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ABSTRACT

An investigation is made of the focusing properties of axially symmetric inhomog-
eneous magnetic sector fields with arbitrary circular boundaries. In first-order approxi-
mation the field is assumed to vary as ™" (0 < » < 1). The equations of motion for the
ion trajectories are developed from a least-action principle and solved through second-
order approximation. Suitable expressions are derived for the horizontal and vertical
focus positions, which are located outside the field boundaries. The mass dispersion
and resolving power are found to vary as (1 — 2)~! and so are considerably increased
over the corresponding values for the homogeneous field (n = 0). Expressions for the
second-order radial and vertical aberrations are derived. It is shown that the second-
order radial aberration may be eliminated by proper shaping of the magnetic field and/or
field boundaries. An equation is developed for the profile of the pole faces required to
produce the desired field. The results are finally modified to account for the defocusing
action of the magnetic fringing field. A numerical example is presented for a symmetrical
spectrometer having a 90° sector field with » = '/2 For this case simultaneous double

directional and second-order radial focusing are possible.
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FOCUSING PROPERTIES OF INHOMOGENEOUS MAGNETIC SECTOR FIELDS

M. M. Bretscher!

1. INTRODUCTION

1/2

Axially symmetric nonuniform magnetic analyzers in which the field varies as r~ have

been used to achieve double directional focusing and improved resolution in beta-ray spec-

2-7 8-14

trometers and in nuclear spectrometers. Theoretical calculations of the ion-optical

properties of these magnetic lens systems in which both the source and collector are located
within the field boundaries have been treated by several authors,'>=2!

First-order focus conditions for inhomogeneous magnetic sector fields, wherein the source
and image lie entirely outside the field region, have been calculated by Svartholm, 22 Judd,?3
Rosenblum,24 and Stemheimer, 2’ Alekseevski et al.26 recognized that a magnetic field varying
in the midplane as r=" (0 < » < 1) could be used to increase the resolving power and mass dis-
persion by a factor of (1 - n)~'. Several mass spectrometers bsing this principle have been

7 Svartholm?® and Fischer?? have proposed mass spec-

reported in the Russian literature. 2
trometers employing crossed nonuniform electric and magnetic fields as a means of obtaining

simultaneous velocity and two-directional focusing of charged particles.

lSummer Research Participant from Valparaiso University, Yalparaisoe, Ind,
2K, Siegbahn and N. Svartholm, Nature 157, 872 (1946).

3F. M. Beiduk and E. J. Konopinski, Rev. Sci. Instr. 19, 594 (1948).

4 N.D. Kurie, J. S. Osoba, and L. Slack, Rev. Sci. Instr. 19, 771 (1948).
SA. Hedgran, K. Siegbahn, and N. Svartholm, Proc. Phys. Soc. (London) A63, 960 (1950)
SN. F. Verster, Physica 16, 815 (1950). '

7E. Arbman and N. Svartholm, Arkiv Fysik 10, 1 (1956).

8C. W. Snyder et al., Phys. Rev. 74, 1564 (1948).

9C. W. Snyder et al., Rev. Sci. Instr. 21, 852 (1950).

10¢. Mileikowsky, Arkiv Fysik 4, 337 (1952); 7, 33, 57 (1954).

V15, Rubin and D. C. Sachs, Rev. Sci. Instr. 26, 1029 (1955).

. Pauli, Arkiv Fysik 10, 175 (1956).

. E. Chambers and R. Hofstadter, Phys. Rev. 103, 1454 (1956).

4, Blanchi, E. Cotton, and C. Mileikowsky, Nuclear Instr. 3, 69 (1958).
15N, Svartholm and K. Siegbahn, Arkiv Mat. Astron. Fysik 33A, No. 21 (1946).
V6N, Svartholm, Arkiv Mat. Astron. Fysik 33A, No. 24 (1946).

17 B. Shull and D. M. Dennison, Phys. Rev. 71, 681 (]947), 72, 256 (1947).
H. W. Franke, Osterr. Ing.-Arch. 5, 371 (1951); 6, 105 (1952)

Y94, Grimm, Acta Phys. Austriaca 8, 119 (1953).

20p_ W, Stoker et al., Physica 20, 337 (1954).

21, g, Lee-Whiting and E. A. Taylor, Can. J. Pbys. 35, 1 (1957). A
22, Svartholm, Arkiv Fysik 2, 115 (1950). '
23p, L. Judd, Rev. Sci. Instr. 21, 213 (1950).

24g s, Rosenblum, Rev. Sci. Instr, 21, 586 .(1950).

25R. M. Sternheimer, Rev. Sci. Instr. 23, 629 (1952).

. E. Alekseevsky et al., Doklady Akad. Nauk S.5.S.R. 100, 229 (1955).

275, V. Dubrovin and G. V. Balabina, Doklady Akad Nauk S.S.S.R. 102, 719 (1955).
28\, Svartholm, Arkiv Fysik 2, 195 (1950).
29p, Fischer, Z. Physik 133, 471 (1952).
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31 have examined second-order aberrations

Recently, lkegami3® and Tasman and Boerboom
arising in the focusing of charged particles by inhomogeneous magnetic sector fields. The effect
on the second-order aberration terms due to the fringing field has been estimated by Judd and
Bludman3? for the case of a 180° double-focusing alpha-particle spectrometer.

A mass spectrometer using an inhomogeneous magnetic field with index n = 0.80 has recently
been built at this Laboratory, while a second instrument, “taking advantage of the double
directional focusing property characteristic of n = ]/2 fields, is currently under construction.
It seemed desirable, therefore, to carefully re-examine the ion-optical properties characteristic
of nonuniform magnetic fields. In this rebort,Athe equations of motion for the ion trajectories
are developed from a least-action principle analogous ‘to the Fermat principle in geometric
" optics. These equations are solved through second-order approximation. Suitable expressions
for the mass dispérsion, the resolving power, and the horizontal and vertical focusing positions
are derived. It is shown that second-order aberration terms may be eliminated by proper shaping
.of the magnetic field, and an equatién is developed for the profile of the pole faces required to

produce this desired field. Finally, it is shown how the results must be modified to account

for the defocusing action of the fringving field.

2. THE MAGNETIC FIELD

We shall express the equations of motion for the ion troiecforiés within the magnetic induction
field B in terms of the cylindrical coordinate system r, ¢, = On the midplane (z = 0) the field is
directed along the z axis so that a positively charged particle will move in the direction of in-
creasing ¢. )

The magnetic field is assumed to have cylindrical symmetry with respect to the z axis and

mirror symmetry with respect to the median plane z=0. On this plane the field may be expressed

by a series expansion in the vicinity of the circular equilibrium orbit of radius 7q+ Thus
B,{(p,0) = By (1 — np + bp? - cpd 4+ dpt ..,
where we define the dimensionless coordinates p and o as .
r—r, z
p= R . o= —, o . (M
"o o ’

and B is the induction field at p = o= 0. If the field in the median plane is assumed to vary as

r~", the identification & = n{n + 1)/2 can be made. However, we shall assume that By, & ¢, and

d are experimentally adjustable parameters.

3%, Ikegami, Rev. Sci. Instn 29, 943 (1958). : .

3]H. A, Tasman and A, J. H. Boerboom, Z. Naturforsch. 14a, 121 (1959).
32D, L. Judd and S. A, Bludman, Nuclear Instr. 1, 46 (1957).




Within the gap V x B =0 and VB = 0, from which it follows that
1
Bp(p,o) = B, l— no + 2bpo — 3cpt o+ 4dpd o —Z(n +2b - 6¢) 0'3 +
. .
) +§(n+2b+3c— 12d)pa3—...J (2)
and

1 1
B, (p,0)= Bo[] —np + bp? — cp3 + dp? —-...+-2-(n—2b)02—§.(n+2b—6c) po?+
1 1
+§(n+2b+3c—]2d)p202—ﬂ(n+2b+]2c—24d)04+...} . (3

We next evaluate, to third-order approximation, the magnetic ‘vector potential A which will

generate this field. Since the magnetic field B =V x A is independent of &,

dA dA
r

z

B, = 0,
* 9z ar

and we may choose the vector potential so that the components A_and A, vanish, It is apparent
from (2} and (3) that the nonvanishing component of the vector potential may be expanded in a

power series of the form

Ag= L Aypiol . : (4)
5,j=0

Now the coefficient A,, corresponds to the vector potential of a homogeneous field with B, = B.

Hence

A Bofro d ] B
=— rdr=— r
00 ro o 2 0'0

From the defining equation B=V x A,
By=-———=~— ) jA;p'cl"! (5

and

- ZA-ijPin> S )

¥ T A
—{(1 A, =— A pi=lol 4+
e = <Zl U P

—r0(|+p) dp o \ig

The remaining coefficients Aij are evolﬁoted by comparing Eqs. (2) and (3) with (5) and (6).



The results are:

Am:An:Azl=A31=A03=A13=0' )
1 1

AQO=—BOr0 , Aso =—Bor(n+2b) ,
2 6

A ] b

10 =75 Bo"o - Ayg == bByrg s } 7)
1 3

A —nB,r A —cB,r

02=2 0’0

AZO

1
40 = _]—2—Boro(2n+b—3c)

=—77ZB°7‘0 ’ A

J

Since V x B-= 0 within the pole gap, a magnetic scalar potential function ¢, exists such that

=-V¢_ . ' (8)

We may express ¢ in terms of a power series in p and 0. Since B has mirror symmetry with

respect to the z = 0 plane, only odd powers of o appear in the expansion of ¢ . Thus

$p= L ayplo?M (9)
i, =0
and from (8),
1 9%, ! ' 1,27+
byt =—;z. gt
4,7
: (10)
1 9%,
BU=——-T= a, 27+]pcr ,
rg 90 o it

which permits one to evaluate the a;; coefficients. Including terms through fifth order, the scalar

potential becomes

1 1
b,, = Byro | = O+ mpo - bpzd——é—(n— 2b) cr3+cp3cr+z(n+2b—6c) pos —

] 1
_dp4a_z(n+2b+3c_12d)p od 4 0 (n+2b+12c =24d) o> +... | . (11)

Equation (11) is used to calculate the magnetic equipotential surfaces. If the pole shoe is made
of a material of large permeability at the field strength used, the pole surface is one of

constant magnetic scalar potential. For this surface we put
¢,,(p,0) = const = — B, rof , (12)

where the constant & is given by (11) with p = 0 and o = g/(2r,); g, is the gap width at the



- equilibrium radius 7y, Thus

3
1 & 1 8o
=—— 4+ —(n - —_ oo o 13
£ +48( 2b)< > + ‘( )

Computing o as a function of p from (11) by successive approximations we obtain
1 L 1
o= & ]_Z(n—Zb)fz} + [n+z(—4n2+4nb+n+2b—6c)§2} & +

+(n?2 - b) §p2+(n3v-2nb+c) rfp3+... . (14)

Since £ and p are considerably less than unity in most cases of practical interest, (14) rapidly
converges and gives the equation for the profile of the pole shoes required to produce the de-
sired field shape (2) and (3). As will be shown later, the parameter b is so chosen as to
minimize the second-order radial aberration terms. On the other hand, ¢ and 4 are oArbifrary
and may be set equal to zero.

