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GENERATED ERROR IN THE SOLUTION

OF CERTAIN PARTIAL DIFFERENCE EQUATIONS

1. Statement of the problem. The results to be given here are largely

well known, but the form of the results and the method of obtaining them are

new and seem to have some advantages of simplicity and generality. The

partial difference equations being considered are those which arise in the

digital solution of certain linear partial differential equations. The

regions considered are rectangular with sides parallel to the axes. For a

region in the plane, let it be subdivided by lines parallel to the y-axis

with uniform separation A x, and by lines parallel to the x-axis with

uniform separation Ay, and assume it to lie in the first quadrant with two

sides along the axes. Let there be n points in the horizontal direction

interior to the region and m points in the vertical direction. If

u(x, y) is the required function, define

\ =Vn(j-l) =Ui,j '**•**> J^y).

In some cases values along the first line must be obtained independently of

the method to be discussed, and the numbering will start along the line 2Ay.

This should be plain from the context.

If u is the vector whose elements are the vl, the equations to be

solved are of the forms

Au = b.

The matrix A will be triangular for the so-called explicit schemes, and in



any case can be partitioned into mxm blocks, each block being a matrix of

order n.. All blocks on a line parallel to the main diagonal are equal.

The elements of A will depend upon the form of the partial differential

equations to be solved, and upon the particular difference approximations

to the derivatives. The elements of b will depend upon these factors and

upon the boundary values.

Let A* and b* represent the matrix and vector actually in the machine,

possibly differing from the true A and b because of rounding errors. Let

u* represent an approximation to the true solution u, however it may have

been obtained. The approximate solution would, in general, be tested by

a substitution to compare Au* with b. However, Au* will not be available

exactly, but only approximately as a machine product (A*u*) of digital

elements. The maximal deviation of this vector from the desired Au

will depend upon the machine and the method of programming. Consider the

decomposition

A(u -u*) = [Au - (A*u*)*] + [(A*u*)* -A*u*] + (A* -A)u*

= d1 + d£ + d = d,

where d , d , and d are the bracketed vectors and d is their sum. Of these,

since, by hypothesis, Au = b, and (A*u*)* is the result of the machine compu

tation, d, is known directly. The magnitude of d depends upon the pro

gramming, but this being fixed o bound can be obtained. Also A* - A can be

bounded, and, in terms of any consistent norm (2, 3)

s IS. 1 A* - A
•

u*

tMwrwim^iwwi^wiiipnB^
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Hence each term on the right of

HdlHIdJI +||d2l|+ ||d5|

can be bounded. Since

u - u* = A" d,

it follows that

lu - u*|| ^iia"1!

Hence if, in terms of a suitable norm, it is possible to estimate ||A || ,

an upper bound on ||u - u*|| can be had. This will be the objective in each

case to be considered.

Repeated use will be made of certain known, but perhaps not well known,

properties of matrices. In the interests of continuity these will be

assembled in an appendix.

An approach somewhat similar to the one taken here is developed by John

Todd (6). The present treatment differs, however, in the use of matrix norms.

For notation not explained here, see references 2 and j5. The major lemmas

in the appendix are contained at least implicitly in reference J. No attempt

is made to trace the various difference schemes to their sources, and only

some more recent papers are listed below. Since this report is intended

mainly to illustrate a method, the schemes selected for treatment certainly

are not assumed to exhaust the list of possibilties. Moreover, except in

the final example, no cases with variable coefficients are considered.
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2 2
2" The parabolic equation. 5 u/bx = Su/oy. The simplest approxi-

mating difference equation is

8^u(Xj y)/{Ax)2 =, Ayu(x, y)/Ay,

where 5 denotes a central difference with respect to x and A a forward

difference with respect to y. The matrix A has the form

where

A =

10 0

BIO

0 -B I

B = (1- 2*)i + KK, W s Ay/(AX)'

and X = Kn is the matrix defined in Lemma VI of the appendix. Since

0 0

I 0

A

B B I

•J

it follows from Lemmas I and II that

,-1 £n[l + |X(B)| , i.m-l. x'
+ ... + X (B)



where X(B) is a proper value of B of maximal modulus. By Lemmas V and VI,

the proper values of B are

X.(B) = 1 - 2* + 2*cos V <p

= 1 - k* sin (vq)/2), q>=TT/(n+l)

If

Vt ^ 1/2,

then

|\(B)| ^ I-

In that event

kil nm.

