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Corrigendum

ORNL-3040
Page 5 - Replace 8x by Ux in Eq. (2.1).
Page 6 - Replace 8n by Un everywhere in Egs. (2.2), (2.3), and (2.k4).
Page 7 - Delete the factor 2 in Eq. (2.6) and (% times) in Eq. (2.7).
Thereafter, explicitly delete all factors of 2 (not including
those in superscripts or subscripts) which may appear in all subsequent
equations through Eq. (4.14) [except for the (2%) 2 in Eq:—?h.ll)]‘
Also delete the 2 in (v® - c¢®) /2 which appears in Egs. (6.5) and
(6.6) and in the matrices on pages L0 and hl.
Page 14 - The first term on the second line should have a negative sign

in front of it.
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Fxact Relativistic Fokker-Planck Coefficients for a Plasma

Albert Simon
Ozk Ridge National Laboratory,* Osk Ridge, Tennessee

ABSTRACT

We consider a plasma which, in zero order, is static, spatially
uniform, and infinite in extent and with no external electric or megnetic
fields. Exact relativistic Fokker-Planck coefficients are obtained by
a solution of the first order coupled integral equations for the particle
and oscillator pair correlation functions. The solution is by a
generalization of the method of Lenard and Balescu. The resulting coef-
ficients have contributions from both coulomb interactions and from

interactions via transverse electromagnetic fields.

*Operated by Union Carbide Corporation for the U.S. Atomic Energy Commission.



I. INTRODUCTION

1 we have generalized the expansion procedure of

In & previous paper,
Rostoker and Rosenbluth® so as to include the radiation field. The starting
point was the Liouville equation for the density in phase space of a system of
charged particles and a denumerably infinite set of field oscillators. A
chain of equations was then obtained by integrating out the coordinates of all
but s particles and t oscillators for all possible values of s and t. A
solution of the entire chain of equations wowld then be found in the form of

"}, and V! where e is the particle charge,

an expansion in powers of e, m, n
m its mass, n the particle density, and V the volume in which the system is
enclosed.

To lowest order the solution of the s particle, t oscillator distribution

function was of the form:

s t
£20 = I 22 ] £ (1.2)
k=1 =1

where we have abbreviated the particle coordinateslgk, Vi

by A. The functions f3(k) and £2(N) obeyed a coupled

by k and the oscll-
lator coordinates Dys Vo
bair of equations which were seen to be equivalent to the usual Vliasov equations
plus an added equation for the field oscillators. [These equations were dencted

as (1%a) and (13b) in I.]

To the next order the solution was of the form:



s t s t t
2% < 2 £1(3) H 1) [ 2200 + [ £iw) Z 20 [ £2(v)
J=1 v=1 k=1 =1 v=1
« t s t
-% Z g(i,3) H fl(lr H fé(v) + z Z g(i,N)
i£j=1 k=1 v=1 i=1 W1
s T
X [ 2w 2o (1.2)
k=1 y=1

vhere the primes denote omission from the product of those indices which are in
the sums.

The pair correlation functions g(i,j) and g(i,)) obeyed a coupled set of
integral equations [denoted as (38) and (LO) in I]. The first order perticle
distribution function fi(i) and the first order oscillator distribution function
fi(%) also obey a coupled set of integral equations [denoted as (L41) and (L43)
in I) vhich also involve g(i,j) and g(i,N). These equations, as they stend,
are 2ll time reversible. Irreversibility is achieved by substituting the
asymptotic solutions of the g(i,j) and g(i,?) equations (rather than the exasct
time-dependent values) into the equations for fi(i) and fi(%). The resulting
equations are then in the usual Fokker-Planck form.

This procedure seems entirely similar to the Bogoliubov® approach which
assumes that the time development of the pair correlation function is very
rapid compared to the time development of the distribution function and hence

that the time asymptotic value of the correlation function should be used in



the equation for the distribution function. It is also seen from Bogoliubov's
formal assumption that the many-particle distribution functions shall depend on
time only through the time-dependence of the one-particle distribution function.
Comparing with Eq. (1.2) we see that this implies that g(i,j) and g(i,N) are to
be used as time-independent quantities in the final equations for the particle
distribution functions and hence that their time asymptotic values are to be
used.

Our starting point then will be the coupled set of integral equations for
g(i,j) and g(i,k). We will then obtain the time asymptotic solutions of these
equations for the case of a zero order particle distribution which is station-
ary in time and uniform in space and for a zero order oscillator distribution
which is stationary in time. We will assume throughout that the particles are
electrons, and that there are also infinite mass lons uniformly distributed so
as to provide a neutralizing background.

A truly consistent treatment of plasme, including radistion, requires that
the plasma be treated relativisticelly. DNevertheless, we shall derive our re-
sults by the use of non-relativistic equations. However, the final results
will be mede relativistic by use of the seme prescription as in I [see the dis-
cussion preceding Eq. (L4.24) in this paper].

II. THE PAIR CORRELATION EQUATTIONS

From Eq. (13b) of I, we see that if fé(i) (note that we drop the super-
scripts hereafter) is space independent then the most general static solution of
this equation is fo(vi + wiqi). Equation (13a) of I (in the absence of any

external fields) is then satisfied by an arbitrary function of the electron



velocity, fo(;r)) . Applying these results to Eq. (39) of I, we see that ”15‘0(1)
venishes and that the coefficients in Eqs. (38) and (U40) are space-independent
end hence that we may Fourier analyze in space. This Four}‘ier transformation
was already carried out in the last section of I; however, it was expressed
entirely in terms of real sine and cosine transforms. It is simpler to do this

in terms of the more usual complex exponentials end the results are:

i

a . . (.\)2 Bi"o(v ) a
[ s -l -y ] ely;yy) = - 1 [ 5, J ey &

Ofo(y 5) =5 fafo /"
- _-a;;—f g(xix) a3y } + = (fiav) L—B——— Z lav, x (ik x EK) + v,4,]
Bfo Y'v

g*(quKvKgK)qu Vg = 57 f [qu X (:Lk X Wy ) = Ve )

w2 -
Q(Xi, Qevi) day dve (- 1 —P; k -
nk
l: afo(xi) ofo(v,) }
fo(xj) -gi;-—' - fo()[i) v s (2.1)

and:



