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ABSTRACT

Unstable oscillations of a uniform plasma in a constant uniform
magunetic field are investigated uwsing the Vliasov equations. It is
found that if the velocity distributions of the electrons and ions
are sufficiently anisotropic osciilations may occur whose amplitudes
grow exponentially with time. Three different anlsotropic distribu-
tion functions which lead to instabilities are studied. In one the
electrons are all moving with the same velocity along the magnetic
field and the ions are stationary. This case was previously con-
sidered by Buneman but without assuming the presence of a magnetic
field. The second distribution function studied was one in which all
electrons and ions move with the same speed perpendicular to the field.
Thie case was previously considered by Malmfors, by Gross, and by Sen.
This previous work 1s extended here. In the third distribution function
considered the particles have a Maxwellian distribution of the velocity
components perpendicular to the field. Provision is made in the
function for varying the spreasd in the velocities in the direction
of the field. I this spread in velocities along the field is suf=-

ficiently small unstable oscillations may occur.
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I. INTRODUCTION

Recent attempts to achleve controlled thermonuclear reactions have
yielded experimental evidence which suggest the presence of a new type of
instability. Thus, in a recent paper on the pinch effect Colgate and Furthl
have reported evidence that small scale turbulence exist within the stabilized
pinch configuration, and that this turbulence is responsible for decreasing
the plasma conductivity, accelerating a small number of particles to high
energies and greatly increasing the rate of heat transfer to the walls. The
instability does not seem tc be of the sort predicted by the hydromagnetic
equations which involve a gross motion of the plasma to the walls of the
container. These hydromagnetic instabilities are by mow fairly well under-
stood. Colgate and Furth suggest that the turbulence is due'to plasma waves
which are excited by runaway electrons.

W. Bernstein gﬁ_§£.2 have reported a number of peculiar phenomens ob-
served in Stellerator discharges. The phenomena include a decay of the
discharge current in abrupt steps, the generation of intense non~-thermal
microwave noise and burst of x-rays due to loss of confinement of runaway
electrons. These phenomena occured under conditions. for which the plasma
should not be subject to hydromagnetic instabilitiss. .

The instabilities mentioned above bear some resemblance to an instability
reported by Alfvén EEIEAaE This instability was found in experiments on
trochotrons, The main results may be sumarized as follows. Electrons which
are emitted in crossed electric and magnetic fields move in trochoidal paths
and constitute a beam perpendicular to both fields. At low emisslon, i.e.,
at low electron density, the motion is in accordance with the motion

calculated for single particles in external fields. A% higher densities,

1. 8. A. Colgete and H. P. Furth, Science, 128, 337 (1958).

2. W, Bernstein, F. F. Chen, M. A. Heald, and A. Z. Kranz, Phys. Fluids
1, 430 (1958); Coor, Cunninghem, Ellis, Heald and Kranz, Phys. Fluids
1, 411 (1958).

3. H. Alfvén, L. Lindberg, K. G. Malmfors, T. Wallmark, and E. Astrom,
Kungl. Teckniska Hogskolans Hendlingar NR 22 (1948).
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however, the energy distribution of the electroms is rapidly changed in such
a way that the electrons reach electrodes which are negative with respect to
the cathode. AL the same time the beam exhibits an abnormally strong noise.
The hransition between the normal and abnormal operating conditions occurs
very sharply as the eumission 1s increased. Malmforsh attempted to explain
these results on the basis of unstable plasma oscillations. We shall review
the theoretical work on this problem later in this paper.

Most investigations of a plasme in a magnetic fileld have relied on
hydrodynamic equations, i.e., equations relating the densities, average
velocities, pressures, and temperatures of the electronms and ions. In very
high temperature and low density plasmas large departures from local thermo-
dynemic eguilibrium may be expected and the validity of hydrodynamic equabions
is guesgtionable. Indeed, the calculations of Bernsteins indicate that a much
wider variety of waves can exist in a plasma than the hydrodynemic equabtions
predict. Bernstein's calculafions are based onr the Vliasov equations. (I.e.,
Boltzmann esquabions without collision terms for the electrons and ions plus
Maxwell's eguations.) It sesns a reasonable guess that some of the experi-
mentally observed instaebilities which seem incomprehensible on the basis of
the wsual theories can be expiained on the basis of the Viesov equations.

