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TOPICS ON THE NUMERICAL SOLUTION
OF
PARTIAL DIFFERENTIAL EQUATIONS

R. C. F. Bartels

I. Introduction

81 Properly posed problems in partial differential equations

Our discussion deals with the numerical solution of partial
differential equations For the purpose of illustrating the methodS'
and concepts that are studied we will consider examples involving

the well known classical equations :

(1.1) | U ¥ Yy = 0 3
(102)' ’ . u't = uxx ;
(1’5) N . utt = U.xx .

These are prototytes of more general partial differential equations ofu
the second order that are important in the nhysical sciences. We will
not limit the applicaoility of the ideas which are introduced to e%?ations
in tuo independent‘variables, nor to equations that are necessarily linear.

We will also deal with a system involving more than one dependent variable.

* .
For a relatively complete discussion of these partial differential

equations see, for example, the reference [l] or [2] listed in the
bibliography. .



v The type of proﬁlem which we will consider is that in which
the solution satisfies the appropriate partial differential equation
together with certain prescribed supplementary conditions. These
supplementary conditions are usually: |

(a) conditions prescribed on the boundary of the region of
épace in which the solution of the partial differential equation is

to be found, i.e., the so=-called boundary conditions;

(b) (if time is involved) conditions prescribed at some definite

value of the time; the so-called initial conditions.

The differential equation, together with the suppleﬁentary conditions,

is called a boundary-value or an initial value probleﬁ. We will consider
only those problems which, in the terminology of Hadamard*, are.propefly
posed; i.e., a problem for which its solution exists, is unique, and
depends continuously on the prescribed suéblementary conditions.

It is Important to remark that it is not always possible to assign
arbitrarily the two types of supplementary conditions (a) and (b) to a
given differential equation in the formulation of a properly posed problem.
In fact, partial differeﬁtial equationé partion themselves in mutually
exclusive ciasses,depending in some sense on the type of supplementary
conditions with which they will.constitute a properly posed problem.

The classification of the linear; second order e@uations iﬁ two independent
varisbles, such as those in (1.1), (1.2), (1.3), Ean be expressed very

simply in terms of the coefficients of the highest ordered derivatives.

*
See Hadamard [3] .




More generally, an equation of the form

A(x,¥) u__-+ 2B(x,¥)u

XX Xy + C(X:Y)uyy + D(x, Y, u, u, u) '='0,‘

x’ Ty
where the coefficients A , B , and C depend only on x and Yy , is
called elliptie, parabolic, or hyperbolic in a domain of the (x, y)-plane

according as the determinant

—~

is positive, negative, or zero throughout the domain. According to this
criteria the equations (1.1), (1.2), and (1.3) are classified in the
order Just nemed. The type of supplementary condition that is appropriate

for each of these types 1is illustrated in the subsequent examples.

92 Finite difference approximations of partial differential equations

The usual method of obtaining an gpproximate solution of a properly
posed problem for a partial differential equation is to replace the
derivétives in the equation and supplementary conditions bj finite differences.
In this procedure, the space variables assume the discrete v&lues
corresponding to the points of a mesh or lattice imbedded in the space
and "filling" the region. The time variable, when it appears, also

assumes discrete values t,, ti, ..., t , <.., vhere t =n AN



Accordingly, thesolution -u is approximated at. the.discrete points of
: spdce and time.

For example, consider the simple initial value problem for the
parabolic equation (1.1) in which the function wu(x, t) is determined by

the conditions

~ |
o= ow.o (0 < x 1,1t >o0),
(2°1) J u(Oy't) = Q(t) ) u(ls t) = W(t) » (t > 0) )
u(x, 0) :=-f(x) (0 € x <1) ;
N
4

0 } X,
Let the continuous variables x and t be replaced by the discrete set
A (xm: tn) ; .(m =0, 1; «-0, M) .(n =0, 1, °°°);
where

x =mAx , t = nldt , and Dx = 1/M




Then the simplest finite difference approximation to the problem (2.1) is
(_

i At o (O x)°

(m=1, 2, , M-1, n >0)
(2.2)] (0, t) =o(t)y V(L t) =vw(t) ,  (n > 0)

V(xm, O) = f(xm) » (m = l, 2, cooy M"l) °

—

In this case, the difference equation is obtained by replacing the time

derivative by a forward difference, and the space derivative by the central
difference on the line t = tn - The difference equation in (2.2) can

also be written in the form

(2.3) v(xm,tml) = A v‘(xm+l, t'n) + (1-21) v(:;m,tn) + A v(xm_l, tn) R
where

(2.4) | A = At/(0xn° .

In this form, it is clear that the valueé of v é.t the "i’nterior" pointé

of the mesh contained within the strip 0 < x < 1, t > O can be

calculated successively, line by line, starting from the initial values

v(xm, tn+At) - v(xm,tn) : V(xm+Ax,tn) - 2v(xm,tn) +‘v(xm-Ax,tn) -

*




v(xm, 0) = f(xm) and making use of the boundary data at each step to
evaluate v(xm, tn) for m=0 and M . This is the so-called, explicit
scheme for approximating the solution of (2.1).

On the other hand, an alternate finite difference appfoximation
of the problem (2.1) can be obtained by replacing the second order space

derivative by a central difference on the line t =1t In this way,

n+l °

one obtains the so-called implicit scheme for approximating the solution

of (2.1), namely,

s ,
A v(xm+1’tn+l) - (1+21) v(xm,tn+l) + A v(xm-l’tm+l) = -v(xm,tn)
(m=1, 2, ..., M-1§ n_}d),
(2.5) | .
v(0, t)) =o(t)) , v(1,t) = ¥(t) , (@ >0 ,
v(xm, 0) = f(xm) .

In this case the difference equation does not express the values of v
on the line t = tn+l explicitly in terms of its values along the line
t =t . However, the difference equations in (2.5), for m =1, 2, ...,

M-l , constitute a system‘of (M=1) algebreic equations for the unknown

°

values of v at the (M-1) interior grid points on the line t = tn+l

(xm, tn) , m = 1, 2, 3, cos, (:.1»1-1) .




"
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As a second example, let us consider the Dirichlet problem for

Laplace's equation in the two dimensional domainv R with boundary B :

_ . —+
T ’ ,/L’L—

- | |
Wt Uy = o , (x; ¥in R,
(2.6) -3
| u = #(x,¥) , . (x,¥) on B .
L _

In order to approximate the solution of fhis problem by a finite difference

procedure, let us replace the continuous variebles x- and y by the

discrete set
(xm’ yn) E (-x- + mh ,. -y- + nh) ’ m, n =.o, l, 2, o..oo,

for some arbitrary (x, y) and for h > 0 . If z,= (xo, yo) is a

mesh point, then thé four points
z; = (x; + B, Yo) » Zp = (X Yo+ h), zg=(x; - b, ¥,)

z, = (xp ¥ - h)



(SN ]
o
'_J

are called the neighbors of 2z, . This sét of four points will be denoted

0
by N(Zo) . We shall also introduce the notation:

/"-

Rh is the set of lattice points 2z such that the set of
neighbors N(z) belongs to the closed region R + B ;

(2.7) 4 |

B, 1is the set of lattice points belonging to R + B but

not to Rﬁ .

