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nor the Commission, nor any person act ing on behal f  of the Commission: 

A. Mokes any worronty or representation, expressed or implied, w i th  respect  t o  the accuracy, 
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any informotion, apparatus, method, or process d isc losed i n  th i s  report may not  in f r inge 

pr ivate ly  owned r ights ;  or 
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any information, apparatus, method, or process d isc losed i n  th i s  report. 

Nei ther  the Uni ted States, 

B. any l i ab i l i t i es  w i th  respect t o  the use of, or for domoges resul t ing f rom the  u s e  of 

As used in the above, "person oct ing on behal f  of the Commission" inc ludes ony employee or 
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ORNL-3040 
Exact Rela t iv i s t ic  Fokker-Planck Coefficients: I1 and I11 

Corrigendum 

Page 5 - Replace 8n by 4rr i n  Eq. (2.1). 

Page 6 - Replace 8n by 431 everywhere i n  Eqs. (2.2), (2.3), and (2.4). 
Page 7 - Delete the fac tor  2 i n  Eq., (2.6) and (3 times) i n  Eq. ( 2 . 7 ) .  

Thereafter, exp l i c i t l y  delete  a l l  fac tors  of 2 (not  including 
those i n  superscripts o r  subscripts) which may appear i n  - - a l l  subsequent 
equations through Eq. (4.14) [except f o r  the (2R) -3 i n  Eq. (4 .11)  1. 

0' 

Also delete  the 2 i n  (u2 - c 2 ) / 2  which appears i n  Eqs. (6.5) and 
(6.6) and i n  the matrices on pages 40 and 41, 

Page 14 - The f i rs t  term on the  second l i n e  should have a negative sign 
i n  f ront  of it. 
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Exact Rela t iv i s t ic  FoUer-Planck Coefficients f o r  a Plasma 

Albert Simon 
O a k  Ridge National Laboratory, *- Odk Ridge, Tennessee 

ABSTRACT 

We consider a plasma which, i n  zero order, i s  s t a t i c ,  spa t i a l ly  

uniform, and i n f i n i t e  i n  extent and with no external e l ec t r i c  o r  magnetic 

f ields.  Exact r e l a t i v i s t i c  Fokker-Planck coeff ic ients  are  obtained by 

a solution of the f i r s t  order coupled in t eg ra l  equations f o r  the  p a r t i c l e  

and osc i l l a to r  p a i r  correlat ion functions. 

generalization of the method of Lenard and Balescu. 

f i c i e n t s  have contributions from both coulomb interact ions and from 

interact ions v ia  transverse electromagnetic fields. 

The solution i s  by a 

The resul t ing coef- 

*-Operated by Union Carbide Corporation fo r  the U.S. Atonic Energy Commission. 



I. INTRODUCTION 

I n  a previous paper,’ we have generalized the expansion procedure of 

Rostolrer and Rosenbluth2 so as t o  include the radiation f ie ld .  

point vas the Liouville equation fo r  the density i n  phase space of a system of 

charged pa r t i c l e s  and a denumerably i n f i n i t e  set of f i e l d  osc i l la tors .  

chain of equations was then obtained by integrat ing out the coordinates of all 

but s pa r t i c l e s  and t osc i l l a to r s  f o r  a11 possible values of s and t. 

solution of the e n t i r e  chain of equations would then be found i n  the form of 

an expansion i n  powers of e, m, n ’, and V-’ where e i s  the  p a r t i c l e  charge, 

m i t s  mass, n the p a r t i c l e  density, and V the volume i n  which the system i s  

enclosed. 