The prasent paper is devoted to exploring this possibility.
The development of this work is the following: In Section II we present
the general formulabion of the linearized problem. In doing this we Tollow
fairly closely the work of Bernstein.S Unlike Bernstein we limit ourselves

o the counsideration of longitudinel oscillations. We do this in order to
shorten the subsequent labor; we hope to consider transverse oscillations

in a future publication. In Section IIT we consider a number of zeroth order
distribution functions which lesad to unstable plasme oscillations. In

Section IV we discuss the applicability of ocur results and their limitations.

%o Malmfors, Arkiv. Fys. 1, 569 (1950).
5. 1. B. Bernstein, Phys. Rev. 109, 10 (1958)}.



ITI. THE LINEARIZED VLASOV EQUATIONS

The following set of equations is used

of ar e, of,
—-—-i+{r’.~—:jé+ﬁ—l—(E+l?rx§)-—-~l—uO (1)
at or i ¢ >V
Ve E=lbx 5 ey fid5v (2)
4
.—9
= 1 3B _
VXE«—-—(—:' *6?~O (3)

_) .
In the above fi(r,3;t) is the distribution function for the ith species of

> >
particle (electron or ion) and e, and Mﬁ are its charge and mass. ¥ and B

i
are the electric and magnetic field intensities. EBquation 3 restricts our
consilderations to longitudinal waves. By Eg. 3 the magnetic field intensity

is constant, and E can be written as

E=-7 §Ft) (%)

where § is a scalar potential. By proceeding in this way we have neglected
the coupling between longitudinal and transverse waves. It can be shown
that this is only valid if the phase velocity of the wave is much smaller
than the velocity of light.

We now consider systems which depart only slightly from an equilibrium

configuration in which ® = O and f, = f:(?). We will take the uniform

i
magnetic field to be in the z direction. It is easily seen that f: will
satisfy Eg. 1 if

o o

£o= £,.(v,v,) (5)

where



2 2
VsVt (6)

Berﬂsteins assumed that f? was the Maxwell distribution; we do not make that

assumption. We write

fi = f (v vV, ) + £ (r,v, ) (7)

ﬁ
and assume that fi and & are small gquantities whose squares and products may

be neglected. With the neglect of these small gquantities Egq. 1 becomes

sry , orr e ., o e or?
—_—t v . "t% + ﬁ%? VXxB) o+ - = ﬁﬁ' vf . _:' (8)
dt or 1 v 5 oV

It is convenient to Fourier analyze in space and take Laplace transforms

in time. We write

e“lk I‘ l(r’,v,t)d (9)

]

-1, =
fi (k: V,t)

and
o

- — Dy
/ e Tt fi‘(k,v,t)d"t (10)

o

it

= ,
£ (i, v, P)

>
and similar expressions for the transforms of %{P,t). When transformed,

Eas. 1 and 2 become

I a?jl* a”f“j{ ie, . ng o
(P + ik-V)fi + ®Pi VX '5;"‘ - y '6*_;;—'" = M""""’ g’k . "':':" + gi(k;v) (ll)
i vy X i ov

and



= g Z\ ei/?f‘:idav
i

e,B
In the above a)ci = M&‘E is the ecyclotron freguency and
i
- TP D, -ih I’ l
gi(k,V) = ( )V:O)d r

We now introduce the cyllndrical coordinates v, » @, and v, in velocity

space and choose the vector k to lie in the xz plane. Then
-~ - -3 . >
v o=ev cosf+ ey, sing + eV,
_9
k=ok +ak

1L 3z

- -3 4 R
where el, eg, and e3 are unit vectors along the x,
can now be written

E)f 1
—-—3"-+—-»-(P+ikv_L cos + ik v, )f
Gl “ei
ie, o) Y
= P Lk m==cosf + k==
Mic)c 1 Bv z 3\72
I:'iernstein5 has shown that the solution of Eq.

7 . .

:__1' 1ei = ’bfi
fi = / G(¢)¢') ) 9_ [k_]_ :'O"i- COS¢ + kz

+00

¥y, and z axes.

afi} 1 - 7
= | 4 =g Lag’
‘Ovz wci ij

(12)

(13)

(14)

(15)

Eguation 11

(16)

(17)
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_ 9 .
P+ ikZVZ = ik, Vv, cos@
Gi(gﬁ,;ﬁ'} = exp | - ag
3 .

