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CHAPTER I
INTRODUCTION

Factor analysis has been a recognized problem among psychologists
for the past fifty years. Since the very early 1900's mathematical
statisticians have generally avoided the field, only in recent times
again becoming interested in the problem. Beginning with Hotelling

[ié] L and continuing through to Anderson and Rubin [11 , factor
analysis has been attacked in many ways usually yielding quite different
results. It is not the purpose of this paper to give the history and
detalls of the various approaches, since this has been very adequately
covered in several papers [7, 8, 11] . Nor will relations between
factor analysis and newly discovered techniques in multivariate analysis
be discussed at any length, since they too have been covered in papers
by Bartlett [3, 4], Burt (6], Kendal1 [19] , and in the previously
mentioned thesis of Danford [li] . They will be consldered only in

cases where there is a direct bearing on the model herein proposed.

1.1 Statement of the Problem

The ususl method of stating the problem is: can a p-dimensional
complex of random variables be represented adequately by m < p
variables? Obviously, "adequately" is the ambiguous word which causes

the different interpretations. A linear relationship is then assumed

lNum.bers in square brackets refer to bibliography.



and the model is expressed:

m i=1, ..., p
1T 151 EERCE IR T j=1, «oe, N
where N 1is the sample size; xiJ is the value of the random variable
Xy for the jth individual; ykj is the value of the kth common factor
for the jth individual; 8y is the factor loading of the ith random
variable for the kth common factor; and eij is a random error such

that E (e l-o0=x8'le i#n.

N |
Ci5 13 ®ng = B 1€y Yoy | 0

From this point on, assumptions differ. For example, some

consider the ykJ fixed parameters [?5} , others consider the ykJ
random normal variates with variance one and mean zero [éé] .  Bowever,

most authors agree that m , a and ykJ are to be estimated.

ik
Once the estimates are obtained, the procedures diverge even
farther. American psychologists are inclined to "rotate" to simple

structure, a concept developed by Thurstone and carefully discussed in

his book Multiple Factor Analysis [35} . Simple structure is equivalent

to a new model wherein each x may be expressed as a linear combination

iJ
of not m common factors plus an error, but r < m common factors
Plus an error; however, m common factors still exist in the model as
& whole. For example, suppose two common factors had been estimated.

Then simple structure in this case would mean that the p variables

could be divided into two sets such that:



X;y = 8 ylJ + ey i=1, ..., ¢ ;

xiJ = 8o y&j + eiJ 1 =q4, .., P .

The rotation consists in applying a linear transformation Sm xm’

where S S' has unities in the diagonal, to the matrix (a to

ik)p X m
obtaln new loadings (aik)S . If simple structure does exist, some
of these new loadings will be close to zero. Except under certaln
rather restrictive assumptions no statistical formulation or solution

of this particular problem has yet been published even for the case
where the y's are assumed orthogonal (:? [yij ynJ] =0, n¢ %>. In
Chapters IV and V, this problem will be considered more extensively.

A concise statement of the problem is as follows:

1. Derive a satisfactory model both for orthogonal and oblique
(correlated) factors with as few assumptions as possible and yet still
obtain a solution.

2. Estimate the parameters in the model.

3. Test hypotheses concerning these parameters, particularly m .

4, Estimate the parameters under the a priori assumption that

some of the aik are zero.

5. Test the simple structure hypothesis.

1.2 Importance of the Study

It cannot be denied that rotation and to a lesser extent factor

analysis as a whole have been long considered in disrepute by mathematicians



and mathematical statisticians [ié] ; there is good cause for this
attitude. To say that simple structure is evident because the rotated
loadings are close to zero is not enough; sampling considerations must
be taken into account. It is the endeavor of this paper to accomplish
this and fo derive a simple model on which most factor analysts can agree
and one which will allow tests of various hypotheses. In the Uppsala

Symposium on Psychological Factor Analysis, this is listed as one of

the recommended directions for research.

1.3 Review of Related Literature

Lawley's papers [éo, 21] have been closely followed throughout
the thesis. The model to be proposed, although more general than his,
reduces, in the case of orthogonal factors, to the same population
covariance or correlation matrix. Estimation and test procedures are
also similar, although & new method 1s proposed whose convergence 1is a
good bit faster for all the examples attempted. In reality, this paper
is an extension and generalization of his 1940 and 1941 work at least
as regards his Method I. In Lawley's later papers [23, 24, 25] formulae
for asymptotic variances and covariances are derived under the assumption
that the residual variances <j§ [eijj = oi = residual varianc€> are
known. The 1953 paper is to be regarded as superseding the 1949 and
1950 papers.

Whittle [35] s, Young [57} , and Lawley [é%] consider the
as fixed parameters. If the residual variances or at least their

ka

ratios are not assumed known, no method of solution is available.



A priori knowiedge of the residual variances seems az rather drastic
restriction. In Chapter II, the advantages and disadvantages of this
will be further discussed.

Rippe [?9] is concerned only with explaining the covariance
matrix, not with estimation of the parameters. Thus, given a solution
arrived at by any method, one tests the generated covariance matrix
against the sample covariance matrix to see if they are significantly
different. For example, the characteristic vector associated with the
largest root may explain the covariance matrix while perhaps three
vectors obtained by Thurstone's centroid method may not be sufficient.
There is also quite a bit of trouble involved in going from the covari-
ance matrix to the correlation matrix since the sample values r

ii

must be regarded as having a sampling distribution. The r are,

ii
of course, equal to one, since they are the diagonal elements of the
sample correlation matrix. Therefore, this method does not answer the
questions involved at all.

In reading through the literature one is amazed at the many
approximate methods that have been devised to escape the computation
involved in the more rigorous methods. This is particularly applicable
to Lawley's Method I and to the computation of principal components.
With the advent of high speed electronic computers to which many
psychologists have or shortly will have access, this difficulty has
been largely overcome. Also, as Emmett [}i] points out, if the large

amount of labor and expense involved in devising, administering, and
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scoring the tests together with that in the computation of the correlation
matrix, is considered, the extra time involved in analysis by a much
better method is certainly worth while.

In this vein, Rao [éé} , in a discussion of the problem, proposes
a solution equivalent to Lawley's. This has been coded and run on the
University of Illinois digital computer and the code is available.

Perhaps the most comprehensive paper on the subject is that of
Anderson and Rubin [l] . Unfortunately, it did not come to the author's
attention until this paper was close to completion and therefore, there
is some overlap between the two. However, the results were obtained
independently and each paper contains new material not discussed in
the other. Moreover, this thesis is concerned with computational
methods, while Anderson and Rubin do not consider this aspect to any

extent.

1.4 Organization of the Study by Chapters

In Chapter II the model is proposed and compared with previous
models. The maximum likelihood equations are derived and an alternate
approach is considered which results in the same equations. Finally,
two other conceptions of the likelihood equations are discussed.

Chapter III considers computational methods in the general case.
By the general case shall be meant that in which no a priori zeros
are assumed. The estimation equations and computational methods for
orthogonel factors after rotation are considered in Chapter IV.

Chapter V utilizes some of the results in Anderson and Rubin's paper [:l] ;




T
in the original Chapter V the likelihood equations were obtained for two
special cases only. In Chapter VI the prediction of the y's from the
x's 1s considered. This chapter also presents a method for obtaining
approximate estimates if one variable is added to the complex, without
going through the whole factorization again.

Chapter VII is entitled Testing and contains a discussion of
rossible tests of the fit of the model and some remarks on asymptotic
variances and covariances of the maximum likelihood estimates.
Throughout Chapters III-VI numerical examples are given to illustrate
the computetional techniques.

Chapter VIII contains general conclusions and suggestions for

further research.




CHAPTER II

THE MODEL

2.1 Derivation of the Model

The first question that arises in a factor analysis is, does
correlation exist? Or, is the population correlation matrix different
from the identity matrix? If not, there is no point in proceeding
further. The next step, if it were proved there were correlation,
would'be to ask, is there a random variable ¥y such that the partial
correlation coefficients between pairs of the original p variables

after eliminating the effect of y, &xre zero? =0; 1, =

(pij_yl
1, 2, ..., p; i # j). If the population correlation matrix were

still unexplained, then the question would be, are there two random
variables, vy and Yo correlated or uncorrelated, such that the
partial correlation coefficients between pairs of the original p

varisbles after eliminating y, and Yy, , are zero? (pij-ylyz =
i, J=1,2, «ee, P ; 1 #J). One may proceed further, say up to V¥
The ¥, (k =1, 2, ..., m) would be the common factors. Thus, the

hypothesis of m random variables explaining the correlation matrix

of the original p variables is equivalent to

pij'ylye .y, =0 1, 3=1,2, cee, D3 1#3
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It is convenient to express the hypothesis in terms of matrices,
and this involves the following two vectors: X , the p x 1 vector

of the rendom variables x, (i =1, 2, ..., p) , and Y, the mx1

i
vector of random variables Y - Now, without any loss of generality,

it can be assumed that

= 2 ceoe
Uykyk 1 k=1, 2, , m

E(X) = O

E(Y) = 0 ,

since the y's are unknown in practice. Then the population partial

correlation matrix of the xy after eliminating the y's is defined as

1 1
v %2 fx-pmx-emf Ut .

Here U 4is a p x p diagonal matrix whose typical element, uii ’
is the corresponding diagonal element of E {(X - BY)(X - BY)'} .

BP xm is defined by

BE(YY') = E(XY') = \' .

The hypothesis may then be stated
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E{(X-BY)(X-BY)'} = ¥ |,
vhere V¥ is a diagonal matrix. Then,

E(XX') = ¢ = v+BEYY") B |,

and C is obviously the population covariance matrix. If E(YY') =1,

the identity matrix, then B = A' , and hence,

C = ¥+ A'"X ,

which is equivalent to Lawley's model. However, if E(YY') = F#1I,

-1 -
then B=A"F ,and C=vV¥ + A" F 1 ) .

Now, if Wm =8 mx , Where S 1s any non-singular linear

x 1l mXx

transformation,

B(x - 8w (x - M) = m(xxn) - 8D m(wwr) 1)

(1) _ 4 gt

where B =88 . Hence,

(1

gxx') - g Eww) g - Bxx) -pFBt =y

This was to be expected, since, if m common factors result in zero

partial correlation coefficients, then m factors, formed by & non-
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singular linear transformation of the original m factors, will also
accomplish this. Hence, in the general case, there is no necessity of
employing correlated factors, since orthogonal factors will do Jjust as
well, and involve fewer parameters. Yet the problem does exist when the
simple structure hypothesis is specified. This problem and other forms
of the population covariance matrix that arise under simple structure

hypotheses, will be discussed in succeeding chapters.

2.2 Advantages of the Model

It will be advantageous to give a brief discussion of the
relationship between the usual model and that proposed in this paper.
For a more complete coverage of partial correlation and linear mean
squere regression, Cramér [io, PP- 302-307] is recommended.

If Tpx1 = X-pBpY, where B, X, and Y are defined as

before, then

E(q Y') = E(XY') - BE(YY') = O
Now it has been assumed in the hypothesis that E(n n') = ¥ , where V¥
is a diagonal matrix. Therefore, the usual model in factor analysis
is obtained,

X = BY +1 ,

subject to the restrictions E(n Y') = 0, and E(n n') is a diagonal
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matrix. On the other hand, starting with X =GY + ¢ , E(p ¥') =0,
and E(p ') = { , a diagonal matrix, one can easily show, in the
following manner, that the population partiel covariance matrix of X

after eliminating Y , is a diagonal matrix:

E(XY') = GEB(YY') = BE(YY") .
Thus, £ = G , and hence,
E{(x—ex)(x-ex)'} - Eoo') = ¢

The two models are therefore equivalent. However, throughout this
derivation no assumption, except finite second order moments, has been
made on the joint distribution of X and Y . Now, let it be assumed
that X has a multivariate normsl distribution. Then the model still
holds and there is no need to assume that either Y or 1n is normally
distributed. Herein lies the chief advantage of this formwlation;

Y and N are not necessarily normel, and E(Y ¥') is not necessarily
the identity matrix. However, if it is assumed that the y's are
independent among themselves and that Y and 10 are independently
distributed, then it follows from a theorem of Cramer [10, PP, 213] R
that Y and N are normally distributed. Under the assumption that

X alone has a multivariate normal distribution, estimates and tests

may be obtained for the various hypotheses, including those of simple
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structure. In addition, for the meximum likelihood estimates, the
problem of standardization does not arise in this mcdel, since, as
will be shown, results are independent of the scale of measurement.