, 3 3 a ) w? Bfo(x) ..
QB;C- - i%c_‘z vK &IK— Uqu 5;;>g(x, qKVKEK) = - 1 2 ng ng(v quKuK) a-v

1 . 1

2 Ofp(k) 2 afo(v)

ne(v%—) —ajv—;—fx'.&’( g(m vv') dsv'+§<§';'> fo(K)"gx—“
¢ 1
7/ . 2 Bfo(K)
[v X (1k X qu ) + vaK] - e K\v—‘> veu, foly) -~ (2.2)

In the sbove eguations % and v, refer to the coordinates of that oscillator
with propagation vector E and with a unit transverse polarization vector EK' The
sum over K then denotes the sum over the two orthogonal polarization directions.
We have also suppressed the explicit dependence of the pair correlation func-
tions on ~1§ and t. The usual plasma frequency 4me® /m 1s denoted by w; and

w}?{ = ¢®k®. Note that Eq. (2.1) is equivalent to Egs. (61) and (62) of I, and
that Eq. (2.2) is equivalent to Egs. (63) and (64) of I. In this paper, of

course, the superscript * denotes the usual complex conjugate.

Equations (2.1) and (2.2) mey be simplified by defining the following

moments:
l .
E(x) = % ($th) L e | % ev quKuK) dg, av, (2.3) .
¢ 2
E(y) = r% (taﬂ/’) z‘ ngKva g(v qKVKEK) dq, av, (2.4)
K

With this definition Eq. (2.1) becomes:



a (.02 _> afo(V)
[a‘z - ike(y; - ) ] e(yyyy) = - 1 k-P- [ fg*(v v) &

- %‘jﬁf&lfg(){ix) v ] ti { az:%) ' [Xi X( o= B(xy) > +3*(XJ')]

vy ~1
- -f:i%l -[xj x<5X5<xi>> + 2y) 1} -1 i‘l’z
g _
I £ (v) —5-3-(——)— - %o(y,) %ﬁ%l ] : (2.5)

If we multiply Eq. (2.2) by either Qe OT ivK}}K, integrate over dg » de and

sum over K, we obtain a closed pair of equations in E and }i These are:

b £ af’O(V)
2&’2 afo(V)
,.k +i-m—i‘p- -T—[Vx(kXQo)i! (2.6)
and
< St - ik, >§(y) + iwf{ E(}L) = -1 " x . -—yym— ﬂ(y_’) Sy + 1 20112)
22« Sfo(y) 2uf
[y eve s 2 ST G+ iR fol) vl (2.7)

K Ser t29/7



where the unit transverse dyadic I is defined as

I-= ZBK Hx (2.8)
Y
and the dyadic Qo is
Qo = E:ﬂk yk\/nqﬁ fo(k) dg, av, (2.9)
U

- -2
= Z v, E.Kfvi fo(k) da, av, (2.10)
uK

Note that 1f there is no radiation present in zero order then Qo is zero, and if
the radiation is unpolarized then Qo is a constant times I. Note also that I
and Qg are still functions of k. We further simplify by teking Laeplace trans-

forms in time and assuming that all pair correlations are zero at the initial

time. Hence, we obtain:

/ of - afo(j{i)
Kip + k.(Xi - xJ) g('Y‘l‘Y‘J) = é X [ -5-;_——— g*(xay) Sy
i

__a;_‘jg:fifg(xix) dsv}- .a.%.”\_{i_)_ . [Xix</1§x§*(x\j) >+~§*(3{j)]

-
afO(v-) / -
- b} B k x E(v,) b .)] 2 x.
Xj [X x\ x E(v >+MX }+pnk2
afo(Xi) ofo(v,)
[fo NYJ) ——'é—x:— - fo 4 v, :l . (2.11)



W afo()[)
(ip + k-v) E(y) - F(v) = *‘2“}5 ~o— | E(y') a®v
K A
2(02 Bfo(x)
';m%‘ﬁr'[x“%x%w (2.12)
¥ 3ol
(ip + k-v) F(v) - «& E(y) = k—ggg > F(y') &% - wa)fjg’-I glvy') av
202 W 3fo(y) 2uf
- n:IEI)lp Sv - Qo - p—np' fo(X) X'I (2’15)

where the quantities g, E, and F now denote the Laplace transforms and whose
explicit dependence on }i and p has been suppressed.

Equations (2.12) and (2.13) may be solved immediately for E and F by noting
that the integral terms are simply vector constants (more precisely, they are
functions of ~1§ and p) whose values can be determined from the solutions them-

selves. For the moment, we denote them as follows:

fg(x) v =0C (2.1k4)
F(v) &®v = Cz (2.15)

and solve immediately to obtain:
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2 w2 1 ofo(y)
E(v) = R '{ ke S [ Co + (ip + k-vlglw— —— (ip + k.v)
(ip + key)® - 08 22 7 AA _
dfo(v) W Ofo(y)
—~ {XX(kXQo) }-fV'-Ig(X‘,C') a3v mp v %
- %.5 £o(y) eI } (2.16)
2 0)2 afo(V) (.012{ bfo(x)
F(v) = L ~{ L x. = [ (ip + k-v)Co + wzg; 1 - =
e (ip + }E‘X)z - ‘*é 2k2 P a:/: o~ k _ nmp 5,,—\
e
. [xx (k x Qo) J - (ip + }g-y)fx‘-l glvv') a®v' - ;]-n% (ip + k.v)
ofo(y) 1
-gif— . Qo - EE'(ip +l§;x) Tolv) v.I }- (2.17)

One can now solve for Ci and Co by integrating Egs. (2.16) and (2.17) over a3v,
but we shall not do this at this point. Upon substitution of Egs. (2.16) end
(2.17) into Eg. (2.11), we finally obtain a simple integral equation for
g(NYng) .

As mentioned earlier, we shall consider only the time asymptotic solution
in this paper. Now if we restrict ourselves to zero order distribution func-
tions fo(i) and fo(2A) such that the Laplace transforms of the pair correlation

functions have no poles in which p has a positive real part (i.e., no instabil-

ities), then we may write
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lim (VV )
mj’ —P"’Opg""i"‘jp.