P+ ik7v;\ kv, :
PR IO e 3 B¢ A A B e C sing')
Wy / Dt
Since :g;)' and f‘:" are independent of @, Eq. 17 may be written
ie ag® arl®)
= R 3 \ L - 1
T I evnmmepee B e T 3 —— . e
frwms ey L8k, %y e 575
i’el 7 cl

where
?
MO / 5,(§,8") cosg’ ap”
iCU
¢
'121(¢)n/6i(¢;¢‘)d¢‘
iOO
and

(18)

(19)

(20)

(22)



Substituting Eq. 19 into Bg. 12 and solving for @ gives

hre 3

- ZA —d 5,47v
NN 3
- J cj
2 's) O
ilixe ar; df
1- ) —d [ty ko Iy + %, 55 1,
3 Mk o eV, 2d

By use cf the identity
+

eix sing - Z_\ Jn(x)ein¢

N=e0

vhere Jn. 1s Bessel function of order n, it may be shown that

kv
e +00 an1 ; - )
1,.(#)ag = 2x )7 R
1j
. N==D k.LVJ. P o+ ik,zvz
v] + in
mcj ch
and
kv
21 oo JQ (..L J_)
G)C,j

(23)

(2k)

(25)

(26)



Using Eqs. {25) and (26) we write Eg. (23) in the form

)+I[e, > 3
- } 5 "‘é""‘l‘“ S,(V,k,P)d v
. 1
3 k‘mp

[ = (27)
1 - (P
where
o2 +O0 @ jg
. . Pj
Y(P) = 2xi 2;3 ~§i E J// dvi(// v, dv)
J k N=w 00
-00 o
ng kv, 52 k vy
o.. ofd nl o, aro o\ o,
L) 9 1 cd K J cd (28)
v Tz oV

SR (P + ik v+ ino .) z (P + ik v+ in® )
7 7 ¢ 7 % e

2
hnli. e, °
In Eq. 28 Q&j = -M%m¢ is the plasma frequency. The normalization of fj
hag been changed, so that i%s integral over all of velocity space is unity.
We are particularly interested in zeroth order distribution functions
which cause the denominator of Egq. 27 to vanish for values of P which have

a positive real part. That is
Y(P) = 1 for Re(P)> 0O (29)

If BEq. 29 is satisfied then there will exist plasma oscillations whose
amplitudes ilncrease exponentially with time. In the following section we
will discuss several distribution functions which give rise to unstable

plasma oscillations.



IT1. UNSTABLE DISTRIBUTION FURCIIONS

We shall first consider the distribution functions

Y
PR Vs R U .W (30)
i : 2n VL
for the ions, and
7. /. .

o 1 8‘\\”2 - V)’S\‘CL)

£ = - (31)
e 2 v

for the elesctrons. In the above 8 is the Dirac S~function. These distribu-

tion functions correspond to zero Lemperaturse lons and electrons. The ions
are atb rost in the cheosen coordinate system and the electrons have the

velocity V along the magnetic field. Substituition of BEgs. 30 and 31 into

Eg. 28 gives

2 2 'z
ey - - (&) () 1
¢ : 2 k 2
+ 1 :

a%i k P
g
2
QP@ < kZ> 1
S o | S —
+ ik v k P+ ik V e
e

We now consider some special csses of Eg. 32. If %L = 0 1t becomes

(32)
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Qz .2
¥(p) = - 5 - —22 (33)
P (P + ikV)

6
This case has been considered by Buneman who has shown that instabilities

exist for a proper choice of fPi’ &%e’ and kV. We shall use this example

to introduce the use of the Nyquist7

diagram in determining whether the system
is stable or unstable. Let P = y + i) where y is a constant and ¢ varies

from -00 to +00. Then

2 2

Y(r + 1d) = —BE 4 Ze . (34)
(2 - iy) (@ + xV - iy)
defines a mapping of the curve
Re(P) = ¥ = constant (35)
in the P-plane onto a curve in the X(P)—plane which has the general shape
shown in Fig. 1. It is seen from Eq. 34 that
T(y + i9) = (- 7 + id) (36)
so that the map of
Re(P) = - y = constent (37)

6. O. Buneman, Phys. Rev. Letters, 1, 8 (1958).
7. H. M. James, N. B. Nichols, R. S. Philips. Theory of Servomechanism
(MIT Radiation Laboratory Series, McGraw-Hill, New York, 19L7) p. 70.
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Fig. 1. Nyguist Diagram Corresponding to Eq.(34).
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may be obtained from Fig. 1 by reflection in the real axis. Now it may easily
be seen that points that lie within the strip - 7 - Re(P). + y map onto the
region exterior to the curve and points outside of this strip map onto the
interior of the curve. Therefore, if the point +1 is enclosed by the curve,

there will exist a value of P with Re(P) > y which satisfies
Y(P) =1 (38)

and consequently there are unstable oscillations. There will alsc be another
value of P with Re(P) < - y which satisfies Eq. 38 because of Eq. 36. The
same result may be obtained if the curve Y(iw) is sketched as in Fig. 2.
Now