—
A simple difference approximation of the problem (2.6) is then

(—-
1
v(xm,yn) =7 v(xm+l,yn) + v(xm,yn+l) + v(xm-l’yn) + v(xm,yn_li}a

(xm’yn) in» Rh
(2.8)

v(xm, yn) = fh ’ (xm) yn) in. Bh )




where f, = f(xm, yn) , and (xm,.yn) is anyvp01nt_on the‘bqunQary B

suéh that
- -
(2.9) (xy - %) + (v, -y < b

More simply, this formulation of the difference problem constitutes a.
system of; say, M linear algebraic equations which express the values
of the approximate solution v .at the M interior lattice points Rh
- in terms of the prescribed values on the boundary points B, -

There are many more examples that we might give at,this point.
However, these will serve tb_motivate the immediate discussion.

At this point, let us observe that if the function w(x, ¥) ,
for example (the fact that we have chosen the independent variables x
and y 1is.not signifiqant), together with its partial dgrivatives. W,

X

Voex ? and w& » are continuous in a closed region of the (x, y)-plane,

then at any interior point (x, y) of this region
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v(x +Ax,y) - 2W(¥,y) + w(x-Ox,y)
(Lx)°

lim
Ax—>0

W (% ¥)

= lim {-wn(x + Q',Ax,y) - wxx(x,y)} = 0 ,
Ax—>0
and
vm ) HEY +8Y) - w(x,y) v (5,y)
DAy—>0 By
= l&; wy(x;y+ 0,Ay) -wy(x,y)} = 0 ,

wvhere 0 < N £ 1 and 0 <L 92' &£ 1 . These relations are easily
derived with the aid of Taylor's formula with remainder. It therefore
foilows that if, on the one hand, the functions wv(x, t) in equations
(2.2) and (2.5) is sufficiently smooth in the closed region 0 £ x <K
1,0 t £ T, and, on the othei-, the function v(x, y) in (2.8)
is sufficiently smooth in the closed region R + B , ‘then the finite
difference quotients in the equations (2.2), (2.5), and (2,8)-will
converge to the corresponding derivatives in the differential equations
(2.1) and (2.6), respectively, as the increments Ax ; At , and Ay
tend to zero. Consequently, the finite difference problems in (2.2),

(2.5), and (2.8) are said to be consistent approximations of the

corresponding initial or boundary value problem.

-



. 1

In the sequel we will consider only finite difference approximations
of iﬁitial or boundary value problems wﬁich satisfy a criterion.of
consistency similar to thaﬁ described above. It does not, however, folléw
that this criterion is always sufficientrto_insure that the solution of
the finité difference problem will converge to the solution of the approxi-
| mated differential problem as the ﬁesh size (i.e., the increments in the
variables) tends to zero. This remark will be elaborated upon in the next

paragraph. o -

§3 Truncation errors and the problem of the convergence of difference

approximations.

Let v denote the exact solution of a finite difference-épproxi-
mation of a given initial or boundary value problem for a partial
differential equation. Strictly speaking, v belongs to an infinite
sequéﬁce of approximate solutioné corresponding fo an increasingly finef
mesh. If u. denotes the trﬁe,solution of the boundar& value prbblem,
then thé bagic question is whether_the sequence of difference approximations
v convergéAto the solution u as the mesh size tends to zero. The

difference between these two quantities, namely,
(3.1) . : W = u-v

is called the truncation error. The problem of the convergence of the

finite difference_approximation'is therefore -the problem of showing that

the corrésponding truncation error w tends to zero with the mesh.

- on
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‘The problem of convergence is not as important to the_persoﬁ
perforﬁing an actual computation as the prohlem;of obteining an explieit'
appraisal of ;the magnitude of.the trﬁﬁcation error at any step of the
calculationovvln genefal this problem is & more difficult one. - In the
subsequent sections we will indicate by illustrations a method for |
establishing the convergence of a wide class of finite difference'appfoxi-
mations which will,'at the same time, yield some information on the

magnitude of the truncation error.

§ L Computational stability of finite difference approximations:

Because of the limitations of the computing machine,.it'is generally
not possible to obtain fhe exact soiution v of the finite difference
problem. The machine performs arithmetic operations in terms oflquantities
which are “"rounded-off" approiimations of the exacf values. Coﬁsequently,
instead of ebtéining the exact solution v oOf the finite difference
problem coded for the ﬁachine, an approximate machine calculation v*

is obtained. The difference
(4.1) s = v - v

. »*
represents the remainder or departure of the approximate solution v

from the true solution v. The departure s 1s an accumulation of the error

*The ideas expressed here were suggested by the lectures of W. Wasow
on the same subject. It is understood that a very extensive treatment
of the stability of partial differentiael equations by Wasow will soon
make its appearance in book form.
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introduced at each step of the calculation, i.e., at each mesh point.
The ideal behavior of a finite diffefence appfoximation is that in which
thé maximun numerical value of the departure s in the given domain pf '
the variables ﬁends to zero uniformly wifh respect to mesh size as the
magnitude of the individusl errors at each step tends to zero. Thus, if
the mesh size depends on a single parameter h and the meximum numerical
value §f the errofs intfoduced at each step is estimated as 5 , then
the ideal situation wduld“be that maxlsl-—9 0 as 3—>0 uniformly
with respect to h . Hoﬁever, thié ideal can not be expeéted in general
for even the case of linear finite difference problemsn.

Since there always existé bounds for the rate pf growth of the
magnitude of s as a function of the ﬁesh size parameter h for a -
fixed region of the variables, the maximum depafture can in principle be
controlled. In other words, by carrying out the calculation with sufficient
érecision, the computed quantity"v* can be made to agree as closely as
may be desired with the exact solution v of the finite difference problem.
However, the precision necessary in a given situation might exceed the
capabilities of any computing machine. A finite difference method for
which the latter is experienced might for the purpose of classification
be termed unstable.

To be more precise, we will consider the stability of a finite
difference procedure as a relative prbperty of the procedure which will
be measured in some sense by the order of magnitude of the maximum

departure . s . For example, if the maximum numericai value of the



1k

deparﬁure s 1in a fixed region is proportional to Bha for soﬁe réai
(but ;ot necessarilf positive) number 'a as thé magnitude, S , of the | i
errors introduced at each step and the meéh size, h , tend to zerd,.
then the finite difference procedure wiil be considered stable; ¢« 1is an
index of the degree of relative stabilityo A finife‘difference procedure
in which the magnitude of the depérture s 1is proportional to exp(hﬂl) ,
‘say, as h —> 0 will, on the otﬁer hand, be called unstable.
Unfortunately, the precise order of magnitude of the maximum
departure s as a function of 8 and h is not easily determined in

general. Several cases in which an estimate of the departure can be

effected will be given in the subsequent sections.