From the model it is evident that either the matrix B or the
matrix A can be estimated, the two being identical if E(Y Y') =TI .
Simple structure hypotheses are usually made on B , but the equivalence
permits the use of either.

It should be noted that the model still contains the restrictions
of linearity and monotonicity; this point will be further considered

in Chapter VI.

2.3 Comparison with Previous Models

Lawley, in Method I, assumes that Y and 1 are distributed
normally with zero expectations. This assumption has been criticized
quite strongly [55, 36, 57] . Wold states:

This requirement is a drastic one, since there are

cases in practice, the analysis of a truncated population

is the most striking example, where the factor values are

definitely far from normal.

The proposed model seems to avoid this objection. Moreover, as Lawley
states in the same discussion, there is a great distinction between
concelving the factor values as statistical variates and as fixed
parameters. Both Lawley (Method II) and Whittle have worked under the
assumption of the y's as fixed parameters. As it was noted in Chapter I,
a method of solving the resulting maximum likelihood equations has not

been found. Kendall [18, 19] and others have pointed out that this



1h
is probably because there are more parameters than observations. However,
Whittle [55] , by additional a priori assumptions on the residual
variances has been able to reach a solution.

The question is similar to that of Model I or Model II in analysis
of variance [ié] . If, as Thurstone says [53, Pp. xii] , badly
biased samples are used, there would seem to be no recourse but to
Lawley's Method II (unacceptable solution) or to Whittle if enough were
known about the residual veriances. In this case, of course, nothing
could be inferred beyond the actual group of individuaels involved.

But, if it can be assumed that within some particular group, the
individuals are selected at random and the distribution of X within
this group is multivariate normal, then the proposed model still applies.
Also, conclusions mey be extended to the entire group, not merely
restricted to the observed group.

The factor analyst himself must decide on the method to be used
which is determined by his selection of semples and the assumptions he is
willing to meke. It is not possible to state that one or the other of
the two assumptions is the only correct interpretation.

Bartlett [ﬁ, 5} has minor objections to Lawley's Method I, in
that for p =2 , m = 1 , the method does not work; in addition, that
for p =3, no test is available. This is entirely owing to insuffi-
cient data; there is just not enough information to test or draw any

conclusions. He gives an example [18] of a matrix,
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which is incompatible with one general factor and asks, "How do we decide
whether, on the basis of one general factor, it arose by chance, when
the large sample j{ 2 is inoperative?". The question may be answered
by another question. If there are two observations from a bivariate
normal population, how is it decided if p = 0 ? Under the model,

the Wishart distribution furnishes the information, not the multivariate

normal distribution.

2.4 The Maximum Likelihood Equations

Lawley derived the maximum likelihood equations in his 1940
paper; however, for later use it is advantageous to arrive at them in
a different way.
The logarithm of the likelihood function for Wishart's distribution

may be written as follows:

LogL = - Eél (log ICI + trace C-l A) + a function independent of

the elements of C ,

vhere C 1is the population covariance matrix, A is the sample

covariance matrix, and N 1is the sample size. Then,
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P
N -1 _ N-1 iJ
-5 Trace C A = 5 % c aiJ
i,J=1
P N
1 5 ij - -
= = c Y X -Xx X X
2 1,3=1 = ( i i) ( Jn J)
N
= % Y x ¢t g .
n=1l n n

cij and aij are the elements of C”l and A respectively; X is

in-i-i (i=l, 2, °oeay P) o

The partial derivative of log L with respect to some element,

the 1 x p row vector with elements x

z ,0of C is

N
N-1 23dlc] 1 -1 & -1,
- ST =t 3 % x ¢ 5 Ccox .
n=1
Now
-1 & .-1 -1, -1
x, C 3z C = x! = Trace = C X, X c .
Therefore,

Y x ¢t g% cTx! o= (N - 1) Trace % ctact
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Then, if 2z = Wii , the likelihood equations are

A
S LR

————e -

ol "

vhere /8\1 is the cofactor of % in /(} , and /g\i 3 is the element

J 1)
A=l A=l
in the ith row and jth column of C ATC . Similarly, if 2z = kik ’
then
/\ ——

p /\ 813 p /\ /\ i-l, 2, vesoy P

L Xg =5 - I dg gy =0

le |C' J=l k:l, 2, so0y m °

If B = 6\ -1 A/(} -1 -/& -1 , With typical element bi the equations

J )

may be written

>
>
a>
t
H
o>

and

bii = 0 1 = l, 2, "')P .
This implies that QB has zeros in the diagonal and that /ﬁ '/i B=0.
/C\=/\|>+/)§'/i,andhence [A'&+@]B=€B=Aé\-l-1 has zeros

in the diagonal. Therefore, A ° -1 has ones in the diagonal.



To show that a,, = é\ii (i=1,2, ..., p) , one need only

consider the diagonal elements of

AR s = a-p0ta = 0-4
A =1
since TC A has unities in the diagonal.
Moreover, by defining transformations
-1 1 1L
Pa-v 20y 2 | R=v 2ay 2

and
1
A =
,Z = Q v 2 ’
wvhere V 1is the diagonal matrix
11
822
>
a,
- PP _|

18
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the equations hecome

AA - /N
/P lR:/ .

Here é§ is the estimate of the population correlation matrix and R is

the sample correlation matrix with typical element r, , . Therefore,

iJ
the results are independent of the scale of the x's in that one can go
directly from one solution to the other, and standerdization ceases to

be a problem.

The above results are identical with Lawley's.

2.5 An Alternate Approach to Factor Analysis

It has been shown that the usual factor analysis model and the
proposed model are both equivalent to the assumption that the matrix
of population partial correlations of the x's after eliminating the y's,
ies the identity matrix. Therefore, a quite reasonable estimation
procedure would be the maximization of the determinant of the matrix
of partial correlations in order to make it as close to one as possible.
This is almost equivalent to minimizing the sum of squares of the partial
correlations, especlally when the correlations are small.

If it is assumed that E(Y Y') = I , the typical non-diagonal

element of the matrix of partial correlations is of the form
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i, j = 1,2,,..,p;

2 n oo
\//:l N g Pik /l N % P sk idy .

The p's are unknown, and are the correlations of the x's with the
various unknown common factors. Then the problem is to maximize the
determinant of these partials with respect to the p's. In matrix

notation, the determinant is
-1
R - A |yl ,

since the matrix itself is

Of b

_l -
v 2 [R - ! xi] ¥ .

R 1is the sample correletion metrix; A 1is the m x p matrix of
unknown correlations; and ¢ is the diagonel matrix whose terms are
one minus the diagonal terms of A' A . If the determinant is now
differentiated with respect to some element of A , say Pik ? the

resulting equation is

[
"

p . P 1,2,.00,:9
ik -1 Cal -1
— ¥l IR - )= |y 321 P O13

11

P
]

1,2,...,m
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where the 6*3 are the appropriate cofactors of [R - A! k] . If

D=R - A' A, the equation in matrix form is

Then,

The meximum likelihood equation derived in the preceding section is

- /\
f”% 'r = 7.

Then, if the sbove equation is postmultiplied by & -7 ,
RN 1A LN L N
PP o AR PREDD D

Hence,
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Now

j\g'lﬂ - . ﬁﬂ'lﬁj\g"lla ,
and substituting for j\ R_l/? | in the equation, one is led to
(1) ﬁ\g'l R = [I +7\g'lj\jf\,

This is the same equation that was derived by maximizing the determinsnt
of the partial correlations. Thus, the two approaches are equivalent.
To the author this is a most interesting result in that, to his
knowledge, this approach has not been tried before. It is approximately
equivalent to minimizing the sum of squares of the partial correlations
and thus, would seem & logical method, since the hypothesis states

that these are zero in the population. Quensel [?7] hag shown that
under a similar hypothesis, the distribution of sample partial
correlation coefficients (the y's are assumed known) is independent of
the distribution of the variables X and Y . He also shows that under
certain conditions the determinant of the sample partial correlation
metrix has the same distribution as the sample correlation determinant
of variables drawn from a p-variate normal population in which the
variables are all independent, but with N now reduced by m . This
suggests another reason why maximization of the determinant is a

logical procedure.
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Chapter VII will discuss this method further.

2.6 Alternate Interpretations of the Maximum Likelihood Equations

It must be stated at the ocutset of this section that its purpose
is only to suggest possible relations with other starting points in
factor analysis and directions for further investigation. The results
are in no way to be interpreted as mathematicel derivations; however,
they do tie up certain approaches to the problem.

If the N observations are considered as a scatter of N points
in & p dimensional space, another line of attack is possible.
Hotelling Elé] solved the problem by fitting a line through the
points byminimizing the sum of squares of the distances of the points
from the line. This results in the familiar equation XA = VA , where
v is a constant. This method consists in weighting all the variables
equally. On the other hand, suppose a weighted sum of squares of
distances is minimized. The problem then is to find the line in p

space,

P
where 2 Oi = 1 , that minimizes the weighted sum of squares of
i=1

distances from the line. The use of weights is equivalent to imposing
& new metric on the space, and from a generalization of Hotelling's

result it follows that
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-1
(2) 9 ¢ A =pe ’
where the diagonel matrix
gll
§22
¢ = )
QPP
{ 1is the matrix of weights and
- '
. ot taeto
eg"le'

If { is actually known, then the solutions amouat to the characteristic
vectoré of g'l A . Suppose { 1is now assumed unknown, a function of
© and A such that cii =8, - Oi - Then one case of the above
equation reduces to the maximum likelihood equations of Lawley's
Method I, derived previously, while another case reduces to the equations
for Method II where the y's are assumed fixed paremeters [21, 35] .
It is assumed that only one factor (m = 1) 1is involved in the model,
but generalizationto m > 1 1is easily visualized.

Equation (2) has an infinite number of solutions as it stands,

since { is now a function of © . To obtain a unique solution g
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must be further specified. If p =1+ © g'l e' , a comparison of
equations (1) and (2) for m = 1 shows that they are equivalent;
vhile, if p =6 g'l @' , the equations for Method II arise.

Obviously, if it is assumed that all 511 are equal, the usual
characteristic equation, © A = u 6 , is obtained.

The point should again be made that this derivation is not to be
considered as a rigorous proof that the maximum likelihood equations
can be obtained by weighting the distances with the residual variances.
It is only intended to indicate the type of weighting that does occur.
A more realistic line of attack would be weighting with the unknown
residual variances given as functions of © , and then minimizing the
sum of squares; however, this leads to equations difficult to handle.

Another possible approach that indicates aspects of the prediction
of the y's from the x's, may be derived thusly, again assuming m =1 .
Predicting ¥y from the x's 80 as to minimize the linear mean square

regression is accomplished by using the following equation:
yl = l. C- x y

where L' is the row vector of'population covariances of MY and X ;
C 1is the population covariance matrix of X . The regression sum of
squares if ! C-l ) [}d}"‘ However, X , C , and y, are unknown
in the factor analysis model; therefore, A , the sample covariance

matrix, is substituted for C . The problem is to meximize X' a7t a
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with respect to the elements ki of X\, subject to the condition that

P 2
k2 ='7’T'(aii - li) equals a constent; that is, the object is to
i=1

predict ¥y as well as possible subject to the condition on ¥ . This

yields

where A is the estimate of A . Since 4 1is a function of A ,
these equations also have an infinite number of solutions. However,
specializing as before, if v =1 - A A-l’Q , one is led to the

Method I equation, and if v = , to the Method II equation.