2 2

2, &)
Y(is)) = + 1 = Pi, be (39)

w? (+ kV)2

is an algebraic equation of the fourth degree for<). Since the coefficients
are real complex roots must appear as conjugate pairs. From Fig. 2 it may
be seen that for some values Of(ﬁ%i’<DPe’ and kV the horizontal line labeled
+ 1 will intersect the curve Y(i®) four times corresponding to four real
roots of Eg. 39. For other values of these parameters the intersections
between % = 0 and W= kV will disappear and two of the roots must be complex.

We next consider the special case kz = 0., Egquation %2 becomes

> >
Y(p) = “pi “pe_ 1 (40)
T3 - 2 )

P +02. P o+0)
Ccl ce

A plot of the Nyguist diagram or of Y(ie)) immediately shows that all four
roots of Eqg. 40 are imaginary and consequently there are no unstable modes for
k = 0. If neither kL nor kz is zero there will eight roots of Y(P) =1

and two of them may be complex depending of the values of<ﬁPi,Cj
* . and kV.
ce’

6D
Pe’ “ey’



13

UNCLASSIFIED
ORNL-LR-DWG 37437

Y {(iw)

—kV 0

Fig. 2. Y(/w) as Given by Eq. (39).
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We next consider the distribution functions

B(v, - Vv,)
fci’ - %.1.(, 8(v_) Mm?:_}._ (41)
& -
£ l g(v ) ﬂ%j (42)

e

These distributions correspond to all of the particles having their velocity
vectors in the plane perpendicular to the magnetic field and all of the ions
having the speed Vi and all of the electrons having the speed Ve' Substituting
Egs. 41 and 42 into Eq. 28 and integrating by parts gives the dispersion

relation

@g +00 Xk
1 : n 1 a
SRR PR & 1(5”-* m) [‘5‘5 %;Ji(bj):{

/%) L
g

e .

CJ
kV,
where b, = ~—=i
b

We shall first of all neglect the ion motion and set kz = 0, Equation 43

then becomes
2 +C0 / N

)
1=Y(P)=-1 5 S e ——— %—— T3 \Jn(be)) (L4h)
C '%)
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Bguation 4l is the dispersion relation found by GrOSs.S A similar relation
had previcusly been found byMalmi‘ox‘slL using the distribution fumction of
Bg. 42 and on the basis of this Malmfors predicted instabilities., However,
Gross found an error which invalidated Malmfors conclusions. Gross examined
Eq. 4h4 for small values of b_ end found that there were no unstable roote.
He ;onjectured that there were no unstable roots for any value of be' Later

Sen” rederived Eq. 44 and numerically found unstable roots for large be' We
shall show that there are unstable roots for vaelues of be greater than 1.84
which 1s the value at which Jl(be) has its first maximum. There no unstable
roots for smaller values of be'

In Fig. 3 we have sketched a part of the Nyquist diagram for beac.l¢8h
and in Fig. 4 we have done the same for b > 1.84, The difference in the
diagrame is due to the change in sign of the derivative of J (b ) when b
becomes greater than 1.84. It is seen that the curve in Flg. h can encloee
the point + 1 when the parameters are sultably chogen

If we set k, = O in Eg. 43 we find

_ 1 42 2
1 =¥(P) = P2 @uPi + aPe) (%5)
from which
1 / %
2 2 \2 m
= i{c (4) = —
P +1@oPi + Pe) iﬂa%e \} + M) (46)

The roots given by Eq. 46 correspond to stable plasma oscillations along the
lines of the magnetic field.

When neither kz nor k, vanish, 1t may be seen from Eq. 43 that there can
be instabilities even for b<~1.84, This possibility was not considered

8. E. P. Gross, Phys. Rev. 82, 232 (1951).
9. H. K. Sen, Phys. Rev. 88 816 (1952).
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fig. 3. Nyquist Diagram Corresponding to Eq. (44) with §,<4.84.
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Fig. 4. Nyquist Diagram Corresponding to Eq. (44) with 5,>14.84,
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by Gross or Sen who restricted their discussions to waves propagaling perpen-
dicular to the magnetic field. The analysis of this case is very similar to
the one which we shall now discuss.