Pole pieces with conical surfaces may be used to satisfy first-order focusing requirements.
The profile of the pole face is then a straight line, and hence the slope do/dp, evaluated from

(14), must be constant, Thus the coefficients of the p2 and p:'1 terms must vanish, and we have
do

1
— = const = nf+ —né&3(1 = 2n - 202) . (15)
dp 6 .

As is seen from (13), £~ ]/2go/r0 << 1, and so
n y— tan —, (16)

where y is the angle between the extensions of the conical pole pieces, as illustrated in Fig. 1.
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Fig. 1. Pole Shoes with Conical Faces.



3. THE EULER-LAGRANGE EQUATIONS OF MOTION

In nonrelativistic mechanics the principle of least action,33 for conservative forces, may

be written as
Af2T dt=A[peds=0 ,

where T is the kinetic energy of the particle, p the momentum, and ds an element of displace-
ment along the path. For the velocity-dependent rho_gnefic force, one must replace the momentum in
the above equation by p — gA, where ¢ is the charge of the ion and A the magnetic vector po-
tential. Thus

Af(p-qA)eds=0 . (17)
This is the Schwarzschild34 variation principle and applies to the motion of charged partic'les
in a magnetic field. It is analogous to the Fermat principle in geometric optics.

Since the magnetic force always acts-at right angles to the ion velocity v, the component of

momentum along the path is constant. Equation {17) then becomes
| av-A iy Irie
Af ds — —— dt =Af ds — = de =Af ds ————d¢p | =0,
b . 14 v 2mqV ‘

where m is the mass of the ion and V the potential difference through which it has been acceler-

ated. With

ds = [(dr)2 + 72(d¢>)2 + (dz)2]1/2 - (712 + 724 212)1/2 d¢

where the primes represent differentiation with respect to ¢, the Schwarzschild variational

Af<\/,'2+r2+z’2 _ /27:‘/ rA¢>qu=0 ,

or, in terms of the dimensionless coordinates p and o,

AJ‘<\/P’2+(1+F,)2+U~'2‘._ /2er (I+p)A¢>d¢=O . - (18)

The Euler-Lagrange equations for the orbit are therefore

d [ OF JF
dd \ dp’ - dp

d [ OF \ OF 0
d_¢; 90’ ) o !

]950335ee, for example, H. Goldstein, Classical Mechanics, chap. 7, Addison-Wesley, Cambridge, Mass.,

34K, schwarzschild, Nachr. kgl. Ges. Wiss. Gottingen, Math.-pbysik. KL 1903, 126.

principle becomes

[}
o




where F is the integrand of Eq. (18). Defining
q . .
=/, (20)
" 2mv ,

we now expand F through third order (in p and o), making use of (4) for the vector potential.

Thus ..

F

I

Vs o247 4077 - n(1+p) 4,

1 - o
+0°?) ——2—p(p'2+0'-2)+... -n(l+p) L A p'o!
i

2

[l

1
l+p+—(p°
P 2(P

1
?(p'2+0'2)(] —=p)+ Fyg+ Frop+ F20p2 + F0202 + F30p3 + F]zp(Tz N 1 )]
where, with the aid of (7),

' 1
F00=]-—T]A00=] ——2—7]3070 ,

Fiog=1~nlAgg+4y9) =1 -7Byr,

_ 1By g '
Foo = - r](A20 + A_]O) = - 2 (1-n) ,
] (22)
Foa = = ndgy = ~5 ™MByro
1
Fyo = - ~7,(1430 + Azo) =-3'—1yB0 ro(n—b) ,
F]2=—17(A]2+A02)=—T]Bor0<—2——b .

These results are in agreement with those given by Glaser.3?

4. ION TRAJECTORIES WITHIN THE SECTOR FIELD
Successive approximations -for the ion trajectories are found by substituting F into the Euler-
LLagrange equations and retaining terms in F up to one order higher than that of the approximation
wanted., One defines the order of approximation by the highest degree in Por Tor Pgs and Uo' (the

values of p, 0, p, and 0 “at ¢ = 0) appearing in the expression for the ion paths.

35y, Glaser, Handbuch der Physik (ed. by S. Fligge), vol 33, p 308 ff., Springer-Verlag, Berlin, 1956.



Zero-Order Approximation

Keeping terms through first order in F, we obtain from Egs. (19), (21), and (22) F10=0,

and so

1

o = (23)
o By
This gives the radius of the central path for ions of mass My, velocify v,, and charge o+
First-Order Approximation
Retaining terms through second order in F, the Euler-Lagrange equations become
p" = 2pFyy = Fyy
0" —20Fy,, =0,
where p” = d2p/dp? and 0" = d%0/dp?. The solutions to these equations are
) 1 Fio
p = C,sink ¢ + C,cos ky ¢ T E
20
(24)
O = K, sinky¢ + K, cos k¢,
where kf = ~2F,, and kg = -2F,,. The constants C,, C,, K,, and K, are determined from the
initial conditions. Thus
-1/2 1 Fio
p=(0-n) Po sin k& + p0+§— cos k, ¢,
20
(25)

= 1/2 s
o=n 0, sin ky ¢ + O, cos k, ¢
In the radial plane the orbit (through first-order approximation) is seen to oscillate about the

)1/2

central path of radius 7, with a frequency (1 - 7 dop/dt, while a second oscillation occurs

about the median plane, z=0, with a frequency n'/2 d¢/dt. These observations are in agreement

with those of Kerst.3¢

Second-Order Approximation

Now keeping terms through third order in F, the Euler-Lagrange orbit equations reduce to

] .
10t 3F30p2. + Flzo2 , (26)

"

Pt kfp = pp" v+—2—(p'2—0”2) + F

o" + k3o =po" + ’p’+ 2F,0p . (27)

36D. W. Kerst and R. Serber, Phys. Rev. 60, 53 (1941).




Note that all the terms in p and o on the right-hand side of these equations are of second degree,
whereas those on the left-hand side are all of first degree. We may therefore approximate the
right-hand terms making use of the first-order solutions given by (25). Thus (26) and (27) may be

written as
“p" o+ k?P = /1 (&) (28)
o + k§0= {2 (@) , (29)

where f and /, are known functions of ¢. Equations (28) and (29) may be solved by the method

of variation of parameters. Thus
p =4 (#) sin ky ¢ + B, () cos k, ¢ , (30)

where

b
[}

1
. k_[f/](¢)cosk]¢d¢+(,‘3],
‘ (31)

o]
1

: ,
. —_k_[f/](¢)sink]¢d¢+C4]
1

An analogous solution may be written for o,

Solution to Radial Equation. —~ Lengthy though straightforward integration- of (31) gives

the second-order approximation for p, which may be written in the form
’, ’ .2 . 2
p($) = Hy + poHy + pgHy + piHyy + popgHyy + pg  Hyy + Og Hyy +

’, ’2
+ OgOHay + O Hyy (32)

where A
2 ' 2
Fio /Fa0 1 2 Flo [ 3F30 1 ]
Hoz——— — —— 1 sin kl¢___ -— kl¢smk1¢+
14 &2 2 B4 22 2
1 1 1 1 _
F. 4F F
10 10730
(1 — (l—coskl¢),
2 4
k]‘ k]
Fio 2F3y ) Fio [3F3 1 '
H]= 1 - sin k1¢+.__ — 5 kl¢smkl¢+
2 2 2 2
k] kl kl kl
2F 4 F39 2F) o F3o
+ 11+ cos k1¢ - '
4 k4



u Fyo [ 2F3 ] _kq; - Fio /1 3F3 I b é
= - sin cos +— = - cos +
2 k3 k2 1 1 k3 2 kz 1 1
1 1 1 1
1 Fio FioF30 .
+ — +— sink; ¢ ,
k) 2k2 k4
1 1
F3o 1 9 F3o
Hy = — -5 sin‘k, ¢ + (]——cosk]qﬁ) ,
k2 k2
1 1
1 2Fao .
Hiy=— 1 - (sin k, ¢ cos k¢ — sin k)
k'l k2

22

1 1 Fip + %k
2
Hy, =—<F12 ——k > (1 - cos ky¢p) ————— (cos 2k, — cos k; ¢)
2(4k§ - k2)

H 2 o k, ¢ ' 2k, ¢ <F : k2
34 F—— -— Sin 1 — — Sin 2 ]2 + — 2 ]
ky(4R2 — k) \ 1 2 2

1,2
1 1 1 F12+/2k2
Hyy =— _<F12—?k§> (1 = cos ky p) — —————— (cos k, ¢ — cos 2k, ¢})

2| p2 2 2
2k | &y 4k; — kJ

If one restricts the solution to the median plane, terms in % and Cfo' do not appear and (32)

reduces to the results recently published by Tasman and Boerboom.3”

Now we suppose all ions are of charge g,, but we allow a small momentum spread given by

p=p,(14B) , (33)
where B is small — of first order.
Then
1/2 '
90 90 Mo
7 = < ——> N )
2my p 1+8

37H. A. Tasman and A. J. H. Boerboom, Z. Naturforsch. 14a, 121 (1959).