I S
PR
General remarks made about the first interpretation also apply

here. Only broad relationships are meant to be indicated.




CHAPTER IIT

COMPUTATIONAL METHODS IN THE GENERAL CASE

In this chapter carets will be cmitted from 6‘,'@ s, and 4%
for the sake of simplicity, but it should be remembered that these are
only estimates of the population quantities involved. It is also
assumed that m 1s known a priori; otherwise testing problems would

have to be considered in this chapter. The actual procedure when m

is unknown will be discussed in Chapter VII.

3.1 Lawley's Methods of Computation

It will first be necessary to show the likelihood equation does

not give a unique solution for m > 1 . The likelihood equation is

If an orthogonal transformation, S , is applied to XA , where W=S 1,

then
AL = W'S'"SW = W'W

This Implies that ¢ 1is also invariant under this transformation and it
follows that C 1s invariant. Therefore, if the likelihood equation is
premultiplied by S , it is evident that W 1is also a solution of the

equation.
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Referring to Section 2.1, one sees that this is equivalent to
applying an orthogonal transformation, S8 , to Y . If E(YY') =1,
then E(S Y Y' S') = I , and the new factors are uncorrelated.
Moreover, if it is now supposed only that 8 1is a non-singular
linear transformation such that S S' has unities in the diagonal,

@ = SA will also be a solution of the equation. For, in this case,

ll

P
|

o' 58] o
Then,

v+o[ss] e

Q
L}

and this is the form of C 1if it is assumed that the y's are correlated
and such that E(Y Y') = S S' . However, the estimation will be
restricted to the case of orthogonal factors for reasons previously
given, principally the fact that in the general case, the assumption of
oblique factors leads back to orthogonal factors.

Hence, for m > 1 , there are an infinite number of solutions.
A particular solution may be selected by further restrictions on the
likelihood equation, and this 1s what Lawley does.

In his 1940 paper Lawley proposes a method of calculation that
involves the computation of the inverse of the sample correlation or

covariance matrix. However, to avoid the calculation of A_l , he has
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proposed a new method in his 1941 paper which supersedes the 1940 method.
The derivation proceeds in the following manner: it has been shown
in Section 2.5 that the likelihood equation can be written

rvta = [i syt A' A

The derivation of the equation was actuaily for the correlation estimates,
but is obviously exactly the same for the covariance csase.

The particular solution selected by Lawley is

Ay A

Z X + A ’

where Z is the lower trianguler matrix containing only the
corresponding sub-diagonal terms of A w-l A" . Then,

A w’l A w"l A' - A w'l A = ZA w'l p LI

Since the matrix on the left side of the equation 1s symmetric, the
matrix on the right must also be symmetric. If the element in the
first row and second column and the element in the second row and first
column are considered, then because of the symmetry,

1 -1 -1 -1

- -1 -1
' - ',
v v g e v v g e v gy vty
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Hence, ll W-l lé must be zero, and by next considering the element in

the first row and third column and the element in the third row and first
column, one can show that ll W-l lé is zero, since ll w-l ké is

zero. Proceeding in this manner, cne can show that A w-l A' is a
diagonal matrix. Therefore, a solution of

A w’l A = ZX + A

is also a solution of the liﬁelihood equation.

The method of computation, say for m = 2 , consists in starting
with an initial approximation k(l) , obtalned by some such method as
centroid or principal component anaelysis. -Then w(l) is computed by
using the relation
kgi)e - kgé)z i=12,...,p .

(1)
Vig" = 844

(2)

The next approximation, , is given by

(1) (1)t (1)
(@ W1 (17,
o \// 1 (™t o or @ L@t ay
MV AV Moo MTY M
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-1 -1
1) (1 (1) (1 2)r (2 1
@ I N RN CLINC BN
(@)
-1 1 , 1,02 1
Jaw o RGNS (@] L,

A new V¢ , W(2) , is then celculated firom 1(2) and the computations
(3) (n)

proceed in the same manner to obtain A , contiming until X
converges. Examples of the technique are contalned in Lawley's 1941
(m=1) and 1943 (m = 2) papers, and in a paper of Emmett's [}3 5
m = 5] .

Both of these methods appear to converge in every case but thet
in which one of the Wii in the solution is zero. In this situation
the iterations literally bound all over, and do not converge to the
correct solution. Another drawback is the sometimes exceedingly slow
rate of convergence; it is possible to stop at a point in the iteration
where there is no chenge in the value at the decimal place to which
accuracy is desired, and yet the correct estimate is a long way off.

This point, with an example, will be discussed in mnore detail in

Section 3.3,

3.2 Modifications of Lawley's Methods

An obvious modification of Lawley's methods is as follows:
Starting with an initial approximation X(l) , one computes W(l) in

the same meanner as before. ‘Then a second approximetion to A is given by
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- -1 1 =1L -1 \

w(g) is then calculeted from 1(2) s and
- -1 ' -1 r -1 ]
(3 b(z) ,(2) l(2)] @@t e

The method is continued until k(n) converges. For m > 1 , this will
not give the same result as Lawley's method, since it has not been
assumed that A v-l A" is a diagonal matrix. An iterative method

which gives this particular solution may be specified as follows:

(1) 7 [k(m S, k(n)'J ,

where Z 1is the lower trianguler matrix defined in the previous
section. However, this method (utilizing 2) does not have any
advantages over the other method. A solution arrived at by the first
method can be easily transformed to a solution satisfying the condition
that A v-l A' is a dlagonal matrix. In addition, the coavergence may
be slower since the solution has been restricted.

An alternative method may be given by the following equation:

J(ml) {I @ @™ @ } - bm S A] _
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This method iz not recommended, since the convergence is slower than in
the preceding methods.

The computational schemes proposed in this section have certain
advantages over Lawley's methods, notably, less computation. It is
also believed that convergence is faster, although no proof of this is
advanced. Therefore, the methods of this section are recommended

over those of Lawley.

3.3 A Gauss-Seidel Jterative Method

The Gauss-Seidel iterative method is usually applied to obtain
the solution of simultaneous linear equations [i?, 3&] . For
example, if there are p linear equations in p unknowns, Xq» x2,
cony xP s s8y, one solves the first equation for Xy in terms of the
other p - 1 unknowns. Then the second equation is solved for x2 in
terms of X x3, coey xp , the third for x3 in terms of Xy Xpy ceey
xp » and so forth. Starting with an initiel approximation: xzo, x3o,
by substituting the initial

10
approximation for X5 x3, cooy xP in the first equation. One then

sesy xpo s say, one then obtains x

obtains X5 3507 *t0) xpO for Xy XB’ rees Xy

in the second equation. This process is continued until xPl is

by substituting X0’ X

obtained. Then X, is calculated by again substituting X512 x31, csey

xPl for X5) x3, veey

rocedure til X vaey X converge.
P unti xln’ on? * %on &

xP in the first equation. One continues the

The method mey be immediately extended to p non-linear equations

in p unknowns. However, for Lewley's maximum likelihood equations,
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X5 X5y eee xp are now all vectors of the following form:

x, = . 1=1,2, ..., p .

Each x; mey be expressed as a function of the remaining vectors,
X5 Xpy eeey Xy 4, Xg,17 o0 xp , and the computations then proceed
exactly as outlined in the previous paragraph.

For the case m = 2 these equations may be derived as follows:

the likelihood equations are

-1, -1, -1,
MV T A=A A VTN A E A T M

-1 -1 -1
MV T A= L VTN s VT M,

or in scalar notation,

DNy
121 PR T I TR Ve Aas) = My
3=1,2,...,p .
3 T2t (8., = My Ay = Aoy Ag,) = A
R 7P P T F -t -F P
2 2

Now *JJ = aJJ - llJ - 123 , 80 that the equations may also be written
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§ My

—= (a,, - A, =Xy Ayy) = O
{ml 4 i1 i) )11 1] 21 2]
1#J

J = 1,2,--.’ P .

§ o

1=1 Y11
1£3

839 = Mg My g Roy) = O

Hence, for J =1, 2, +ee, P,

2
ayy I My AT Ay Ry . T My B4y
I 14y V¥i1 2J 445 Vit 143 Y1
My Moy lgi Aoy By
1132_-;-+x232_=2—_—-i
143 11 143 Y11 143 Vig

Generalization to m > 2 is obvious. For m =1 , the equations become




36
Computation would start with an initial approximation; then
1(2) and 1(2) would be computed from the léj) (k=1, 2; §J =2,
3, eeey P) 1(2) and 1(2) would then be computed from lﬁi) ,

12 22
kéi) , and léi) (k=1,2; j=3,%4, ..., p) , and so forth.
Although an entire iteration involves more work, the increase
in speed of convergence is much more than enough to offset the extra
labor. Particularly for those cases in which convergence is extremely
slow, the saving is very large. As an example, the correlation matrix

in Lawley's 1943 paper will be considered with m assumed equel to two.

It is reproduced below, omitting the lower non-diagonal elements.

1.000 312 ko5 457 .500 350 521 . 564
1.000 460 316 .279 173 .339 .288
1.000 .394 .380 .258 433 .323

1.000 460 .222 .516 486

1.000 .239 .k bt

1.000  .302  .262

1.000 . S4T

| 1.000

As a first approximation one takes

N 2[5 0 66 66 62 o .3 .

mél) = [;17 ~.27 -.47 .08 .06 .02 .10 .2@‘ )
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Then,
4382
BTTL
3435
.5580
¢ - .6120
.8396
A5T1
.b259
The calculation then proceeds as follows:
N1 (50 . (.66)° (.70)°
iﬁlm=w+—3h—3—+--o+—"f2—5§=5-553)
pUEDY
y i1 (.50x-.27) | (.66x-.b7) (.70 x .29) _ 55
141 Vi1 0771 3635 4259 ’
22 2 2
T (-.27) (-.47)° (.29)" _
i§l ‘Vii &L + T + eee + I35 988 s
A, .8
14741 _ (.50 x .312) (.66 x .ho5) (.70 x 564) _
y T et ams ot amp o t 2%

if1 Vi1
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)y 8
2 S (-.27 x‘.312) (-.47 x .405) (.29 x .261;) _
121 —-——*11 = 5T + 3555 ¥ oeee + T - .058 .
Finally,
- (2) '3.981 |
5.553 -301 My 3.981
-.301 .988 léi) -.058
and
(2) _ (2) _
1= .T26 lal = .162 .

The same procedure is followed, using }‘:(L?.) and lé?_) , to obtain
(g) and lég) . Continuing for & good number of iterations, one is

led to the following results:

A = [}722 499 691 .658  .621  .398  .725  .689)

A, = [;183 -.216 -.527 .110  .090  .037  .126 .29@] .

In Lawley's method it will be remembered that }‘l v-l lé = 0 ; therefore,
an orthogonal transformation must be applied to A 8o that Ll v-l Lé =0 .
The resulting vectors, Ll and L2 y glven below, will still satisfy

the equations as shown previously.
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[. 706  .515 .73 .648  .612  .39% .71l .66ﬂ

[.eho -.176 =471 161 .139 .069  .183 .3&&]

no
]

Lawley states in his paper, "In general very great accuracy is not
essential, and the final estimates of the factor loadings and specific
(residual) variances are not necessarily correct as regards the third
decimal place. They are, however, sufficiently accurate for our

1

purposes.”" His results are

[725 505 .66k .61 .623 .39 .26 .69k

E172 -.261 -.48 .087 .069 .027 .106 .291] )

It 1s evident that there is a large discrepancy in the results.
Ll and L2 are accurate to three decimals and should agree with the
fectors obtained by Lewley. The difference is probably ceused by the
extremely slow convergence of Lawley's method in this case, and by the
failure to carry enough places to observe the convergence. First
differences of the order of .0003 may be obtained from iterate to
iterate, and yet the second differences may be one hundredth of this
size. This might, if the computer were working to three place accuracy,
cause him to stop at an iteration where, in reality, he was much farther

than .001 from the correct result. It is believed that this was the case

in the example discussed above.
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On the other hand, it is perfectly possible that for testing
purposes, the iteration has proceeded far enough and more iterations
do not change the value of the statistic to any large extent. This
also seems to be the case here. However, in prediction or rotation
& more accurate estimate should be obtained; this implies a necessity
for caerrying more places than the number to which accuracy is desired.

