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ABSTRACT
The ripple characteristics of infinite, lumped solencids are
treated by a Fourier analysis. The transition from finite to in-
finite systems is pointed out. The coefficients in the resulting
Fourier series for an infinite set of coaxial, equal current-bearing
loops are solved for exactly. For loop radii, R, large compared to

the spacing distance, )K\ , an approximate form for BZ on the axis 1is

A

where BSOL is the field due to an infinite, uniform solenoidal

current sheet. The calculation is extended to points off the axis.

!R' -2n} 2x
B=BSOL(1+21r~>-\e A cos=12z), RO\,

An approximate solution is also found for an infinite set of rec-

tangular coils.
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INTRODUCTION

In the design of magnetic fields the problem of infinite,
Jlumped solenoids often arises. In this treatment, certain impor-
tant properties of these systems are studied. In particular, the
ripples in the magnetic field due to lumped systems is of most
interest. It is of importence to have simple formulas from which
one may easily see the behavior of such systems. Most attacks
are hampered by difficult summations and integrations. However,
it was found here that several integrals could be evaluated giving
the desired simple results.

It has been through the encouragement of Dr. R. J. Mackin, Jr.,

and Dr. W. F. Gauster that this work has been done.
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A Note on Finite Sets of Loops

Before beginning the study of the case of an infinite set of
loops it might be well to point out the effect of taking a finite
set and increasing its number of elements. In seeing this transi-
tion, perhaps the results from the infinite sets will be more appli-
cable to realizable situations.

Let us start with a pair of loops at the axial points - % and
% , carrying a current i. We wish to estimate the effect of adding

another pair of loops at the points - Zo and Zo' More specifically,

we want to know the ripple produced by this addition.

0 0 0] 0
'_'1; IL 4} 4.r +
A A
-Z, -2 0 2 Zo
0 0] 0 0

We define the ripple, A, as the difference in the field at the point
2\

s and that at 0. Hence, for the outer pair we may write:

A = B(z_ + -12-2\) + B(z_ - %7\) - 2 B(z,) (1)

If we expand B( z) in a Taylor series,

h2

B(zO +h) = B(zo) + B’(zo)h + B”(zo) T e

then we obtain for A:

‘——'
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A
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2
A= 3B"(z) {;‘ (2)

Now in MKS units we calculate for a circular loop

2 2
3 .2 hz® - R
B"(z) = = u iR —_— (3)
2 "o (Zz . R2)7/2
From equation (3) it clear that
B"(z) 20, if z > R/2 (L)

Now when the equality of (4) holds we have the familiar Helmholtz coil
pair with A = 0. It is now clear that adding loops inside the point

zZ = R/ 2 makes A more negative, while adding loops outside this
interval makes A less negative. It may also be shown that when
sufficiently many loops are added A Dbecomes positive approaching

a limit as the set becomes infinite.
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Calculeation of BZ Along the Axis for Loops

In this section we expand the field due to an infinite set of
circular, coaxial current loops in a Fourier series. Each loop has
the same dimensions and carries the same current, i. They are also
equally spaced by a distance 7& . It will be found that we have
the field due to a uniform solenoidal current sheet with small har-

monic perturbation terms.

The field produced at a point z on the axis due to a loop displaced

\)?\ meters from the origin is given by

jaV]

uOiR 1

2 [(z -va)% &E |3/

B(z) = (MKS units)

Now to find the field due to all the loops we must sum over V from

- o0 to + 00:

00
2 v("‘l
1 iR
B(z) = =2 £f> Rk = 1)
( : Yy = -00 [(Z -VA)Z + RZJ 3/2 (

The magnetic field of such an infinite array will be a periodic
function of 2z. This 1s obvious since, as we advance along the 2z axis
from cne loop to another, we see the same physical structure. Our

function then must have this distance, A , as its period. Having
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such a periodic function, we shall perform a Fourier analysis. We
would represent B{(z) as

(€3]

B(z) = B + Z Tn cos(—z?—’\[- nz) (2)

n=1

To evaluate P, we multiply each side of equation (2) by dz and integrate

from - %to %\ Note that the integral of the cosine series vanishes
so that we have
2
iR® : <
B ; az (3)
T OT2A -y 2 2713/2
N [z -vA® + &% ]

To evaluate the integral let
u=z-AvV, du=dz

Interchanging the order of summation and integration:
, o 2 -Av
oot du (4)
2 2 2 )Wz
(u + R
v=-%/ 2 ay
2

Now note that equation (4) is of the form:
1 1 3

3 1 1
- 32 % P



so that

S
e

2 fOO
. M N S o' (5)
ZA J <u6+R2) 3/2 A
-0

We observe that B is the field due to an infinite scolenoidal current

sheet with current per unit length equal to iAA_ . Therefore, con-
tributions from the rest of the series will be perturbations of this
uniform field.