10



where, from (23), 970 By = 1. It then follows from (22) that

! 0
2. _2p, =~ k2 2F,, = —
k]_— F20_]+B’ 2 7 02—~|+B’
F F
10 30 n-—b X
— = B R [ . > (35)
(n/2) = b n— X(1 = n)
1277 BT ’
+ (1+p8) y
where
2n - b '
x=An-8 (36)
1-n

With the aid of these equations the second-order approximation for the radial coordinate of the

ion trajectories (32) now becomes
p($) = poDy + gDy + BDy + Pl Dyy + pgpgDyy + pg BDy 3 +9g Dy +

’ ’ ’2
+p0/8D23+/82D33+<702D44+c70<70 Dys+052Dgs o, (37)

where
Dl =cos k¢ , Dy =(l - n)~1"2sin ki , Dy=(1 -1 —éosk]¢) ,
1
Dyy =-<-S-[(X—3) sin2k1¢+x(] - cos k, 1,
D]2=%(]—n)']/2(3—X)(sink]¢cosk]¢—sin E #)
Dys =gy (26 = X sinhy 643X = (1= m)/2 g sin by ¢ -
- 2X(1 — cos k, $)] ,
1

D22=6—(]————;)—[(X—3)coszk]¢—2(X—3)cosk]¢>+X] ,
D =——]—— [2(X-—3)sink]¢coskl¢—3(x—])(]—n)]/2¢cosk]¢+
23 6(1 - n)¥/2 ‘

+ (6—3n+X)sink]¢] '
D =——L—[(X—3)Sin2k]¢—3(x—])(]—n)]/2¢sinkl¢+
P61 -2

+ 4X(1 - cos k, é) 1,

1



X
D“=_4—(]—cosk]¢)—m(cosﬂzzq&—cosk]qﬁ) ,
2b in &, in 2k,
= - sin ,

45 57 -1 (]_n)l/Z SN 2nl/2 2
1 X
D55=_Z (cosk]qS—cosZkqu)+—2—-(|-—cosk]¢)

If we omit the D

45

(38)

, and D, terms in Eq. (37), the solution reduces to the orbit in the

median plane and then corresponds to Tasman's result.3’ The Dy3 Dyqs and D, terms differ

slightly from the corresponding terms in Tasman’s equation, and it appears that the latter results

are in error.

Solution to Axial Equation. — Following the same procedure as that presented above, the

solution to the axial equation of motion (29), for ions of momentum Por IS

where

14

12

i

[

- ’ ’ ’ ’ ’
O=0gE, +O0gEg+paOg By, +Pg00Eyy + Py Eys+Py%% E ’

52 -1

1
+_
2

kyky = (n = 2b)

a~|a~
N

1

sin k2¢ -

sin k, ¢ cos k, ¢ —

070725

n+2b
5n -1

1
cos kyd + :?—cos k, & cos ko +

n-—-2b

2k, k,

sin k, ¢ sin ky & +

kyky + (n = 2b)

4k, (2k, — ky)

k. -k -
cos (ky = k1) ¢ Ak, (2%, + k)

k, ‘ k,
sin (/e2 - k]) b

42k, — k) 42k, + ky)

cos (k] + kz) ¢ ~

(39)

sin (k2 + k]) o,



w -

: ky /- 5a o 2An(n - 38) + bl Cn—2b .
E = T ) cos ky¢ - in k, b+ cos k, ¢ sin k, ¢ —

24 s
S5n — k2(] —72)(571—]) 2k$k2
k, 1 ‘ k,
= cos k, ¢ cos k¢ + E sin k,'¢ cos ky¢p — T @k, k) cos (k, — k) ¢ +
k, (n = 20) - &, ky
cos (k, + k) ¢ + sin (ky — k) ¢ —

+ T — -
4k, 2k, + k) 4k, k, (2k, — k)

(n —21))+/el k2

- sin (b, + &) ¢,
4k, ky 2k, + k)

ky 6(n - b) 1 1
15 T 5, 7 Ok sin ky § = oo sin k6 sin by +

E S —
ky(5n — 1) ,

] 72—2b
+-2Tcosk]¢sin k2¢+ — sin k, ¢ cos k, ¢ —

2
2 ) _ 2k, k

q Rk = (n—2b)
- e COS (k2+kl) ¢ + o sin (k2 - kl) ¢ -
42k, + k) : 4k§(2k2 - k) '

cos (kzr" k1) ¢ -

A2k, - &)

kyky + (n = 20)
- sin (k2+k])¢ .
4k2 (2k, + &,)

3n -1 - : 1 —-3n+4b
n -
kb - TG ©

=T o had

sin k sin & + .
2k, k, B ¢ 2%

n-—2b

+ —— cos k; ¢ sin k, ¢ — cos k, ¢ cos ky ¢ +
2k2 2k2 k2
: 12
! in (k, — &) ! in (ky+ k) &
+ ———r———— sin - S +
rraeysenys b Ly ey rn s B A
ky Ry — (n - 20) kyky + (n = 28)
+ - cos (ky — k) ¢ + cos (k2+k1)¢>;
kg 22k, - &) 4k, k2 (2k, + &)

5. ION TRAJECTORIES IN FIELD-FREE IMAGE SPACE

Neglecting fringing effects for the moment, we assume the field to exist only in the sector-
shaped region between the circular boundaries whose radii of curvature are R, and R,. When

the field boundary is concave inward, R, and R, are defined as positive. The sector field is

13



enclosed by an angle ® between the tangents to the circular boundaries. We shall assume that
the central ion path, which may be regarded as the “‘optic axis’’ of the system, enters and leaves
the field perpendicular to the pole boundary, as shown in Fig. 2.

One must now match the ion paths at the boundaries of the nonuniform magnetic field to the
rectilinear trajectories in the field-free source and collector regions.. Restricting our attention

to paraxial rays, for which the semidivergent angles a_and a, are small, it follows from Fig. 2

UNCLASSIFIED
ORNL-LR-DWG 45141

OPTIC AXIS

PARAXIAL TRAJECTORY

=3¢

NO FIELD

NO FIELD

e,
. z=0 PLANE
/ IMAGE
OBJECT (o)
=0 ¢=2
NO FIELD - FIELD , NOFIELD sl
- T~ TRAJECTORY
ay ) t;
oBJECT 18- N OPTIC AXIS X _ IMAGE
’4— 10‘% -~ {, —»‘
| o L

Fig. 2. Paraxial Trajectories in Sector-Shaped ‘Magnetic Field and in Field-Free Regions. () Radial
focusing; (b) vertical focusing. ’ C '
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that

1 1
po = — (I a, + 8y) ond 0y =— 0o, +382) . (40)

To To

Through second-order approximation, the curved field boundary affects only the slope of the ion

_ trajectories in the radial plane as they enter and leave the field. Then from Fig. 2,

1 dr 1 dp
a, X fana = ";’;‘01 =17 d—¢"01 ,
r +
b P $=0

where 6, = b]/ro i~ (pro)2/2ro Rllqs=o. Hence,

! L, 1 L (8y)2
pe =l +pylla,+6)x a +_ 2 ]+2R a27+—- l+-1-2— a78y+2 . 4N

7 R, r
To 1 0 1 1°0

Also,

1 dz ,
a, X tana, = T =0y . (42)
r

$=0

In the field-free image space we may express the rectilinear ion path in terms of the

‘Cartesian coordinates x, y, z defined in Fig. 2. Thus in the midplane,
dy 1 ar
y= y+x7x- X | rgptx Ta’_¢>+02
T x=0 =0

Now 02._= hy/ry X 70P2/2R2|¢=q) , and so

2
dp Tof
2

$=Q

Then with the aid of Egs. (37.), (38), (40), (41), and (42) we may write this last equation in the

form

y=roMa +M,B+M, 8y+M”af+M]2arB+M]3ar 8y+M22,32+M233 Sy +
+ My, (By)2+ M, a2 + Mg, 8z + Mg (82)2] + N, a,+NyB+Nydy +
+ N”af +N,a B+ N, a, 8y+N22,82+N23,B 8y+N33(8y)2 +

+ N44a§+N45az 82+N55(5z)2] . (44)



where

I, D,
M]=r—D]+D2 , My =Dy , M3=7—,
0 0
B 2
l, ] l, lo ) 1O
M. =|— + D,+— D, +—D,, +D M ,=—D _.+D,, ,
1 o 2R] 2 2 11 o 12 22 | ¢ 12 o 13 23
B 0
M 1 . L, >D 21, b Dy, M M Dy 3
= | — + — + — + =D =
13 2 1 4 22 33 !/ 23 4
2
| 1 s 0 o (45)
2
M D2 D'I'I M loD [ D
= + — =— + — +D
33 ’ 44 44 45 55 ¢
2R, o rg .2 o
0
21, Dys Dys
Mys =r_D44+ . M55=—2 '
0 0 70
S
and
10 d 4 rd D]
N.I —-—r— D.I+D2 ’ N2 = D3 ’ N3 =-—r— '
0 0
1 2 1 2 !
’ o ’ ° ’ ) ’, o ’ -l
0 o 0 o 0
2
[ , lo 70 lo D D
- D,| — D] + D] + D} + — +
2 Ty ! 2 2r0R] 2R2 o 1 2
) / \ )
o ’ Vi ’ ° : ° ’ ’
Ny, =—;—D13+D23—D3 r—D]+D2> - D, r—D]+D2 +
0 0 _ 0
1 ) T /
+3r_(]—n)D2-—D] +—T—D]D3+D2D3
0 2 0
210 ) 1 ) 210 ) lo ,
N]3=r_D”+_r_D]2—r_D]D]+r_ 1+72._ D2+R_(10D]+D]D2) ,
0 0 0 0 1 2
’ ’ ] ro.. 2 ] ’, ’
N22 = D33 D, D4 D, + Dy, Ngg = - (D] D;+ D, D3) + ——D] D
2R, "o 2
’ 2
1 ( ) 1 b, D,
N,, = — (D] D:D)) +— | — +—
33 11 171 ‘
rg n \ Ry R
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Nya = Dag ¥ Dys + Ds5
T
0
: 1 , ; Das
Nys = —(20,D;,+Dss) , - Ngg=—0 .
"o 2
. 0

In these equations for the M's .and N’'s, the D's and their derivatives are to be evaluated at

¢ =®. The D functions are given by (38).

Following a similar procedure one may show that in the image space the trajectories in the

vertical plane, for ions of momentum by, are
z=ro(lya, +1; 0z + 1]»4araz+llsar Sz+ 13, 8ya, + 1, Oy 82) +
+ x(Jga, +]58z+ ] aia, +] 0, 82+ ]y, Sy+ [0 8y82) , (46)

where {all functions to be evaluated at ¢ = @)

, . E
1, =— E,+E; , I, = —
4 o 4TS 57 '
) | ,
2o, L
h 4 =—2E14 +7‘_E24 +r—E15+E25 '
2 0 0.
I 1
I s =_2E14.+‘r_E24. g
ro 0 :
I B
I3, =—2E14+7—E15 '
' . ro 0
o 1
I35 =‘2—E|4 ’
"o
and
lo 'd A' ] 4
]4=7‘E4+E5' ]5=r—E4'
0 0
2 - ’
lo ’ rd lo rd lo rd 4 ’ rd
Ina =—2(E14"D154)+7‘(E24‘DzE4)+T(Els‘D1Es)+(525‘D2E5) ’
ro 0 0
lo rd rd I rd rd
Ihs ‘—;(514"13154)*‘,‘_‘(524"13254) ’
' 0 . 0



o 1
J34 =— (B4 = Dy Ej) + —(E{; - Dy E5) ,
2 Ty
0
] rd Id
I3s =-(E14_D]E4)
2
o

The D and E functions are given by (38) and (39), respectively.