Another advantage of the Gauss-Seidel scheme and the methods of
Section 3.2 is that a particular solution is not specified by further
restrictions on the likelihood equations. Thus, there is no necessity
for attempting to find an initisl approximaetion in which the

) {17 () .
lk k (k # j) are close to zero so as to speed the
convergence. It must be observed, however, that when m becomes large,
say greater than or equal to four, the amount of work in inverting the
matrix becomes quite large and probably impractical unless electronic
digital computers are available. Yet in this case, other methods would

also be impractical for desk computers.

3.4 Other Methods of Computation

Reo [éé} has also proposed a method which gives a solution to
the likelihood equations. As mentioned in the Chapter I, this has
been coded for the Illiac and the code is available. The method seems
Impractical for desk computefs, Rao himself maeking this point. To obtain

the solution, for m = 2 say, one solves the determinantal equation

GRG - vI| = 0O ,
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vhere the elements 8y of the p x p diagonel matrix, G , are such

that
2 2 !
gy —/(vl-l)bi+(v2-1)ci+1 i=1,2,..., p;
vy and v, are the two largest characteristic roots of the equation and

bi and c, are the ith elements of the associated characteristic
vectors, b and ¢ ; R 1is the sample correlation matrix. Beginning
with an initial approximation, G(l) , for G , one obtains a new G ,

G(E) s by solving the determinental equation

G(l) R G(l) - vI{ = 0 .

The process is repeated until convergence is obtained. Estimated
factor loadings corresponding to ll and lg of the previous case,

are defined as

-1 SUR—— =1
/vl-l b G a.nd\/ve-l c G ,

and these estimates satisfy the likelihood equations. For a derivation
of these equations and an interesting discussion of the principal
component method and what Rao calls canonical factor analysis, equivalent
to Lawley's Method I but derived differently, his 1954 paper is

recommended.
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As far as general conclusions are concerned, for m less than
or equal to three, the Gauss-Seidel scheme is definitely recommended
over the other methods discussed in this chapter. It is superior
because first, it can be conveniently carried out on a desk computer
and second, its convergence is much faster than other available methods,

at least in all numerical examples tried by the author.



CHAPTER IV
ORTHOGONAL FACTORS AND ROTATION

Throughout this paper orthogonal will be considered interchangeable
with uncorrelated, and oblique interchangeable with correlated. This
convention has been and will be followed in order to maintain the usual
factor analysis terminology. In this chapter it is assumed that the
Vi (k =1, 2, «co, m) , are all uncorrelated; E(Y Y') = I . The

following chapter will take up the problem of correlated factors.

4.1 General Comments on Rotation

It has been shown in Chapter II that, under the model with
orthogoﬁal factors, the matrix of regreésion coefficients, B , is the
same as the matrix of covariances, A' . Thus, hypotheses on the form
of B are equivalent to hypotheses on the form of A' . Simple
structure specifieé the form of the population regression matrix, B .
Therefore, in this and the following chapters, hypotheses and equations
will be formulated in terms of B , rather than in terms of 1A' .

To illustrate the subject of rotation, it will be advantageous
to give an example of the procedure of the psychologists. Suppose the
maximum likelihood estimate for & 6 x 6 correlation matrix of test

scores for m =2 , is
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It has been :nown in the preceding chapter that if '8; _— is &
solution of the likelihood equations, then S’a' , Where S 1s an

m X m orthogonal matrix, is also a solution. The psychologists look
for a matrix S which results in S'@' having small quantities,
close to zero, in specified locations which give an indication of

simple structure. 1In this case, by applying graphical or analytical

methods [?5] they find an orthogonal matrix,

.86 .53%3
-.533 846

Then,

A 02  -.01 .00 81 .50 .94
SB' = .
-.72 -.58 -.94% -.03 .ok .00

On observing S’a' » they conclude that tests 1 , 2 , and 3 contain
one common factor, and tests 4 , 5 , and 6 , another. S 6“ satisfies
the likelihood equations and who is to say that the sample estimates
close to zero, are not actuslly zero in the population? It is then
assumed simple structure exists and the particular experiment is over.
Of course, what is needed is a test of the hypothesis that these

parameters are zero in the population.




L5

For this example the hypothesis can be stated:

{x-p0-p0)§ = v

1
|
3 511 IO
H
B o= FTTToC
5190 1Py

Here V¥ 1s a diagonal matrix; Bll and 622 are 3 x 1 column
vectors. The resulting population covariance matrix is, in partitioned

forn,

!
f
|
C=y+PB'=s - - - — — — = = — — — - .
' Y(2) + Pz Poo

Estimates would then have to be made of these parameters and a test
developed.

At this point an important fact arises; namely, since this
hypothesis was made from the data, the same data cannot be used to test
it. A new sample should be used for this purpose. Thus, if simple
structure is the object of the anelysis, the initial data should be
randomly divided into two sets, one to generate the hypothesis, the
other to test it. Because of the large sample sizes usually involved

in psychological studies, this should involve no handicap, except for
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the extra computation necezsitated by two correlation matrices. On the
other hand, if the hypothesis, which involves specifying the form of the
population covarlance matrix, can be made a priori, this problem does
not arise.

The determination of the 8 +transformetior is a problem in
itself. Analytical solutions, calling for no judgment, heave been
proposed, but the gencral consensus seems to be that at the present
time, graphical or other methods calllng for human judgment, are
bettef [9] . Presently then, it is the factor anelysit's problem to
make the simple structure hypothesis by using developed rotational
techniques, and the stetisticiap may then devise tests for the
hypotheses and estimation procedures for the perasmeters involved.
Therefore, in this developmert it is assumed that thie hypothesis has
been made previously from snother group of data, and it is mnow desired
t0 test it on a new sample.

The purpose then, of this chapter, is to tramnslate simple
structure to statisticel formuvlation and to defive estimation procedures
for the parameters in the resulting models. Section *.2 will defive
the meximum likelihood equatiops uunder these modéis; Section 4.3 will
. coﬁsider thé likelihood equations for three special ceses discussed
by Thurstone [}i] . The indeterminancy in the model is»diécﬁssed in
Section 4.4, while methods of solving the equations will be covered in
Section 4.5. Finally, Section 4.6 will summarize and generalize some

of the reswlts. Testing of the hypotheses 1s then only an extension

of Lawley's work and is discussed in Chapter VII.
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4.2 The Maximum Likelihood Equations

It is now assumed that a sample of N has been drawn from a
P-variate normal population with mean g and covariance matrix

C=¥+PBPp', where B isa pxm matrix, m < p . Certain

elements of B , say B s B. s Bs i 5 e.e; B, . 4 are
L d1 7 T 7 Tig gy e dp
) m(m - 1) . X
assumed zero, where r > 73" 135 15, ..., 1, can assume any
value from 1 to p ; and jl, 32, ooy jr any value from 1 to m .

To obtain estimates of the elements of the diagonal matrix ¢ and of
the remaining elements of B , one may use the method of maximum
likelihood to maximize the likelihood function for Wishart's distribution.

In this case, the resulting likelihood equations are

B @l afl Y

C = U!
(1)
Diagonsal (6“1 act -'6_1) = 0 ,

where U 1is a p xm matrix with zeros where p 1is not specified to

have zeros. If B =‘6Pl A‘@’l - GPl with typical element biJ 3

the equations may be written
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/B\! B e UD
(2)
bii = 0 j. w .:Q., 2, scay P °

Equation (2) impiies that @\B and 6”@“ B have zeros in the

diagonal, since '@ U' has zeros in the diagonal by definition of U .,

Therefore @+@%UB m@B=A@d-I has zeros in the diagonal
and hence A’@ "~ has cnes in the diagonai.
On the other hand,it is no longer true that ay = 6}1

(1=1,2, oo, P) - If equation (1) is postmultiplied by 6\ and

premultiplied by B , then

Y N A O

From a consideration of the diagonel elements in the equation sbove;

it is easily seen that the diagonal elements of 6\ are not equal to

2 A

Bu BB

the diagonal elements of A , since the diagonal elements of U'Bg
are not necessarily zero.

Moreover, in the same way as in Chapter II, it can be shown
that similar equations hold for the correletion matrix; thus, the
problem of standardization is still avoided.

Equation (1) is not, however, in a form suitable for computation.
The following peragraph will derive equations vwhich are in a more

convenient form.



k9

If equation (1) is postmultiplied by ¢ , then

AN

é;'é} =1 v o+ U?

BB+ B - B

A=1U

3y

say. Now proceeding exactly as in Section 2.5, one can easily show

equation (1) is equivalent to

RNl W S A A N

(3)

AN

Diagonal 4 = Diagonal(A - B/B**)" .

The last equation of (3) is equivalent to &, = é\ii (i =1, 2, coop D)
only 1f the diagonal elements of ’% U"@”%“ are zero. In the next

section some cases are considered where this last relationship is true.

4.3 Special Simple Structure Hypotheses and the Resulting Likelihood

Equations
The first hypothesis of interest is that discussed in Section k4.1;

in Thurstone’s terminology, it is called "isoclated constellation
configuration", [?5, - lBh] , and will here be called Model I.

For m = 3 , the hypothesis is



E {(x - BY)(X - BY)"} = ¥

q Bll 0 0
B = r 0 522 O
P-g-r | O 0 B

L 55 i

In this case the population covariance matrix, C = ¢ + B B' , will have

three blocks down the diagonal of the same form as for m = 2 , and

zeros elsehwere. Generslization to m greater than three is obvious.
Model II will designate what has been called "incomplete

| triangular configuration”. For m = 3 ; the hypothesis takes the

following form:

E {(X - BINX - BY) ,,} =

This results in a populastion covariance matrix, C =¥ + p B* , which

in partitioned form may be written



51

a p-q
1
Byy Poy

Model II is equivalent to the Spearmen model (with uncorrelated factors)
vhere a general intelligence factor is assumed for all tests; while the
tests are assumed to have zero or positive loedings on other factors
called "specifics”. The general factor here corresponds to that common
factor on which all the tests ere assumed to have non-zero regression
coefficients; the other two ere the specifics. This model is alsoc
easily generalized to m greater than turee.

For Model III the hypothesis is

g [ox - e0)(x - o)) =

@ | P P o
B = r ﬁ?l c ﬁ23
P-g-r 0 B B .
- 32 33 B

This implies that the population coveriance matrix, in pertitioned

form, is



q r pP-q~-Tr
7 9 | 0 ‘ 2 ]

a E21)*311511 + BioPlys By Boy | Pio Bsp
A P B

C=r Boy P1a Vi2yParPer + BosPos Boz Pz
____________ e S
p-a-r P32 P1o { Pss Pas 1 ¥(35)"PsP32 * PssPss

Thurstone calls this a "complete trisngular configuration". Again,
generalization to m greater than three is reedily apparent.