At the risk of some confusion, we shall now let the notaticn g( Xixj) denote this

limit, with a similar understanding for the quantities E(v) and F(v). Thus

lim
lim
E(v) p > o P E(vp)
F(v) = 7™ 5 F(v,p)
,..,‘»Y, P-o0 1Y ol ,\JP
lim
C1 p-oP&
lim
ge = 0

and we now take this limit in Egs. (2.16), (2.17), and (2.11). Equations (2.16)

and (2.17) become:

2 P ofo(y)
1 1 -~
£ {21;2 k. v [ Cz + (k-v)Cy j’ - = (k-v) k. —Sv_ ¥-Q

‘f)i"l glvv') & - -i- foly) v.I } + mnp 5;' + Qo (2.18)



2&? afo(V) ui Bfo(v)
je) l e ooy . o .
20— { e i [ wve s go [ -2 S re
- (k-v) f,x'-l glyv') v - 2 (k) foly) ¥1 (2.19)

where we are free to take the limit in the denominator, since in a properly
relativistic plasme there will be no electrons moving with the velocity of light.
The dencminator in Eq. (2.11) does not have this feature, however, and this equa-

tion becomes:

. Bfo(v )
glv.v.) = P8 _ L { [ g*(v.v) a3v
b | P -0 1p + (yﬂ-v) k2~ V b Rl
Ofo(v.) Ofolv.)
- - 3 ~1 * »
?ﬂ‘.{;}_ g(xix) a3v } - —_—_aXi !iffi X < k x E (;{j) >+ EX(XJ') 1
Gfo(}_{ ) «P
+——\—‘]—*Lv <kxE(v)>+F(v)} —2 x
LT nk® =

ofo(v.) ofo(v.)
(———%:“iﬁ—- folv,) - —é—fr—fﬂ— folv;) >} (2.20)

~J

We now substitute Egs. (2.18) and (2.19) in Eq. (2.20) and, after some rearrange-

ment, find that:
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afo(V )
lim % 3
XIXJ) p-—>olp+k(V -V){kzml: V S(ij,\)dv

ofo(y,) 3t0(y,) 320(.)
] v, fg(XiX) v }+ n—j:z-}}n [_S:Yl—l- fo(){j) - -—SE‘L' fO(X\j_) jl

~d
dto(v.) v.. [ I-v g*(v,v) a®v dfolv.) v.. [ I.v glv,v) a®v
"2 [ ke - ke o B - }
2 i (k. XJ)Z k2c? - X3 (§'~Y»i)2 - k%2
2 afo(;\&i) fo(Xj) afo(Xj) fo(zj_)
+ V..I-M_ Ke BV - ko BV
Nl T g L om i (ke vJ) - ¥2c2 ~ o (kv )? - e®

{ _
ooly,)  3foly,) [X.i' L% <}E'XJ)S§} Yo Ce+ (kyy)% }
k

12 v, Vs (A}E‘xj)z - K22 (}E‘Xi)z - 122
dfo(v.) ofo(v,) ct
v [(k~v.)(k~v.) - kzca} [k- d 5o s -
g2 Lot RS A%} (k.v,)2 - kK2c?
~d
dfo(y;) ofoly,) C1 i‘ }
- k. .
e BX& éxj (}E',Yi)a - ¥2c?
1 dfolv.) [ I. v g*(v.v) &3v  ofolv,) [ I.valy,v) a3
'2“’21[ S S el
b v (le'Xj)z K2 Y5 (lf,'mi)z - K2c2 -
foly.) ofo(v,) folv,) ofo(v.)
=l R v |
n (k‘l’ )2 - KBc? ~d Vs ([}V{,”Yl)z X2c2 ™ X,j i

(Equation continued on next pege)



1k

ofo(yv,) Ofo(v.) V. Qo v,
- [(k-xi)(lg-x.) +1@c2j] ke~ ko —5od ) =
moL J ” ~1 23 [ey)® - ¥2e®1(kv.)? - KBc®]
ofo(v.,) ofe(v.) k.v, ofo(v,) ofo(y.)
1 = . Qo - 't N l;.[ ol k- Qo-
nm 5X«i de nm (.,li'mi) 2 _ 2.2 83{1 ol O,XJ
kv, ofo(v.) ofo(v.) N
+ il {e V..Qo. B il..
(goxj)z - X227 AL T AL ol
3fo(v.) folv.) o doly.) dfolv.) Ca
a'”Yj i (5@33)2 - kK22 7 Vs qu (E:Yi)z - k2c2

(2.21)

We have taken advantage of the fact that some terms were proportional to’k(yi -v.)

J

to eliminate the denominator. These terms are in the second bracket of Eq. (2.21).

ITI. GENERALIZATION OF THE LENARD-BALESCU METHOD

Equation (2.21), despite its formideble appearance, may be solved exactly

by a generalization of the method of Lenard snd Balescu.? We define the new

functions

h(v) = f glvv') a®v' (3.1)
1) = & [ B(y) ok - ky) @ (3.2)

p(y) =fI-3{' glvv') v (3.3)
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2w - kf}f(?f) 5(ku - k-y) a®v (3.1)
S(u) = kfI.X n(v) &(ku - k-v) &v (3.5)
1) = k[ p()(Ty)s0em - kx) v (3.6)

as well as the modified zero-order Tunctions

Fo(w) = kffo(y 8(ku - k-v) av (3.7)
ofo(v)

Fo(u) = = 5(ku - ,}f',l’) v (3.8)
ofo ()

Jo(w) = k- f——%——v— v-I 8(ku - key) a®v (3.9)

Jo(u) = kffo(;;) v-I 8(ku - k.y) &®v (3.10)

ofoly)

Ko(u) = I. —5— 8(ku - k-y) & (3.11)
Ofo ()

Mo(u) = ~15f——§———— (T.¥)(v.I) 8(ku - k. v) &®v (3.12)

to(w) = k [ £(y) (1-9) (x-T) 8w - xo3) @ (3.13)

3fo(y)
Lo(u) = kf(I v) <I' '%{,:Y“ 8(ku - k-v) av (%.14)
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We resist the temptation to write Fo as dFg/du, or to setAgp(u) equal to zero.
These and other simplifications are certainly true in the non-relativistic case.
However, the special form in which we have written the definitions in Egs. (%.1)
to (3.1&) allows us to convert them immedistely to relativistic form. In that
circumstance, most simplifying identities are no longer valid.