6. IMAGE PROPERTIES
Focal Distances
First-order radial focusing occurs at the position where the term proportional to dr in
Eq. (44) vanishes. Thus, ions of momentum p, (B = 0) focus in the radial plane at the image
distance
M]

I = —¢ .
r ON]

Evaluating the functions M, and N, from (45) and (38), this last equation becomes

rO lo
] == — tan | (0 =2V2@ 4+ tan~"'— (1 =n)"/2 | . (47)

(] —71)]/2 o

Similar considerations lead to the first-order vertical focusing condition, namely,

"o lo
I, = - tan | 2172 @ + tan~! — 2'/2 ) | (48)
n]/2 . "o
These conditions for radial and vertical focusing have a very useful geometric interpretation.
Let
a +b +c, =7 .
Then

ton(ar+ b,) = tan(7 - ¢,) = —=tan ¢, , . 49

and comparing (49) with (47) one can make the identifications.

I
o r
ar=(]—n)]/2(D . br=.ton']—(]—n)]/2 , cr=t<:|n"]_-—(]-—7z)]/2 .
-y r
0 0
The radial focus condition can then be written as
‘o ’ 1/2
A=)"20 +tan~' — (1 =22 4 tan~!' —(1=-n)"2 =7, (50)
"o _ "o
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and similarly for the vertical motion .
X lo lz
V2@ & tan~V — 22 4 tan=' — nV/2 =7, (51)
"o "o
A geometric interpretation of these last two equations is illustrated in Fig. 3.
Magnification
The lateral magnification M, is defined as the ratio of the image width at the radial focus

position to the object width and is assumed to be positive if the image is inverted. It follows

UNCLASSIFIED
ORNL-LR-DWG 45142

(1—n)4/2<1>

Y
[rg +n{02] 2 [r02+n122]

(b)

Fig. 3. Geomefric.lnferpretation of Focus Conditions. (a) Radial focusing; (b) vertical focusing.
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directly from Eq. (44) that, for ions of the same momentum (8 = 0),
Mf ='—-(T0M3+17N3) ’

which from (45) and (47) becomes

l
r
M, = 1 - n)]/z——sin - D'2 0 ~ cos (] -n)29
"o
! ' -
=0 =2 Zsin (1 =020 - cos (1 -n)"/2 @ . (52)
"o
The vertical magnification M_ is defined as the ratio of the image height to the object height
measured normal to the z = 0 plane. Like M,, M, is taken to be positive if the image is inverted
with respect to the object. Using the same method as above, but applied to the vertical motion

of the ions, one may show that

l
z
M =272 " sinn"20 - cos n'/20 . (53)
r
0

Mass Bispersion

Suppose all ions are of the same energy gV but a small mass difference &m is allowed. Then

g 1/2 ' q ' 1/2 ] 1 6m -1
= [ = = +——+ ... .
7 2my 2mo %R +(3m/m0)] 7o 2 my

and from (34) we see that in first-order approximation

B =—r—0 . . (54)

2 m,

For a monoenergetic ion beam of mass m; + ém the lateral displacement D in the y direction at

the image position [ is given by the sum of terms proportional to B in (44). Hence,
D = ,B(r0 M, + Zer) ,

which from (45) and (54) becomes

5

D =.ém’."__n) [rgl1 —cos (1 = @)1/2@1 + 1,(1 =)V Z sin (1 - )12 0]
© T w69
1-n 2m0 _' !

where M_is the lateral magnification. This is a measure of the mass dispersion D_ defined as

D 1 7o
D = =
™ 3m/mo 21-n

(1+m) . (56)
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In general, the focusing plane of the mass spectrum is not perpendicular to the central ion path,

+ 6m., From Egs. (44) and (54) we

since the image distance depends on 8 and hence on m = ™,

see that ions of mass mg, + Om produce an image at

o | My + '/2 (8m/my) M, ,
I(B) = - . (57)
Ny + Y (8m/my) N '

12

Chromatic Aberration

We now suppose all ions are of the same mass m;, but we allow a small energy spread g 6V.
This energy spread arises from the fact that the ion possesses a small amount of energy before

being accelerated by the potential difference V. Hence,

= = et aas ,
T T 2m v+ (BV/W)] T\ T2V

and again from (34) it follows that

B=—— . ' (58)

The lateral displacement D at the focus position [ due to ions of energy ¢(V + OV) must be the
same as that given in the previous paragraph with &m/m, replaced by 8V/V. The chromatic
aberration may then be written as

o SV

D_. = — (1+M) . 59
E ]—n2V(+.’) A (59)

This term may be minimized in the usual manner — through the use of large accelerating potentials

V or by an electrostatic energy filter.

Solid Angle

According to Judd, 32 the solid angle Q (in steradians) for such an inhomogeneous magnetic
analyzer is given by
-1/2

Q I\ 1+, /r)? A

sl I I A , (60)

A To n(l — n)
where Arg is the maximum available cross-sectional area for the ion path. This formula assumes
that Arg is independent of ¢ and that / and I, < =, corresponding to converging or parallel

outgoing beams.

380, L. Judd, Rev. Sci. Instr. 21, 213 (1950).
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Second-Order Radial Aberration

If all ions are of the same mass m,, the total image width at the radial focus position is
limited by second-order radial aberration terms. The image width is given by Eq. (44) evaluated
at x =1, Thus with 8 given by (58), »

1 I
_ _ 2 r r
ylx=1) = —M78y+DE+r0[ar <M” +T__N”> +a B <M]2 +-—N]2> +

0 o

I - : I
T - r
+ a78y<M]3 +—N13> + ,82 <M22+—N22> +
T o :

-1 . 1
+ B oy <M23 +——N23> + (5y)? <M33 +——N33> +

o

I I . I N
2 r 7' . 2 7
+ a’ <M44 +;—N44> + az(Sz <M45 +—T—N45> + (82) <M55 +T—N55>} . (61
0 . 0 0

Second-order terms containing the object width 8y may be neglected, since the presence of the
first-order term in (61) requires 8y to be extremely small. Similarly, the second-order energy -
aberration term, proportional to 82, and the mixed term proportional to a_f3 must be negligibly
small. It is convenient to rewrite this last equation as follows:

T

0
y(l) = -M 8y + ]

-n

Q1 M)BV A, o2 A a2+ A Sz + A (8202 , (62)
+ ’2_V+ ”ar+...+ 44az+ 45az zZ + 55 zZ ’

where the A's have the obvious meaning from (61).

The explicit form of the angular aberration term A, may be found from (45) and (38). Thus

)
T
Ay = 1o <Mn +7'Nn> ' (63)

0

where [by defining ¢ a(l- n)1/2d]

1
M, = ——— [(X =3)cos?d_ _— (2x — 3) ® + x] +
n 50 ( , ( cos @,
ZO
+_—— [xsin ¢ - (X - 3) sin ®_cos ¢),] +
3r0(] -n)V/2 ’
12 12 sin @
o o T
+ [x(1 = cos ®)+(x - 3) sinzq),] +
612 2ry R, (1 = n)'/2
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N

Ny = ——— [—2X sin ®, cos (I)r+v(2X =3)sind ] +
’ 6(1 - n)l/2 : _
I X o2
ot ) o
+ (2 sin2(l)r+cos (I)r—]) + cos &+
"o "o R
2a-o"2x
o — (2 sin®, cos‘(Dr + sin fD’) +
672 ) .
0
"o lo 2
—cos® + (1 =n)~"2sin @
2R-2 o r : r

This result agrees with the second-order angular aberration term given by Tasman3? for the case

R, =R, =oc. We may eliminate the angle @ from (63) by r.naking. use of the focus condition (50).
L etting

. lo . lf‘ | R
L=—Q0-a"2, r=—Q0-a"Y2, Rr=0-2"2_,
r; Ty : ! r
0 0 0
. R‘z - . (64)
Ry = (1 _n)'/ZT_ P = (14 122)/2 t, = (14 172)1/2
0
we see from Fig. 3 that
sin®_ = sin (tan~! l;+fcn'_‘ )= — 2 +1) ,
N (65)
cos @, = —cos (tan=1 lc: + ton"“_lr') =_— (l(:l"— ‘1‘) '
- T it
Using (65) to eliminate CI)r' from (63) we obtain
"o 4 X S A X 173 .
T (e S LR FO B r—1-2@+3n -~ (66)
. -n 0 R/ 112 3 R’
: ] 2
From Eq;. (38), (45), and (62) it follows that
lr 0 | x nlg nlg
A44=To M44+—N44 =—7 —4—(]+Mr) 1+ — + K 1 -— +
. Ty _ 2. 2
: 0 0
(- n)l/2 lo
+ —_— L , (67)
"o

39H. A. Tasman and A. J. H. Boerboom, Z. Naturforsch. 14a, 121 (1959).
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172 o .
4 lo 1 Vfl lo X (] N ) ) L
= M,.+—N = - —(1+ - 2K | + ,
45 = To 45 o 45 Rz . 2 r

(68)
0
I
r 1 X
Agg = 19 | Mg +r_.N55> =_r_{——(l+M7)—K] . (69)
0 0
where
V2]
b . 2(n - b)
K = sin 22'/2@ .~ cos 27'/20 — M . X 58—,
2(571— ]) o ) T 1-n
20172 2221
r o
= | - cos 221/ 2@ + sin 20"/ 20 - M,
52 -1 o o

These equations are in agreement with the recently published results of Ikegami.