The likelihood equations for Model I may be greatly simplified,

for if
q r P-q-r 2! r p~-q-r
— | - — | | —
P G2 ) G e Ay B Ags
- T - - - [ I
- 1 P ! i
C= r 012 : 022 | 025 and A= T Al2 : A22 | A25
e ot T
| |
-] 1 | 1] 2l o f§ TS I [}
P-q 1015 l 025 | 033 Pp-q-r Al5 | AEB f A53
then the elements of C12 s C13 ; end 025 are all zero. Hence, the

logarithm of the likelihood function of Wishart'®s distribubtion may be

written as

3 3 il
N -1 $ [ 11
) log[C | + trace C A,
2 121 ii 11|

a function independent of the elements of the ¢

logL = -

ii

for 1=1,2,3% ;
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ii

where C is the inverse of C o This implies that each set of

ii
variables may be treated separately, since a maximizstion of the sum is
equivalent in this case to a maximizetion of each of the three components.
Thus, this is equivalent to estimating one common factor from each group
of variables, and is therefore identicel to the problem in Chapter II.

Hence, the maximum likelihood equations are

AN A 1l A
Pip C© Ay = Py
A A 22 A
Pao Ay = Ppo
AR 33 AN
B35 € 77 agy Pz

Diagonal é\ = Diagonal A .

Model II also produces some simplification in the equations for
u! @/é' is an m x p matrix with zeros where PB' 1is not specified
to have zeros. Therefore, if K' = (' 4+ U' @/é" /\1>°l , the equations

may be written
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where K has zeros where B 1is not specified to have zeros. For this
model then, the diagonal elements of 6\ equal the disgonal elements
of A,

However, for Model III no simplification is possible and the
equations remsin the same, requiring & much more complicated computational
procedure than do Models I and II. It is therefore worthwhile for the
factor analyst to ascertain whether some simplification of the likelihood
equations is possible for the particular simple structure hypothesis

to be tested. Models I and II are exesmples of such simplification.

4.4 Indeterminancy in the Model and in the Likelihood Equations

For the original model, C =¥ + B B' , discussed in Chapter II,
it has been shown that B is determined uniquely except for multiplication
on the right by an m x m orthogonal matrix S . The matrix S can
be determined such that two conditions are satisfied. First, one column
of B S has no zero elements, another has one zero element, still
another has two zero elements, ..., and the last has m - 1 zero

E%l];l zeros in all. The second condition

elements. Thus, there are
is that B(a) (¢ =1, 2, .oo, m) has the same rank as the number of
zeros in the ath column, where ﬁ(a) 1s the submatrix of p § that
has zero elements in the qEE column. This follows from repeated
application of a result of Roy's [?6} 3 namely, that if |GL xm # o,
there exists an orthogonel m xm matrix S8 such that GS =H ,
where H is a triangular matrix. It is clear that the preceding

paragraph still holds true if B 1s replaced by é>a




25
This implies that certain simple structure hypotheses are
actually equivalent to the general model discussed in Chapter IT.
Hypotheses of this sort may be specified as follows: adding zeros to
the various columns in the hypothesized B matrix results in a matrix

which satisfies the above two conditions. This meens simply that a

p

transformed into an estimated regression matrix of the form specified

obtained under the general model (no zeros specified) may be

in the simple structure hypothesis. Hence, estimation based on the
generel model is sufficient in this cese. If there are more than
Ei%:ll zeros specified, then the methods discussed in this chapter
must be used.

In addition, simple structure hypotheses in general may not
define B uniquely. For example, a p x 3 P matrix with more than
three zeros in the third column and none in the first and second
columns, is not uniquely determined. For, if B is postmultiplied

by an orthogonal matrix of the following form:

a V/l -a 0
-/1 - @& a 0
- 0 0 1 ] ,

a new regression matrix of the same form as B results. Thus, it is

sometimes possible to rotate under simple structure hypotheses.
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Conditions for unique determination of B and '@ are the
same as the two conditions listed previously except that now the first
condition specifies only the minimum number of zeros that a column may
have. There may be more than Eig:ll zeros in the £ matrix. This
follows easily from the fact that under these conditions, any
orthogonal matrix must be a triangular matrix to leave the form of B
unchanged, and the only orthogonal triangular matrix is the unit matrix.
If the conditions are not satisfied, pf and @‘ are not uniquely

determined and it may be necessary to impose a condition analogous to
A
B = diagonal matrix,

in order to obtain a unique solution of the likelihood equetions.
In Chapter VII this point will be discussed further, since it

has a bearing on the distribution of the test statistic.

4,5 calculation of the Estimates

In this section methods of computation for Models I-IIT will
first be discussed. The method of solution for the general equations
of Section 4.2 is then an obvious generalization of that for Model III
end will be considered at the conclusion of the section.

In all the orthogonal simple structure hypotheses, the initisel
approximation is the rotated matrix of estimates, S’Q = S’g' o
For Model I the methods for m = 1 discussed in Chapter III are used

on the sample covariance matrices of the first q variables, the next
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r variables, and the last p - q - r variaebles. Then Model I contains
no new computational difficulties.

For Model II the likelihood equations may be written

A JAYS

B e ™ha =% + B o= B

c

say. If the equation is postmultiplied by A~ C and

A

substituted for C , then

(%) B = Bxr At 4 B AT BB

AN=1

Postmultiplying the above equation by % f§ , one obtains

B8 - Be aLR B BB G

b
™
+
¥

b

or

1
B AR 9B (1489 R]
Equation (4) is now postmultiplied by 4™ A to obtain
-1
- -1 =1 1 /\=1
N A I Lt

or, after some simplification,
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- B on A
BO™a = [148 978 B .

Here, one can no longer specialize to the equations where the non-diasgonal

elements of B* /q}’l@ are zero. However, if @(n"l)

is the (n-1)st
approximation to {’:3\ , one way to obtain the solution is to use a scheme

as follows:

2

/B\*(n)' - I:I +/B\(n-l)' {V\(n—l)ul /B\(n-l)] -1 /é(n—l)' @\(n—l)-lA

Aln)

and repeat the procedure until B converges. The diagonal matrix
@\(n) is obtained by subtracting from the diagonal elements of A , the

1] ]
corresponding elements of /B\(n) /63\( n) o /B\(n) is easily obtained from

/B\*(n)' =/B\(H)” + o

v 0

I —

|
|
|
|
|
|
|

A method which gives faster convergence is specified by

A _ [Ap\(n-l)' Hln-1)-1 /B\(n-l)‘] " [/ﬂ\(n-l) Ma)-l, /B\*(n-l)il

For the initial spproximation in this method, uw and v are assumed

zero, but after the first iteration, estimstes are available.
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A Gauss-Seidel technique which seems to give the fastest

convergence with the least amount of work; can also be derived. The

likelihood equations can be written ir scaler form as

P ( )
—(a,, -f, £, - g, g -h, h*) = f
1=1 @ﬂ i3 173 1=3 179 J
‘E ! ( £ ' )

— (& b g, & - h, bh*) = g
1=1 4;:\11 T B S B B J 3
P (

a,, -f, f, - g, g¢-h
- iJ 173 i =3 i
1=1 9y,

where the fi are the elements of the wvector

are the elements of the wvector

@ g
|
E’\iz 0 ] ;

the hi are the elements of the vector

q P-q

o %]

>

the gi are the elements of the second row of

elements of the third row of @*' . Hence,

!

Pa1

J=1,2,c0.,5p

j o
J s the 8y

are the



g;‘- = gi i =
h';'- = hi i =

Since g, =0 (i =g+l, ..o, P) , and by

the equations are, for J =1, 2, ..., D,

;o ( Y T
- la,, ~f, f, - g, &%)+
1=1 4, oty A
I )
a,, - f,. £, - g gt) =
R e ¥ B B Lt
1=l Yy,
o (
= (a,, - £, £, - h, h*)
tagsl §, ¥ 14 1
Now
AN 2 2
Vig = By~ Ty - gy =
A _ _ 2 _ 2 _
Yy3 = By Ty m By d =

1,2, ..ecy q
a+l, ses, P
0 (i-=

f

i

é——— (aij - f

ii
%

h* o

J

1, 2, .65 q
q+l, .OO’P

i

f

J

-h

1, 2, ..., Q) )

i

60

h‘:j(') = fj



Therefore, for J =1, 2, ..., q ,

q
)
1=1

1#)

Hence,

Ny e B
— (a,, - £, £, - g, &) + -~ (a,, -f, f
@}1 13 ) 1S3 1egsl Gﬁi ij
q 8
z L (a1J - fi fj - & 83) = 0
1=1 4&1
1#5
P h
> L (aiJ -1, fj - by hj) = hﬁ
1=q¢1.@&1

they may also be written, for j =1, 2, ..., q,

£2 £ £ h
g S % o h* E S §
3 ot .
1=1 4 1=1 4 1=g+1 4 1=1
ii ii i1
1# 143 1£3
f, g qQ 82 qQ &, 8
g 18 R S R Sy &
AN J
121 % 1=l i=1
i
14y 1 iy oy
2
P £, by P hi 1)
z — + h3 YL — + 1 = PN
i=q+l vii i=q+l 14 i1=q+l

- h. h*

b4

i1

17

a

0
Vi1

61

) =0
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Si.mila-z'ly, fOI' j = q_+l, ceocy P 9

2
5 g I8 p 4;n P I8,
fJ Z — 83 T + h's —“/’\'—' = Z A
1=1 Q&i =1 ¥, =g+l ¥, =1 ¥y,
i#J ' 1£J 1#J
. 2
3 'y & 3 & 3 & %y
f,j ~ + 3 Z 7\—— + 1 = Z ~
=1 Yy 1=l ¥y =l Wy
£ h B2 h, &
A et 5 1 DBy By
fj > — + h§ L — = L .
i=q+l *ii i=q+l 11 i=g+l @Ei
1£3 143 1#3

Computation then proceeds as described in Chapter III for the Gauss-

Seidel method.

As an example the 8 x 8 correlation matrix in Chapter III
obtained from Lawley's 1943 raper, will be considered. Let it be

supposed that the estimate

.T06 .515 .T31 .68 612 39% Tl 663

o>

2ho  -176 -471 0 161 139 069  .183 .34k

has been obtained from another sample drawn from the same population.

Moreover, suppose that by one or the other rotational methods operating
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on ‘@ » the factor analyst has arrived at the orthogonal matrix S , where

Then,
745 439
S/B\'=
~-.019 . 321

9549 2967
S =
.2967 -.9519 .
558 .666 .626 396 .T33 .T36
667 L0388 049  .051 .0%6 =.132 .

The factor analyst now makes the hypothesis that there is a general

factor, ¥y s vwhich is correlated with all the variables, and that there

is a second factor, Yo » uncorrelated with Yy s such that piy = 0
-T2

for 1 =1,4, 5,6, 7, 8; Pyy is the correlation coefficient of x,
ve

with Yo - Now the object is to estimste the pasrameters under this

model.

-TH5  .b39

AL

As a first approximation, let

558 666 626 .396  .733  .T%6
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Therefore,
[ k51 -
. T040
.2hko
B .5562
.6087
8428
k630
L 4587
Then to obtain féa) and géa) , the following quantities are needed:
f2 2 2 2
1 _ (.T45) (-558) (-T36) " _
i§2 45— = —-.'msl— + __:-21:E0_+ coo + --TE‘;B-T—« 6.’4895
ii
5 i 8 558 (.667) _ 1 soug
240 -t
142 4>ii
2
g 2
Y x (.667) 1.8221
N .24k0 )
142 ¥y4
f, a
i 712 (.785)(.312) -736)(.288) _
i§2 @ °]+u51 + voo + S———:&-gar?—— 505190
ii
g, a
i 712 667 (.460)
1§2 7 = -—zw-l = 1.2570.
ii
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Finally,

6.4895 1.5248 féz)N] 73,3190

1.5248 108221—1 gée) J 1.2510 ’

or fée) = h39k , géz) = 3208 . Then £2) ang gge) are obtained

3
in the same manner, but féz) and géz) are used in the calculations,
rather than fél) and gél) . To obtain new estimates f§2)

(i=1, &, 5, 6, 7, 8) , the same procedure is followed, except that

g2
1 + 2 7%—
JFL ¥y;
is used, not

ge
o4
F. N
J#Fi Vs

The matrix, ﬁ} , is, of course, changed with each new estimate. After

a few iterations, the results are, accurate to three decimals:

JTH2 437 .55 6Th 636 .BO3 .T39 .TLO
B' =

As far as the possible divergence of the methods is concerned,

both computational schemes described above have converged to correct
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solutions in all examples attempted, but it should be noted that a proof

of convergence has not been obtained. This also applies to computationsl

methods in the general case, as discussed in Chapter IIT, and to the
scheme for Model III discussed in the following psages.