[}

II. ELLIPTIC DIFFERENTIAL EQUATIONS

g5 Truncation errors in the solution of Leplace's equation by finite

differences.

Let us now deal with the problem of estimating the truncation error
which results when the birichlet pfoblem (2.6) for Ldplace's equation is
replaced by the finite‘difference problem formulated in (2.8). That is,
we seek to obtain some apfr&isal for the maximum numerical value of the
difference w = u-v , where u 1is the solution of the Dirichlet problem
(2.6) and - v’ ‘is the solution of the finite difference problem (2.8).

For the purposes of éonvenience, let us introduce the notation

n

|—l

f—

|
o
—

d
—_J

1]

# {v(x+h,y) + v(x,y+h) + v(x-h,y) + v(x,y-h)-hv(x,y)}
1 | i . : ST :
= Z ; V(X.) y ) - V(x) y) »
IR R .

where v(xi, yi) , (1=1,2, 3 4) , are the four neighbors of (x, y). | ~
Then & solution v of the finite difference problem (2.8) satisfies the o

equation
(5.2) Ly [v] = 0 for (x, y) in Ry

On the other hand, if the harmonic funcfi@n' u(x, y) satisfying the

conditions of the Dirichlet problem is continuous and its partial derivatives
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up to and including those of the fourth ordgr exist and are bounded in
the closed region R + B , then, at every interior point of R , it is

true that
n? |
(5f3)‘ Ly ‘[u] = 5 ,{F&xxx(x+9,h,y) + Ui (Ko V+E0) + uxxxx(x-QBh’Y)

+ uxxxx(x,y-ehhi}.. ’

where Ol ’ 92 ’ 93 ’ Oh are numbers between O and 1'. More simply,

(54) L (2] = o(xy)  for (x,3) 1 R ,

where p(x, y) denotes the right-hand member of (5.3). Consequently,
in accordance with (5.2) and (5.4), the truncation error w satisfies

the relation

55 n[v] - Lh[u']_-Lh_[v]F ty [v] = pton

for all points in Rh .
\
\‘le’y)
- . 3 ‘
(%,) \
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If (x, y) is a point of the boundery set B, , then it follows

from (2.6) and (2.8) that

l_l(x" y) ';_V(x: y)

V(xf y)

u(x, y) - u(x, y)
where (x, ¥) is a point of B such that

(x-- 0%+ v - ?)2;<é B

Therefore,

(-6 Wy = ey for (o) B,
vhere

(5.7) o, 3) = wxtt) (x - B+ iy (x- D)

and (x',y') is a point lying between (x, y) in B, end (%x,¥) on B.
We have thus shown that the truncation error w 1is a solution of
a finite difference problem on the given mesh. It is of course true that

the non-homogeneous terms p(x, y) and o('x, y) which appear in the

|
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difference equation (5.5) and boundaiy condition (5.6) depehdvoﬁ a
knowledge of the solution u of the difference proﬁlem. Wé aré not;
however, interested in the precise value of the truncation error at each
point of the mesh. Wé shall show thatrin order to obtain an appraisal
of the maximum numerical value of this error it is sufficient to know
the bounds on the partial derivatives 6f u in the closed regiom R + B .
This appraisal is based on the so called maximum principal for a finite |
difference equation of positive tyﬁé*. For phis pﬁfpose we neéd two

* %

lemmas.

Lemma 1. . If .Lh [ﬁ:] > 5 > 0 for all points of Rh , then

(5.8) - max v < max w .

Ry By

Proof: If is clear from (5.1) that the ineéuality Ly [w] > 8

implies that for every point (x

o, yo) Of Rh

' s 1 2
(5.9) w(xo,yo) <L i§1 T w(xi, yi) - "5 |,

where (xi, yi) (1 =1, 2, 3, 4) are the neighbors of (xo, yo) . Now

J
suppose that the maximum value of w does not occur at the boundary

s so that

points Bh but, instead, at some point of Rh

* .
See_the general treatment of equations of this type by Motzkin
and Wasow |4 . :

%
See Wasow [5] for generalizations of these lemmas and results.
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for every point of Rh + Bh . Then it would follow from (5.9), since

the coefficients are positive and have sum equal to 1, that

wix.,, ¥,) € mexw - % 5
0 0 R
h
for every point (xo, yo) in R, . This immediately leads to a contra-
diction on taking (x0,~y0) a point of Rh' at which w assumes its
. maximum value.

. Lemma 2. If thl:w:H £ k for all points of R

h? then
. 2 .
(5.9) mex |w| £ k d° + max |w|
Rh . Bh

vhere k 1s a non-negative constant and 4 isAthe "diameter" of the

region R .

Proof: We first define the function aq(x, y) such that

a(x, y) > 0 and Ly [q] =+1, for (x,y) in Ry, + B -

For example, these conditions are satisfied if

ax, ¥) = (x-a)f+ (y-p)°
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for any point (o, B) in R+ B .

*
Now let k > k . Then, for all points of Rh s

b [Kaxv] = ¥ e [v] >0

: *
Hence, applying the result of lemma 1 to the function k q + w, we have
3
* *
max (k q + v) K mex(k q + W)
Ry By
(5.10) £ k max q + max (+ w)

. m B

gk*d2+ma:x|w| s

By

*
where d 1is the diameter of R . Also, since k q > 0 in Rh )

(5.11) mex |w| = mex (v - v) £ max (k* q'_+_ w) .
Ry Ry Ry
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‘ . * '
Hence, by combining (5.10) and (5.11), it follows that, for all k > k,

max |wl £ K d2 + max IWI .
R .

h E By
The‘inequality (5.9) immediately follows on letting kf-——e> k.

We now make the following appraisal of the truncation errof for
the finite difference prbblem (2,8)T

Theorem. Let wu and v be solutions of tﬁe problems (2.6) and
(2.8), respectiveiyov If' u and its derivatives up to and including those
of the fourth order exist and are bounded in the ciosed region R + B ,
then the truncation error w=1u - v is such that

| | - 2.2 -
(5.12) . mex |w| £ pd" 1" + Th s

where ¢ and p depend on the bounds for the mumerical values of the
first and fourth partial derivatives, respectively, in R + B .

The pipof_of this theorem followsAimmediately on applying the
result of lemma 2 to the pérticular finite difference problem formed by

(5.4) and (5.6) of which the truncation error is a solution.