We now wisih to consider the effect of a spread of velocities on the

stability. For that purpose we copsider the distribution function

2,2
I ,\ ’JL/aLi
- (2 ) = (%7)
* en Ofe. 14 v2 + (12
13 Z 21
and a simlilar distribution function for the electrons. The parameters a,
and az measure the spread in velocity in the directions perpendicular and
parallel to the field. The function given by BEg. 47 was chosen because it
resembles the Maxwell-Boltzmann function and allows the integrals in Egq. 28
to be evaluated in terms of known functions.
Substituting Eg. 47 into Eq. 28 and using the formulalo
2,2 2 22, 2 ;22
. ~v /oy 5 (kv . o emaLki/Qge : [ Ok (48)
e - :
1 ; T 2/’
oA e ]n] 20J
o]
one finds
n
+0C 2 e
=k k .
, PEy ©e

a 2 3 1|
Y(P) = ), 95, e 91 (M) [J-i=| =
TR oy IR  \F

() 1 | .

In Eq. 49 ),j = -,u.,..éwj_

10. G. N. Watson, Theory of Bessel Functions (Cambridge University Press,
Cambridge, Massachusetts, 1945), v. 395.
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We shall first comsider the special case in which kL = 0 and the motion

of the ions can be neglected. We find for the dispersion relation

2
“re (50)

1=¥P) = - -
2
(P + |x o )
from which
= e 10 51
P ‘kz'aze‘il Pe (b )

which corresponds to damped ogcillations at the plasms frequency. The physical
origin of the damping may be seen as follows: The oscillations decay in a time

of the order of

L A (52)

Since az is a typical thermal velocity in the z direction, 7 is the time re-
quired for a typical particle tc move a distance A/2n by reason of its thermal
motion. Due to thermal motion the particles get out of phase with the oscilla-
tion. Damping of this sort was first discovered by Landaull who assumed a
Maxwellian distribution and consequently found a decay time different from
that given by Eq. 52.

5till neglecting the motion of the ions we consider the case kz = 0,

The dispersion relation becomes

2 +0
i =\
1=%() =~ —E8e = 3 i) (%) (53)
D e ==00 } (P + ina%e)

11. L. Landsu, J. Exptl.-Theoret. Phys. (USSR) 1, 57k (1946).
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Bguation 5% may be shown to reduce to the expression found by’Bernsteinﬁ2
There are an infianite number of roots of Eq. 53 all of which are imaginary;
hence there is neither instability nor Landau damping for waves propagating
perpendicular to the field.

We now return to Egq. 49 and take into account the motion of both
electrons and ions. For the time being we will let az = 0., We find it

convenient to let P = iw and write Bg. 49 in the form

g n° o2 g 2 @
ot 2 i 2, 2 IE i} 2
1= (i) = of, Je 1,(pnl) Z+2e ). 1800
n=1
- 2 2 2 2
1 n® L2 Ty Y e"aeni I (p.n?) 2
B 2 22 z 2 Pe e L’ 42
i @ "n“>1) ng.n%f)
ci
-8 2° @ 2 0)2 + 0 Q ]
+2e °© i,lx; T (Ben2 L 2 r 0o ce (5k)
n L B 2 2.2 Z 2
n=1 e O - nwT) 2 2.2
ce (0" - 0w )
ce
where
P
B, = (55)
1 02
cl
aeékz
B, = =5 (56)
20
ce
k
AL
n, = = (57)



n ==& (58)

It may be seen from Eg. 54% that Y(i9) hes singulerities whenever t)is an
integral multiple of the ion or electron cyclotron freguency. When @ <4< (L]ce

we may neglect the terms contalning In(ﬁﬁnﬁ_} for n > 1 and write

2 2 2 2 o
IA) - - -
) . Ee eﬁeﬁ*1(5n2)+¥§eﬁin*1(6ng) i%* EM Br
6)2 o e L M, o' i L 2
ﬂ»i L
S
2 2 2
) 2 1 n 2 W +p
I‘n(BinJ-) 5 S 5o v D) - 5 (59)
1 6\) - N ) (wE - nd@E )
c
where 4)' = @)/c)ci and we have used
mf?g M
i_ e
= T (60)