The likelihood equations for Model III are

@'/C\-:LA = /B\*l

?

where @*' =/B\' + U'@%' + U'@ , and U 1is of the form specified

previously. Proceeding exactly as for Model II, one can show that the

equations may be written
B4 a - 1R 4R
If the sbove equation is postmultiplied by 4
B At adte - [T+ [B BB
This is equivalent to

B ATA R [+ BT B - LB AT AW 4 R)

where
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Therefore,

o I Y SOy TR PN Tl

The computation proceeds as follows: take an initial approximation

1
’8(1) 3 compute @«l) , assuming W 1s the identity matrix. This

implies that the elements of ’$(l) are the diagonal elements of A
AL) A1) 1l
A1) A1) (1)

minus the diagonal elements of Now compute W by
using the above equation for W . Then obtain
-1
Ax(1)! All)? 1)-1 A1 A(L) (1)1
O O O e I SR R
both of these matrices have been obtained in computing w(l) . Now
@*' is of the following form:
— qQ r P-q-r . a r Dp-q-r
AY 1 A ’ I ] AP ' '/\*|—.
Biy + Y120 Prp | Poy * W5 Boz 2 Cs3 Pi1 P51 P35
| | [ {
A ' AW AW A
Bio + V12 By b Con 1 Brp * Woz Bas | =| Py 1 PRy 1 P53
| I [ [
AN FAY AN VA AW
| ' 1 , 1 LI - % '
coy B rvis By Bl vy By P13 1 Pas | P53 |

where the w are the elements of the symmetric matrix W . It will

iJ

be noticed that the estimates of W are also symmetric matrices. Since
N

an estimate of W 1is now availaeble, the second approximations to Bil

and 6&2 are obtained by
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-1 =
(1) A*(1)!
1 %12 P11
(1) (1) ’
AF(1)?
V1o 1 P1o
to 651 and 'Aé5 by

and finally to B!, and B', by

32 33
—_— -1 =1 —
(1) Ar(1)
1 w?5 352
(1) Ax(1)*
AT 33

Thus, é&2) is obtained. To compute '9(2) s the non-zero values of
the elements of W must be considered., The diagonal elements of
'@‘2)'8*(1)' are obtained, and these are subtracted from the diagonal
elements of A ; the resulting differences are the ‘@gi) (1 =1,25...,p)-
Then w(z) is computed from /8(2) and '®(2) , with the use of the

same equation as before. At this point a procedure slightly different

from that in the first iteration, is followed, since convergence is

increased to some extent. The following expression is computed for an
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estimate of ‘g¥(2) s

v -1 ' % [ % [
[@(2) @(2)-1/3(2)] [@(2) /ﬂ>(2)_lA-/B\(l)] @

€¢(2) to obtain @‘3) . The

Then one proceeds exactly as before with
iteration is continued until convergence is obtained. It may seem
somewhat surprising that such a complex scheme does converge, but
examples have resulted in solutions satisfying the original likelihood
equations. One exemple with an artificially constructed correlation
matrix follows. |

The 6 x 6 correlation matrix, A , with lower non-diagonal

terms omitted is

1.00 Ak .31 3T Ol
1.00 l .16 A6
1.00 A7 .36

1.00 .26

As an initial approximation, take

/a\(l)' = 3 .5 0 0 T .1 .




Then,
up
«39
1)
L
1.6667
0
2.94%90
/é(l) Vw}(l)'lh 1.7846
6957

/B\(l) Vq}(l)‘lﬁ,\(l)'l /B\(l)

AW T 4(1)-1 (1)

.60
- 20
1.5385 +3333
1.2821 0
0 1.0000
2.8618 1.2387
2.3211 6453
LT703 2.1983
11.9211
3.65645

U2

1.0000

1.000

2,1903

.9957
2.0654

T.7559
8.2761

1.26926
3.04203

0
1.6667
.T143

1.1092
2.3288
1.4083

5.1428

%.3129

8.6376

.69998
.64%001

3.29429

T0

°
2000

1.4000 J;

.6582
. 7203
2.4057

H
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Hence,

1.00150 .00280 .01267
w(l) = 1.00311 -.00917
1.01432 3

.TO43 .6046 .2239 4957 .0038 .0159
g | 12018 .s09% -.0122 L0112 .7029  .0805

.0048 .0064 .6221 .5194 .2901 .T112

Therefore,

-1
1 w&é) 1.00001 -.00280
w&é) 1 T 1.00001
- 1
1 wié)T {1.00016 -.01267
(1) = 6
s 1 1.0001
~ ~ -1
1 wé;) 1.00008  .00917
(1) )
;w25 1 | 1.00008




The result is

- T035
@) .2898
0

T2

0 o -
7056  .08T70
2966  .T120

Then G{i) , 88y, =1 - .T043 (.7035)-.2918 (.2898) , and

@

[

41996

41799
48662

For the second iteration the following matrices are computed:

1.6752
ARG L RISt

0

3.0000
A2 '2) -1, 1.8015

.T1275

0 0
1.6881 .1788
.T096  1.4632 J ;

1l.1412 .6821
2.36k44 . TO61
l.hh27  2.52721;



A(2)7(2)-1, 4(2)-1(2)

A CENOBINE

Therefore,

and

.T106 .6118
@ | 87 s1m
L0066  .0049

12.4428

3. T1437

1.00350

. 2291"
-.0181

6317

.4888
0154
.5188

8.0749
8.5683%

1.29850
5.09095

.00261

1.00023

.0016

- T0T5
.2867

505562}
40M653J
9.5538

STUTT2
.62800
3.46621

- 0090k
-.00506

1.00191

0119
0777
.T130

7>
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Then, proceeding as before, one obtains

. 7099 .6105 2237 L4841 0 0
€(3)' = 2768  .5115 0 0 .7090 .0813
0 0 6297  .5144  .2903  .T13h4 .
The process is continued until ’8‘“" converges to

5

69% 6Lk 219 LL469 0 0
= .253%  ,508 0 o] .T15 .089
0 0 647 514 277 .703 ,

which is the solution of the likelihood equations.

The likelihood equations for Model III are identical with the
general equations derived in Section 4.2. Therefore, the computationsl
method for Model III is applicable in the general case, except that
the form of PB* must be examined and expressed in terms of B . This
determines what submatrices of W must be inverted in order to obtain
an estimate of B . Otherwise, the computation proceeds exactly as
with Model III.

A Gauss-Seidel type of iterative technique can also be used for
the general case. However, because of two difficulties the scheme is
not generally recommended. First, W =1I + U' f? must be computed

for each new estimate of a row of B . This may change every element
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in the estimated ¢ matrix, leading to exeessive calculation. The

second difficulty is that the elements of 4} are the diagonal elements

of A minus the diagonal elements of B" Wé\ . Thus, it is not

usually possible to obtain a row of /B\ in terms of A and the other

LD

B alone, since the elements of @ may all

m(p - 1) elements of
depend on that particular row of /B\ . If, however, W = I or the

diagonal elements of /C\

equal the diagonal elements of A , this
technique is to be recommended; an example has been given for Model II.
The general formula mey be worked out quite eesily from equation

(3) and is given by

AN AL /A oA N A ALA
P ¥ A7 G(J) Y20 ‘> M B I [I *P) B(J)}QJ
J=1,2, ceo, P .

B

is the jth row of A ;

Here /B\( 3) is the p xm matrix obtained from by inserting zeros

in the jth row; /B\j is the jth row of £ ; A
Q,J is the 3_1_:_1:1_ column of U’ 411\ . 3

m non-zero quantities, since U 1is specified to have zeros where @

J

and Q 3 between them contaln

is not specified to have zeros. Therefore, the equation above may be

thought of as giving the jth row of @ in terms of A, and the other

J
elements of /B\ ; however, it is subject to the two difficulties mentioned
previously. The computational equations for Model II may be easily

derived from this relation.
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It should also be noted that, although computational methods have
been discussed only for m = 3 , generalization to m greater than

three is immediate.

4.6 Genersl Remarks

Throughout this chapter simple structure hypotheses specifying
zeros in the B matrix have been considered. However, there is no
reason to restrict oneself to such a definition of simple structure.
For example, if the hypothesis states that a block of tests have
identical factor loadings on some factor, the form of f 1is determined
and the likelihood equations are found exactly as before. Moreover, it
is felt that with the aid of this paper the factor analyst can
translate any simple structure hypothesis, such as that in the example
above, into a hypothesis on the form of the £ matrix, obtain the
likelihood equations and their solution.

It is unfortunate that no better method is avallable for solving
the likelihood equations; however, the author was unable to find a
better iterative technique. The proposed method is not simple, but it
can be done on desk computers. For large p high speed electronic
computers would almost be a necessity.

In the next chapter simple structure hypotheses for oblique

factors will be considered.



CHAPTER V

OBLIQUE FACTORS AND ROTATION

5.1 Oblique Factors

In Chapter II it has been shown that
BE(YY') = A

If it is assumed that E(Y Y') = I , then one can go directly from B
to A, and estimates of B are estimates of A' . On the other hand,
if E(YY') = F#1I, where F is a symmetric matrix with ones in the

diagonal, this relationship no longer holds. If

E{(X-BY)(X-BY);} = ¥

E(YY' =1 ,

where ¥ 1s a diagonal metrix, and if a non-singular linear transforma-
tion § 1is applied to Y , W=SY , then
1)

a(l) E(WW') = B(XW') = 1( A S
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Therefore,
B(l) Ss' = A'S! or B

Hence, applying a linear traunsformation to A is equivalent to applylng
the same transformation to Y , but applying a linear transformation to
g 1s equivalent to applying the inverse of that transformation to Y .
The psychologists look for a transformation matrix, S , which, when
-applied to '% will give an indication of simple structure. S 1is
usually determined such that 8 S' has unities in the diagonal.

As an example, consider the following estimate for m = 2 ,

obtained from a 5 x 5 matrix:

483 .579 .66k 277 .708
A7h 0 173 206 -.167 -.385__ .

Then, by the use of rotational methods, they arrive at the matrix S

such that

.3030  -.9530 1.000  -.688
, Wwhere s 8' =
4830 .8756 -.688 1.000 | .

wn
it




9

Hence,

-.019 .011 .005 243 581

386 431  .501 -.012 .005 |.

On an examination of the matrix, H , the factor analysts then
hypothesize simple structure. The question then arises, under what
conditions does H satisfy the likelihood equations? The likelihood

equations are

Now

-1
FATREA
=P+ =0+ (s s ® .

¢
If H= S'& is considered as an estimate of the covariance of X and
W, then E(WW') =S S' . However, if H =8 %' is considered as an
estimate of the regression coefficients of X on W , then E(W W') =
(s S')“l . The psychologists consider H as an estimate of the
regression matrix, since the simple structure hypothesis usually
specifie4 blocks of zeros in the regression matrix, £ . A varisable Xy

may be correlated with more than one common factor, but the factor
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analysts are interested in whether the correlations among Xy and m - 1
common factors may be explained by the remaining common factor. This

can be expressed as

= 0 k

P . 2, 35 ses, m ,
vy

which implies that

Biy = Q k=2,3 ..., m

k
Therefore, the interest of the psychologists is in the regression
matrix, B , not A . This implies that if H = S @' is a solution
of the equations, then E(W W') = (S S')-l . Now throughout this paper
it has been assumed that the common factors have unit variances. Hence,
(s S')-l must have unities in the diagonal, but the factor analysts
have determined S such that S S' has unities in the diagonal. The
matrix D =M S 1is then to be determined, where M is a diagonal
metrix so that (D D')'l has unities in the diagonal. For the example

presented previously

1 -_1.8993 -1.3069
)

(s s =
-1.3069 1.8993%
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1.3780 0
0 1.3780

L4175 -1.3132
.6656 1.2066

1 1.000 .688
(D D") = ’
.688 1.000 ,

D(‘A -.027 .015 .00T .335 .801
531  .59% .691 -.017  .007

The estimate of the correlation of the pr common factors is .688 , the
non-diagonal element of (D D')"l . This is equivalent to Thurstone's
approach [33, pp.l}?] ; however, in his method S 8' is used as an
estimate of B' , not M S B' =D B' , which should be used.