56 Generalizations and improvements of the previous results.
It is possible to extend the results of the previous paragraph
" to boundary value problems with more general differential equations of

the elliptic type. For example, consider the difference operator

* ) ; .
The result stated here was first obtained by Gerschgorn in [6] .
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\ _ 1 ' ' .
(6.1) L, [w] =£2- {clw(zl) + c2w(z2) + c5w(z5) + chw(zh) - cow(zo)}
vhere Zy 5 25 5 23 » Z) are neighbors of Zqg » the coefficients c

Cp s S35 ¢, are non-negative, and %o >0 in 'Rh +B, . It is easily

seen that the conclusions of lemma 1 apply for this difference operator

*
provided that
(6.2) - . Co » Cpt oy c5. +c¢, in R + Bh .

The details of the proof of the lemma for this more general case are

unaltered. The extension of lemma 2 then follows without difficulty.

In particular, suppose that the differenf;ial equation in the
I

boundary value problem (2.6) is replaced by the equation of the elliptic

type
2 2
ou . d%u du du.

(6.3) : A + C + D + E +Fu = G ,
x =

vhere the coefficients A , esey G and their second order derivatives
are continuwous, A > 0, C > 0, and F £ O .in the domain R .

This equation can be approximated by the difference equation

(6.0 o oal-e. . -

* : : S
See Motzkin and Wasow [h:l , P. 257.
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with the difference operator defined by (6.1) in which

. T
co-;_E(A +,C -5 Fh™) )

1 1 1 1
Q1-»(A’+§Dh)’ 02—(Cf‘§Eh.), (.‘.3=(Al='-2-Dh), c’-l-_(c._-éEh)'

If the increment h is then chosen so that

min A min C

< min ma.xIDI ’  max |E| ?

ol s

(6.5)

the coefficienté c6~, clA,lc2 > S5 5 C) satisfy the condition; in (601)‘
and (6.2). The foregoing extensions of the results of the last section *
then yields the result? .

Theorem. ILet wu be the solution of the Dirichiet problem for
the elliptic equation (603), and let v be the solution of the corresponding
finite différencé problem with the equation (6.4). If h satisfies |
(605), and if‘ u and its derivatives up to and including those of fourth
order exist and are bounded in the closed region R + B , then the

truncation error w = u - v 1is such that

(6.6) v max le.ﬁg M, h +' M, h2“ ,

* : '
See Gerschgoren [6] for details of this extension.
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where Ml is proportional to the maximum numerical value of the first
partial derivatives of u at the boundary B and _M2 is an upper bound
depending on the coefficients of the differential equation and the

derivatives of u 1including those of the fourth order.

Motzkln and W&sow have, con51dered general differential expre551ons

of the form )
n 32 n
T oa,ln ol J(x)g—m(x)u ,
1,k=1 1 %% _1
where x 1is a point with coordinates X 5 Xg 5 eeey X which are

uniformly'elliptic in the closed region R + B ,‘that is,

det { ik (x)} const >°0 in R+ B .

They havevehown that for sufficiently small h there always exists a
difference expression which is a consistent approxlmatlon of the differential
expression and which satlsfies a maximum principle analogous to that of
our lemma 1.

Qur previous results can be improved in another direction. Colletz
has shown**uthat by a more careful choice of the values at the boundary

points Bh , the truncation error w satisfies the relation

“see [4] .

* % '
For details, see Collatz [7} .
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vhere M{ and M2 are constants depending on derivatives of the solution
of the partial differential equation. For example, this apprgisal of the

truncation error results if the values at the boyndary-point (xm{ yn)ﬂa?é s
defined by the.ﬁeighted average (see figure): | ;

v, v = h v(xm_l, y )+ 8 f(x, ¥)
m’ ‘n’ . h+d - ’

This is equivalent to replacing the set of boundary values in (2.10) by

the set of non-homogeneous equations

(b +8) v(x, ¥) -bv(x 15 ¥) =8 £(x, y)

All of the results which we have stated above suffer from the
defect that the appraisals obtained depend on the bounds for the derivatives
of the unknown solution of the differential equation itself. These bounds .

cannot be found in the general case without effectively solving the
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digﬁerential equation. In the case of Laplace's equation, strict
estimates of these bounds in terms of the boundary data can be obtained
at interior points of the mesh, provided that the boundary B and the
boundary data are sufficiently smootht Indeed, Wasow has resently
extended an estimate of these bounds to the case in which the function

*%
prescribed on the boundary are piecewise continuous.

§ T Stability of the finite difference approximaetion of the Dirichlet

problem )
- The finite difference problem in (2.8) is inherently stable. This

is easily demonstrated with the results of the foregoing sections. As iﬁ

§h, let the machine calculations of the solution of the difference problém

* .
be denoted by v . Then, since the computed values do not in general

satisfy the difference equation (5.2), or the boundary condition, we have

. .2 .
(7.1) L, [vf] = 5 b for (x, y) in Ry »
and
(7.2) v = £, + 8, ' for (x, y) ©on Bh ,

-2 T
where Slh and 52, represent the errors stemming from the rounding-off
-of the arithmetic operations. Subtracting these equations from the

- corresponding equatidns in (2.8) and using the notation of (4.1), one

*
See for example Rosenbloom [8]°

. o .
This work by Wasow is awaiting publication.
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N o N
obtains the following relations for the departure § =V =V

=2
(7.3) Ly [s] = Sl.h for (x, y) in Ry,
(7.4) s =B, for (x, y) on B, -
Hence; in accordance with lemma 2,

max |s| & (M + M, n?)

where Ml “and M2 are constants and

5 = max (5], [s,])
R +B 1 2
h**h
Therefore
=2
s =0(dh ) as h-—>0 ,

whence the procedure is stable.



III. PARABOLIC DIFFERENTIAL EQUATIONS

38 Stability of the simple finite difference problem of parabolic type.
| Let us return:to the simple finite difference problem for the

parabolic partial differential equation that is formulated in equations

(2.2), (2.3), and (2.4). If we set Ax=h , At =k = AR° , where the

ratio
2
A = ODt/(Nx)

is regarded as fixed, then the difference equation in (2.3) can be expressed

in the form

(80;) v(x, £+k) = %tl c. v(x + rh, t) -
where -
(8.2) c=l=.}~9co¥(lm2}\),cl=l9a.nd§cr=ln

Agein, fo; simplicity in writing, we use the notation

(8.3) | L, [v] = %{v(x, t+k) - % c v(x + rh, t)}

% .the right hand

member of equation (8.1) is a weight average of v at three neighboring .