.. "Resolution

et

The mass resolving power R is defined ’os“-tl;ie;iré_cipl"ocol .of the relative mass difference

3m/m0 required to move an image out of the collector slit so as not to be confused with an ad-
jacent image. Therefore

D ro (1 4+ M)
R =

s]M’+52+2A

20— ) (s M+ 5, +2A) '

where S‘

and s, are the object and image slit widths, respectively, and 3 A “is the total beam

broadening due to all aberrations. -Neglecting third- and higher-order aberrations as well as
pressure broadening effects, the mass resolving power is given by

R - '0(]+Mr)'
2(1 — n)

' : . (70)
) i 2 . 2 . 2
(s, M, +s,+Dp+ A a2 +A 0+ Ay a dz+ Agg(82) ]

As was seen in the last section, the A, a? term can be reduced to third order by shaping the

pole boundaries and the remaining second-order terms minimized by a proper choice of the field
constant b,

40, |kegami, Rev. Sci. Instr. 29, 943 (1958).

24




lv
VYertical Abefration

The total beam height at the radial focus position is given by (46) evaluated at x = [ . Thus

for ions of momentum o,

) ) !
T 7 T
Al )= =M 8z+rg | a | I, +—], | +aa [ I,+— ], |+ abz Ls+—1s | +

o o ‘ . "o
lr lr

+Oya, | Iy, +— 3, + 8y 0z |l +— ] . (7
T T R
0 0

Second-order vertical aberration terms become important only at the axial focus position /..
The terms proportional to o 8z and 8y 8z are negligible because of the presence of the first-order
term, —M, 8z, Terms making a significant contribution to the geometric aberration in the vertical

plane are therefore

l
z
A14a'raz—r0 114+—r—]]4 araz 4
0
' (72)
!
z
A345yazzro 134+r——]34 8)'0.2 .
0

Note that through second order the total vertical aberration does not contain Ry ond R, and

therefore is not affected by curving the entrance and exit boundaries of the field.

7. IMAGE PROPERTIES FOR AN INFLECTION SPECTROMETER

For the sake of completeness we now derive the image properties, in first order, for an ion
beam entering and leaving the inhomogeneous magnetic sector field at arbitrary angles with
respect to the normal to the pole edge. The equations of motion developed in Sec 4 are still
applicable; however, the boundary conditions used in Sec 5 for the case of normal entry and exit

must now be modified.

Radial Focusing, Magnification, and Mass Dispersion

As can be seen from Fig. 4,

1 dr or
8r|¢=0 ~ 8y+loar and "1 R —:{— = a7+B] X+ — tan €, ,
T odp |g=g "o b=0
yielding the initial conditions
1
po = —(l a +3y) ,
"o
(73)

p = (1 +po)(ar+p0 tan 6‘)
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Fig. 4. Rodial Focusing for Oblique Incidence.

In the field-free image space,
dy 1. dr or
y =|y+x— ~| 6r + x — — + —tan €,
! dx r do o :
x=0 ¢=(I> »
= rop + x[(1 —p+p? —...)p.'+pfcm 62]¢=q) . (74)

Restricting our attention to terms no higher than first order, this last equation may be written in

the form
y=P]ar+P2[3+P3'o‘y+x[Q]ar+Q2B+Q3'o‘y] , (75)

where the P and Q functions are to be evaluated from (37), (38), (73), and (74). The results are,
with @ = (1 - »)'/2 @,

1 l
1 =75 | —cos® + { 1 +—tan ¢ (1 = »)~12 sin o1,
To "o

P, = ro(]—n)"](]—cosfbr) ,

]
I

)
I

cos &+ (1 - n)"]/2 sin fDr tan €, ,
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lO lO lO
Q]=——(]—-n)1/25in¢> + | 1 +—tan€ | cosd +—cosd tan ¢, +
"o - ’ "o "o

/
+ <] +—O-fun €]> (1 —n)']/2 sin (I)rfcn € .
r

0 .

a

0, = (1 i—n)']/2 sin (IDr- + (1 =2~ - cos (Dr) tan €, ,

1
0y =—[-0 —n)'/2sin®_ + (tan € + tan €,) cos @, +
0

+ (1 —n)']/2 sin @ _tan €, tan 62] .

1

(76)

Following the arguments presented in Sec 6, ions of momentum po (B = 0) are focused at that
position for which the coefficient of a vanishes. From (75) and (76)
1 "o
lr = = . (77)
9 (1 =)V tan {(1 = 2V2d ~ tan™! (1 - n)"]/2 [(ro/lo) + tan 61] } — tan €

2

The lateral magnification of the image position is found from the negative of the coefficient

of 8y in (75). Thus
M, =~ (rgPy +1.05) ==lcos (1-m)"2®+(1-n)="25in (1-2)"2 D tan €] +
+_r[(] - n)]/2 sin(1-n)1"20 — (tan €, + tan 62) cos (1 -2)V2 ¢ -
o .
~(1=-2""25in(1-2)"2 ® tan €, tan €,] . (78)

As was shown in Sec 6, the coefficient of B is related to the mass dispersion D . Again

from (75) and {76)

1
D, = lrg Py +1,0,)

m

o
= l-cos (1-n)1720+
2(1 - n)

17
. +—1{(1 — )12 gin (]—71)1/2<D+[]—cos('l-—n)]/2 ®] tan 62}> . (79

T

0
s Equations (77),(78), and {79) reduce to (47), (52), and (56), respectively, for the case €, =6,=0,
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Vertical Focusing -

Were it not for the fringing field, the vertical focus condition for the case of nonnormal entry
would be the same as that for normal incidence [Eq. (48)]. In the present case, however, the
fringe field exerts an axial force on the ion beam which alters the equation for vertical focusing.

Suppose’ that within the fringing field B increases from zero to its maximum value between
x — —Ax and x = 0. As is shown in Fig. 5, the x axis is taken normal to the pole edge; Ax is of

the order of one gap width..
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Fig. 5. Vertical Focusing for Oblique Incidence.

From the Maxwell equation V x B =0,

dB_ 9B

x z
—— - —=0

0z ‘ax_

B ~=z -—>
* Ax

The z component of the magnetic force on the charged particle is

1

and so in the fringing field

F_=glvxB), = ~qu, B, = ~qu(sin €;) B_ .

x

The time it takes the ion to cross Ax is .

Ax Ax
At=— = —— —
v, U cos €
Since force is the time rate of change of linear momentum,
Ap, =F, At = —qzB_ tan €,

Within the sector field p = gr( B_, and so ‘ :
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From Fig. 6 we see that

b . b4 o p 1 dz 3
?zfanazx—o ¢=0=1—00’0, —=fon¢=rzl£ ¢:O=o'o_
Equation (80) then becomes
r
0'0’ =Uo<-l———-fan €1> (8N
o

An analogous equation applies at the exit, namely,

o ‘
=-—U<——tan €2>
¢=D lz ;

The vertical focus position [, is now evaluated directly from (25), (81), and (82), with the result

’

o

(82)

¢=0

o :
[, = . (83)
22 tan {2172 ® — tan™! /2 [(ro/lo) -~ tan 61]} + tan €,

These focus conditions, (77) and (83), were first derived by Sternheimer.4!
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Fig. 6. Effect of Fringing Field on Yertical Focus Position.

8. THE SYMMETRIC ARRANGEMENT

If .we require the ion trajectories to be symmetric about the plane ¢ = ®/2in additionto
possessing mirror symmetry about the z = 0 plane, the equations expressing the image character-

istics simplify. Under these conditions the object and image distances are equal, €, = €, = ¢,

41R. M. Sternheimer, Rev. Sci. Instr. 23, 629 (1952).
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and R, = R, = R. The horizontal and vertical focusing equations, (77) and (83), now become

L (1 —n.)]./2 cot [(1 =n)V/2®/2] + tan € (84)
o (1=n)—2(1-n)""2cot(1=7n)"2 ®tan € - tan? €
and
E'; " 2V2 ot (nV/2 ®/2) ~tan € . (85)
o n+2n'/2 cof,fn]/2 D tan € - tan? €
In the case of normal incidence, € = 0 and these focus conditions reduce to
1L =ro(1=n)=12 cot [(1 -~ n)"/2 ®/2] (86)
and
1 =rgn~ " 2cot(n'/20/2) . (87)

Equations (52), (53), and (78) for the magnification all reduce to unity, as they must, for the

symmetric arrangement. Thus

MM =1, | (88)
The mass dispersion (79) reduces to
b - o { 1+(1=n~Y2tan[(1 = 2)"2 ®/2) tan € } (89)
T-2 [122(1=n)="2cot(1 =n)"/2 ® tan €~ (1 = n)~ " tan? €

and for € = 0 becomes simply

D = . (90)

m 1-n

The pole edge radius R required to make the second-order angular aberration terms A, ;-
[Eq. (66)] vanish for I = [and €, =€, = 0is

3(1-n)213
R_

- (91
3010 = n) rg = 2n - b) (25 + 3(1 = n) I7]

For straight boundaries, R = =, and the field shape parameter b required to make Ay,=0 is

given by

) 2[13 - cos (1 - n) /2 @] - 31 —-cosi('l - )12 @)
2[5 + cos (1-2)"/2 @]

(92)

~ The total path length ! from source to detector is [ =1 +ry ® + 1. With €, = €,=0, we may
find the value of I which will minimize this path length for fixed valves of n and ®. Setting

81/dl, = 0 and using Eq. (47) for I/, one finds that the minimum path length (and hence maximum
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transmission) is achieved for the symmetric case, I, =1,. For this case, as can be seen from
(86), the total ion path |eng+h increases with increasing values of 7 but decreases as ® becomes
Iarger.. A S

On the other hand, one may decrease the total ion path length for given values of » and ®
by cho.osing'"negafive> values of ¢ [see Eq. (84)]. However, the mass dispersion (89) also be-
comes smaller as € becomes more negative. These ideas are illustrated in the numerical example
shown in Table 1. If one considers transmission and dispersion simultaneously, one must con-

clude that the optimum symmetric arrangement is that for which € =0, For this case one may use

(91) together with (67) or (69) to achieve second-order radial focusing.

Table 1. Image Position and Mass Dispersion as a Function
of nand € for D=7 and lr=lo

n € (deg) 1L/1 D,,/ro
0.8 0 2.71 5
0.9 0 5.84 10

-5 3.86 6.62
~10 2.87 4.93
~15 2.27 3.91
-20 1.86 3.24

9. SIMULTANEOUS DOUBLE DIRECTIONAL AND SECOND-ORDER RADIAL FOCUSING

To obtain double directional focusing the image distances I, and I, must be equal. By
equating (77) and (83) Karmohapatra?? has worked out numerical values for l,, €, and €, which
will produce horizontal and vertical focusing simultaneously for ® = 180° and for n = 0.8 and
0.9. For example, first-order double direcfional- focusing is achieved for ® = 180°, » = 0.8,
‘€ =60°% €, =~19% 1 =2rg, and I = [ = 3.5r5. Evaluating the mass dispersion for this case
from (79) we find D .= 3.44r,. Using these same values for ® and 7 in the symmetric case for
€ =0, we find D = 5.00r, with essentially the same total path length from source to collector.
This numerical example serves to illustrate the fact that double directional focﬁsing is possible
for any value of » within the allowable limits 0 < 7 < 1 for the inflection-type asymmetric spec-
trometer. However, the accompanying reduction in the dispersion does not justify the experi-
mental ly awkward arrangerﬁenf of source and collector .which such a\.Specfromefer would require.