Most of the general remarks in Section 4.1 also apply to oblique
factors. The point is again made that the hypothesis should not be
tested on the same date which generated it. As before, it is assumed
that the factor analyst has obtained the D matrix, has made his

hypothesis, and 1s now ready to test it on a new sample.
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5.2 The Maximum Likelihood Equations

Simple structure hypotheses for oblique factors may be stated
as follows: a sasmple of N has been draswn from & p-variate normal
population with mean ¢ and covariance matrix C = Vv + B F B' , where
B isa pxm matrix, m < p, ¥ is a p x p diagonal matrix,
and F 1is a positive definite symmetric matrix with ones in the

diagonal. Certain elements of B , say Bi 5.2 Bi . 3 eeoy Bi sy
191 2 J2 r 9r

are assumed zero, where r > m(m - 1) ; i, iy5 ¢.., i, can assume
any value from 1 to p ; and Jl’ 32, ceuy jr any value from 1 +to
m . F is the moment matrix of the common factors Y , standardized to
unit variance, and B is the linear mean square regression matrix of
X on Y.

Exactly as in Section 4.2 one may use the method of maximum
likelihood to obtain estimates of the elements of ¥ , B, and F .
Maximizing the likelihood function for Wisharit's distribution leads to

the following equetions:

AN N1 Ne -
PR @ tact -t = o
AYS - N=] A
(1) | Br@Etat™t-chE = v
Nea N Nem
Diagonal (C 1 AC L. l) = 0 ,

where V is a diagonal matrix and J is a p x m matrix with zeros
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Nl A=l -1
where B 1s not specified to have zeros. If B=C ~ AC - C with

typical element D the equations may be written

ij°?

A A
FB'B = J°
AN
(2) B"BB = v
by = O 1=1,2, oo, P .

AN
Equation (2) implies that @ B and 8 F B' B have zeros in the diagonal,

since 3 J' has zeros in the diagonal by definition of J. Hence,
(@ + @ ﬁ @')B = 6 B=A 8’1 - I has zeros in the diagonal and therefore
A 6-1 has ones in the diagonal.

If the first equation of (1) is postmultiplied by @ , it is clear
that J' @ = ? V , and since the diagonal elements of J' 3 are zero,
the diagonal elements of V are zero, else f would have zeros in the

diagonal. Hence, J' 6 =0 = Equation (1) is then premultiplied

v
A n
by B and postmultiplied by C to obtain

A-1

B FB(C -1

A AN A N N
A-D)=(C-9CTa-1)=B'C=837%.
From a consideration of the diagonal elements of the above relation it
is then apparent that the diagonal elements of 6 equal the diagonal

elements of A , since the diagonal elements of 6 J' are zero.
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Equation (1) is not suitable for computation in its present form;
therefore, it will be advantageous to derive a more convenient expression
for the likelihood equations. To this end, the first equation of (1) is

postmultiplied by € A™> € to obtain

since J' 8 = 0 . In the above equation @ + 6 9 ﬁ' is substituted

for 6 and the resulting equation is
A A A - A 1 NN A
(3) PR =(FR + 3 PG+ Fh + B ERE .
-]l A
If equation (3) is postmultiplied by 4 © B , one obtains after some

simplification

N

(&) (FB+a A LB=F81%

By postmultiplying equation (3) by Q-l A eand substituting for
-] A
(ﬁ B+ @)A 1 B the expression in (4), after a little manipulation

one obtains
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Hence, the likelihood equations may also be written

N A AN A
FB'Vv A=(I+FB'Y¥

A

(5) J*

w
il
(@]

A
Diagonal (A -C) =0 ,

where J 1is defined as before. The equations sbove were derived by
Anderson and Rubin in their joint paper to be published in the Third
Berkeley Symposium [lj . They have also shown that @ is independent
of the scale of measurement in the same sense as before.

The three special models discussed in Section 4.3 will carry
the same designation in the case of oblique factors; that is, Models
I, II, and IITI. Here the corresponding regression matrices p will

have the same form, but the common factors will be assumed correlated.

5.3 Indeterminancy for Oblique Factors

For the model with oblique factors, C =¥ + B F B' , it has
been shown that P 1is uniquely determined except for multiplication
on the right by an m x m non-singular matrix D such that D D!
has ones in the diagonal. 1In this case the matrix D has m(m - 1)
independent elements and again a particular matrix D can be determined
such that the following conditions are satisfied: each colummn of B D

(a)

has m - 1 2zero elements and B (=1, 2, ..., m) , as defined
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before in 4.k, has renk m - 1 . Here there are m(m - 1) zeros in
all. This can be shown by repeated aprlication of the following
theorem: if lGlm % m £0 » there exists a non-singulaer matrix D
such that G D = H , where H is a diagonal matrix. As before it is
clear that the above result still holds true if B is replaced by 6 .

Therefore, certain simple structure hypotheses are again equivalent
to the general model. For the oblique case hypotheses of this type
are specified as follows: adding zeros to the various columns of the
hypothesized P matrix results in a B matrix satisfying the conditions
given above. A simple structure hypothesis of this type may be tested
by applying the methods used in the general case; there is no necessity
for using the methods outlined in this chapter.

It is again possible that simple structure hypotheses do not
define P uniquely. Therefore, it may be possible to rotate even under
simple structure. For example, & p x 2 B matrix with three zeros in
the first column and none in the second is not uniquely determined, for
a matrix of the same form results from postmultiplying P by a matrix
D of the following form:

a v 1l ——;2
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If there are at least m - 1 zeros in every column of B and 6(0)
(¢=1,2, ..o, m) has rank m - 1 , then B and 8 are uniquely
determined. The proof follows from the fact that D , under these
conditions, must be the identity matrix to leave the form of B unchanged.

If the conditions are not satisfied, £ and 6 are not uniquely
determined and additional conditions must be imposed to obtain a unique
determination. Thus, in the example given above the added restriction
that F = I dJdetermines a unique solution, but for other simple structure
hypotheses it may be necessary to impose other conditions as well, such
as 6' @-l @ = a diagonal matrix. The uniqueness of the B matrix
under the particular simple structure hypothesis should be checked by
the factor analyst who may then determine the added restrictions that
insure uniqueness.

The number of restrictions necessary to obtain uniqueness affects

the distribution of the test statistic; the effect will be discussed

further in Chapter VII.

5.4 Solution of the Maximum Likelihood Equations

If the first equation of (5) in this chapter is premultiplied

N-1 . N=l N
by F and postmultiplied by W B , the result is

A=l  A=1 A A A=L A A A=l A -1 A

By AV B=B Y B+BYTBREFR VTR,
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since J° 6 = Q0 . This implies
(6) Fod it a [6- FradB B BT - b

There is a rather striking resemblance between (6) and the equation
defining W 1in Chapter IV. As a matter of fact, F in the computation
for oblique factors plays almost the same role as W in the computation

for orthogonal factors. The likelihood equations may now be written

A - - _ _ 1A ) )
O O i [ A | [ A e A
@ = Diagonal (A - 6 ﬁ‘é')

If B*' = % 6' + J° Q , then $ = diagonal (A - 6 p*') , since % J'
has zeros in the diagonal.

Actual computation starts with an initial estimate of B and F ,
6(1) and ﬁ(l) » obtained as outlined in Section 5.1. Then @(l) is
obtained by subtracting from the diagonal elements of A +the diagonal

elements of 3(1)' 9(1) ﬁ(l) . The next step 1s to compute

-1
(1) (311 4(1), 4(1)-14(0)] 4(2), p(2)1
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Now, exactly as in Section 4.4, the form of B* 1is exemined to determine
A1) - . A2)
vhat submatrices of F should be inverted to obtain B from
A A

B*(l) « After 6(2) is determined, ¢(2) is calculated by subtracting
from the diagonal elements of A the diagonzl elements of €(2) B*(l)'
One then computes ﬁ(e) with the aid of the second equation of (7),

~(2)

substituting 8 and $(2) for é and $ in the expression on

the right. At this point a procedure slightly different from that
ax(2)

outlined above, is used to compute ; hnamely,

-1 A
ax(@) 0 _ [g(2). 2(2)-1 '3(2j [g(z). (@)1, &(2)-1 ﬁ*(1).]

One then obtains 6(5) in the same manner as before. The procedure is

A
repeated until B(n)

converges to B . It is evident that this
procedure is very similar to that discussed in the preceding chapter,
F taking the role of W . The numerical example in that chapter also
illustrates the computational method for oblique factors.

For certain hypotheses some simplification is possible. For
example, for the analogue of Model I, pB' W-l B 1is a diagonal matrix
and V¥ = Diagonal (A - 8 B') . This leads to much simpler equations and
hence much less complicated computations.

It was mentioned at the end of the preceding chapter that one
can derive a Gauss-Seidel type of iterative scheme to obtain the solution

of the general maximum likelihood equations derived in that chapter.

This is also the case with oblique factors. However, the same objections
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apply here as did in the orthogonal case, and the scheme is not generally
recommended. If certain simplifications result from the particular
hypothesis, say B! w-l B 1s a diagonal matrix, then the method may
profitably be employed. Starting with equation (5) one can derive the

following general formula to be used with this method:

A=l A
¥

Ay A=1 _ YA, A=l n AT iA=L A B
Py ¥ A= Bl Y B(JJ*F%“F PRy Y Py Y

é(j) , %J , and Aj are defined as in Section 4.5 and Qj is the
Jth column of J° $ . This method can be used advantageously with
elther Model I or Model II. For Model I, with m = 2 say, p' has

the following form:

q p-q q p-q
[ y |
XX «e0 X 00...0 | 0
I el
! = l b
00...0 | xx...x o ! Bl
i

vhere x denotes some non-zero number. Therefore,

A

V = Diagonal (A - 8 B')

% = Diagonal matrix.
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N
If the elements of B are di and the elements of Q' are

3 413
(1=1,2, ..o, p; =1, 2, ..., m) , the equations for i =1, 2,

.+, q may be written

2
d A q d a,
a. ¥ oo el y L’y
il A i2 A
J=1 Wja J=1 ¢.J
i #
2 2
A L 72 D 4y 2 48y
d., T z — + q (f + z —_— = Y s d
il "12 J=q+1 $ 12 J=q+1 $ J=q+1 $
= Vs Yy =a 33
alj A-1
where the f are the elements of F . Similarly, for i =
q+l, q+2, ..., P , the equations are
2 2
A1l g 95 g 4y q  dyy 8y
(£ "+ X =) + 4,,¢ Y, == = ¥ e
1 3= Q i2 712 =1 @ . $
= 33 = Yy 9= 3J
2
Al2 p 4y b dip 8y
ilf +d12 z = z .
J= +1 ¥ J= +1 ‘yJJ
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. \ . A1) N
Starting with an initial approximation, B to B , one calculates
$(l) by subtracting from the diagonal elements of A the diagonal
A
elements of B A | 1) o then calculated vith the aid of

the second equation of (7). 1In this case the equation reduces to

A Na]l A=1 A
1
) Bll W A W 622

CRENICR >

The computation then proceeds exactly as it is outlined in the previous
Gauss-Seldel calculations. However, at each step a new estimate of F
should be computed; that is, an estimate of F should be computed with
each new estimate of a row of B , not merely with each complete
iteration. The method seems to converge rather quickly, and the
computations are not as bad as one might gather from a quick look at
the equations.