The s t a r t i n g  

A 

A 

c 

To lowest order the solution of the s par t ic le ,  t osc i l l a to r  d i s t r ibu t ion  

function was of the  form: 

S t 

k= 1 h-1 

where we have abbreviated the pa r t i c l e  coordinates q 

l a t o r  coordinates q vA by A. 

p a i r  of equations which were seen t o  be equivalent t o  the  usual Vlasov equations 

plus an added equation f o r  the  f ie ld  osc i l la tors .  [These equations were denoted 

as (13a) and (13b) i n  I. 3 

v by k and the osc i l -  ~ k ’  -k 
The functions f i ( k )  and fk(A) obeyed a coupled A’ 

To the next order the solution was of the form: 

2 

. 
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S S t S t t 
f s J t  1 = 1 fi(j) fl ' fi(k) fl f ; f ( v )  + fi(k) 1 f i ( A )  fl f:(v) 

j = l  k= 1 v = l  k= 1 ?Fl v = l  

S t 

k= 1 v = l  

where the primes denote omission from the product of those indices which are i n  

the sums. 

The p a i r  correlat ion functions &( i, j )  and g( i, A) obeyed a coupled set  of 

The f i rs t  order p a r t i c l e  in tegra l  equations [denoted as (38) and (40) i n  I]. 

d is t r ibu t ion  function I?:( i) and the f i r s t  order o sc i l l a to r  d i s t r ibu t ion  function 

f:().\) also obey a coupled set  of i n t eg ra l  equations [denoted as (41) and (43) 

i n  I1 which also involve g( i, j )  and g(i,A) . 
are e l l  time reversible.  

asymptotic solutions of the g ( i ,  j )  and g( i, A) equations (rather than the exact 

time-dependent values) i n to  the equations f o r  fi(i) and f i ( A ) .  

These equations, as they stand, 

I r r eve r s ib i l i t y  i s  achieved by subst i tut ing the 

The resu l t ing  

equations are then i n  the usual Fokker-Planck form. 

This procedure seems en t i r e ly  similar t o  the  Bogoliubo? approach which 

assumes t h a t  the t i m e  development of the p a i r  correlat ion function i s  very 

rapid compared t o  the time development of the  d is t r ibu t ion  function and hence 

tha t  the t i m e  asymptotic value of the correlat ion function should be used i n  
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the equation f o r  the d is t r ibu t ion  function. It i s  a l so  seen fram Bogoliubov's 

formal assumption t h a t  the many-particle d i s t r ibu t ion  functions s h a l l  depend on 

time only through the time-dependence of the one-particle d i s t r ibu t ion  function. 

Camparing with Eq. (1.2) we see t h a t  t h i s  implies t h a t  g ( i ,  j )  and g( i , A )  we  t o  

be used as time-independent quant i t ies  i n  the f i n a l  equations f o r  the  p a r t i c l e  

d i s t r ibu t ion  functions and hence t h a t  t h e i r  time asymptotic values are t o  be 

used. . 
Our s t a r t i ng  point then w i l l  be the coupled set of i n t eg ra l  equations for 

g ( i , j )  2nd g(i,A) . We W i l l  then obtain the t i m e  asymptotic solutions of these 

equations for the  case of a zero order p a r t i c l e  d i s t r ibu t ion  which i s  s ta t ion-  

ary i n  time and uniform i n  space and f o r  a zero order o sc i l l a to r  d i s t r ibu t ion  

which i s  s ta t ionary i n  time. W e  will assume throughout t h a t  the pa r t i c l e s  are 

electrons, and that there are also i n f i n i t e  mass ions uniformly d is t r ibu ted  so  

as t o  provide a neutral iz ing background. 

A t r u l y  consistent treatment of plasma, including radiation, requires t h e t  

the plasma be t rea ted  r e l a t iv i s t i ca l ly .  Nevertheless, we s h a l l  derive our re- 

sults by the use of non-relat ivis t ic  equations. However, the f i n a l  results 

will be made r e l a t i v i s t i c  by use of the  sme prescription as i n  I [see the d is -  

cussion preceding Eq. (4.24) i n  t h i s  paper]. 