We now integrate Eq. (2.21) over all values ofﬁyj to obtein the first in a

set of equations. The result is:

. uf k afo(v) B FQ(U.')
_1lim du' D4~ it el 1q 1 1 Pt gt
h(X) T e->o0dJ ie+ u-u 2 Lk ) %X x(ut) + n - Fol(u')
+2 = - Jo(u') « ——
|2 LE o gL 0T g e
s [ Jolu’) k  Ofpo(v) Tolv) Sfo(v)
P2y =L L ]-Lk.w—:
o (u')® - 2 A - ¥ - @ k2" v
- Fg(u') N /gé(u') s
. {Sa + ku'Cy - 'L Co + hugl } "
L(u)2 - 2™ J B -2 / 3
Fo(u') ofo(v) k  Jfg(v) Ci 11
1L o2 R AN a vy, Lo
+ (u %) [ (u)2 - 2 %X Agl k 5x ’gp(u.) 2 - o2 J
o B[ o 1~ oly) Mooy  3fo(y)
k2 —S——X . MS + H,:IO . (?X - nm( u2 i c2) ko ax u

(3.15)

2 J0°%°Y,  3fo(y)  ¥ho-Qo  dfo(v) 1 ar Fo(y) ,.,}

" mm B - 2 Ef > " T m ’ BXA T 2k Fo ov Le
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In this equation we have setlg-z = ku and have mede frequent use of the properties
of the unit (transverse) dyadic I. Thus we have I+I = T and I.R= Rif R is a
dyadic having transverse components only. Eguation (3.15) is analogous to

Eq. (8) in Lenard's paper. We have also introduced several constants above.

They are:

- Jolu)
oo [R5,

, Jo(w)
- f .:::...-.-..——.- d_u
0 2 2

~ Fo(u)
Fo = | = du

and have used the fact that [ Folw) du= J Ko{u) du= 0. Note that Gz is

analogous to Cj3 and Cp in that its value can only be determined after we have
the solution.
A second equation results from multiplying Eq. (3.15) by k 8(ku - k-v) and

integrating over d°v.
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; ' 1 WP . FO(u') Fo(u)
X
Jo(w) -P*(u')  Jo(u')-Plu) Jo(u') +Jo(uw) Jolu') Jolu)
[HE ) s gz
(u')2 - c2 2.2 4 ° (u')2 - 2 B - 2
1 [ Folw) | . - Fo(uw | ' J
- % ‘: @ - Jo(u)-(C5 + xu'cy) - '—"'—'—ug Tz Jo(u')+(Cz2 + kuCa)
Fo(u') o Fo(u)
+ (mu' - c®) [-—-———-—- Ko(u) -¢¥ - ——— Ko(u')-Ca —’ }
(u')2 - 2™ 2. 2" ]
w2 k?KQ'QO'Jé(u) 2 SE'QO'JS(H)
PR N RO A - _FhorGod &2 Jo %
2k2 1”’1{‘0(11) S+ g Jokolu) m(w® - @) 57 T W - c®
%2R0+ Qo Kol ) ~
. Ao nm.m _ %E e ﬁp(u)'gg }. (3.16)

Equation (3.16) is analogous to Lenard's Eq. (7). We cannot use Lenard's trick

in its originel form at this point, however, since there are three functions

H(u') and P(u') under the integral sign. To obtain a solution we require a

third equation, which is obtained by multiplying Eq. (3.15) by k(y-I) &(ku - k.v)
and integrating over d°v. This equation (actuslly, of course, it is two equations)

becomes:
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: . w? Fo(u') Jo(u)
st = M8, [t 2z ) ¢ | R 3 ¢ T
o Mo(u) -B*(u')  Jolu')-T(w) ~| 5  Mo(w) +Jolu')  Molu)Jo(ur) -1
+ - + = -
(u')2 - @ Y - 2 n [ (u)2 - e ¥ - @ R
1 1 Fo(u')Mo(u) Jo(w)
- = c (S} + xuiCh) - T Jo(ur)-(ga + kuCs) }
L (w2 - 7 w’ - B ” ”
o Folu') Ko(u'}¢1
+ (w' - c) [—”-—-——--Lo(u)-c?f - Jo(u) =———— J }
(u')® - 2 MV WY - c®
W2 Lo(w) «~ ~ K2 2,2 Mé(u)-Qo-Eé
-0 R . . - Mal1) -Qne U - £ =
2 2 Lo(u)-Cc; + — Jo - Mo(u)+Qo+Ao 7. m . 2
KL (1) QoA ~
- - 3 B o) o } (3.17)

Equations (3.15),(%.16) and (3.17)represent four equations with three func-
tions of u', [H*(u') andAE*(u')/[(uf)z - c? ]} under the integral sign. We

can represent the coefficients of these functions as a matrix having four rows
and three columns. From the general theory of determinants we know that if we
multiply each row by the determinant of the 3 x 3 matrix found by the remaining
rows and add, then the sum of each of the columns is zero. In this manner, it

is not difficult to show that we must multiply Fq. (3.15) by the determinent

J



20

(3.18)

where the subscripts 1 and 2 refer to the two directions of polarization perpen-

dicular to k and where we have omitted the subscript o on Jg and M. Similarly,
A A

we must multiply Eq. (3.16) by:

1 Vi Vo

k
T R N

(3.19)

and take the scalar product of Eq. (3.17) with the vector (@ whose two components
el

are:;

1 Vi Vo

J2 M2, Mao

(3.20)
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After performing the ebove multiplications and then adding Egs. (3.15), (3.16),

and (3.17), we obtain a new equation which is no longer an integrel equation.