Let us first observe that for 0 < A K
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- mesh points with non-negative weight factors. ,,_’I"herefore the value of v
at any interior mesh point (x, t+k) will lie between the upper and

lower bounds of its values at the mesh points on the line t ; that is,

for 0 < . x < 1,

(8.4) min v(x, t) € v(x t-;k) < max v(x,t)
| 0<x <1 = T 0<x<1

°

We now establish a result which is analogous to the principal of maximum

obtained in lemma 2 for elliptic equations.
Theorem. Let v(x, t) be a solution of the difference problem

Lh["]'é p(x, t) , (0< x < 1,1t >0)

)

(8.5) v(0, t)

p(t) , (1, t) =w(t) , (¢t > 0)

v(x, 0)

f(x) , (0 € x <1)
L :

1f 0< A< 5, then

(8.6) v(x, )] € Bt o+ max(F, 7, ¥) , (0

where T, ¢, ¥V, p are the least upper bounds of the functions [f| ,

|o| , |¥|,|p|, respectively, in 0L x L1, 0Lt L T.
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Proof: Let us first observe that we can reduce our diééuvséion.
to difference problems in which the difference 'equation is homogeneous . |

To begin with, let Va(x, t) be defined by the conditions

(8.7a) : Lh[V]=O for t > (a#l)k , 0 < x <1

(8.7) | L [va]

p(x,t) for t=0k, 0< x <1

(8.7¢) V(x, t) =0 for t L ok, 0< x < 1
(8°7d) 'va(07 t) = Va(l; t) = 0 s t >0
Then the function
| ték‘ |
(8.8) ' vl(x, t) = vV (x, t)
a
a=0

is a particular solution of the difference equation in (8.5) that vanishes
for t =0, x=0, and x=1. But, from (8.7b) and (8.7c), it

follows that when t = ok ,

Va(x, t+k) = E. c. Va(x+rh,t) + ko(x,t) = k p(x, t)

Therefore the function Va(x, 't) 1is a solution of the’hémo'ge'neous initial

value problem
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Ly [Va] =0, t>(ml)k, 0< x <1
Vo(%st) =k p(x,8) , t=(a+l)e, 0< x <1
(8.9) D, ' |
Va(x,t) =0, t£ ak, 0< x<1
va(o, t) = Va(l, t) = 0 , t > 0.
-~

\

Hence, we can express the solution of the difference problem (8.5)/1n

the form

ték
v(x,t) = vo(x,t) +”vl(x,t) = vo(x,t) + Va(x,t) ,
a=0

where vo(x,t) is also a solution of a problem with a homogeneous difference

equation, namély,
by [volx 8] = 0, (0< x<1,t >0)
(8:20) ] wo(0,8) = ) , vo(L,%) = ¥(%) , (& > 0)

(%, 0) = £(x), (0 < x <1)
_ | _ -

Consider the function v (x, t) . It follows from (8.4) that

,|vo(x, t)l g; f at interior mesh points of the line t =k . Therefore



%2
[vo(ok)| & mex(F, 3, )  for 0K x < 1.

The same argument can be repeated for the stép from t =k to t = 2k ,

etc. In general, we obtain

(8.11) |vo(x,t)| L max(¥, 5, ¥) for 0L x<£1,
oLt .

The numerical values of the functions Vé' in (8.9) can be estimated

in the same way. 1In fact, since these functions vanish for x = 0 and

X = 1 , we have

/.

Iva(x,,t)|< kp for 0 K x'-gl,ak(‘ t 4':.
Therefore,

ték _ _
|vl(x,t)| < = |Va(x,t)| < kp - % = pt

and, consequently,

[v(x,t)] < [vy(xt) | + |vi(x,t)[< 5t + mex(F, 5, ¥) ,

(o

J/aN

xLl,0tgT




This completes the proof.
It follows immediately from the inequality (8.6) that the difference

procedure in (2.2) is stable when the mesh ratio A satisfies the criteria

(8.12) : 0 < x s;

v

To see this, iet 5 = v* - v denote the departure of the computed values
from the exact solution of the difference problem as a result of errors
not exceeding & in numerical value at each mesh point. Then s 1is
itself a solution of the problem formulated in (8.5) in which the upper

bounds T , 9 , ¥ , p satisfy the inequalities

i

4'8)$<5:-‘F<5,lp<5k .

Therefore, the inequality (8.6) ylelds
i

|s(x, t)]| £ &(1 + E) )

whence
' 5 5
(8.13) 5§ = O(E) = o(zg) o
i The foregoing result no longer applies when the ratio 2 )>l/2 .

There are examples that exhibit the instability of the finite difference

equation (2.3) when A > 1/2 .,
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39 An appraisal of the truncation error.

Let it be assumed that the solution u(x, t) of the initial value
problem (2.1) and its derivatives"ut “and’ u ., are continuous for

0L x K 1 and t > 0, and that the derivatives w, and u._

exist and are bounded in this region. Then, making use of Taylor's

formula, and the fact that ue-u. o= 0 , one obtains from (8.3) the

expression
(9.1) ' Lh[u] = p k+p,h , (0<x<1,t >0,

where M, and M, are functions of the mesh such that

~

eyl € m= g dun. |u(x, t)‘|‘, 0<x<1,t >0)
(9:2) 9 |

ool & Mp=%F Lo |u (t)|, (0 <x <1t >0) .

-

Since the functions u(x,t) and v(x,t) satisfy the same initial and
boundary . values at the corresponding grid points, the truncation error
W= u-v is evidently a solution of the difference problem (8.5) in which

the upper bounds F , ¢ , ¥ , p satisfy the relations

f:q):ﬂ;:o,p:Mlk+M2h
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1

Hence, if 0 < X < 5 » the inequality (8.6) yields the following

appraisal for the truncation error

\

(9.3) | |w| < t(Ml k + M, h)

Since k =}L h2 » the truncation error will, for fixed A , satisfy the

relation

provided that the solution u of the differential problem exists and
its derivativeé satisfy the assumed boundedness.
| The appraisal in (9.3) also suffers from the fact that it requires
‘a knowledge of the bounds of certain derivatives of the solution u of
the differential problem. The.question of convergence, however, is‘answered
by the foregoing result if these bounds are merely known to exisf.
Attention-should be directed to the work of Juncosa and Young*
on a problem of the same type considered here. They have established
orders for the convergence of the difference solution that require only
assumptions on the initial and boundary data.
Attention‘should also be called to the work of F. John** in connection
with the finite difference app;oximation of a very general class of parabolic

differential equations. In.this work, the general partial differential

*Juncosa and Young [9] ’ [10] o

*¥ , . .
See F. John '[ll] B
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equation

u = ao(x,t)uxx + al(x,t)ux + aa(x,t)u + a3(x,t)

is approximated by a difference equation of the type

+N
v(x,t+k) = Z c.(x,t,h) v(x+rh, t)
r==N
Sufficient conditions are obtained under which a result analogous to
that in (8.6) hold for these difference equations.> A very simple criteria

that admits of easy proof is that the coefficients cr(i, t, h) be non-

negative for sufficiently small h .

