

the new singular solution (40), which is even in k and contains the factor c, is

2m

- © (-1)"n, /h 1+
ko AT m/2
e {mzl )2 <2> + Jo() log | }

oo

L

cos{dn /L - 52

+ if ds ( 0 ) 2(log 2s) cosh(wdos)
T 0 m ‘

- e—dos %D .hﬂ [(l+m)m + (l—n)m] dr(r)x sn)

M.

© Jy(h) [1+6 B ,1-k 2
e )

1-k 1+k 1-p 1+

[(?—“ F (-l—iﬂ} (157)

.
|
!
o
O
Py
=
o
|
(R
]+
T =
+
o
—=
1
| o
|_J
I
ot
no
1
=
l__l
O
o
el e
1 i+
=
—

2
. Ke(u Lout o L u)} ‘e , (1570)
i3 L 1-p
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Applying the aid formulas (124), (126), (134-13%6) to (137Tb) one finds (132) if one
omits the negative powers of r in (132), This procedure could be continued to higher
powers of p, but never completed in this manner. If there exists any Justice, how-
ever, the following relation between the singular solution in spherical harmonics
(111) and the new form (40) should hold:

Omitting all terms with negative powers of x in the spherical harmonics solu-

tion, (111) and (40) become equal.

Remark. Presumably the same method could be applied to the cylindrical case

for the construction of a converging singular solution from the corresponding

spherical harmonics series.
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