It is:

0P 2w X(u)
[ 1+ —P-\!f(u)] [Olh(x) + Ba(u) @ §(u)J + ——P—-?-— [&f p(y¥) +ZfP(u)
- X2 K2(v® - 2

1Jr() 2w2X()
+ T(u).@ }__ 2 u l:afo(v) +Z¥Fo (w) +@ Jo u)‘l _ e u =
Aen n - niu- - ¢

2 WP Ofo(v)
: [@ Veto(v) +57go(u) + Mo(u)'g} - kj [@ folx + I %o(w) + (. 1o(w) ]

~  ¥Qho .
X [ -+ B2 To s —— - L Focl } (3.21)

vwhere we have introduced the quantities

o - [ FL)

D ——————————— 1 \
€ > 0 ie + u -~ 1t du (5-22}

; Jolu")
Xw = U8 | T (5.23)

1lim w! - c@ F(‘)(u')

3 - ]
€ — 0 [(u,)z - 02] ie + u u

y(u) = du' (3.24)
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Equation (3.21) is somewhat anaslogous to Eq. (9) in Lenard's paper. However,

=
we cannot simply divide both sides by 1 + —g-w(u) since there is alsoc the term
k

containinglﬁﬁu). To carry through the Lenard trick, we require a second equa-
tion relating h(y) and p(yv).
Before obtaining this second set, we note some simplifications. We can

rewrite Eq. (3.24) so that

(. lm [(u")® - c® + u'(u - u')] Folu") o
€=o [(u')® - c®]lie + u - u']

Folu)
- (W +f 2P (3.25)

¥ - 2

In addition, upon integrating Eq. (2.18) we obtain an equation releting C,,

L2, and Cz which is:

2 2 TS u Fo(u)
-2 gtz — S R0 o - 13
L1 2 [ 5% L2 * 2\/“u? T du C1 - —Bo+Qo - C3 - = Jo (3.26)

The last term on the right hand side of BEq. (3.21) simplifies greatly when

Egs. (3.25) and (3.26) are substituted therein and we rewrite Eq. (3.21) as:
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,;_.._-_____R_-—.
I xB(w? - B)

o2 2 up
[ 1+ -Ev(u)} {(Z n(y) + Fut) + 8- s ] :
K2 - '

X(u)

- , w2 -
|2 2w + Brew JONCI =2 4() |(] 2o(x) + B Rl +C gt
bt n - tnad .
2 WP o2
2w [ v 2ol ¢ Hrolw) ¢ o B | 14 Ry ]
(w2 - @) " ~ -~ = ) K2
ofo(y)
X [d SVX + K@;(u) +Q- Lo(w) ] . Cy (3.27)

Note that all dependence on Qp has bheen eliminated.

We now obtain the first equation in our second set by multiplying Eq. (2.21)
by XJ'I and integrating over a%v,.

. \ uf k éfo(v) Jolu')
- 1im — du _P - o ey e~ o1 '
E(X)“e—»ofie+u—u' kg{k'_ﬁf—'[é(u)“L n } Jolu')

o(v)

- ™(u') - Mo(u'). == 1
(u1)2 2 2 N

PSS
5 -,k 3foly) Mo(u') , fo(y) ] 1 k 3fo(y)
TalX [ < K v, .> ()2 - o - Mo(u') B -2 d k k Ov
(Cz + ku'Cy) (C2 + kuC,)
[ Jo(u') ¥ - Mo(u') + ————— j’ + (w' - c®)
(u)2 - 2 2 - o2

Equation continued on next page
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Jo(uw) ofoly) =k fo(y) To(u')-La ] }
3 C v - .
[ u'2 - c2 a/vm = k a*'Y 1.12 - 02
2 w; { afo(x) o Bo (+) 1~ C\)fo(}[) 1 fo(X) ~
- . + . b S Mo —se— + = B
X2 Y. * W - o? A n 1o 4 B2 -2 ot
w2 £ Ofo(y) Do+Qo-v 2x2 K Ofo(¥) Mé'Qo'X 2 . ofo(y)
Tmm k %V 2., mm kT oy z_cz-n—xﬁBO%'T
+ 15-2- g QO'V u E . OfO(X) 4 IEE. BO QO afO(V) - J_'_
o 2 - o2 k éx nm ayv 2k
. 3fo(y) Bo'Ce k% Ofoly)
JC') . ¥ . i T =, —B__.M (5 28)
- §X -2 2k W - c? K X ’

where we have introduced several additional constants. These are:

T(w)
e [0,
2 2

u - C
’ﬁo:fzo(u) &
~ Mo(w)
Mo=f——-————- -
U.2"C2

. u Mo(u)
. [N
u2 - C2

~ Mo ()
G- [,
u2 - C2
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Note that C4 is analagous to Cji, gg, and Cs in that its value can only be
determined after we have the solution.
A second equation results from multiplying Eq. (3.28) by k 5(ku - kev) and

integrating over d3v.

. W Jo(u") Fo(uw)
lim au'’ 1 sl aat - 1
Plu) = c > OL/N TTr <o ;E Fo(w) [/ﬁ}(u ) + ]-_Qo(u ) [H(u) t }
Jo(w) Molu') 5 Mo(u')
v () - 2w |42 [z
- (u')® - # W’ - 2 4B u')® - ¢
Mo(u') 1 Jolu ‘ Fo(u') |
- -/io(u) 1 "% - Jo(u)~(9§ + ku'/Q?) - Mo(u')
W - c - FL () -2 ¥ - c®
( ) |+t - | 20 et - = e 1}
+ (C ku C ' ———— e 0 - —mm—— ')-C
Co + ku Ca + {uu c ‘(u')e-cahlfou C1 uz-czlou Ca j
—wz % B 1z 1 g
-2 ” )\Ko(u)'% + = « P(w) + = MorKo(w) + 7 . Jolu)
2 Dor@o-do(u) 22 Morfo-Jo(w . . ,
- Eﬁ > e Cnﬁz > Pt %; 0*Qo-Kolu) + K 2 Bo*Qo*Jo(u)
¥ - uf c WY -
2 ~ N' F(')(u) ~
+ %5 Do+ Qo*Ko(uw) - %E,Qogp(u)agé + %g‘ 2 Bo-C2 }' (3.29)
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The third and final equation is obtained by multiplying Eq. (3.28) by

k(y.I) 85(ku - k.y) end integrating over d%v. This is a dyadic equation (and
Pnn

thus actually 4 equations) and is:

. W o Jolu")
lim du' P [ ol aet 50 } ' Voo
T(u) T e-o ie + u - u' kzl['”s"y(u) B Jo(w) - Jo(u')
Jo(u) - MO () |
[S(u) 2 ]+ 2 |T*(u')» —————— - Mp(u')- ——T—(lll—-,
n _ (ug)2 - 02 U.2 - c2_
Mo(u') Mo(u) (e xucyn
+ %[ - Mo(u) - ———— . Mo(u)] - "IJ';' I;Io(u') « Mo(w)
(u|)2 - 02 U.2 _ 02 - (u1)2 - <.‘.2

Mo(u') \ Jo(u') *
- ——— - (C2 + ku C;) ;Io(u)J + (uw' - c®) [ ——— Ip(w) -C}

B - o2 | (4)2 - 2

Lo(u') ¢, S A Bo ~
- 2 _. 1.

—— 30| }- 2 28 Golw ¢ ——— - m(w) + Lo ol

L lg Mo(w) w? 50'@0'1‘4(')(11) o2 ﬁé'Qo‘Mé(u) 52_. Lo(u)

n0u2-02 nm ¥ - c? m W - 2 nm o

2 ~ .
+ % ;—2-——1-&-:2— BQOQQ'Mo(U.) + "'k—z— DO QO LO(u) - JO LO(U-)
1 50'92 '
+ é—k- —;‘—'—'—2- go(u) } (5-50)
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where the symbols % and‘io denote the transpose of the maﬁrix.

Equations (3.28), (3.29), and (3.30) represent eight equations with six
unknovn functions under the integral sign. Actuaslly they factor into two sets
(corresponding to pi, Pi, Tay, and Tiz in one, and pa, P2, Toi, and T2z in the
other) each having three unknown functions, and it is easy to show that one may
eliminate the unknowns by use of precisely the same multiplicative factors as
before. Thus we multiply Eq. (3.28) by the determinant A of Eq. (3.18),
multiply Eq. (3.29) by the determinant B of Eq. (3.19) and take the scalar
product (from the right) of the determinants Q of Eq. (3.20) with Eq. (3.30).

Upon addition, we obtain a new equation which is no longer an integral equation.

It is:

2 wf ~ o2
‘»l'“"‘—‘p"—" ®(u)+30}]'[@p(})+75£(u)+1‘(u Q‘I+—P- X(w)
- K2 (W - c®) ~ S -

U)Z
[@ n(y) + gH(u) + §(u)°Q} = - n—l—{‘gﬁ(u) [@ foly) + 78 7o) +go(u).k€}

2 WP

2 (o e} [ x st Bt v ]

WP A - N N o
-2-@[-%5(@3%&%%-5— o0+ o Borto - S B0 o |

[@ _T—— + gKo(u) + Lo(u) @J (3.31)
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We have introduced two new symbols above:

. Jo(u')
lim ' - ¢ 20 .
mé(u) T e-o0 42 L2 lervu-u du (3.32)
. Mo(u')
O = T | wreow (5.3)

Once again we can simplify this last result. We can rewrite Eq. (3.22)

so that

. 1\2 2 1 1
E(u) = lim (u)® - c® + u'(u - u') Ji(w) au
=0 €=o b/\ [(u')?® - c®][ie + u - u']lno h .

(W) + Ao (3.34)

where the symbols on the right hand side have been introduced previously. In

addition, wpon multiplying Eq. (2.18) by I.v and integrating over d>v we obtain

a new relation:

2 uf 2 A
1 17 ¥ 1 K
Cs = ';;B [ ok JoCe + 580G - = Do*Qo - Cq4 - 7 Mo + T Boslo ] (3.35)

where we have introduced the new constant dyadic

Cs =f(1':{) E(y) av (3.36)
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The last term on the right hand side of Eq. (%.31) simplifies greatly when

Egs. (3.34) and (3.35) are substituted therein and we rewrite Eq. (3.31) as:

l+“"”‘2"‘0§'— r@(u)+g}:|[@()+7§P()+T(u)@]+£x(u)
1{2(112 -02) ‘L ° Ez M"u - 1{2"'”

o2 _
. ECZ h(v) + ZﬁH(u) + §(u)'g3 1== - ;ﬁ; X(u) [Cz,fo(x) + Z?Fo(u) + go(u)~§2 1

2 W

- nkz(uzp_ e2) {@(u) + go } . EQ v fo(’y) + ggp(u) + Mo(u) - 4@_}
“ ofo(v) N

Equations (3.27) and (3.37) are now entirely analagous to Eq. (9) of Lenard.
Before solving them, we note that the dyadic Cs represents the self-interaction
of a particle with its own vector field. Although the coulomb self-interaction
is explicitly omitted from the initial Hamiltonian [see I, Eq. (4)], it is not
possible to do this for the transverse vector field. Instead, we must remove
this term at this point and set Cg = O.

IV. THE FOXKER-PLANCK COEFFICIENTS

Equations (3.27) and (3.37) can be written in a compact way if we introduce

the 3 x 3 matrix,
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s . 3 . (%.1)
[ 1+ BB\;; %2y, “P y,
K2 k2 X2
2 2 2 2 oS
Y(u) = 'L:)E X1 y.___é__c__ + TR (6 + go)ll £ (B+ 1’§'0)12
K2 X2 kZ
W WP ~ . 2 W ~
2% -2 (®+ Bo)zz "‘";—9’ + £ (®+ Bo)az
k2 K2 X2

where the subscripts 1 and 2 refer to the two Polarization directions perpen-
dicular to K. It should be noted that Y is a symmetric matrix (even in the

relativistic case). We also define the 3=-vectors:

of ~
(@h(y) + gH + gg- {@ES + ZfKO + Lge @ gjf
AL - -

W ‘é"‘?"‘;‘; {a, pa(v) + 751’1 + Tll@l + Tao @2 } (L.2)

no

————‘2-{0/ Pa(x) + 791’2 + TZl@l + T2l@2 }
c

A Toly) + BFo + @lJl + @2J2

<!
o
I
B

——2——; {a/ v folv) +EJ1 + Mll@l + Mle@z } (4.3)
-c

u2

';—2'—‘2"‘ {@ va folv) +/3J2 + Me1@1 + 1‘@2@2 }
w - ¢
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and
A £olv) + BFo+ Co3y + €232
Uo = % U v Fo(v) + Z?Jl + Nh1<?1 + M12C?2 (4.h)

a Vo fo(x) + 73J2 + MEl@l + 1"122@2

where we omitted the subscript O on Jo and Mo. Hence, we can write Egs. (3.27)

and (3.37) as
Y(u) - {gpr X°}=E° (4.5)
and hence
W+ Vo= Y Hu)-Uo (4.6)