Now let us proceed to calculate the coefficients in the series.
Multiply each side of equation (2) by cos k %% z and integrate from
- % to %‘. Using the orthogonality relation the integral over the

Fourier series gives VnA‘ Thus,

<
A2
7n7\= uoiR2 / cos (n% z)dz (6)
2 2 J:(Z Y )2 . R2J3/2

_7>/2

Proceeding as before in the evaluation of the integral,

let z - VA = u, dz = du
whence n zn Z = n 2 u + ny 2n
A A
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2
Since cos ( n 7’-{- u+ny2x ) = cos n -g?\’-t- u, we then have
£ Al
. iR2 1 Z -AY
y_ = ° cos n 2X y
n .
A = -00 z 2\ 3/2 (7)
v 2 (u + R )
-3 -\

As before, the summation sign is incorporated in the integral:

- (6,0]

) iRd cos n 2 u du
Yo = 2 )\2 372 (8)
A u + R )
-00
*
This integral may be evaluated in the following way. It is known
that
o0
cos Cxdx
— = K (o) (9)
2
J ( a2 4 x )1/2 o
o}
where KO is the modified Bessel function of the second kind.
Differentiate each side of equation (9) with respect to B. This is
permissible since the resulting integral is uniformly convergent.
Qo
cos axdx o
—— 23z = B % (@) (10)
(B” + x7)
o

*
Grobner and Hofreiter, Integraltafel, Springer-Verlag, 1950, pp.
333-78a.
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We have then that

Ty = (%) nh:{% K, (n2x ;) (11)

We may, therefore, write the Fourier series as

00
poi wo i !

B(z) = -%—— + —% lm§ E nKl(n2n§)cos n%g\z (12)
n=1

For large values of x, Kl(x) may be expressed by the asymptotic relation
1/2
IS -X
Kl(X) AL (E—X) e
In problems of interest this is a reasonable approximation, so we write:
2nR
2nR

-1 ———
~ nR A
y o= _9_> 2n )= e , n —;\— >> 1

For large values of the argument we may drop all but the first term

in the expansion, obtaining

~ R -2nR 2
B(z) = B, lenoid (1 + Zﬂ&; e S - SO5 A2 ) (13)
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Following is a table of the amplitude of the first harmonic

the quantity R/\;

R/ Amplitude
1 1.07 x 1072
2 3.1 x 1077
3 6.1 x 10
L 1.74 x 10710
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Extension to Points off the Axis

For a current free region we have

—>2—)
or J"A=0

Using this property of the field it is a straight forward procedure to

show that the magnetic quantities of an infinite set of loops off

the axis are given (14)
by
00
5 R 2 2

Ag = Bgyr (f/a+ lm/_—\ 2 nKl(nZn—g) Il(n—;\—f)cos n-)%z )

n=1

0o

R ! R 2 2

BZ=BSOL(1+LH(;\ ZnKl(HZT{;—\)IO (n—/—\ﬂ—}p)cosnj\j‘-z (15)

n=1

00
B, = - By (lm% Z nKl(nZn%—) I, (n%f) sinn—zfz)
n=1

Here )D is the distance from the axis to the point in question.
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An Approximate Solution for Rectangular Coils

If we think of the current in a loop, i, as being a current
density, J, we might sum a group of such loop sets to approximate

a coil. In the limit this sum approaches the integral over the

coil cross-section.

— of —> -
| ok - l /\* &R T ‘ . | ,1; J } b T;“ * ﬁ .
AEEEENI R EES— |
T R.
;RI
i L\\/ L -
3 N St A
S : : : \‘ ‘\ \ ) ‘\ . . ' “ l' ©
y RN R ‘ 4 E

We might begin by integrating a function of the form of equation (1)
over a coll cross-section; however, this method results in some

distasteful integrals. We choose Instead to integrate the approximate

equation

P

uJ
dB = —%—(1+2ﬁﬁe

Let us first perform the X integration, which may be done directly.

cos %’{- (z- § )dRd§ (16)

Using a trigonometric identity we have

ol
/2 w J -2xR
dB(z) = dR —%—(14-2 % e A cos%\’—[(z -§) d¥

ok/z
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-2nR
dB(Z)=dRuOJf(7"\(l+-i—<:’\ /%e Aosinﬂ%, cos%zz) (17)

Now if J 1is thought of as a current per unit length we again
have & solenoid field with a small harmonic correction term. Thus,
equation (17) represents the first order field produced by an
infinite set of current sheets of width @ surrounding the axis.

We now proceed by integrating equation (17) with respect to R

between the limits Rl and RZ'

RZ -Zn_fj

B(z) =uOJ; (l+—i<—7-\ \/—g e A sinf;\—xocos—i%(—z ) 4R (18)

B

The second part of equation (18) must be integrated by parts.

After simplifications the result is

z z
7Y} = 9 +A2 f}_e-[i f—zeﬁ
B()—quhéh R

1 1 . 2n
+ u—@ erf(fz) - __HT? erf(fl)}smj cos = 2 (19)

4 2

R
where fl = 2n %l , fz = Znﬁg
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In earlier parts of this development we have assumed f 17 and f 5

to be large compared to 1. We may then use the asymptotic form

of erf(x):

[a%]

1 X , x D21

x \[x'

erf(x) ~ 1 -

Equation (19) then becomes

2
2 -
Ny &L T 2
B(z) = pod X + 55 [\E;e ( l;fl)

- (1 - —1-2)] sin & cos 22, (20)
\JZn kaz A N
We now note that 1> —L-,« ; so that substituting for

B e

fl’ fz we get

| _zntl _2nR2
B(Z) =B _O_‘ l+ﬁ -Ri]—"-ae —X-E-Z--e _A—singcosﬁ
" TsoL X o A A A Ac

where B = prh
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A Numerical Example
Let us take

: fe_, o _ 1 no_,
A )A :}\ )I:)\

With these values we calculate

Amplitude of first harmonic = .88 x 1077

It is clear that with such realizable dimensions a very uniform
field can be produced. Naturally, this is an approximate value;
however, it is to within an order of magnitude. High speed computer
codes are being written to better check this value with both

infinite and finite coil arrangements.
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