Otherwise, however, one has the less favorable estimate

< n
m(1HC - l)lu - l /(**)•

Next consider

5^ u(x, y)/pxf =Ay 5y u(x, y)/Ay.

Thus



A =

where

I1 0 0 0

-B I 0 0

-I -B I 0

1 o -I -B I

B = 2* (I - 21).

• /

with X as defined before. One verifies that

w

I

X(B)

0 0 .. \

1 0 ..

u2(B) ux(B) I ..

where the polynomials a)y(X) =w (X, 1) are as defined in Lemma IV.

The proper values X , (B) are given by

Xv, =Xv, (B) =-16 X2 sin 2(v>/2) (V =1, 2,-, n),

and those of u (b) are given by to (X ,, 1). For any v1, set X = X , in

Lemma IV. Then u \i^ = -1> and we can assume -n', > 17 n? > 0. For large

: ^M^.^^iift-ittUHipmMKI'^^

u (*• ,) -
v v "l

W£t~***e#**»*«*»w
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approximately, and the method is unstable for all values of K.

The same formulas can be converted to an implicit scheme:

6x u(x, y)/(Ax) =uySy u(x, y)/Ay.

The matrix A now has the form

/B -I 0

I B -I

0 I B

where B is the same as above. This matrix is the transpose of that con

sidered in Lemma VIII, and has the same proper values. Let X , represent

the zeros of w (X, 1), and let B represent the proper values of B. Then

the proper values of A are of the form X , + p , by the corollary to Lemma

IX. Hence those of A~ are of the form (X ,+ B )" . As m and n increase,

with fixed K, there are values of v' and v for which X , + B becomes as
v v

small as we please. Consequently this method, like the other, is unstable.

Consider, next, the implicit scheme

2 2&x u(x, y)/(Ax) =V u(x, y)Ay,

where y represents the backward difference in y. the matrix is

A =

u.I - B 0

I I - B 0

0 -I I - B

o ..\
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with the same matrix B. The inverse is

/(I ~B)™1
.-1

(I -B)"2 (I -B)"1

0

0

(I _b)"5 (I -B)"d (I - B)

The proper values of I - B are

-1

1+ 8Ksin2(v«cp/2) > 1, (v' = 1, 2, ... , n)

Hence all proper values of (I - B)~V are < 1 independently of \C, whence

(I - B)' <n,

|A I < nm.

Another implicit scheme is

A (1 + E„) u(x, y)/(Ax) = 2A u(x, y)Ay,

where E represents the displacement operator in the y-direction. The

matrix has the form

A =

I - B/2 0 0

-I - B/2 I - B/2 0

0 -I - B/2 I - B/2

- * rf»*fe«(«i^*«:aJ^*.i**Wi^«;w'!i»h»^itfM**si!a»ss-<^



Let

-1P = I -B/2 Q = (I -B/2)"X (I + B/2)

The matrices P and Q are commutative, so that

OP"1

qV1

0

p-1

QP"1 P

0

0

-1

and P and Q are diagonalized by the same orthogonal matrix. The proper

values of P are

Xv(P) =1+4ttsin2(vcp/2), <P =lT/(n +1)

and those of Q are

Hence

and therefore

Xv(Q) - l-^sinW),
1 + UK sin (v<P/2)

\(Q) < 1< \(p),

QVP-X •^ n,
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independently of v and ofK. Consequently

nm.

Mitchell (k) proposes a family of methods

If

then

A =

Hence

1 2 2(a + BE~ ) Sx u(x, y)/N =̂ y u(x, y)/hy,

'POO

Q P 0

0 Q P

a + B = l.

7 = (Ax)" My),

P = (2a + 7)1 - oK,

Q = (2B - 7)1 -PK,

M = -P Q,

/p 0 0 ..
0 P 0 ..

OOP..

10 0

•M I 0

0 -M I



and

-1

'I

M

0 0

1 0

M I

k1 e

—j.