@pg 1

We will now use the smaliness of the mass ratic to find approximate roots of
t [ 2
Eg. 59. We multiply both sides of the equation by &)2(&)2 -aj,‘?)" where,ﬁ is

an integer and obtain

}

2
ci ¢l

o 2
2 M
2 2 “pe 2,22 Y Ppe 7By _\_ Z
{CL) - N A] (&‘) "Z ) 2: M I (Bl )

e
>

] 2 "
[gf_‘ @27 | 2 @®-f" ok o ) (61)
S T

where
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2
2 M -B.n
- n, 2 e i 2
A=e € IO(BeQL) + Mi © Io(Bin¢) (62)
Now if Mg/Ng were zero Eg. 61 would have the roobs
]
A o/ (63)
ci
and
@
! @) Pe 1/2
I3 emmeemes I X «-o-—-:‘/ 1
¢ S T 2% . A (61)
ci Pi
This suggests that in order to find an approximatico to the roots near
¢ 7
@ ::JZ we substitute ¢ for @ everywhers in Eg. 01 except in the factor
2 2,2
- on the ls: and side. This gives
(& 1) the left hand side. This gi
2 1/2
e [, M BT 2 op
— 4 e I,{p.n " )n
2 g2 Gy M 4L
0w =0+ - (65)
1/2
2
[2 QCdPe]
‘2 - B e A
s
ci
N 1/2
2
M -B.n 1/2
on “pe [J%e lli(s,nE)J
. A Mi AT
o =4 |1+ ' (66)
o 2% 17
= e
X[ﬁ "nz“‘"é““*‘“]
ci

o approxXimately



= (67)

or finally

D=+ Joy + L (63)

Equation 68 is an approximate expression for the roots of Eq. 59 in the
neighborhood of ) = + Zaéi' The approximationg that have been made are valid
only when the second term in Eg. 68 is much smaller than the first. It is

seen that s becomes complex indicating an instability whenever

2
niw--g? a>0? (69)
AN
¢l

In the limit

N N (70)

Equation 68 becomes

r 2 1/2
M B n
W=t fo  +6 l:g e * J’Il(sinf‘_)] (71)
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The most unstable mode will be the one corresponding to / = 1; for this

mode

- 2 1/2
i 2
o=t +id [ﬁf e T 1 (ﬁonl)} (72)

We can estimate the rate of growth of the most unstable wmode for two cases.

Iin the first we give
, 2
e 1, (Byn7)

Ite maximum value of 0.219 which makes

u_3/2
D= oy, He [0.219 i (75)
or
ci
Oy A, + i1 (T4)
et 120

for deuterium. In the second case we take ﬁinf_ very small, then

-8 n2 02 kE
P n?ya kg2 iy
e 1) R 5 Byn| o2 (75)
Q.
el
and
1 Me
0 & ta,, "é'a_x,ki W (76)
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The effect of a finite az can be tsken into account now just by re-

placing ) by - iazkz in the preceding equations. This indicates that a

spread of velocities in the direction of the field causes a damping of the

oscillations.

Probably no quantitative significance should he attached to

azkz since the distridbution in v, given by Eg. U7 is a rather unrealistic

one. We have already‘remarked that the decay time found by Landau using a

Maxwellian distribution was not the same as our Eg. 52.

A criterion for instability can be found from Eq. 69. In general ni

and A are close to unity and the most unstable mode is,Z==]w Replacing

2

ar

n_, A, and £ by unity gives the instability criterion

2 2
Bpe> Doy (717)
4uNe2 - 8252 (78)
Ms M’?‘c2
i
M BE -
N > -I;I—e— — (79)
i hnMic

IV. DISCUSSION

In the preceding section we discussed several distribution funections which

give rise to unstable plasma oscillations. The instabilities which arise when

there is relative motion between electrons and ions have been discussed by

Buneman for the case of no magnetic field and will not be discussed further

here.

The principle result of this work is that instabilities may arise when

the velocity distributions are flattened in the direction of the magnetic
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field. If we take B = th gauss and Mi to be the deuteron mass, Eg. 79
predicts that instebilities will develop: when the particle densities exceed
about 107. This is a particle density much below any proposed for thermo-
nuclear machines known to the author. The e-folding times calculated from
iq. 73 or Eq. Th are, of course, much shorter than containment times necessary
for a practical device.

These instabilities are reduced by Landsu damping if there is a spread
of velocities along the direction of the field. However, this damping is small
for waves with small kz. We have shown for the distribution function given

by Eq. 47 that there is no instability if kz = 0,
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