11. TKE PAIR CORRELATION EQUATIONS 

From Eq. (13b) of I, we see t h a t  i f  fk ( i )  (note  that we drop the super- 

s c r ip t s  hereafter) i s  space independent then the most general s t a t i c  solution of 

this equation i s  f ($ + wfq:). Equation ( lga)  of I ( i n  the  absence of any 

external f i e lds )  i s  then sa t i s f i ed  by an a rb i t r a ry  function of the electron 
O h  
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9 

velocity, fo(v)  . 
vanishes and t h a t  the coeff ic ients  i n  Eqs. (38) and (40) a re  space-independent 

end hence t h a t  we may Fourier analyze i n  space. 

vas already carr ied out i n  the  last  section of I; however, it was expressed 

en t i r e ly  i n  te rns  of r e a l  s ine and cosine transforms. 

i n  terms of the more usual complex exponentials and the r e su l t s  are: 

Applying these r e su l t s  t o  Eq. (39 )  of I, we see t h a t  F (1) M O  

This Four#ier transformation 

It i s  simpler t o  do t h i s  

and : 
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In  the above equations and v K r e f e r  t o  the coordinates of t h a t  o sc i l l a to r  

with propagation vector k and with a uni t  transverse polar izat ion vec to r ,u .  

sum over K then denotes the sum over the two orthogonal polar izat ion directions.  

?,!e have a l s o  suppressed the  exp l i c i t  dependence of the p a i r  correlat ion func- 

t ions on I\*r k and t. The usual plasma frequency 4me2/m i s  denoted by fi P and 

d? = c2$. 

t h a t  Eq. (2.2) i s  equivalent t o  Eqs. (63) and (64) of I. 

course, the superscript  * denotes the usual complex conjugate. 

The 
&- 

Note that Eq. (2.1) i s  equivalent t o  Eqs. (61) and (62) of I, and k 

I n  t h i s  paper, of 

Equations (2.1) and (2.2) may be simplified by defining the  following 

moments : 

With t h i s  def in i t ion  Eq. (2.1) becomes: 



c 7 

. 

If we multiply Eq. (2.2) by e i the r  9~s o r  i v  u 

sum over K ,  we obtain a closed p a i r  of equations i n s  and F. 

in tegra te  over dqK dvK and K-K' 

These are: 
*) 

+ i F(v) = - i k - 7  3fo(;_v) J E ( 1 ' )  d3v' 
k2 N" r*. 

A -  

and 

(&-i; 

(2.6) 



. a 

where the un i t  transverse dyadic I i s  defined as 

I =  I&% 
U 

K 

and the dyadic QQ i s  

(2.10) 

Note t h a t  i f  there i s  no radiat ion present i n  zero order then &o i s  zero, and i f  

the radiat ion i s  unpolarized then QQ i s  a constant times I. 

and &o are  s t i l l  functions of m k. 

forms i n  time and assuming that a l l  p a i r  correlat ions a re  zero a t  the i n i t i a l  

time. Hence, we obtain: 

Note a l so  t h a t  I 

We fur ther  simplify by taking Laplace t rans-  

(2.11) 

. 
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(2.12) 

where the quant i t ies  g, .E, and F now denote the Laplace transforms and whose 

exp l i c i t  dependence on k and p has been suppressed. 
u-b 

Equations (2.12) and (2.13) may be solved immediately f o r  E and F by noting 
/%-A - 

t h a t  the in t eg ra l  terms a re  simply vector constants (more precisely, they a re  

functions of k and p) whose values can be determined from the solutions them- 

selves. 

MI 

For the moment, we denote them as follows: 

and solve immediately t o  obtain: 
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(2.16) 

w2 
v x (&x &o) ] - ( i p  + k-v) v l - 1  g ( w l )  d3v1 - ( i p  + m -  k-v) 

I W A  s - *- mP 

One can now solve f o r  $ and 22 by integrat ing Eqs. (2.16) and (2.17) over d3v, 

but  we shall not do t h i s  a t  t h i s  point. 