+
e

MP"1

-11-

0

-1
0 P

7
\

+ ... +
-1 „-lM^P

The proper values of P and Q are

X (P) = 7 + ka sin (vcp/2), cp =^/(n + 1)

and

\(Q) = -7 +^ sin (vcp/2)

while those of M are

Xv(M) =Xv(Q)/Xv(P),

Consider this function

7 + ha sin 9

On this interval cp is monotonically decreasing and

d<0) =1, cp (*/2) =2Ll^g
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If

a 2. 1/2 - y/k, p £.1/2 + y/k,

then

cp(rr/2)2- -1

and

Um)|'^i.S,(M)l

In any case

\(P)^ 7-

Hence when a and p satisfy the above conditions

M^"1 •n/7

and

^ mn/7.

The scheme of Du Fort and Frankel (1),

|Ky 5y u(x, y) u(x -ax, y) -u(x, y+Ay) -u(x, y -Ay) +u(x +ax, y)

Ay (A*)'

i*'*<(*SN*<$i«iiM*K(WH*IM"»'*-*;*--*>t*tx*:~Mt,:.""»^-<^WM$ii§»a«*pica!M wmmmmwmmmw*smmm#mmti*w>
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leads to the matrix

A =

(1 + 2K)I 0 0

-2*2 (1 + 2*)I 0

-(1 - 2yQl -2K£ (1 + 2K)l ..

(l + 2K)

_ 2yC
° ~ 1 + 2V

I 0 0.

-dK I 0 ..

-p I -oK I ..

L~~ *L- Gm |L -» -«fc

P = T~T2lC= ~ °'

a"1 = (1 + 2Y.)'1

I 0 0

1 0

c2 C± I

-7

V = ^v^' p^

with the polynomial as defined in Lemma IV. The proper values of dK. axe

X , = X ,(aK) = 2a cos v* cp, cp = ir/(n + 1),

and those of C are

a ,(C ) = U (X ,, p)
V V V V



.iA_

It will be shown that for any % and any v',

wv(Av«> P) < v + 1.

Since, by Lemma IV,

v v-1 v

2

(reality of the ^ *s is not required), the result will follow if it can be

shown that |u .1 -^ 1. If u. and |a are complex, then juJ =|n2

ri ^2

If u and |j. are real, n > |n|2 ,then

but

l/22 2
\i = a cos v"cp + (0 cos v'cp 4- 1 - 2a)

and

2 2(u - a cos V cp) = (1 - a cos v' cp) - 2a(l - cos v' cp)

^(1 - 0 cos v' 9) ,

This is the required result.

It follows that

nx^ 1.



whence, on summing

and, therefore,

-15-

||Cvlle < n^V + 1^*

E ||C, II 4 n m/2,
I I VIC

e < 2 + 4X
n m
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2 2 2 2
3- The hyperbolic equation. S u/Sx = d u/c>y . The simplest scheme is

with

Then

2 25X u(x, y) 5y u(x, y)

(Ax) (Ay)'

A =

I 0 0.

-B 10.

I -B I ..

B =2(1 - T2)I +t2 x, t =Ayj^x.

I

^(B)

0 0 ,

1 0 ..

t2(B) tx(B) I .

with the polynomials ^v(a) = tv(A> 1) defined in Lemma III. The proper values

of B are

av,(B) =2-k-x 2sin2(v' cp/2), cp =ff/(n +1)

Hence if t 6 1, one can define a real 9 , > 0 by



Then

Hence

If t= 1, then

-17-

2 cos 9yI = Xv,(B).

\,(B)
sin(v + 1) 9v,

sin 9 , *"

+V[\.(B) ^ esc 9 ,
v

9, =
v'n

v" n + 1

and 9, is the smallest of the 9's. For %< 1, every 9yt 7 «/(n + 1). Hence,

neglecting terms of higher order, sin 9yl^ */(n + 1) and hence

t. \,(B) n/«.

Therefore, to the same order,

-1 < nd m/«

Somewhat analogous to Mitchell's scheme for parabolic equations is the

following one for hyperbolic
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(a Ey +pEyX) 5x u(x, y) 5y u(x, y)
(ax)' W

a + p = 1.

