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Abstract

The so~-called "Collisionless Boltzmann Equation” or "Vliasov Equetion”
has been derived previously by Harris by use of a complete statistical
treatment of both the plasma particles and the electromegnetic fields.

It is shown that a consequence of this approximation 1s that the entropy
of the electromagnetic field as well as that of the plasma particles is
a constant. This result is used to demonstrate that only completely

coherent radiation may be emitted by a plasma cbeying the Vlasov equation.
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T. Introduction

The Vliasov equation or "Collisionless Boltzmann eguation" have been
derived previously by Harrisl by stafting from the Liouville equation and
using & complete sgbatistical treatment of both the plasma particles and the
electromegnetic field. One then integrates over the coordinates of all bub
one particle or all but one field oscillator and assumes that the pair dls-
tribution function is factorable into a product of one particle or one
osciliator distribubtion functions. The resulting eguation for the one particle
distribution function is easily seen to be exactly the usual Vliasov equation.
The corresponding equastion for the one oscillator distribubion function has
some Iinteresting implications which have not been considered previously.

In particular, one can define an entropy for the electromegnetic field
and show that it 1s & constant In time. It is quite easy to show that the
entropy of a radiation field will be the same as 1t is in the abgence of
radiation cnly if the field is completely ccherent. Hence a plasma cheying
the Vlasov equation can only radiate'coherently if there is initially no-
radistion present.

The one particle and ome oscillator distribution equations are derived in
the next section. We then define the particle and field entropiles and show
that these are comserved in time. Finally, it is demonstrated that any

inccoherence raises the entzopy of the field.

1. E. G. Harris, NRL Report 4ohk, May 17, 1957.
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IT. The Equations for the One-Particle and One-~Oscillator Distribution Functions

. . 2 . X .
Using the notation of Heitler,” we expand the vector potential in a series
of orthogonal vector functions which are periodic on some surface bounding our

systems. Thus:

- 4
E=Zat K@ (1)
A
where K; satisfles the eguations
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V ATE A
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3 .
VA =o0 (3)

We use the Coulomb gauge throughout this paper. As shown by Heitler the

Hemiltonian for the complete system of charged particles and electromegnetic

field is
e e
l ~F k 4 _—, -
H= fi 2o, Px T e ji a, A ( k)“i +
k y
e e
1 2 1.2 2 - & %k
st a8 ) )]
* 251(2 Py EYL )t :Z> = (%)
y ik Tk

We now construct fN’CO(qk, Prs G pk), the phase-space distribution
function of the system. It is a function of all the coordinates and momenta of
the N charged particles and of all the coordinates and momenta of the fisld

oscillators. It is the probability density in the infinite dimensional phase

2. W. Heitler, The Quantum Theory of Radiation, 3rd Edition, Oxford: Clarendon
Press, 195k, pp. 40-55.
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space of the system. The rate of change of fN,oo is given by Liouville's

N, :
éf'a';i*{fmm, H}o (5)

It is customary in kinetic theory to speak of functions of position and

equation,

velocity rather than functions of position and momentum, so before writing this
equation in detail we make this change of variables for the particles. Eg. (5)

then becomes:

BfN;OO -
ot +ka

N, co

In the usual way, an equation for T (qk,v ), the one-particle distribution
function for the kth particle may be found by integrating over all the field
oscillators and all the particles except the kth. Likewise an equation may
be found for fx(qx,pk), the distribution function for the xth field oscillator.

Thege are found to be:
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and
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It is seen that these equations involve T ’X, the pair distribution

th th
function for the k particle and A field oscillator, and fl’k, the pair

-,

. th s
distribution function for the 1  and k¥  particles. The Vlasov equation is

cbhtained by assuming that all pair correlations vanish and hence that:

k \
= f £
(q‘k’ K’ QXJP)») (QLK: ) (QX:P ) (9a)
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Substituting Eqs. (9) into Egs. (7) and (8) we find
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Tt is relatively easy to show that Eq. (10) reduces to the Collisionless

Boltzmann equation or Vlasov eguation:



e —3 S
7 i_ﬁ - [Ewcq;,m e < T, @) - %i; o (12)
k k

The implicaticns of Eg. (11) are examined in the nex’ section, It should be
noted that Eg. (11) actually represents = denumerable infinity of equations cne
for each cscillator. Likewise Eq. (10) actually represents N equations, one
for each particle. In the latter case, the usual assumption of symmetry of
the initial ensemble to Interchanges between particles of like species reduces

BEq. (lO) to one equaticn for each particle species.



111, EntroPylgg the Radiation Field

Let us define a quantity‘57 such that

-7 )" )‘ "
S = - ) f n £ do. d 1
8, K L).; / (qkpx) (n (qkph) D, qx (13)

The time rate of change S is given by

Y
as @fk an A
,—a»% = = K Z,; Gv_-t + —*67_5- QII T dp)\‘qu (lh—)

: A . . . " . o
The term in oOf /bt alone vanishes in virtue of conservation of total probability.
} A k , . s . 4
(Note that each £ apnd each T by virtue of its probability density interpreta-
tion must be normalized to unity.) The remaining term can be rewritten by

substituting from Bq. (11) and integrating by parts. The result is:

oy 5 3* 2. 3t
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v A ey
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Thus the entropy of the electromagnetic field is a constant of the mobtion.

The entropy of the particle field,
s =-% 5 [fF0n s af e (16)
* k k

is also a constant of the motion. This can be verified immediately oy use

of Eq. (12) as was shown earlier by Newcomb.-

3. I. B. Bernstein; Phys. Rev. 109, 10 (1958), Appendix I.



IV. Entropy Change Due to Incoherence

Suppose that initially all electromagnetic fields are absent. In this
case, all the oscillators have completely determined values of thelr coordinates
and canonical momenta, namely zero. The corresponding probability distribution

functions of the oscillators is then equal to a product of delta functions:
o, a) = 8a) §6,) (a11 1) (17)
A A A A

If we substitute Eq. (17) in Eq. (13), we find immediately that

8
7

it

-k S 2 {né(0) (18)
y

Suppose now that we excite an electromagnetic field but in a completely
coherent fashion. This means that there is not a probability spread of the
coordinates and momenta of each oscillator but that instead each oscillator has
a precise value for its p and g. In other language, all photons of a glven
frequency have a unique phase. We expect, in this case, that there has heen
no disorder created in the oscillator system and that the entropy has remained

unchanged. This is indeed the case for we can now write
A
(g, v,) = da, - o) >, - B)

where ax and Bx are the precise values of the xth oscillator's coordinate and
momentum. Upon substitution in Egq. (13) this gives precisely the same result
as in Eg. (18).

Now suppose that there is some 1ncoherence. A trivial example will
demonstrate that the entropy in the field will increase. Suppose that one
oscillator, say the jth, hag a probability spread of its momenta. Say it has

1



8 p, = Bj with probability 1/2 and a o, = 7j with equal probability. Now

1

3 g 1y
q.p.) =8a, ~a,) iz e, - B,) +zp, - 7,)
(agpy) = 8ay = @) 13 (0y = By) + 5 902y - 7;)]
while for all the other cscillators;
o Sty - .
£ (q,p, ) {q, - o) 3(px B,) (M)

Upon substitution of these equations in Eg. (13) we find
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Hence the entropy has increased over that for a completely coherent radiation
field.
These considerations go through with some trivial extensions if static

exbernal fields are present originally.
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