We can now complete the Lenard procedure. Take the imaginary part of both
sides of Eq. (4.6). The essential point is that the gquentities H, 3, S and T,
and their associated integrals Ci, Cz, and Cs have zero imsginary parts. This
follows from the fact that they satisfy homogeneous equations. To see this,

note that

un [ g e f glu) au' ;oo (%.7)
€ >0~ ie + u - u' u - u'

-C0
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where the symbol P denotes the principle value. If we now take the imaginary
part of both sides of Egs. (3.16) and (3.30) as well as of the sum of Egs.
(%3.17) and (3.29) we find that the imaginary parts of H, P, 8, and T do satisfy
a set of coupled homogeneous integral equations. Following Lenard, we conclude

that all these quantities are zero. Thus Eq. (4.6) becomes

h(v)
2 pyl -
™ _;Eiggl = ZM_LX_iLELl « Uo (4.8)
W - c? A (w) .
2 pa2(y)
| ® -]

vwhere IM denotes the imaginary part.
As we shall see in a moment, we are interested only in the particular

combination

IM{h(X) —_

[nm@+mmw{}
(v ~ c®)

Hence we take the scalar product of Eq. (4.8) and the row vector

O = [l, Vi, Vg] (Ll"9)

(2N

to obtain this. Thus



33

(4.10)

LS

[vi pa(x) + v2 pal(y)] }'= a-(mMY™).
¥ -c

The quantity calculated above is precisely the quantity which appears in

the Fokker-Planck equation. This is seen by substituting the Fourier integral

representations of g(1,2) and g(l,v) into the right hand side of Eq. (4.1) in

I. The integrals are elementary and we obtain

(4.11)

r.h.s. =

b.)2
! )

Since the equation is real, only the imaginary parts of h, E, and F contribute.

From Egs. (2.18) and (2.19) we see that

w? IM p(v)
ME= -2 £ =2 (4.12)
- k¥ @ - c®
Py IM p(v)
MF=-2 i = (4.13)
- W' - 2
Hence Eq. (4.11) mey be written as:
1 d W
r.h.s. = - o -fdskk—ﬁm{h(v.)
v v—kg ~1

(2m)® "~

(L4.14)

+ —E [va Pl(x) + Va Pz(z)] }
& - o2 :



and by Eq. (4.10) this becomes

1
(ex)®

r.h.s, = -

1
M koo
iQ

Uo
cL (MYt . ”id- a®k (L.15)

1

This result can be expressed in a much simpler form by expanding Up, as

defined in Eq. (L.4),in the following manner:

U Fo 1 Jd2 73
&9 1 1 C
a:- =3 foly) G+ Jy My Mio d 1

Jdo Moy Moo Ca2

From the definitions of ({, /5, (°1, and U2 in Egs. (3.18) to (3.20), we can

see almost at once that

/o 1 i -l
74 x  Aoly) Fo 1 Jda2
1@, =--%. JiMiy Mi e
Q 1 " T % 1'1 1'2 o
@2 J2 Mgy Moo
Hence if we define the tensors
Fo J1 Jd»
G={ J1 M3 My» (4.16)
Jdz Moy Mpo

and
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Fo J1 Ja
G' = | J1 M1y Mio (4.27)
J2 Moy Meo
then
90 1 }i af()(/\}z;) -
a—jza{fO(X)-E.TG.(G) :\,9‘_ (4.18)

We can now express the result in Eq. (4.15) in a standard form.

foly) (4.19)
o1

r.h.s. = -%-{”f}_fo(x) + B " TSy

where
w2 k
A-—2— /= mlo- 3.0l & (4.20)
(21)3nvY %2
e k k
B /== mig.§- g0l @ (4.21)

(2x)%n k3

Equation (4.19) represents our final result. Although the derivation has

been carried through in a non-relativistic way, the results are made relativistic

by simply replacing
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9 g
ST
end v - a3¢
everywhere, and considering fo(t) as normalized to unity for integration over
"R

d®¢t. The quantity v itself remains explicitly the relativistic velocity and is

related to & by

g
mv = e (L.22)

MO

For convenience in using Eq. (%.19), we repeat here the essential definitions

which appear in the three matrices Y, G, and G'.

Vo '
1im L/‘ Folu') du

W =5 J Trasw (4.23)
: Jo(u') au'
X(u) = elimo ie + u -~ u' (k.24)
) Mo(u') au’
lim
O = % | ey (.25)
~ dfo(y)
Bo = f(I 'V) I- —6'—— d v ()4-.26)

Fo(u) = kffo(x) 8(ku - k-v) &®v (k.27)



ofo(v)
Fo(w = k + | —5o— d(ku - k.v) a®v (14.28)
,{p(v) = kb/ﬁfo(gj(xol 8(ku - k.v) a®v (4.29)
Ofo(
J5(w) = k f—%;i v.I 8(ku - k.v) &®v (4.30)
Ho(w) = k f £o(x) (T.y)(T.x) 8(ku - k.y) v (4.31)
ofo(y)
Mo(u) = k « | —s7— (I-¥)(I-y) 8(ku - k.y) v (k.32)

V. SELF-CONSISTENCY
It is easy to show that the final results are self-consistent in that the
imaginary part of the self-interaction is actually zero, and in that the

imaginery parts of H, P, S, and T are zero. From Eq. (4.12) we have
m [ (1.9 B @#voc [ (1) Mp(n) 80 - ky) &
and by Eq. (4.8) this becomes
oC f(I-,y;) Uo 8(ku - k.y) &v

vhere the second and third components of the Uo vector, as defined in Eq. (4.4),
are involved. From our basic definitions, however, and by use of Egs. (3.18)

to (3.20) it is easy to see that
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f(I-X)l B s(su - kv) @ = 0 (5.1)
[ @w278 st - k) @@ = o0 (5.2)
f(I',X)l@1 8(ku - k-v) &v=- ([ (5.3)
[ (02Cs stm - k2w @ = 0 (5.4)
[ 01 Ce steu - 5w v - 0 (5.5)
[@walestm - xp - - L (5.6)
Hence
f(I.lr) Vo 8(ku - k-y) @%v = 0 (5.7)

vhere this holds for all three components of Up. Hence the self-interaction

vanishes.