If, this time, we define

and

then

f =Ax/\y,

P = (t + 2a)I -al,

Q = (t + 2p)I - b Z,

A =

rJ2
-2r I

Q

•^iPp"1 I

Q P"1 -2??'1

0 0

0

-2r I p

0 ..'

r
0 0

0 .. 0 p 0

I ... 0 0 p

The matrices P and Q are symmetric and have the same proper vectors.
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Iheir proper values are

Let

and let

Cons ider

\,(P) =t2 +ha sin2(v' cp/2), cp =
n + 1

\i(Q) = T +4 psin (v« cp/2)

A(P) = diag \(?)> -.. , An(P)

A(Q) = diag AX(Q), ••• , An(Q)

P = VA (P) VT, Q = VA (Q) VT.

V1 0

I

0

0

I 0 0
••

-2t2p_1 I 0 . .

QP"1 -2T2P"1 I * » c2 C± I

The matrices C , satisfy the recursion

C0 = I

2 -1c1 = 2rp ,
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Cv =2t2p_1 Vl -QP_lcv-2-

Hence they are symmetric and have the same proper vectors as P and Q. Hence

the diagonal forms a(C ) satisfy the same recursion with A(P) and a(Q)

replacing P and Q. Let

Xv, =2T2X^ (P), Pv' =V «*> \' (P)

Then the v'th proper value of C is, by Lemma III,

where

p,it sin (v' + 1) 9v,
sin 9y,X , (C ) =

v' N v'

X , = 2 p , cos 9 ,
v' v v

Direct verification shows that

X , < 2 p ,
v' Hv'

and hence that 9 , is real. Hence

and if

^•n max

V

6 < a

V
sin 9V,



* ^n^^is<^f^^^gmt!('^i*^mefi><)m^imftms!

then

and

p ,< 1
Mv'

-21-

C < n max esc 9 ,
I v||e .., v*

From the definition 9 , is least for v' = 1. For this

2 n
cos 9

k

1 ~ X1(P) X1(Q)

Neglecting terms of higher order

Hence

Hence

or

sin e, = —
1 rn

A . (C ) £. —
V' V VJ ~ it

-1
A •s, m IK *-!

<
m n

e t«
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Another scheme considered by Mitchell is

-1 -2a + (1 - 2 a) E + a Ey u(x, y) = t2 52 E"1 u(x, y),

Ax

Ay'

The matrix is

A =

p = (T + 2 a) I - a K ,

Q = 2( t2 - 1 + 2 a)I + (1-2 a)E.

Again the matrices P and Q are symmetric and have the same proper vectors.

Let

Then

A =

M= P_1 Q.

I 0 0 ,.\ /P 0 0

-M 10.

I -M I ••

0 P 0

OOP



and

-1
0

0

0 0

0

-1
0 P

-23-

f I 0 0

^(M) I 0

t2(M) tx(M) I

The proper values of P are

X (P) = t + 2 a sin (v1 cp/2),
v'

those of Q are

n + 1 '

\,(Q) = 2 x2- (1 - 2 a) sin2(v' cp/2) \>

and

\,,(M)
\,(Q)

V- jT7(pT
= 2 cos 9 , ^ 2.

v*

Hence 9 , is real and

t !~A «(M)T ^ esc 9 ,Yv L v' v _| ~ V'

7

The maximum cosecant occurs at the minimum 9 ,• Neglecting terms of higher

order, this leads to

CSC 9 , ^ -—:—
v' n
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Also

VP'1)<T~2

Consequently

A Ue ~ vT

m*--'-i!^^*^it,**^tiii»m*t~^f ms^m^mntur^-in^ ••
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O Q 0 P

k. The elliptic equation. S u/dx + d u/Sy = 0. Only the simplest

scheme

2 25Y u(x, y) 5 u(x, y)
1~ + ~ 2— = °

(Ax)*" (Ay)

will be considered. If

the matrix is of the form

with

41

B -I 0 .

-I B -I ..

0 -I B ..

B = 2(1 + t2) I - t2^.