' *
510 . Numerical integration of a quasi-linear parsebolic equation

We consider the following non-linear, boundary value problem

(—

®u du
-5 = F(x,t,u) St G(x,t;,u) , (0< x<€1,%t >0),

ox

(10.1) < u(0, t) = o(t) 5, w(l, t) =¥(t) , (t > 0),

u(x, 0) = f£(x) , (0$ x é 1) ,
¥.
where F,;; p >0. It is assumed that a solution of this problem

exists in the closed region R: 0L x L 1, 0K t £ T such that

* . .
The treatment in this sectiqn follows that given by Douglas in [lé]o 3
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L 2
_ é';il and _8_121 exist and are bounded in R . Moreover, it is assumed
ox ot '

that the functions F(x,t,u) and G(x,t,u) have bounded first partial
derivatives with respect to u in R .

We introduce a mesh in the region R Dy setting
x =mldx, (m=0,1, ..., M), t =ndt, (n=0,1, ..., T/Ot)

with Ax = 1/M . We then seek an approximation of the solution of (1)

by replacing that system with the finite difference problem

— .
2 .
Ax vm,n+l = F(xm’tn+l’vn,m)at Vm,n + G(xm’t’ml’vmn) "‘
(m=1,2, ..., M=1; 0 30)>
(10.2)< Yon = q)(tn) » Yyyn = w(tn) 5 (n > 0) >
Vm,O = f(xm) : (m=1,2, ..., M=1) ,
where we have used the notation-
/_
5 v - 2V + Vv
v - _l,n m,n m=-1,n
] x m,n (Ax)e
(10.3)
v -V
A v - m,n+l mn
Lt m,n At

o s,
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The truncation error introduced at any mesh poiht as a result of
replacing the system (10.1) by the difference equations (10.2) is the
difference w_=wu =V . In order to estimate the magnitude of

mn mn mn
this error in terms of the increments At and Ax , we proceed, as in

the previous examples, to develop the difference equation of which wmﬁ

is a solution. It is easily verified that

(o, . 12
' X - _
Ax um,n+1 h uxx(xm’ tn+l) BERT- Yoo
At —
D Y,n © u (% tn+l) T Yt
(10.4)
F(]'cm’1'-'n+l’um,n) = F(xm’t’ml’um,n+l)"Fu.1‘1*:,(}‘m’t'n) At - :
04)® = 3 ‘
2 u tt
G(xm’t'nﬂ_’um,n) = G(;“m’1‘-'n+1’um,n+l) - Gy ut(xm’tn) At -
(69”5 3
2 u tt ’

—

where the barred devrivati.ves are evaluated at the intermediate points

required by the mean value 1:,1.1eorem° Substituting these in (10.1) yields

the difference equation

5 .
u

xm,n+l ~ F(xm’tnﬂ_" unm)At Yun * Cme’tn+l’unm) t &

(10.5) &
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vhere &un contains the terms in (10.4) with the factors At and Ax .
As a consequence of the assumptions which have been made regarding the
boundedness of the derivatives of the functions uw, F, and G , the

function &mn is such that, in R,

(10.6) g, | < K (D) + Ky(Bx)°

for some positive constants Kl and K2 .

If the first of equations (10.2) is subtracted from (10.5), we

obtain
(10.7) Azw = F(x ,t u JA.,u =VF(x t v YA, V
X m,n+l m’ ‘n+1’ ‘mn’~ t mn m’ ‘n+l’ mn t ‘mn
+ 0Kt ) - Gty s V) € "
But, since uw_=v _+ w _, we can write
mn mn mn
F(x‘lrl’tn+l’u11"1n) = F(xm"l"ml"vr:xm) * Ty Vom0
Gyt %,) = G(xm’t’n+l’vnm) + Gy Vin

Therefore (10.7) is equivalent to the equation

2
w

x 'm n+l F(xm’t

n+l’vnm)At Vin + (Fu At Ynn * Gu) Yoo t &
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If we replace O + Yon by the difference quotient in (10.3), the equation

can also be written as

2

(10.8) by Ym,nel T BT F(xp the1? vmn) Vi, n+1
= - F(x , t v_ )(1-h At) w _ +
At m’ n+l’ mn &m
where
— At = —
N G = Fu ut(xm, tn) - By Yt
mn lem, t 41’ vmn)

This is the desired difference equation for the trunca.tionl error v .
Because of the supposed boundedness of the derivatives of w , F , and G,
and the éondition that F > p > 0 in R, it follows that the quantity
h is.also bounded in R ; that is, in R,

mn

(10.9) \ ln | £ A
{

An estimate of the bounds for the magnitude of error Iwmnl is

readily obtained from the difference equation (10.8) by an application of :

the following two lemmas:

Lemma 10.1. If Yy is a solution of the difference problem




2 n .
Axym-pmym = g C(m=1,2, ..., M-1)
(10.10) <
Yo = ¥y = O )
—

gnd_if Pm > 0 for all m , then
‘ ‘ g,
(10.11) max | ym[ & mex , = l
m

m - m

Lemma 10.2. If ‘en satisfies the.recurrence relations
where a > O and B > 1, then

. ' , n : n ~
(10.12) : S € < B e+nap , (n 2> 0)

The proof of lemme 10.2 is by direct induction. The proof of lemma 10.1

is deferred until. later.

Since Voo = Y%on initially and on the boundary, the truncation
error W . =W . = V.. vanishes for n=0 , m =0, and m = M . There-

fore the result of lemma 10.1 holds for the solution of the difference

equation (10.8). Note that oy = F(xm, t The inequality

n+i’ vnm) > P
corresponding to (10.11) can be written in the following form with the aid

of (10.6) and (10.9)
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I £ (1+AD%t) - mex |w +

(10.13) max | w = mnl

m,n+l

A

At 2
—‘-)—— [Kl ANt + KE(A x) ]
As in the previous sections, let
’ 2
(10.14) A =At/(Ax)° = const.

Also, let en denote the maximum nmumerical value of the truncation

errors at the mesh points of the line t =t _, i.e.,

n

e, = max|w | .
m

Then €, =0 and, in accordance with (10.13) and (10.14), for all

A ;; lo > 0 there exists a number C > O independent of A such
that

2
)

€ 4 (1 + cAt) €, + c(Aat

n+l

Hence, by lemma 10.2,

| 2
e, g C(1+ cat)? (at)S =c t (1+cat)’ ot .
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Since

. R XAY ct _
(L+cOt) £ e = e

our result can be. formulated as follows: For any mesh point (x, t) in
the region R, (0L xL 1,0 £t £ T), in vhich the functions u ,
F, and G  and their deriva‘tives satisfy thev conditiovns of boundedness
stipulated above, the magnitude of the truﬁcation error is such that,
forall A > A, > 0, |

Z 0

' . t
(10.15) | w8 < cteft (At
vhere C > 0 depends on the derivatives of  u ;s F,and G and is

independent of X .
AN

Addendum to $§10. Proof of Lemma 10.2

The proof of lemma 10.2 consists of sevéra.l parts. Let

G, = &+ & ,Where & >0, £ 0, end g g =0. Then

v =Y ey e yEoyt- 2 £ gt b -
Vp = Vg * Yy » Vhere y‘o"yﬁ"o andAxym pmyi.—gi;‘,(m—l,z,
cey M-1) .