(2.17) i n to  Eq. (2.11), we f i n a l l y  obtain a simple in t eg ra l  equation f o r  

Upon subst i tut ion of Eqs. (2.16) aad 

A s  mentioned ea r l i e r ,  we s h a l l  consider only the time asymptotic solution 

i n  t h i s  paper. Now i f  we r e s t r i c t  ourselves t o  zero order d i s t r ibu t ion  func- 

t ions fdi) and fo(A) such t h a t  the Laplace transforms of the p a i r  correlat ion 

functions have no poles i n  which p has a posi t ive real p a r t  (i. e. , no ins t ab i l -  

i t i e s ) ,  then we may write 

. 



. 

At the r i s k  of some confusion, we shall now let the notaticn g(v.v.) denote this 

limit, with a similar understanding f o r  the quantities E(v) and F(v) . "1-J 

Thus 
M r r Z  M h  

and we now take this limit in Eqs. (2.16), (2.17), and (2.11). 

and (2.17) become: 

Equations (2.16) 

(2.18) 



where we a re  f r ee  t o  take the l i m i t  i n  the denominator, since i n  a properly 

r e l a t i v i s t i c  plasma there will be no electrons moving with the veloci ty  of l i g h t .  

The denominator i n  Eq. (2.11) does not have t h i s  feature,  however, and t h i s  equa- 

t ion  becomes: 

(2.20) 

We now subs t i tu te  Eqs. L2.18) and (2.19) i n  Eq. (2.20) and, a f t e r  some rearrange- 

ment, f ind  that :  



. 

f 0 ( X j )  afo(,-vi) fo(zJ 

""J 2 2 61 
+ ' [  v:I* '7 + 

-1 (k*v.)2 - k c (k.v.)2 ,.+ -J - p~~~~ b NIi 1 

(Equation continued on next page) 

. 
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k*v.  
c1- + 

(2.21) 

We have taken advantage of the f a c t  t h a t  some terms were proportional t o  k(v  

t o  eliminate the denominator. 

- v . )  
-J 

These terms a re  i n  the second bracket of Eq. (2.21). 

,.-- -i 

111. GENERALIZATION OF THE IENARD-BAJZSCU METHOD 

Equation (2.21), despite i t s  formidable appearance, may be solved exactly 

by a generalization of the method of Lenard and B a l e ~ c u . ~  

functions 

We define the new 

h(v) = g ( w ' )  d3v' 
c s -- 

H(u) = kJh(_v) 6(ku - " A h  k*v) d3v 

. 



S(U) = k 1.v h(v)  6(ku - k*v) d3v 
ryc I - -  -- 

as well as the modified zero-order functions 
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We resist the temptation t o  write FA as dFo/au, o r  t o  set k ( u )  equal t o  zero. 

These 6nd other simplifications are cer ta in ly  true i n  the non-relat ivis t ic  case. 

However, the special  form i n  which we have m i t t e n  the def ini t ions i n  Eqs. (3.1) 

t o  (3.14) allows us t o  convert them irmnediately t o  r e l a t i v i s t i c  form. 

circumstance, most simplifying i d e n t i t i e s  a re  no longer val id .  

ur\, 

I n  t h a t  

We now integrate  Eq. (2.21) over a l l  values of vJ t o  obtain the first i n  a 

s e t  of equations. The result is :  

.. 



. 

In  t h i s  equation we have s e t & * v  = ku and have made frequent use of the properties 

of the unit (transverse) dyadic 

dyadic having transverse coqonents only. 

Eq. (8) i n  Lenard’s paper. 

They are: 

w 

I. Thus we have 1.1 = I and I - R  = R i f  R i s  a 

Equation (3.15) i s  analogous t o  

We have a l so  introduced several  constants above. 

rv Jo ( u) 
nM Jo =Ju; du - c2 

du 
u2 - c2 

and have used the f a c t  tha t  

analogous to51 and (32 i n  that i t s  value c m  only be determined after we have 

the solution. 