The proper values of B are

Xv,(B) =2+2t2 sin2(v' cp/2),

and, by Lemma IX the proper values of A are

<P n + 1
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V' it VJT2 2
2 + 2 x sin

2n + 2
- 2 cos

m + 1

= 2 /sin
VJt

2m + 2

^2 2
+ f sin

v'Jt

2n + 2

The least of these occurs with v = v* = 1, giving

X(A) =
2. -2 2 -2.

Jt (m + t n )

when terms of higher order are neglected. Let

m

a = —
n

Then, to the same order of approximation

2 2
\it~1\ _ 2 m /2mX(A )= _. 2-g- <

Jt (1 + C T ) jt

Since A is symmetric and of order m n,

A
^ 2 vcf n

e ~ 2~
it

Finally, consider the elliptic equation

*2 <2
a u d u , >

-—2 + v—2" " t1^' y) u
ox o y

and the difference scheme

cr(x, y)
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S2 u(x, y) B2 u(x, y)
_x — + _l _^ = ^(Xf y) u(x, y) + a(x, y)

(ax)^ C^y)

If one takes, for simplicity,

the matrix has the form

A =

where

ax =Ay = K-

,B1 -I 0

-I B2 -I

0 -I B,

Bi « In + T± - K

and P is diagonal. If |i(x, y) 7 0 everywhere, it is possible to apply

Lemma X with g = e, and

P = diag (Px, Pg».-., Pffl),

since clearly

(A -P) e 2. 0.

Hence, since



If

then

and hence

-28-

A"1 = (A"1 P) P"1 ,

a"1! I ^Hp"1!!
Me " ''e

[i = min \i(x, y)
x, y

P"a||e £S1 K-2 .

Ia"1 e ~ V- *

In any particular instance the requirement P 2 0 is somewhat more

stringent than necessary, and somewhat stronger results can be had as follows.

The matrix M of Lemma X has the form of the matrix in Lemma VII with K

replacing B. Hence one can determine the ^ and g required in Lemma X, and

take

R = A - ((il - M).

*x<Wi(s9W(MStiWtSW¥W •• "tj»<e-MM%S*i*wjBMifijRrtssj.^pusps^o^srf,



-29-

APPENDIX

Lemma I. If V is any unitary matrix of order n, then

i ,t l/2 IUI ^ 1/2M|e*n' , ||v||e, in' .

By the Schwartz inequality, for any vector v.,

(eT |v|)2^ (eT e)(|vT|.|v|) =n |vT|.|v|,

where |v| is the vector whose elements are the moduli of those of v, and

the vector e =Ze. is the vector of which each element = 1. If v is any

Tcolumn, or v any row, of V, then

T .
v . v = 1

Hence the lemma follows immediately.

Lemma II. Let B be a Hermitian matrix of order n, and let X(B) be a

proper value of maximal magnitude. Then

In fact, if

b| < |x (B) n

T
B = VA V ,

where V is orthogonal and A diagonal, then



for any norm. But
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b| -||v l-lh .

TlV J

A = X(B) •

Hence apply Lemma I.

Lemma. III. Define the polynomials ty (X, p) by

+0-l,

1f± = X,

*v = X Vl " p +v-2

If n1 and u satisfy

then

If

2 -k 2 n\i -Xu+p =0,

V„ =

/ v+l v+l>

W - ^2 },
M-]_ " H2

,2 . , 2

tv = (v + 1) p , X = 2 p.

a2 < k p2

«<w*wiiiiww»w«'iiiwww^»»w^^^^^^ (KS6Sl**«f«»BclWlll«W*»*»*"V~* -"*.kJ*W^*^.^^4^^S»iJi.ii!«iCt»R!WJfl»^Ji!<f-«.SBS|»vJ



let

Then

If

let

Then
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X = 2 p cos 9.

* =PV sin (y + 1) 9
v sin 9

X2 y k p2

X = 2 p cosh 9.

. _ p sinh (v + 1)9
v ~ sinh 9

The proof is by induction.

