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Abgtra<rt

A survey of the experimental methods used in testing the radiation

stability of molten salts and their corrosion properties is presented.

The effects of irradiation on the corrosion on Inconel exposed to fluoride

fuel mixtures and on the physical and chemical stability of the fuel

mixtures have been investigated by irradiating in the MTR capsulas

filled with static fuel and by operatinsr in-pile forced-circulation loops

in the LTTR and in the MTR. In the many capsule tests and in the three

in-pile loop tests made to date, no major changes have occurred in the

fuel mixtures that can be attributed to irradiation, other than normal

burn-up of uranium. Metallurgical examinations of the Inconel capsules

and tubing have likewise shown no changes in corrosion that can be the

result of radiation damage. The low corrosion results obtained for the

in-pile loops have been confirmed by chemical analyses for corrosion

products in the fuel mixtures.
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The use of molten fluorides as reactor fuels Q) requires that they be

stable both thermally and in intense radiation fields. The fission process in

the salt causes regions of high ionization density to exist, as well as very

high heat fluxes. However, since molten salts are generally ionic liquids,

there is no crystalline lattice to disrupt, nor are there covalent" bonds to

severe Thuss fast neutrons, fission fragments, and gamma radiation cannot

cause severe damage of the type found in crystalline materials. However, the

interface between the molten salt and its container offers a site where

radiation effects might make themselves evident in an acceleration of the

corrosion process. With this possibility, it has been necessary to te3t the

compatibility of various salts with structural metals in the highest neutron

fluxes available.

The principal methods used in in-pile testing of molten salts are listed

in Table I<, Capsule tests were performed first because of their simplicity

and their ability to produce information susceptible to statistical analysis.

The successive techniques listed in the table are of increasing degrees of

complexity and approach closer and closer to the design conditions of a

practical nuclear power plant. Each step, however, introduces new variables

and requires far creater expenditure of effort and time than the previous

step does, rapidly decreasing the number of tests which can be performed.

Although consideration was given to their use, rocking capsule tests and

thermal convection loops have not formed a part of the work described here.

Capsule tests have been made with nickel, types 316 and 34.7 stainless

steel, and Inconel. The salts employed and their compositions are listed

in Table II. The first salt irradiations were conducted by Van De Graaf (2)

and cyclotron (3j bombardments. Proton bombardments (3Jj)vere employed to



TABLE I

METHODS OF STUDYING RADIATION EFFECTS ON CORROSION BY MOLTEN FLUORIDE FUELS

1. In-Pile Capsule Tests

2. Rocking Capsule Tests

3. Thermal Convection Loops

4. Forced-Flow Loops

5. Experimental Reactors
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TABLE II

MOLTEN SALTS TESTED IN RADIATION EFFECTS PROGRAM

System Composition (mole%)

KDH 100

NaF-KF-UF, 46.5-26.0-27.5

NaF-BeFp-UF 25.0-60.0-15.0

NaF-BeF2-UF 47.0-51.0-2.0

NaF-BeF -UF 50.O-46.0-4.0
4 4

NaF-ZrF,-UF. 63.0-25.0-12.0
4 4

NaF-ZrF^-UF 53.5-40.0-12.0

NaF-ZrF, -UF 50.O-48.0-2.0
* U

NaF-ZrF -UFo 50.0-43.0-2.0
4 3
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supplement parallel experiments in the ORNL Graphite Reactor because of the high

specific power attainable in this way. These irradiations were continued for 1

to 92 hours, using 20 to 22 Mev. protons in the ORNL 36-in. cyclotron. Specific

power generation ranged from 500 to 4700 watts cnf^. With the starting of the

MTR, a sufficiently high-flux reactor became available for these experiments.

Irradiation with neutrons, gamma rays, and fission fragments obtained in this

way are far more realistic than those using elementary charged particles. The

emphasis was therefore shifted to reactor irradiations.

A typical capsule used in the MTR irradiation program is shown in Fig. 1.

It is 0.100 in. i.d. with a 0,050 in. wall. The length of the salt column is

1 in. In salts with high U^-" contents, the diameter of the fuel column is

reduced to 0.055 in. This avoids excessive temperatures at the center of the

salt colume when working with fuels generating as hi»h as 8000 watts cm--' (£).

Fig. 2 illustrates the arrangement of control instrumentation on the north

balcony of the MTR. Electrical and cooling-air lines extend from the instrument

panels to the top of the reactor. The capsule is loaded through the reactor

inlet water line. It is inserted down an aluminum tube into a beryllium

piece located in the reflector region. Fig, 3 shows the MTR irradiation

facility. The temperature of the fuel is controlled by a variable flow of

air, the outer surface temperature of the capsule being monitored with

thermocouples. The weight of 3alt is chosen so that about 250 watts of

fission heat are generated in the capsule. This requires about 3 cfrn of

cooling air. Using 45 psig air, the velocity through the capsule restriction

is about 700 ft.sec. .