I F i ( U )  du = %(U) du = 0. Note that C3 i s  
mr, 

A second equation r e su l t s  from multiplying Eq. (3.15) by k 6(ku - 1c-x) and 

integrating over d3v. 
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Fo(u')]- F;(u')[ H(u) + n 
(.2 

I? 
2 { F&(u) [ H*(u') + -7 du ' 

(3.16) 

Equation (3.16) i s  analogous t o  Lenard's Eq. (7) .  

i n  i t s  or ig ina l  form a t  this point, however, since there  are three functions 

H(u') a n d z ( u ' )  under the in t eg ra l  sign. 

t h i r d  equation, which i s  obtained by multiplying Eq. (3.15) by k ( ~ * 1 )  6(ku - N l -  k.v) 

and integrat ing over d3v. 

becomes: 

We cannot use Lenard's t r i c k  

To obtain a solution we require a 

This equation (actual ly ,  of course, it i s  two equations) 



Equations (3.15), (3.16) and (3.17)represent four equations with three func- 

t ions of u t ,  [H+(u') and P*(u ' ) / [ (u ' )*  - c2 I]  under the in t eg ra l  sign. We 
A M  

can represent the coeff ic ients  of these functions as a matrix having four rows 

and three columns. From the general theory of determinants we know t h a t  if we 

multiply each row by the determinant of the 3 x 3 matrix found by the remaining 

rows and add, then the  sum of each of the  columns is  zero. 

i s  not d i f f i c u l t  t o  show t h a t  we m u s t  multiply Eq. (3.15) by the determinant 

I n  t h i s  manner, it 
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where the subscripts 1 and 2 r e fe r  t o  the two direct ions of polar izat ion perpen- 

dicular  t o  k and where we have omitted the subscript  o on k*. JA and g. Similarly, 

we must multiply Eq. (3.16) by: 
M 

and take the sca la r  product of Eq. (3.17) with the vector 

are  : 

whose two components 
4 
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After performing the above multiplications and then adding Eqs. (3.15), (3.16), 

and (3.171, we obtain a new equation which i s  no longer an in tegra l  equation. 

It is: 

where we have introduced the quant i t ies  
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Equation (3.21) i s  somewhat analogous t o  Eq. (9) i n  Lenard's paper. However, 

w2 
we cannot simply divide both sides by 1 + $(u)  since there i s  a l so  the term 

k2 

containing L(u). 
t ion  re la t ing  h(x) and "u p(,v). 

To carry through the Lenard t r ick ,  we require a second equa- 

Before obtaining th i s  second set ,  we note some simplifications.  We can 

rewrite Eq. (3.24) so t h a t  

In  addition, upon integrat ing Eq. (2.18) we obtain an equation re la t ing  '21, 

(32, and,C3 which is: 

The las t  term on the right hand side of Eq. (3.21) simplifies grea t ly  when 

Eqs. (3.25) and (3.26) are  substi tuted therein and we rewrite Eq. (3.21) as: 

. 
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. 

Note t h a t  a l l  dependence on (& has been eliminated. 

Ile now obtain the f i r s t  equation i n  our second s e t  by multiplying Eq. (2.21) 

by v.  -1 and integrat ing over d3v . "J 3 

Equation continued on next page 
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where we have introduced several  additional constants. These are: 

du 

. 
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. 

Note t h a t  C4 i s  analagous t o  h C1, $2, and cs i n  t h a t  i t s  value can only be 

determined after we have the solution. 

A second equation results from multiplying Eq. (3.28) by 1; 6(ku - P z &  k*v) ma 

integrat ing over d3v. 

ru N 
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The t h i r d  and f i n a l  equation i s  obtained by multiplying Eq. (3.28) by 

k(x*I)  6(ku - E.2) and integrat ing over d3v. 

thus ac tua l ly  4 equations) and is: 

This i s  a dyadic equation (and 

n 
T(u) = l i m  J du' 

€ 3 0  i e  + u - u t  

. 
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A A 
where the symbols T and LQ denote the transpose of the  matrix. 