Consider first the function y;; . It can be shown that y;'l \<‘ 0

for all m . For, suppose that y:n >.0 for some m . Since y'(; =

yﬁ\: 0 , there is at least one value in the set m =1, 2, ..., M=-1 at

which y is & meximum. For this value of m , 02 gt

n < 0 and

therefore, since P > 0,
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B
ke

m

This is a contradiction. At a pegative minimum,‘éki y; ;; 0 and

N _
+ + 1, + 2 4, &n €n \*
lyh |= - Im = E; (gg 'le Ym) < »E; = |<:%;j>

+ &\
- max |y < max —-t>
o |73 < e (

A similar argument serves to prove that maximum of |y;| satisfies

Hence,

the same inequality. Therefore, combining these results, we have

] + e [\
maxl ym| = max max] yll ; max |ym1> K mex | max '<?5Et> , max <:}£;>
m m m m Pm m Pm

.

= max
m

Pm

This completes the proof of the lemma.
The following extension of lemma 10.1 is useful in establishiﬁg,
the stability of the difference procedure.

Lemma 10.3. If ym is a solution of the difference problem

(10.6)




and if Py > 0 for all m s then
& P |
.max| yml L max I -—.l + 2 max‘(|¢| , |w|) e
P
m m
Proof. Define
Z = ym“’w“’(\v“w) xm K} (m=0, l’ 2’ ey M) .

If y_ is a solution of (10.6), z_  1is a solution of the difference
m . m .

problem

consequently, by (10.11),

max - | zml £ mex ' ;E l + max lw + (v - w)x l
m  m

= maxl,EE.l.+ max (o], |v]) .
P m
Hence,
Cmax |y | & mex |z |+ max| 9+ (¥ - @) xm,
m m m ‘

K max ] ;E I + 2 max'(l P I, |w|) .
m ~ "m
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811 Stability of the non-linear finite difference equations (10.2)

*
Let v denote an approximation of the solution of the system
. ¥*
"(10.2) obtained by machine calculation. In particular, let v be a

solution of the difference equations

(A—Q*‘ t v )AL v t. v )+ 8
x ‘m,m+l F(xm’ n+l’ 'n,m th Ym,n * G(xm" n+l’'m,n’ ¥ ®m,n ?

(m=l, 2, ..., M-1; 0 > 0) ,

J ¥* ¥*
(11.1) |
Vmo © f(xm) + Sm’o , (m=1, 2, 0., M=1) ,
—
where 5m n »repreSents the residual error at the mesh point Xn It
, .

is ﬁot difficult to obtain an estimate Qf the magnitude of the departure
s =iv* - v of the computed solution from the exact solution when the
conditions for the convergence of the system (10.2) are satisfied. There
remaing only to show that the difference equation which the departure
s satisfies is not very different from that in_(10.8) from which the
inequality in (10.15) was obtained.

If equations (10.2) ére subtracted from the corresponding equaﬁions

in (11.1), one obtains, in the notation of equation (10.8),

[—2
x sm,n+l = F(xm’tml’vm,n)at Sm,n * F(xm"tn-erl"vm,n)At vm,n
+ Gy Spon ¥ Bm’n , (m=1, 2’.'f" M-1; n > O) ,
(11.2)
so’n = Bo’n ) SM’n = GM’n ’ (n > O) ]
_ ®mo0 ®n,0 (m=1,2, ..., M-1) .
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Now

’ At -
By Voon =8¢ Ymn "%t %mn = 8t Ymyn el (xpt)) - 5= Uy -

But, for At/(Ax)a = A with A fixed, the inequality (10.15) implies
that L. oAat) , 'At LA 0(1) , end, consequently, A

t
as &t —> 0 . Since the residuals 8, are o(1/At) as OAt—>0,

-Vm,n')= O(l)

it is evident that the system (11.2) can be cast in the form

-

1 .

x»sm,n+l - At F(x:m"l-'n+l’vm,n) ®m,n+1

(1 L b 1-n Ot
1.3) _J = - At Pl n+1’vm,n) ~ “m,n * &g
sO,n = gO,n ’ sm,O = gM,n ’
Sm,O, = gm,o ’
—
where for some positive constants A and B
|n | € A and | | < B(At)L .
-1 "m,n : €nn _

If, as before,‘ €, denotes the maximum numerical value of the

error at the mesh points of the line t = tn ,' but in this case as a
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result of round-off, then, according to 11.13 and lemmas (10.1l) and

(10.3), it readily follows that

(11.4) €, = 0(1/At) as Ot —>0 ,

for 0 L t £ T . The procedure is therefore stable.

]



Iv. HYPERBOLIC EQUATIONS

1

512 Finite difference method for a hyperbolic sjrstem of partial

’ ¥*
differential equations

~ Let us consider the initial value problem for the system of linear,

first order, partial differential equations on the infinite interval:

~,

u, (x, t)=AE;(x, t)+B(?:, (eo0o & x & 4093
t >0)>
(12.1) J |
T (5, 0) = T(x) , (-0 < x < +o0)3
_

.

_9 ) .
where u is a column vector and A and B are n x n matrices. It
" is well known that an initial value problem for a higher order linear
differential equation (or a syétem of higher order differential equations)
' *%

can be reduced to an initial value problem for a first ‘oz"de';' system .

 For example s, the 1initial value problem for the second order differential

equation:
W = U sy (=0 x < ooyt DO0)s
(0, x) = £(x) , u (0, x) = g(x) , (-0 < x < °9) ,

* - - ' .
See Lax and Keller [13; . See also the paper by Lax and Richimyer:
[lh] -in which both explicit and implicit difference systems are treated.

*% . '
See, for example, Petrovsky [l] p. 16.
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is equivalent to the following:

NONORINCIING)

t - (? X

W3 e

) + Y ’ ("’oov<x<°03

WP (x,0) = £x) , W®(x,0) = gx) , «Px,0) = £1(x) ,

.(.,.oo<x < oo) ,

where

It will be supposed that the system of partial differential

equations in (12.1) is of hyperbolic type. By this is meant that there
exists a real, non-singular matrix P such that

=1 '
(1202) P A P = D = dia(dl, d2’ coey dn) ’

where D 1is a diagonal matrix; the diagonal elements di of the matrix
D are the so-called characteristic directions of the system. For the
purposes of illustration, it will be supﬁbsed that the coefficient matrix
A 1is constant. The elements of the matrix P are then also constants.