It was necessary to develop special thermocouple junctions for use in

such high-velocity cooling air streams. The air produces a large thermal
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gradient in the capsule wall and in the thermocouple beads. In poorly constructed

o
thermocouples, errors as great as 300 C have been observed. The thermocouple shown

in Fief, 4 was made by a resistance spot-welding technique. The bead is designed to

have a lar°e area of contact with the capsule and to be very thin, thus ensuring

that the part which measures temperature is at the same temperature as the surface

of the capsuleo

After irradiations capsules are returned to ORNL where detailed examinations

are made in the Solid State Division hot cells. Fig, 5 shows a cell equipped

for chemical analyses. Right-to-left are a vertical lathe for opening capsules,

a master-slave manipulator, a drill press for removing salt samples, and a

chemical hood. Operations involving radioactive powders are enclosed in lucite

cases which are exhausted through a filter system. Fig, 6 shows a tool for

slitting capsules longitudinally (5_), to obtain specimens sometimes desired for

metallographic studies. Fig, 7 shows the hot cell in which metalio graphic

specimens are prepared (6). Some salt samples have been examined using the *

shielded petrographic microscope (2) shown in Fig, 8,

The principal variables studied in the static corrosion program have been

fluXj, fission power, time, and temperature. In a fixed neutron flux, the fission

power is varied by adjusting the u content of the fuel mixture. Thermal

neutron fluxes have ranged from 10r~*- to 10^ neutrons cm~2 sec."'-'- and fission

power-densities from 80 to 8000 watts em~-% Capsules have generally been

irradiated for 300 hours at 1500°F (815°C), although in recent tests the

experiments have been extended to 600 to 300 hours. The techniques used for

examining capsules after irradiation are listed in Table III.
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TABLE III

TECHNIQUES FOR EXAMINING IRRADIATED MOLTEN FLUORIDES

1. Pressure Tests (in-Pile)

2. Melting Point Determinations

3. Petrographic Analyses

4. Chemical Analyses

5. Mass Spectroscopic Assays

6. Gamma-Ray Spectroscopic Studies

7. Metallographic Examination of Containers
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In the many capsule tests to date (over 100), no major changes have been

observed which can be attributed to irradiation, except the normal burn-up of

IF-* . Metallographic examinations (8) of Inconel capsules tested in NaF-ZrF,-UF/

and in NaF-ZrF -UF at 1500°F for 300 hours have shown corrosion comparable to

that found in unirradiated control tests, i.e., penetrations to depths of less

than 4 mils. In capsules which experienced accidental excursions to 2000°F and

above, there was penetration to depths of more than 12 mils, accompanied by

grain growth. These results stimulated extensive development work on control

instrumentation and thermocouple construction. Chemical determinations of

chromium in irradiated salts have been shown (2) to be seriously affected by

the intense beta radiation of the accompanying fission products. Work is
currently in progress on the circumvention of this problem.

Three typesof forced-circulation in-pile'loops have been-studied. A large

loop was operated in a horizontal beam-hole of the LTTR (10). The pump for

circulating the fuel in this loop was placed outside the reactor shield. A :

smaller loop was operated in a vertical position in the lattice of the LITR

(ll)> its pump mounted just above the lattice. A third loop was operated

completely within a beam-hole of the MTR (12J. The operating conditions for

these loops are presented in Table IV. The dilution factor for a reactor may

be defined as the ratio of the total volume of fuel in the system to that in

the reactor core. A more useful definition for in-pile loop use is the ratio

of the maximum specific power to the average specific power. In the two LITR

loops, metallographic examinations showed less than 1 mil penetration of the

Inconel fuel tubes. Figs. 9 and 10 show drawings of these two loop models.

The MTR horizontal loop is shown in Fig, 11, Examination of etched and unetched

metallographic sections of Inconel tubing from this loop showed no attack to a

depth greater than 3 mils. A slight amount of intergranular corrosion was noted,
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but this was neither dense nor deep. Measurements of wall thickness showed no

variations attributable to corrosion. The loop was examined carefully for effects

of temperature variations between inside and outside walls of the tubing at the

bends, but no effects of overheating were observed. The low corrosion is

attributable to careful temperature control of the salt-metal interface and to the

maximum wall temperature being below 1500°F at all times. The larger corrosion

value in the MTR loop results from the greater fuel-temperature differential

(155°F) which was obtained during operation. Loops operated in the absence of

radiation show similar effects. Studies of the behavior of fission product

elements in these loops are discussed elsewhere (12.).

The experiments described above show that, within the limits of tests to

date, there is no acceleration by radiation of the corrosion of Inconel by

molten fluoride reactor fuels. Experiments are planned to extend the program to

cover new salt compositions and new alloys and to operate in-pile loops for much

longer times with higher flow-rates and greater fuel-temperature differentials. .
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TABLE IV

OPERATING CONDITIONS FOR INCONEL FORCED-CIRCULATION IN-PILE LOOPS

Fuel Composition (mole$)

Max. Fission Power,
watt cm"^

Total Power

Dilution Factor

Max. Fuel Temp.,°F,

Fuel Temperature
Differential, °F.

Fuel Reynolds' Number

Operating Time, Hours

Time at Full Power

Depth of Corrosion
Attack, mils

LITR LITR MTR

Horizontal Vertical Horizontal

^OP Loop .., ,Loop
NaF-ZrF,-UF/ "aF-ZriV-UF/ NaF-ZrF/-UF,
(62.5-1275-25) (63-25-12) (53.5-40^6.57

400 500 800

2.3 5.0 20

180 10 5

1500 1500 1500

30 71 155

6000 3000 5000

645 130 467

475 30 271

<1 <1 <3
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Fig. 10. LITR Vertical Forced-Circulation Loop for Dynamic Corrosion
Testing of Molten Fluorides.
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