Equations (3.28), (3.29), and (3.30) represent eight equations with s i x  

unknown functions under the  in t eg ra l  sign. Actually they fac tor  i n to  two sets 

(corresponding t o  pl ,  P1, T11, and T12 i n  one, and p2, Pp, Tp1, and T2p i n  the 

other) each having three unknown functions, and it i s  easy to show tha t  one may 

eliminate the unknowns by use of precisely the same multiplicative fac tors  as 

before. 

multiply Eq. (3.29) by the determinant 

product (from the  right) of the determinants e of Eq. (3.20) with Eq. (3.30). 

Upon addition, we obtain a new equation which i s  no longer an in tegra l  equation. 

It is :  

Thus we multiply Eq. (3.28) by the determinant a of Eq. (3.18), 

of Eq. (3.19) and take the sca la r  

- 
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We have introduced two new symbols above: 

Once again we can simplify t h i s  last  result. We can rewrite Eq. (3.22) 

so t h a t  

N 

= x(u> + 50 
& 

(3.34) 

where the symbols on the ri&t hand side have been introduced previously. 

addition, upon multiplying Eq, (2.18) by 1.2 and integrat ing over d3v we obtain 

a new relat ion:  

In  

where we have introduced the  new constant dyadic 



The l a s t  term on the r igh t  hand side of Eq. (3.31) simplifies great ly  when 

Eqs. (3.34) and (3.35) are  substi tuted therein and we rewrite Eq. (3.31) as: 

Equations (3.27) and (3.37) a re  now en t i r e ly  analagous t o  Eq. (9) of Lenard. 

Before solving them, we note t h a t  the dyadic C 5  represents the self- interact ion 

of  a p a r t i c l e  with i t s  own vector f i e ld .  Although the coulomb self- interact ion 

i s  exp l i c i t l y  omitted from the i n i t i a l  Hamiltonian [see I, Eq. (4)], it i s  not 

possible t o  do t h i s  f o r  the transverse vector f i e ld .  

t h i s  term a t  t h i s  point and s e t  C 5  = 0. 

Instead, we must remove 

IV. TKE FOIIKER-PLANCK COEFFICIENTS 

Equations (3.27) and (3.37) can be writ ten i n  a compact way i f  we introduce 

the 3 x 3 matrix, 

. 



where the subscripts 1 and 2 r e fe r  t o  the two polarization direct ions perpen- 

dicular  t o  2. 
r e l a t i v i s t i c  case).  

It should be noted t h a t  Y i s  a symmetric matrix (even i n  the  

We a lso  define the 3-vectors: 

W =  
..+-% 

1 vo = - 
- n  



and 

1 
n 50 = - 

Ufo(X1  + z?Fo + @1J1 + @2J2 1 
(4.4) 

where we omitted the subscript 0 o n 2 0  and &. Hence, we can write Eqs. (3.27) 

and (3.37) as 

and hence 

We can now complete the Lenard procedure. Take the imaginary p a r t  of both 

sides of Eq. (4 .6) .  

and t h e i r  associated in tegra ls  _Cl, C2, and z3 have zero imaginary par t s .  

follows from the  f a c t  t ha t  they s a t i s f y  homogeneous equations. 

note t h a t  

The essent ia l  point i s  t h a t  the  quant i t ies  H, - L  P, S and T, 

This 
m 

To see th is ,  

. 
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. 

where the  symbolP denotes the pr inciple  value. 

pa r t  of both s ides  of Eqs. (3.16) and (3 .30 )  as w e l l  as of the sum of Eqs.  

(3.17) and (3.29) we f ind  t h a t  the imaginary p a r t s  of H, P, S, and T do s a t i s f y  

a s e t  of c o q l e d  homogeneous in tegra l  equations. Following kna rd ,  we conclude 

tha t  a l l  these quant i t ies  are zero. 