The results in this simple case are typical of those in the more general

case in which the elementé of A are functions of x and t . It will
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also be assumed that a solp.tion _ué of thef initia.l value problem (12._1).. .
exists such that ‘E;; and ﬁ:l exist and are bounded for t ;;lo,.
As an approximatiop of the system of partial di_f'ferential _equ_a.t‘ions .

in (12.1), we choose the system of difference equations:

N Y 30%,t)+ ¥ (x- 20x,t) |V (xeplx,t)- ¥ (x- 3, t)
v(:;,‘l&At); - 5 +Ot | A e :
(12.3) ';)(.SH—;-AX,"}) V+ ?(x— %.A x,1t)
+ B — - |

2 ’

where the values of the vector v (%, t) are computed at the mesh

points of a staggered grid.

(x=-Ox,t+ At) (x,t+ Ot)  (x+0x,t+ Ot)
—— + L = ® + >—
— . +— - ¢ o |
-o— + — + . & 4 8-—

(x- %L\x’,t) (x+ %Ax,t)

At the mesh points of the initial line it is required that »

(12.4)
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It is evident that this constitutes an explicit difference method. The
components of the vector _\? at any mesh point - (x,lt + At) are
explicitly given in terms of the previously computed values*ét boints

- on the line t .

The truncation error in this case is the vector difference

-;? = - i;ﬁ>" The procédure for estimating the magnitude of this
error as a function of the mesh size is, in principle, thgwsamg as in
the cases already considered. We first derive the difference problem

—_ )
of which w is a solution. To this end, note that, because of the .

assumed properties vof the vector function u , we have

_u—>( Ax t) ——>( Ax t) .
x +_-2-—’ - U X 2 - %( t) l(q| .{-%")A
iy = w(xt) +glu  -wi)lx,

?(x + %,th_\?(x- —%}—c,t) - 1,—>, —, 2
) u (x,t) + E( Yo ¥ uxx)(Ax) ’

— —
t +Ot) - - 1 =2
ulx, ¢ +08) - w'(x, t) us (x, t) + 5 Uit JAY T

At

vwhere the primed derivatives are evaluated at intermediate poin.ts ih
accordance with Taylor's remainder formula. Substituting these expressions |

in the first of (12.1) yjelds
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-iix,t+llt) = % [; + 24 i%; + BZ}{J u(x + A%E,t) + 1 [I-2A é%; +BZS%]

2
(12.5) /

)<_G?(x - é%z,t) + 7;?@5?)2.f -E>(£St)2.+ -??Sx At ,

where I is the identity matrix, and _E?,_§>, and —;> are vectors

depending on the values of the partial derivatives Gzi and 'ﬁz; .

The components of these veétors are therefore bounded for +t ;; 0.

On subtracting equation (12.3) from (12.5), we obtain

(12.6) _5?(x,t+l5t) = % [%+2A.é%§.+BZS£] ;? X+ é%£,t)+ % [; - 2A éé; +

+ B,A»c]?(x - 85¢) + BB (o0 +Fox bt

Moreover, since —j>=_ﬁ? on the initial line;

(12.7) w(x,0 = 0 .

Kl

These are the equations defining the generation of the truncation error.
For the purposes of convenience in effecting an estimate of the
magnitude of the truncation error, we define corresponding norms of a

vector and a matrix relative to the matrix P given in (12.2). To be

precise, if (—E>)i denote the ith element of the vector z ; the norm

of w~ will be defined as
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(12.8) : Ir;il = max I(P-;>)i| S

i

If (C)ij denotes the elements of the matrix C , then the norm of the

matrix A is defined as

b, .

(12.9) - Nall = max T [ (par™),,
I T

The definitions of the vector and matrix norms are such that

awilall - I F

Then a measure of the magnitudé of the truncation error at the nEE step

of the process, that is, for t = nAt » Will be given by the quantity

(12.10) e = m:-xu?@ DI

where x ranges over all the mesh points on the line t = nt .

‘Let us choose the mesh ratio At/Ax so that

(12.11) " At/ox £ 1/ze

vhere
(12.12) ¢ = max |d, | .
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Then all elements of the matrices
At -1 Ot

are non-negative. Since

1962800 < «, .

it readily follows from these facts that

1 t 1 At
”:2--(I+2A‘%—)w (+.%f-’t)+-2—(l 2A—§x—-)w(x.-—2——, t)“\<en..

This being true, it is immediately evident from-equafion (12.6) that there
exists a number p such that

(12.13) < (pdt) €+ 0 [0 +(88)° + Ax Ot ]

€

n+l
the number p depends on the upper bounds of IIB". and the corresponding
norms of the second order partial derivatives which appeér in the vectors
6? ‘8", and- _;> ccording to lemma (lO 2), the recurrence relation in

2

(12.13) implies that

.'ein e (l+pAt)n EO’ + pn(l+pAt)n [(A:‘x)2+(At)2+Ax At]

and therefore



56

2
pt ot | ( Ax)
€ ¢ €
(1201)4-) a < 0 e +pte [T + At + Ax N

Let ratio X = (Ot)/(Ax) be held fixed during the procedure.

Then, in view of (12.7), we have shown that when

1
xé-é-c-

. *
the magnitude of the truncation error is.such that

(12.15) € < p(le, +A+1) ¢t Pty , (n=t/01%),

whence, for O Sg t_;é T,

€, = 0(Ot) as At —> 0 .
Therefore, under the supposed conditions on the solution of the differential
system (12.1), the difference procedure (12.3) converges.

The inequality (12.4) also serves as a means of estimating the
magnitude of the error in the approximate solution that stems from rounding-

off of the computed quantities. In this instance, let € denote the

O .
meximum numerical value of the errors introduced by this source at the'

mesh points of any line t = to ’ and suppose that all subsequent

oo

* | -

Note that since the matrix P 1is nonsingular the norm | W |
can vanish if and only if |_§>|= O . Hence, € —>0 if and only if : §
¥ —>0 . |
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calculations are exact. The deperture_ s 1in (4.1) then satisfies the
difference equation (12.6) with 3#?:’?: 0 for t > ty -
Copsequently,_the maximum,numerical.velue of thevdeparturelet_the_nzg
‘sﬁbsequeﬁt step, ﬁhich Qe againvdenote by en , does:ndt exceed the

first term in (12.1L):

where p has the same meanlng as before. The departure resulting fram
an accumulation of the round-off errors introduced at each of n’ ‘steps

will therefore'not'exceed,vln-numerical value)'the number- '.
e mePt o o) . : '(t'=qn‘£5t§ .

Consequently, the departure s-‘eatisfiés'the fellowing relation in ahy

interval 0 £ t £ T:

(12.16) |s| (At)) e
Hence, by the criteria adopted earlier, the difference procedure (12.3)

is stable.
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