Lemma IV. Define the polynomials b) (X> p) by

un = 1,

(^ = X,

imw^mt^mm&>m#m&^mi^&^?^->$>



If jj. and p.p satisfy

then

or, if

then
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UV = XVl + P V2'

2 i 2 «(j, - Xu. - p = 0

v+l v+l

^1 - ^1
u.. =

v M-x - H2

X = 2 p sinh 9,

2v
p cosh (2v + 1) 9

U2V ~ cosh 9 '

2v-l
p_ sinh 2 v 9

U2V-1 ~ cosh 9

The proof is by induction.

Lemma V. The zeros of the polynomials i|/ (X, p) defined in Lemma III

are

Xv, = 2 p cos v' cp, cp = -—^y V = 1, 2, ... , v.

By Lemma III,

i»-m* ^«^fr^*,«*'SMapHSH^>^^
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=PV sin (v + I) 9 = cos
Yv sin 0

Hence * vanishes for
v

-a - v'*
~ V ~ v + 1

Corollary. The zeros of u (X, p) a,s defined in Lemma IV are

X , = -2 p i cos v* cp, v1 = 1, 2, ... , v.

Lemma VI. The matrix

1

i 0

0 1

Kv =

I:.
l 0

of order v has (-1) if (X, 1) as its characteristic polynomial, where

f (X, 1) is defined in Lemma. V.

One verifies that the polynomial

det (X I - K )

satisfies the recursion for i|r
v.

Lemma VII. Let the matrix B be a square matrix of order n, and let



A =

-3^-

'B -I 0 .

-I B -I .

0 -I B .

be of order n m. Thus

*0(B) 0 0

i|rQ(B) tx(B) 0

*0(B) if±(B) t2(B)

tx(B)

'A =

\

0

0

-*0(B) 0

i|r2(B) -^(B)

0 *3(B)

where the polynomials if (X) are defined in Lemma V. Hence

-1
A

*0 +•0

1 *1

0 to

*

\ /i"1 i"1•\/+0 t-L
0

0

h14 0

•-1 .-1
*2 *3

^

^ *n

0

0

The verification'is direct.

Lemma VIII. Let the matrix B be a square matrix of order n, and let

A =

BIO

-I B I

0 -I B

"

be of order n m. Then

im^inmntii>W""HMWP|«P <^Wtc$!*Uitttt3*^ro!i^!#<!i^^ ....



f »0(B) 0
( M()(B) ^(B)

(B) Ml(B)
'0

0

0

w2(B)
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/^(B)

A =

0

0

Wfc(B)

w2(B) (^(B)

«3<B)

where the polynomials w (X) = w (X, 1) are defined in Lemma IV.

The verification is direct.

Lemma. IX. Let the matrix B of Lemma VII have proper values

X ,(B) (v' = 1, 2, ... , n). Thus the matrix A of that lemma has the proper

values

Let

X , (B) - 2 cos Vjt

m + 1
v = 1, 2,

From Lemma VII it follows that

det (A - XI) = det if (B - Xl)
m

if (X) =(X - X.) ... (X - X )
m ' x 1' v m

where the X are those given in Lemma V. Thus

m.

*m(B - XI) = (B - XI - XXI) ... (B - XI - Xml),

Hence express B in Jordan normal form and take the determinant of both sides

of the identity.
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Corollary. The matrix A of Lemma VIII ha.s the proper values

X .(B) + 2 i cos
v

—3__ I v = 1, 2, ... , m.
m + 1 '

Apply the same argument using the corollary to Lemma V.

Lemma X. Let D ^ 0, R <> 0 be nonsingular diagonal matrices, let M 2: 0,

> 0, and

Dg 2: Mg*

Then

|(D +R-M)"1 r|| ^ 1.

Hence if

(D + R - M) x = y,

Ixll ^-IIr" yjj .

In fact,

(D + R - M) g > Rg >0,

1
and (D + R - M) >> 0. Hence

.> (D + R - M)" R£

This proves the first assertion. Since

ri«*IW#^-tf$e8#Jjl|*(tfM(ll$^ '*•»' '-™1- •-*"*»•«' «i3«*^*«*>W^



x
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l

= [(D +R-M)" R] (R-1 y),

the second follows immediately.

Corollary. If Mg = ug, \i being the maximal proper value of M and

the proper vector belonging to it, then

j(u I+R-M)"1 r|I = I-
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k.
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