For the case €, = €, = 0 it is apparent from (47) and (48) that simultaneous focusing is

achieved for any combination of lo‘ and D provided 7 = ]/2 Other values of n will also satisfy

425. B. Karmohapatra, Indian J. Phys. 29, 393 (1955); 32, 26 (1958).

31



the double focusing condition I =1 _ for at most one.valuve of ® < 27 for each I,20. However,
such a system lacks flexibility, and focusing characteristics in the vertical and radial directions

would be widely different.

We conclude that double directional focusing is prachcal only in the symmetrlc case for

n= / and € = 0. Then from (86) and (87)

L=1,=1 =2"27 cot 2f3,(2<1> S (93)
Note that the source and coll.ector are located on the edge of the field (I =0) for ® = 212, re-
sulting in maximum transmission. This corresponds to the double focusing beta spectrometer
proposed by Siegbahn and Svartholm.43 |
With n = ]/2, Eq. (91) gives the radius of the field'boundary r.equired for second-order focusing
where b is chosen so as to eliminate the A4 of the A aberration terms. It follows from (67)
that for the symmetric arrangement with n = ]/2 the angular aberration term A 44 vanishes if
b= > , : L (94)
4(3 - sin2 2372 @) ' ‘

whereas the A55 term is zero for

. |
b= . (95)
2 +%cos 272 ®(2 -3 cos 2712 ®)

For rectilinear field boundaries 5 should be chosen to- eliminate the radial angular aberration

term A, ,, in which case, from (92),

7+5cos 2‘]/2<I)
4(5+ cos 2-1/2 cp)

(96)

Note that for rectilinear field boundaries one cannot simultaneously eliminate the OLE and ai

aberration terms with a single value of the field parameter 5. This same conclusion was reached
by Shull and Dennison®? for the special case ® = 2]/2_77.

10. FRINGE FIELD EFFECTS

Up to this point we have assumed recflllnear tra|ector|es in the object and image regions,
thereby neglecting the influence of the fringing field on the optical properties of inhomogeneous

magnetic sector fields. The analysis of edge effects for homogeneous fields has been worked

43K, Siegbahn and N. Svartholm, Nature 157, 872 (1946). A
44E, B. Shull and D. M. Dennison, Phys. Rev. 71, 681 (1947); 72, 256 (1947).
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45-51 52,53

out by several authors. Herzog sﬁggests using suitable shieldé as a means of com-
pensating for the influence of f\ring.ing fields. By analogy, these methods should be applicable
to the case of inhomogeneous magnetic sector fields. However, we shall use the ‘‘factorization
approximation’’ suggested by Judd and Bludman,3# since this method is more directly applicable
to the case of nonuniform fields. . ' .

The effects of fringing are:

1. The optic axes outside the magnet are-bent through small angles, bringing the object and
image closer together. ' '
The object and image points are moved along the optic axis in the direction of the magnet.
3. The optimum values of the field shape parameters b, c, ... which minimize second-order

aberrations are modified from their values in the absence of fringing.

Mileikowsky®5 has experimentally determined the magnitude of effects 1 and 2 for the case
of his nuclear spectrometer. To treat these effects quantitatively we must have a suitable
approximate formula for the ion trajectories in the fringing regions. A

Consider the motion of ions in the median plane (z = 0) where the magnetic induction is
directed along the positive z axis. The equations of motion for particles in this x, y plane are

then

mi = q}'{Bz '
my = -q:EBz e
22y y2 = v? = const '

where the dots denote differentiation with respect to time. Integrating the second equation once -

with respect to time we have

q B
}7:—_fBzdx=—vf——deE—U/(",}’):
m Bo .

45N. D. Coggeshall, J. Appl. Phys. 18; 855 (1947).
46K, T. Bainbridge, Phys. Rev. 75, 216 (1949).

]95;7K. T. Bainbridge, part V in Experimental Nuclear Pbhysics (ed. by E. Segre), vol 1, Wiley, New York,

48y . Ploch and W. Walcher, Z. Physik 127, 274 (1950). =

49¢C., Reutersward, Arkiv Fysik 3, 53 (1952). '

501 . A. Kénig and H. Hintenberger, Z. Naturjorsch. 10a, 877 (1955).
511, Kerwin, Can. J. Phys. 36, 711 (1958). '

52R . Herzog, Z. Physik 97, 596 (1935).

53R. F. K. Herzog, Z. Naturforsch. 10a, 887 (1955).

54D, L. Judd and S. A. Bludman, Nuclear Instr. 1, 46 (1957).

55C. Mileikowsky, Arkiv Fysik 7, 33 (1954).

33



where B is the field within the gap at the eqUIllbrlum radius r, und x ond y are measured in

units of ro- Now from the veIocnfy equuflon we see fhof
y 211/2
%= tu {1 - <_> } = +(1- (2172
v

Dividing these last two results we get the rigorous trajectory equation for ions. in the z =0

plane, namely,

y dy f
% dx (1-72)172
or
db y' Bz(",)’) ' .
< {__} B (57)
dx '('|+y'2)1/2 : BO . :

As we have seen earlier, the symmetric orrongeménf of source and collector provides the
most procf.icul.sefu.p. We shall therefore confine our attention to such a system. The trajec-
tories from a péinf source (for B = 0) are then completely symmetrical about the ®/2 plane, from
which we shall now measure angles in terms of the coordinate 6. Referring explicitly to the

image side, we choose the origin of the Cartesian coordinate system at

01}
r=r, and 9=5-—¢

The y axis is directed radially outward, with the particles moving in the direction of positive
x; ¢ is the small angle between the y axis and the magnet edge where'fringing effects just
begin and is of the order of g,/r,, where g, is the gap width at ;. These ideas are illustrated
in Fig. 7.
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OPTIC AXIS—™
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Fié. 7. ‘Trajectory with Fringing Field,
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Within the sector field the trajectories on the median plane for 8 = 0 may be found from Eq.

(37).. Remembering that the solution must be symmetric about the 6 = 0 plane we have

1
p=p,D, +p31D” =p,, €os 0'+g—p”21 [(X - 3) sin? 6, +X(1-cos b)) , (98)

where X = 2(n = 5)/(1 -~ n), 6_=(1~n)'/2 6, and p_ is the displacement at 6 = 0. In the fringe
field region the trajectories are given by (97), where the minus sign applies to the image space.
We must match these trajectories along the y axis, which separates the domains of applicability.

Now in both systems lengths are measured in units of 75, and so we have at x = 0

y=p y = — =, ' (99)

where p and p’are to be evaluated at 6 = (D/2) -—v¢>.

Since the field on the median plane within the sector region varies as
2
B,=By(1~n+0p —ad)
we assume that in the fringing region we may write

g .
B (x,y)=(1~ny + by? ~...) =B _(x) . (100)

€o
The g/g, term in the radial shape factor (1 - ny + by? -...) g/g, is needed to describe how the
fringe field varies as a function of the gap width. This second factor is omitted by Judd and
Bludman®* in their treatment of the fringing field and accounts for the unrealistically large

value they get for the image distance. Since

2r0t y
= —— tan —
Bo= 1y
as can be seen from Eq. (16),
g r
—=—=1+y ,
o To

making the radial shape factor
(mmy+8yD) S 14 (1=n) y~(n-0) y?
8o

The shape factor is of the order of unity, and so we may use the rectilinear approximation

’

y=p+

x’
T+p

where again p and p” are to be evaluated at x = 0. Now both p and p” are small compared with
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unity, and so we write y & p + p "« and y2 % p2. The shape factor now becomes

Oeny+by) S 1e(l-n)p-(n-0)p2+(1=n)p’x . ©on
8o o “
This factorization approximation [Eq. (100)] contains the as_su‘n"lp.fion that the variation in the
orientation of the axes within the small angle ¢ leads to effects of higher than second order.
Substituting (101) and {100) into (97) and integrating once, we obtain

LA i S04 =m)p=(n=8) p2 f(x) = (1 =) p”glx) ,

(] +yf2)l/2 [(] +p)2+p'2]1/2

where

flx) = j B, () dx and  glx) = j * B, dx .
B o : 0

0 0

Solving for y’ and keeping terms through second-order approximation in p, this equation reduces

to
’ ’ 2 3 ’
y'=p'(0=p)={1+(1=n)p—-(n-b)p to P Jf—(l—n)pg+
3 ’ .2 1 3 |
+?p T+(0=2n) plf -3[ + ... . (102
Integrating once more we have

y=p+p'('|..p)x-{]+(]—n)p—(n—b)p2‘+5pf2} j flx) dx - .
o2 -

x 3 . x ] x
-(1=-n)p’ j glx) dx + —p 11 + {1 = 2n) p] J fz(x) dx —— S vfa(x) dc+... . (103)
. 0 2 0 2 Jy _

Since B_(x) is negligible near the image position x,, we may ‘approximate f(x), for x several

times larger than g,/r,, as follows:

x Bz
flx) = j 5 dx = c,a = const .
0 0 .

Choosing a as the distance over which the field falls off by one order of magnitude, ¢, is a
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constant of the order of unity. Then

X

J-O f(x) dx = c]ax+c2a2 , h

x 2 3

fo g(x)dx:csa +cya’ > (104)
J"‘ 2, 2 2 3

0/ x =cya‘x +cga® . y

a3

The additive constant terms ¢, a?, 4

, and csa3 are correction factors arising from the fact

that for small x (x < a)

R ca .
B
0 0
Integrating the second equation by parts shows that ¢, = ~c;. Now experimental measurements
of the fringing fields indicate that a is of the order of a few gap widths. Therefore we may
neglect terms in (103) which are of higher order than a2, since the c’s in (104) are near unity.
The trajectories in the image space then become

3
y=p+ {1+(]—n)p—(n—-b)p2+§-p'2} c3a2+

+x{p'(]—p)— []+(]—n)p-—(n-—b)p2+%p'2:|c]a+

3
+2p 11+ (1= 20)p) 242~ (1-1n) p'c3a2} . (105)

The constants ¢, a and ¢, a? are determined by a numerical integration of the measured fringing
field.
lons moving on the equilibrium orbit determine the optic axis of the system. Thus the optic

axis in the fringe field is given by (105) with p = p“=0, that is,

Yoa =-—c]ax+c3a2 . . (106)

This equation displays the additional bending of the optic axis due to the fringing field.
The image position x, is located at that point where the paraxial ray crosses the optic axis.