Similarly, since
f 73 8(xu - xev) &@v= - (5.8)
f@l 5(ku - k.v) v =0 (5.9)

f@g 8(ku - k-v) a®v = 0 (5.10)
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we can show immediately from Eqs. (4.8) and (4.4) that IM H and IM P are zero.
Finally, since IM ﬁkand IM T are also proporticnal to the quentity on the left
hend side of Eq. (5.7), they too are zero.
VI. ISOTROPIC MOMENTUM DISTRIBUTION

The general result of Eq. (4.19) simplifies greatly if we assume that the
zero order kinetic momentum distribution is isotropic. Thus, using the full
relativistic notation, we assume that

fo = folp
e

where p stands for the kinetic momentum (i.e., p - = A).

canonical c
Now, by Eq. (4.29)

Jolw) kffo(pz) v-I 8(ku - k-y) &®p

=0

by symmetry. Similarly, by Eq. (4.30)

afo(pe)
I v.I 8(ku - k-y) d%p

i

;Ié(u)

-

and by Egs. (4.31), (4.32), and (L.26)

Mo(w) = T [ 20(e%) ¥2 Bl - k1) (6.1)



Lo

, afo(Pe)
Mo(u) = mIk- — vZ 8(ku - k-y) a°p (6.2)

~ dfo(p®)
Bo=ml [ —5— W a®p (6.3)

We see at once that the tensors G, G', and Y are all diasgonal now. Hence

Fo/Fd 0 0
%; = 0 M1y /M1 0 (6.4)
0 0 Mll/Mil
and
w2 -1
{1 . B \F(u)} 0
X2
W2 -1
2 2 ~
Y () 0 ( v-c . P (@4-30)11}
L 2 K2
2 2
0 0 ]’ —




L

4 )

S 0 0
(1)2 2
|1+ 2y
K2
_ w2 ™ @3_61
IMY1=—k323 0 " 0
2 2 U ~ 2
luzc +'P'§@+ Bo)lll
K2
™ @fl
0 0
w2
2 2 ~ 2
| 27§L'+ -S (@+~Bo)11|
Kk
_ /

vhere the denominators represent the ebsolute squares. Now by Egs. (4.7),

(4.23), and (L4.25),

m 1 Folu)

i

i
=Y
=
[l
=
o
p—

M P11

Hence, putting all these results together,

w wi Xk Fé(u) (v - w3) M:;.l(u)
— - E ’:_ 3
Nﬁ i (2ﬂ)3nf1{4 { ¥ o " o = N 2 } d~k (6.5)
2 2V [ S 2 (0 B
]
ey Pk [ Tl (v - ) My ()
— - P A A f .
B = (gﬂ)snfks 1 2 . + - = N - } Bk (6.6)
1+ 2y)| | 5=+ 2 (@ Bo)a]
K2 12
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For completeness, we rewrite the remaining (relativistic) definitions

that enter in Egs. (6.5) and (6.6)

Fo(w) = k [ £o(p®) Bl - ko) @ (6.7
, _, [ 9fo(p?)
Fo(uw) = mk:fT 5(xu - 4133(_) aSp (6.8)
. Fo(u')
y(u) = eli?o {E—E—Gf:_ET du' (6.9)
. Mo(u')
@(u) = el_];mo Tera- o du' (6.10)

Note that there is now automatic Debye shielding for long wavelength (i.e.,
small k) perturbations and that the coefficients no longer diverge logarith-
mically in that limit. One must still introduce an artificisl cutoff for short
wavelengths (i.e., large k) in the usual manner. The first term in/é‘and B
represents interaction between particles via coulomb forces only, and the long
wavelength cutoff in this case is of the order of the Debye length. The second
term in év and B represents interaction between particles via the transverse

electromagnetic field and its cutoff occurs at the distance

1/2

()
hme®
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which is in accord with the usual magnetic screening depth. Note also thet the
transverse terms are smaller than the longitudinal terms by the factor (v/c)2.
VII. MAXWELL-BOLTZMANN DISTRIBUTION
We expect that the Fokker-Planck terms should venish when fo is a Maxwell-
Boltzmenn distribution. This is readily verified. The relativistic Maxwell-

Boltzmann distribution is

1
2 212
fo= A c c[p®+(me)® 12 /kT (7.1)
where A is a constant. Hence
afo P
= - & e fo
1/2
—OE KT 192 4+ (mc)2]Y
vhich, by Eq. (4.22), is simply
afo X_
- - wr fo (7.2)
Hence, by Egs. (6.8) and (6.2)
Folu) = - %% Folw)
Mo(u) = - % Mo(u)



Ly

Hence, by Eqs. (6.5) and (6.6)

r.h.s =-m$°§{fo+a—wﬁ-—§§ =0

by Eq. (7.2).

Finally, if we take the non-relativistic limit of Egs. (6.5) and (6.6),
the trensverse terms vanish, and we obtain the result given in Lenard's Egs.
(12) and (13) except for normalization. Note that in this paper, and in I, the
normalization follows unembiguously from Eq. (1.1) and the definition of the
reduced distribution functions given in Eq. (8) of I. The normaslization of fgo
is to wnity. In Lenard's paper, fo is normalized to n.

In a subsequent paper, the results obtained above (which are for a plasma
composed of electrons and infinite mess ions) will be generalized to the case

of an arbitrary number of finite-mass ion species.
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