If we now take the imaginary 

- 6 -  

Thus Eq. (4.6) becomes 

IM 
u2 - c’ 

2 P 2 ( d  

u‘ - c‘ - 

where IT4 denotes the imaginary par t .  

A s  we s h a l l  see i n  a moment, we are in te res ted  only i n  the par t icu lar  

combination 

Hence we take the sca la r  product of Eq. (4.8) and the row vector 

a = [l, v1, v21 
b 

(4.9) 

t o  obtain th i s .  Thus 
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The quantity calculated above i s  precisely the quantity which appears i n  

the Fokker-Planck equation. 

representations of g(1,2) and g(1,v) i n to  the r igh t  hand side of Eq. (4.1) i n  

I. 

This i s  seen by subs t i tu t ing  the Fourier i n t eg ra l  

The in tegra ls  a r e  elementary and we obtain 

(4.11) 

Since the equation i s  real ,  only the imaginary p a r t s  of h, ,E, and E contribute.  

From Eqs. (2.18) and (2.19) we see that 

9 IM err- p(v) 
IME/ - 2 2  

k2 u2 - c2 
(4.12) 

Hence Eq. (4.11) mcy be W i t t e n  as: 

(4.14) 
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and by Eq. (4.10) t h i s  becomes 

This result can be expressed i n  a much simpler form by expanding UO, a.s 
K 

defined i n  Eq. (4.4), i n  the follotring manner: 

From the def ini t ions of a, p, f-1, and @ z  i n  Eqs.  (3.18) t o  (3 .20 ) ,  we can 

see almost a t  once t h a t  

Hence i f  we define the tensors 

(4.16) 

and 
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then 

We can now express the result in Eq. (4.15) in a standard form. 

bfo(Z> 
T r.h.s. = -av a { A  - fo(2) t- B 

K 

where 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

Equation (4.19) represents OUT final result. Although the derivation has 

been carried through in a non-relativistic way, the results are made relativistic 

by simply replacing 

. 
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and d3v 3 d 3 ~  

everywhere, and considering fo(  6) as normalized t o  uni ty  f o r  integrat ion over 

d3t. 

re la ted t o  5 by 

*v*, 

The quantity v i tself  remains exp l i c i t l y  the  r e l a t i v i s t i c  veloci ty  and i s  
vr- 

,MC 

(4.22) 

For convenience i n  using Eq. (4.19), we repeat here the essential def ini t ions 

which appear i n  the three matrices Y, G, and G ' .  

(4.23) 

(4.24) 

. 
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V. SELF-CONSISTENCY 

It i s  easy t o  show t h a t  the f i n a l  results are self-consistent i n  t h a t  the 

imaginary p a r t  of the self- interact ion i s  ac tua l ly  zero, and i n  t h a t  the 

imaginary p a r t s  of H, P S, and T a re  zero. From Eq. (4.12) we have -’ - 

and by Eq. (4.8) t h i s  becomes 

where the second and t h i r d  components of the UO \. vector, as defined i n  Eq. (4.4), 

a re  involved. 

t o  (3.20) it i s  easy t o  see t h a t  

From our basic  def ini t ions,  however, and by use of Eqs. (3.18) 

. 
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s(I._v)ze2 6(lru - - c c  k-v)  d3v = - a (5.6) 

Hence 

where this holds for all three components of UO. 

vanishes . 
Hence the self-interaction 

,u. 

Similarly, since 
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ire can show immediately from Eqs. (4.8) and (4.4)  t ha t  I M  H and I M  A& P are zero. 

Finally, since I M  S and I M  T are  also proportional t o  t h e  quEtntity on the l e f t  

hend side of Eq. (5 .7) ,  They too are zero. 