Thus we have

3
yxg) —yOA(x)=0=p+ {(1—n)p—(n—b) p2 +—p'2]c3a2+x0 {p'(]—p)-—

3 3
- {(]—n)p—(n-—b)p2+—2-p'2} c]a+?p'[]+(] - 2n) pl cfaz—(l —n)p'c3a2} .
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Using (98) for p and classifying terms according to powers ofbpm, neglecting third- and higher-
order terms, we have ‘ '

: Sl 3
P, <D][] +(1~n) c3a2] + % {D]' [1 —(1'—-7) c‘3cz‘:2'+5c?a,2_'

—(1—-n)D]c]a}> +
co03 :
+p2 <D”+[(l—n)D”—(n-b) D?+—2—D]’2} cqa? +
, ’ ' 2 3 22
+ % {D”—D]D]- [(]—-n)D”—(n—b)D]+—2—D] } c,a+

3 | '
=07, +(1=200 0,07} 2a? = (1= Df, cqa? } ) +... =0 - (107)

The D functions and their derivatives are to be evaluated along the y axis where 9 = (9/2) - ¢.

For first-order focusing the coefficient of p must vanish. Hence

D, 1+.(1--n)c3a2
o =" 57 3
! 1_(1_n)(D,/D;)c]'a+5_c$a2_(1-n)c3a2
1 3 <’2 2 .2.2 9 2 |
~a{1-(1 = ndeya-| - (1=nP @ | Fa? + 21 - n) ey +} . (108)
where
b, v ] |
a’z—D,=(1—n)—]/2cofx/;_ . and x/;s(]—n)]/2 —5-_¢> . A109)
] ','. ‘ .t

A simpler, though less rigorous, derivation of thi‘s‘ result is pres;enfed in Appendix B.

Second-order radial focusing in the median plane may be achieved by selecting the field .
parameter 5 so that the term proportional to pfn in (107) vanishes. Using (108) to eliminate Xo
~in (107) and arranging terms according to powers of a, the condition for second-order radial

focusing becomes

3
Dy +d(Dfy =D D}) - [(1 ~n) (D}, =D D) d+(1=n) Dy, = (n=-b) D$+5D;2] ¢ ad +

+{3(]-n)D]D]’—(1—n)2d2D]D]'+(]—n)2-d(D”+‘dD]'|)+ ‘
(emd|2D72- (n=p) D2 2,2, 1-n) (D,, +dDI )+
+ -n 3 1 —(n - ) 1 cyaa- ~( —71( 11 + l])+

.
+AT=n) DDA+ (n=H) DY =5 D2 cya? ... =0 .
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Now in zero-order approximation the sum of terms independent of a must be zero, and so
Dy, +dDj; ~D,D}) = 0. We may use this approximation to eliminate the D, and D[, terms

in the coefficients of a and @2. With this approximation the above equation reduces to

3
D, +d(D;]—D]D]')—D$ [—2—(]~n) fqn2¢/——(n—b)} cad +
2 3 2 L2
+ DY [(]-—n)’~(n—b)+—2-('|—n)fcm ¢/}Caa -

~-(1-n) Di [(n-—b) +;—(] = n) tan? l//] c%azd2 =0 .

This equation determines the field parameter b required to produce second-order radial

focusing in the median plane. The result may be written in the form

b=by+b,+b, , - (110)
where
. 132 - 3(1 -~ cos 2i/) —n cos 2
o 25 + cos 2) ’
3(1-n2( 2 2n-b
== ( n)” (1 + cos 2¢) 3fqn2¢/-—————(n 0) c]ad ,
! 2(5 + cos 2¢)) 1-n

- n)? cos 2An ~by)
. AT cos 20 {(]_n){3fqn2¢+___°_}c%a2d2_

2(5 + cos 2y) 1-n
2(n—b°)
~|3tan? ¢ - +2]c3a2} s
T-n
where again
. 2 -—1>/2 L
¢=(]—n)_”2<5-—¢> and d=(1-n) “cot i) .

The constants ¢, ¢, 4, and c,4 a? should be determined from a measurement of the fringing field.

Experiments indicate that
2 o 5 8o ) 80\ 2
dx ——, axo —, cqa ~ 3 — .
3 o . 3 o 7o) |
Note that in the absence of fringing, ¢ = « = 0 and Eqs. (108) and (110) reduce to

®
xo=(]-—rz)"]/2 cot(]—n)]/z—z— .

) 2[13 = cos (1 =n)172 ®] = 3[1 = cos (1 ~n)1/2 @]

1

2[5 + cos (1 - n)1/2 ol
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which agree with our previous results (86) and (92), respectively. Having determined the optimum
value of b necessary to eliminate the second-order radial aberration in the z = 0 plane, Eq. (14)

gives the profile of the pole shoes required to produce this desired field shape.

11. A NUMERICAL ILLUSTRATION

We shall now use the foregoing results to estimate, theoretically, the focusing characteristics.
of the inhomogeneous field spectrometer currently under construction at this Laboratory. The
magnet is designed for an equilibrium radius ry = 12.0 in. at a gap width g4 =0.760 in. To ob-
tain n = ]/2 for double directional focusing, conical pole shoes are used with the taper angle
y/2 = 0.906° as determined from Eq. (16). With the pole shoes cut for a sector angle of 90°,
measurements indicated that the magnetic field begins to fringe at ]/2 in. within the gap, and

SO

50
= ——=0.0417 radian
12.0

A numerical integration of the B, component of the measured fringing field in the z = 0 plane

gives the results
X0 Bz |
ClaEf — dx =0.104 ,
o B
and

x B
2 0 =
c.a Ef x — dx =0.0122 .
(v} Bo

Now, takihg these values into consideration, a new sector angle was chosen so as to give a
total deflection of the ion beam from source to collector equal to 90°. The pole edges were

therefore trimmed to give a sector angle (see Fig. 8)
- .
o = —2(c]a-— 9-')) = 82.8° .

With the source and the collector set at equal distances from the magnet edge, the coordi-
nates of the image position (in units of 7y) are calculated from Eqs. (106) and (108). The results

are

xg =236 and  y(xy) =-0.234

We now estimate the magnitude of the second-order ‘aberration terms. As was seen in Sec 2,
b =n? for an ideal conical field. Neglecting fringing, we obtain from Eqs. (66) to (69)
Ay =568 ,
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Fig. 8. Sector Field for 90° Deflection.

A, =-0.66ry ,
A =-0.99 ,
~0.28
55 To .

Neglecting third- and higher-order aberrations as well as pressure broadening effects, the

tota! beam width at the collector is

r

B.W.=M s+
r 1

(]+M)6—V+a2A +02A, +a Sz A, +(82)%4
. "y PN T g fgg Ty OF Ays TOZ As5

where s, is the source slit width and M = 1 for the symmetric arrangement of source and re-

ceiver. Using the parameters

v 0.2

s;=8x10"3in. , —= =0.04x 1073,
V.o 5x103 '

ro=12.0 in. , a = 0.013 radian ,

82=0.22 in. , a, = C.OOS radian ,

which are estimated from the source and tube dimensions, the estimated beam width is

B.W. =74 x 103 (0.67 + 0.16 + 0.96 ~ 0.04 + 0.15 — 0.09) = 0.022 in.
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This beam width estimate is probably too large because of electrostatic focusing in the ion
source, which tends to make the effective values of s;and a, less than those calculated from the
physical dimensions of the source. With.a collector slit s, = 16 x 103 in., the calculated
resolution (70) becomes o
o 630 L
° R=s—w—— ..
s, +B.W. T
Note that in the absence of aberrations the resolution for these slit widths would be 1000. The
linear dispersion between masses 235 and 236 may be calculated from (55). The result is
om '
D=2r,— 2 0.10 in .
. m
The value of b required to eliminate the A”. aberration term, which is the largest of the

second-order aberrations, may be calculated from Eq. (”0)-with the result

b= by + b, + b, = 0.4423 = 0.0175 = 0.0011 = 0.424 .

This calculation takes fringing effects into ;:onsicl'ie.fayt‘icarn and dictates the pole shoe profile, to
be calculated from Eq. (14), needed to minimize lsecbnd-order,. aberrations (see Table 2). With
this modification the resolution would be inc.:rea.sed to 910. One could also achieve second-order
focusing with conical pole shoes by corefullyjck:hoos.'i:n,'gbt/hAe-'sectbr angle . For this case b= n?,

and so fqr n= ]/2,

n - b)

1.

mn

Then the angle at which the second-order ab_erro.f_'ion term A,, disappears, neglecting fringing,

may be found from (92), with the result
T
P = 23/2?==169.3° .

One could also make the A, aberration coéfficienf vanish by proper shaping of the pol‘e
boundary. For this symmetric system the required radius, as calculated from Eq. (91), is —14.6
in. The neg.o'rive sign implies that fhe'pgle boundaries are concave with respect to the object
and image points. This result is of questionable significance, since here the effects of fringing
have been neglected. ' ' _ ‘

Mileikowsky3® has suggested an empirical pré_cedu're‘for locating the image position in the
fringing field. One imagines that the:system behaves as an ideal magnetic lens (no fringing) with
an ‘‘effective’’ sector angle equal to the angle between the initial and final directions of the ion
beam so that 7, in the sector field is the same with and without fringing. He has found that the

image position calculated in this manner agrees well with experimental observations. In our

S6c, Mileikowsky, Arkiv Fysik 7, 33 (1954).
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Table 2. Shape of Pole Shoes

n=b

&y = 0.760 in.

7o = 12.00 in.

z coordinate measured from median plane

. z (in.) z (in.)
7 (in.) For 4, = 0% For Conical 7 (in.) For 4, = 0° For Conical
Pole Faces Pole Faces

9.000 0.3301 0.3325 - 12.200 0.3831 0.3832
9.250 0.3343 0.3364 12.400 0.3863 0.3863
9.500 0.3386 ©0.3404 12.500 0.3878 - 0.3879
9.750 0.3428 " 0.3444 12.750 0.3916 0.3919
10.000 0.3470 0.3483 13.000 0.3953 0.3958
10.250 0.3512 0.3523 13.250 0.3990 0.3998
10500 . 0.3554 0.3562 13.500 0.4025 0.4038
10750 0.359% © 0.3602 13.750 0.4060 - 0.4077
11.000 - 0.3638 0.3642 14.000 0.4093 0.4117
11.250  0.3679 0.3681 14.250 0.4126 0.4156
11.500 . 0.3720 0.3721 14.500 0.4157 0.419
11.600 - 0.3736 0.3737 14.750 0.4187 0.4236
11.800 0.3768 0.3768. 15.000 . 0.4216 0.4275
12.000 0.3800 0.3800

*Requires b = 0.4237.

case the effective sector angle is 90° As can be seen in Fig. 8, the virtual field boundary is
displaced at an angle ca from the y axis. The image distance as measured from this virtual
boundary may be calculated from (86), with the result

a1
, = o1 =m)~12 cot [(1 - n)]/z?] = 27.4in.

From our previous calculations we obtain

I =r15{xg ~cya =27.1in.

Although the more rigorous mathematical treatment, based on the ‘‘factorization’’ approximation,
gives a slightly smaller answer, the two methods yield essentially the same result. These
findings are in qualitative agreement with Mileikowsky’s observation®® that the optimum focus

position as determined experimentally is somewhat less than that predicted by the “‘effective”

sector angle treatment.

43



With @ taken as 90° Egq. (92) gives b = 0.425 as the field shape parameter needed to elimi-
nate the A, aberration. 'This resu’f is also in-good agreement with our previous calculation,
from which we found & = 0.424. if one completely neglects the fringing field, the required field
shape parameter for second-order focusing is cclculofedAto be b = 0.442, This result suggests

that one cannot ignore the fringing field when correcting for second-order aberrations.

12. CONCLUSION

Theoreﬁcolly, nonuniform magnetic fields which vary in first order as =" in the median
plane may be used to increase the dispersion and resolvin.g power in mass spectrometers by a
factor of (1 — n)~! when compared with corresponding homogeneous field (n = 0) instruments.
This potential improvement in resolution, hoWever, is misleoding unless steps are taken to reduce
image aberrations. The chromatic aberration, proportional to 8V/V, varies as (1 = n)~! and so is
enhanced for the case of nonuniform magnetic lens systems. The most important second-order
aberration term, that proportional to af, is more than five times as large as the corresponding
term in a homogeneous field spectrometer for the example given in. the last section. For the
same values of ry, s, s, and 8V/V used in this illustration, the estimated resolution for a
conventional spectrometer is 440, which is only 30% less than that calculated for the n= ]/2 field.

In ‘principle, second-order radial focusing can be obtained by proper shaping of either the
pole faces or the pole boundaries. Shaping of the pole faces appears to be the more desirable
procedure, since one can then take into account the effect which the fringing field has on second-
order focusing., With this modification, the resolution for the instrument described in the last
section should be neol:ly twice that for the corresponding homogeneous field spectrometer. This
example serves to illustrate the importance of the second-order geometric aberrations character-
istic of inhomogeneous magnetic fields. Further improvement in the resolution is possible if the
chromatic aberration term is reduced through the use of an electrostatic velocity filter or through
the use of larger acceleraﬁng pofenﬁals.

7)~12, For a given 7, the sym-

The length of the central ion path is proportional to (1 —
metric arrangement of source and collector gives the shortest ion path. Since the central path
length is longer with the inhomogeneous field than with the homogeneous field, it appears that
vacuum requirements are more rigid for the nonuniform magnetic field spectrometer if one is to
obtain the same peak broadening due to residual gas in the analyzer tube.

For a given n, maximum dispersion is obtained for the case where the ion path enters and
leaves the field boundaries at right angles. Double directional and second-order radial focusing
may be achieved simultaneously by choosing n = ]/2 and by properly shaping the pole faces.

The factorization approximation together with the improved radial shape factor appears to
give a very satisfactory description of the effects produced by the magnetic fringing field. Not
only does .this method permit one to predict the modification in the focal position which the

fringe field produces, but one can also calculate the field shape parameter required for second-

order radial focusing taking edge effects into consideration. To a good approximation, one may
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' sector angle taken as

empirically account for these fringing effects in terms of an '‘effective’
the angle between the initial and final directions of the ion path, provided the ion path radius in

the sector field is the same with and without fringing.




Appendix A

SUMMARY OF NOTATION

A = magnetic vector potential. ..
2 N
arA 11
2
oz Ay ) ]
> = second-order radial aberrations.
az 0z A45
2
(62) A55

B = magnetic induction field.

B, = field on the median plane at r,.

b = coefficient of the quadratic term in the series expansion of the magnetic field.

X0 B
z
c,a= —dx .

0 BO
*0 B
2 z
cqa’ = x— dx.
B
0 0

D = lateral displacement of the ion beam in the y direction at the image position.

Dp = energy dispersion or chromatic aberration.
D
D_ = mass dispersion = .
m
m/m

8o = 9ap width at rg.

I, = object distance measured from field boundary.
[, = image distance for radial focusing.
[, = image distance for vertical focusing.

M_ = radial magnification.
M_ = vertical magnification.

mass of the ion.

ms=
n = coefficient of the linear term in the series expansion of the magnetic field.
p = linear momentum of the ion.
g = charge of the ion.
R = mass resolving power.
R, = radius of curvature of the field boundary on the object side.
R, = radius of curvature of the field boundary on the image side.

radial coordinate in the cylindrical polar coordinate system used to describe
the motion of the ion within the magnetic field.

=~
L}
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1l

radius of the central or equilibrium path.
source slit width.
receiver slit width.

potential difference through which the ion has been accelerated.
2(n - b)

-n

Tasman's field shape parameter =

radial image position in units of 7, as measured from the axis within the gap at
which fringing begins.

horizontal source dimension.

axial coordinate in the cylindrical polar coordinate system used to describe the
motion of the ion within the magnetic field. On the midplane within the pole
gap z = 0, and the positive z axis is taken along the direction of the field.

vertical source dimension.

semidivergent angle of the paraxial rays from the source as measured in the
radial plane.

semidivergent angle of the paraxial rays from the source as measured in the
axial plane. ‘

momentum spread factor.
angle between the extensions of the conical pole pieces.

angle made by the central ion path with the normal to the pole edge on the en-
trance side of the magnet.

angle made by the central ion path with the normal to the pole edge on the exit
side of the magnet,

1/2
q9
2mV |
angle coordinate as measured from the ®/2 plane for the symmetric arrangement
of source and collector.
dimensionless radial coordinate = (r ~ r,)/7,.
dp/de.
value of p at & = 0.
value of p”at ¢ = 0.
maximum value of p for the symmetric arrangement.
dimensionless axial coordinate = z/ro.
do/de.

valuve of orat ¢ =0,
value of o "at ¢ = 0.

magnetic field sector angle.

polar angle in the cylindrical polar coordinate system used to describe the
motion of the ion within the magnetic field.

magnetic scalar potential.
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Appendix B
IMAGE DISPLACEMENT DUE TO FRINGING FIELD ~ A SIMPLIFIED ANALYSIS

A simplified, though less rigorous, estimate of the image displacement due to the fringing
field is presented here. Using the same coordinate system as defined in Fig. 7, we see that

in the midplane the y component of the magnetic force on the ion is given by
F,=qu, B, (xy) X ~quv(1-np) B,(x)
Assuming the field falls from its maximum value to zero in a distance Ax, the relative change.
of momentum of an ion passing through this distance in time At is
Apy Fy At Ax Fy Ax

= ~ 2~ (1=np)— .

b b v o

Now Ax is of the same order of magnitude as the gap width, and so we write

Ax = Cg = Cgy(1+p) ,
where C is a constant of order unity. Hence
Apy Cgo Cgo
— x-(M=-np) (1+p) —x-[1+(1=n) p] — .
b "o "o

Now Apy/p is just the change of slope of the ion trajectory produced by the fringing field.

Setting p = 0 we get the slope of the optic axis, namely,

<Apy> Cgo
b /oa o

Comparing this result with Eq. (106) we are able to make the identification

Cgo

=C.|d .

To

Now the difference in slope change between the paraxial trajectory (p # 0) and the optic oxis
(p = 0) produced by the fringing field is just

Apy Apy '

—_— - — =—p(]—ﬂ)cla .
Without fringing the image distance would be d = —p/p”, where p = p_ cos (1 - 7)1/2 @ and is to
be evaluated along the y axis. Thus with fringing,

P d

-—p'—p('l - n) c]a_ T+(1-n)c,ad

Xo-—

—dl=(1=n) cjad + (1 -n)? c2a2® - .. ] .

This result is essentially equivalent to Eq. (108) as obtained by the more rigorous treatment.
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Appendix C :
THE HOMOGENEOUS FIELD SPECTROMETER
The image characteristics for the inhomogeneous magnetic field spectrometer are perfectly
general and reduce to the corresponding equations for the homogeneous case where n = b = 0.
Thus the radial focus condition (77) for n = 0 becomes
1, cos (O ~¢,) cos ((13—52) I, sin [‘1)--(51 + 62)]

7o Sin ® + + i, -
cos 61 cos 62 ro‘ cos 61 cos 62

-0,

which is Herzog's well-known focus requirement.37+58 The vertical focusing resulting from the
fringe field is given by (83) and with » = 0 becomes
1 ®+(lo/ro)(]—~®fcm 61)

z

o B (1,/74) (tan €; + (1~ @ tan €,) tan €,] = (1~ @ tan €,)

which is equivalent to the expressions derived by Cotte,>? Camac,®? and Cross.®!
The aberrationterm A, (66) reduces to Hintenberger's result®2:63forn = b = 0 and €,=¢€,=0.

If Ry =R, =00, A}, =~1g, which is valid for any symmetric homogeneous magnetic field spec-

trometer.

57R. Herzog, Z. Physik 89, 447 (1934).
58 Mattauch and R. Herzog, Z. Physik 89, 786 (1934).

59M. Cotte, Ann. phys. 10, 333 (1938).

0M, Camac, Rev. Sci. Instr. 22, 197 (1951).

6"W. G. Cross, Rev. Sci. Instr. 22, 717 (1951).

62 Hintenberger, Z. Naturforsch. 3a, 125, 669 (1948); 6a, 275 (1951).
634, Hintenberger, Rev. Sci. Instr. 20, 748 (1949).
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