LIS 

V I .  I S O T R O P I C  MOMENTUM DISTRIBUTION 

The general result of Eq. (4.19) simplifies grea t ly  i f  we assme t h a t  the 

zero order k ine t ic  momentum dis t r ibu t ion  i s  icotropic.  

r e l a t i v i s t i c  notation, tre assune tha t  

Thus, usinG the full 

fo  = fo(P2> 
e 

' Pcanoxxi.cal c - -A), where p stands f o r  the k ine t ic  nomenturn ( i . e .  

Now, by Eq. ( 4.29) 

= o  

by symmetry. Similarly, by Eq. (4.30) 

= o  

and by Eqs.  (4.31), (4.32), and (4.26) 

. 
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We see a t  once tha t  the tensors G, G ’ ,  and Y a re  a l l  diagonal now. Hence 

and 

Y - l ( U )  0 

0 

0 

0 
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IM \lr* 0 0 

IM @:1 
0 0 

0 

L 

where the denominators represent the &solute squares. 

(4.231, and (4.25), 

Now by Eqs.  (4.7), 

Hence, put t ing a l l  these r e su l t s  together, 
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For cmpleteness, we rewrite the remaining ( r e l a t i v i s t i c )  def ini t ions 

t h a t  enter  i n  Eqs. (6.5) and (6.6) 

Note that there i s  now automatic Debye shielding f o r  long wavelength ( i .e . ,  

small k) perturbations and tha t  the coeff ic ients  no longer diverge logar i th-  

mically i n  that l i m i t .  One must s t i l l  introduce an a r t i f i c i a l  cutoff f o r  short  

wavelengths ( i . e . ,  large k) i n  the usual manner. The f i r s t  term i n  A and B 

represents interact ion between pa r t i c l e s  v ia  coulomb forces only, and the long 
r? 

wavelength cutoff i n  t h i s  case i s  of the order of the Debye length. The second 

term i n  A and B represents interact ion between pa r t i c l e s  v i a  the transverse 

electromagnetic f i e ld  and i t s  cutoff OCCUTS a t  the distance 

Ire^ 

e 
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which i s  i n  accord with the  usual magnetic screening depth. 

transverse terms are smaller than the longitudinal terms by the fac tor  ( v / c ) ~ .  

Note a l so  t h a t  the 

V I 1  . MAXWELL-BOLTZMANN DISTRIBUTION 

We expect t h a t  the Fokker-Planck terms should vanish when fo i s  a Maxwell- 

Boltzmenn dis t r ibut ion.  This i s  readi ly  ver i f ied.  The r e l a t i v i s t i c  Maxwell- 

Bo1tun;tnn d is t r ibu t ion  i s  

1 
-c[p2+(mc) 2 5  I /KT 

f o = A e  

where A i s  a constant. Hence 

which, by Eq. (4.22), i s  simply 

V 3fO - 
f0 F-= - -  KT 

Hence, by Eqs. (6.8) and (6.2) 

mu 
KT F;(u) = - - Fo(u) 

mu &(u> = - KT M 0 ( d  

(7.2) 
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Hence, by Eqs.  (6.5) and (6.6) 

Substituting this in Eq. (4.19) (in relativistic form) we have 

3 KT - r.h.s. = - m a p  M A { fo I- u i; ap 
v 

by Eq. (7 .2 ) .  

Finally, if .we take the non-relativistic limit of Eqs.  (6.5) and (6.6), 

the transverse terms vanish, and we obtain the result given in Lenard's Eqs. 

(12) and (13) except for normalization. 

normalization follows unambiguously from Eq. (1.1) and the definition of the 

reduced distribution functions given in Eq. (8) of I. 

is to unity. 

Note that in this paper, and in I, the 

The normalization of fo 

In Lenard's paper, fo is normalized to n. 

In a, subsequent paper, the results obtained above (which are for a plasma 

composed of electrons and infinite mass ions) w i l l  be generalized to the case 

of an arbitrary number of finite-mass ion species. 
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