As a numerical example the following ertificially constructed

5 x5 correlation matrix will be considered:

B 1.00 A3 .50 .35 .30 |
1.00 .56 ko 37
1.00 e A .
1.00 .58
1.00
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Then, as an initial approximation, one takes

g(l)q

In thiscase q=3 , m=2, and p=5. From é(l)' the following

matrices are computed:

.6k
.51
1) 56 ’
.36
.51
A1) 411 _ 9375  1.3725 2.2222 0 o
© 0 0  2.2222 1.3725
A(1)y 4(2)-1 4(1) 3.3010 0
0 2.7386

A(1)

In order to compute F
A -

, it is necessary to multiply the first row
by the last two columns of A . The result is a

1x2 vector, [;.85&9 1.7002] . Then
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AL (1.8549)(2.2222) + (1.7002)(1.3725) _ oy
12 (3.3010)(2.7586) = ¥
The quantities needed for a second estimate of dll are
5 an
% xé_ = .7(1.3725) + .8(2.2222) = 2.7386
=1 ¥..
5 a5,
Z Xl— = .8(2.2222) + .7(1.3725) = 2.7386 ;
=¥y
3 d,., a
g Ji I - 43(1.3725) + .50(2.2222) = 1.7013 ;
J=1 WJJ
fral
5 d a
5 -QEX_QE = .35(2.2222) + .30(1.3725) = 1.1895 ;
J=b v
Jd
Fe(1) -1.b572
221 _ 5 oues
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Then

f

2.7386  -1.4572 dgi) 1.70131

1.9556 h. 7792 q§§) 1.1895J

or dgi) = .6189 . The following matrices are then needed for the next

step:
A(2) .6189  .7000  .8000 0 0
7! ;
0 0 0 .8000 .7000
I ]
.6170
.5100
§® _ 13600 ;
.3600
.5100
1.0031 1.3725 2.2222 0 0

g(z) ] %(2)'1
0 0 0 2.2222 1.3725
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0 2.7386
Hence §(2) = 7102 and the resulti tion £ d(e) i
» T = s ng equation for d,,° is
(2}
2.3986 -1.4330 dpy 1.6758
4 y (2) 6
1.9449 . T562_ Lo 1.3967
The process is then continued until g(n), converges to
A 6190 . 7032 . T987 0 0
p* = ’
0 0 0 L7958  .7288

/\n) N
and f converges to f.,., = .7022 .

12 12
This method, however, is not recommended unless = Diagonal
(A - BB*) . Otherwise, as mentioned before, the elements of @
depend on all the elements of @ , not just on those of the corresponding
row. For Model II it can be shown that this condition is satisfied;
therefore, the Gauss-Seidel method has certain advantages in this case also.
In conclusion, it should be noted that the principal purpose of
Chapters IV and V is to illustrate the manner in which the factor analyst
should proceed to test his hypothesis. The purpose is not to give a

step-by-step computing procedure for every possible hypothesis, but

\
rather to indicate the general method of approach to the problem.



CHAPTER VI

PREDICTION

6.1 Prediction of Y from X

Bertlett [2] , Thomson [51J , and Lawley [21] have all
considered this problem. However, it will be advantageous to arrive
at the prediction equations in a different manner. Now X and Y,
where E(X) = 0 = E(Y) , have a joint multivariate distribution. The

linear mean square regression of Y on X is specified by Tm x ’

P

where

y B(X X') = E(YX') .

Then y X 1s taken as an estimate of Y .

In the actuel factor analyéis problem neither Y nor E(X X')
is known. However, under the hypothesis proposed in this paper, estimates
of both E(X X') and E(Y X') are available. These are ¢ and 2
respectively. Therefore, as an estimate of y , one takes

N=1

A
/7\=}\C o
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Then if X¥ 1s the p x N matrix of sample values of X ,

1
>
Q>

(1) T*

*
mx N X ?

say, 1s the estlimate of the common factor values for each individual.
The population regression sum of squares matrix is X C-l A,
and therefore, the estimated residual covariance matrix of Y 1is
A A A=LA A
[F -AC k:] , where F 1is the estimate of F = E(Y Y') . This
residual matrix indicates how well the common factors are predicted
by & linear regression on X . However, in the simple structure case

the matrix g = A' F-l has been estimated, and not A itself. Hence,

the equation for Y¥* glven in terms of @ is

(2) Y* = Fp
and the estimated regression sum of squares matrix is % %' %-l % % .
For the general case, where no zeros are assumed in the 8B
matrix, these equations can be written such that only the inverse of
an m x m matrix is involved, not the inverse of the p x p matrix,

A
C . The likelihood equations for the general case are



where 6 = Q + Q' 3 . Hence,
At - Rt ,
and
P W R e U

Then, in exactly the same manner as in the preceding chapters, it can

be shown that

At = AT A EI +’i$'l/iv] -1
Therefore,
2 B4 a8 908 Tae L RE
This implies that
() voo [14847%] 80 e

Thomson [?1} and Lawley [?l] have also derlved this particular
prediction equation, which is evidently much better suited for computation.

A
Furthermore, by postmultiplying equation (3) by A' , one obtains
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N=1 A A -] A A A=
et - [1+%% 1 U 13,

the estimated regression sum of squares matrix.
In the simple structure case the equations can also be simplified

in this manner. From equations (1) and (3) of Chapter IV

BE - Bt e[ B i) B

N
Since 8' = A for orthogonal factors, the prediction equation for

simple structure with orthogonal factors is
A Al A A A=
™ = [I N l'] NI

Similarly, from equations (1) and (5) of Chapter V

-1
- AA Aa .
1 A] FR Y 1 x* ;
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The estimated regression sum of squares matrices for orthogonal and

oblique factors respectively are

All of the foregoing equations are of necessity somewhat
arbitrary, since the y's are not actually known. However, they do give
some degree of informstion, and the prediction of Y from X 1is

usually considered as one of the objectives of factor analysis.

6.2 Non-Linearity and Monotonicity

In order to investigate non-linear properties, Y* should be
computed. Then the factor analyst can look for relations among the
various common factors. For example, if m = 2 , and the model actuelly
involves only ¥, and yi , say, then a plot of yi against yg
should reveal the relationship. Here y{ and yg are the first and
second rows of Y* respectively, and are normally distributed, since
they are linear functions of normal variates. In this scheme one would
actually be plotting ay, + byﬁ against cy, + dyi , but a definite
relationship should show up if one really exists. If there is no
relationship of this kind between the common factors, the y*'s should
plot as a random scatter in an ellipse, since the y*'s are normel and

may be correlated. The closeness of the functional relationship could



102
be checked with the residual covariance matrix of Y .
As far as the author 1s aware, no investigation of this type
has been underteken, but it seems to be a promising line of attack on

the Jjoint problem of non-linearity and monotonicity.

6.3 Prediction of the Factor Loadings

In factor analysis terminology this section is concerned with
predicting the factor loadings on a new test when it is added to the
battery, without going through the whole estimation procedure a second
time. This can be accomplished by using the Gauss-Seidel technique
outlined in Chapter III. As an example, suppose a test is added to
the eight test battery discussed in Chapter III. The new test has the

following correlations with the originasl eight tests:

1 2 3 4 5 6 7 8
600 .15 .360 .550 .500 .300 .600 .580

The estimate of A obtained for the original eight tests 1is

.706 .515 731 648 612 .394 .71l .663

>
1

2ho  -176 -b71 161 139 069  .183  .344
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Then

1 1.5902  .7317 2.998% 1.1693 1.0097 .4690 1.5423 1.4997
Sho6  -.2501 -1.9319  .2905 .2293 .0821 .3970 .T781 '

The following quantities are also computed:

2
9 A
z ;13 = .T06(1.5902) + .515(.T3L7) + ... + .663(1.4997) = 7.343 ;
i=1 Vit
19
2 My My |
z - - -240(1.5902) - .176(.T317) + ... + .344(1.4997) = 0 ;
i= 11
1#9

2
9 A
z ng = .24o(.54%06) - .176(-.2501) + ... + .344(.7781) = 1.508 ;
i=1 Vi1
149

2 My 849 ) _
Y - .600(1.5902) + .150(.T317) + ... + .580(1.4997) = 5.227 ;
i=1 ii

19

2 Moy By

z = .600(.5406) + .150(-.2501) + ... + .580(.7781) = .580 .
=1 Yy

149
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Therefore,

T.343 0 A 5.227

"

0 1.508_ 2 .580

or 119 = ,712 and 129 = .385 . These two quantities are the desired

estimates.



CHAPTER VII
TESTING

In the preceding chapters it has been assumed that m 1s known
a priori; however, in practice this will not always be the case. The
first section of this chapter will consider the testing problem when
m 1is known, .while Section 7.2 will consider the problem when m also
must be estimated. ‘In the last section certain related topics will be

discussed.

7.1 Test of the Fit of the Model

In the general case the null hypothesis is that the population
covariance matrix, C , equals V¥ + B B' , where V 1is a diagonal matrix
and B is a p xm matrix, m < p , while the alternative hypothesis
is that C 1is any positive definite matrix. One possible test statistic
is the likelihood ratio criterion. The likelihood function for Wishart's

distribution is

N-1 N-p-2 N-1 -1
-5 5 i Trace A C

| A e

K |c|

AN AAD
Under the null and alternative hypotheses respectively, C =V + B B’

and 6 = A . Therefore, the likelihood ratio criterion is



106

N-1 p(N-1)
lA]2 e °
A N-1 §%i Trace A(@ + @ 6')'1
(v + B B'| e

It has been shown in Section 2.4 that the diagonal elements of
A(@ + % ﬁ')-l are ones and hence, the likelihood ratio eriterion may

be written as follows:

N-L
2

Under certain conditions ?m = =2 loge Lm is asymptotically distributed

as Y 2 yith gig:il - pm + EL%EEL

degrees of freedom when the null
hypothesis is true. These conditions have been determined by Anderson
and Rubin [l] and will be discussed in Section 7.3 in connection with
the asymptotic normelity of 6 and Q . The test procedure itself is
then to reject the hypothesis if Tm is greater than some preassigned
quantity which is chosen to give the desired probability level.

The likelihood ratio criterion for simple structure hypotheses
may be derived in a similar manner, whether with orthogonal or oblique
factors, and is identical to Lm , since the diagonal elements of

N - aS -
AG + BB ana A + B FB)Y are still unity. Again -2 log, L
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is asymptotically distributed as :{ 2 subject to conditions similar
to those in the genersl case. However, the degrees of freedom associated
with the ;( e vary, depending on the particular simple structure
hypothesis. If B 1is uniquely determined as discussed in Section L.y,

then for the orthogonal case the degrees of freedom are p(p-1)

- pm
plus the number of zeros specified in B . If B 1s nol unicgueliy
determined but is of the type discussed in the second paregraph of 4.k,

the degrees of freedom associated with the asymptotic ;{ 2 are

P(%:i) - m + Eig:il . Therefore, & simple structure hypothesis of

this form is equivalent in all respects to the general case; testing
and estimation procedures are exactly the same. However, for other
types of hypotheses which do not determine B wuniquely these formulas
no longer apply. Thus, in the example given in that Section, 4.k,

the degrees of freedom are EL%;ll -3 + 3+ 1 . The three 1s the
number of zeros specified, while the 1 1s necessary because of the
remeining freedom to rotate. 1In situations of this kind the factor
analyst is obliged to determine the degrees of freedom by exemining the
possible transformations which leave the form of B unchanged.

The same problem arises for ocblique factors. If £ is uniguely
determined by the hypothesis (Section 5.3), then the degrees of freedom
associated with the asymptotic :{ 2 are EL%EEl - mm - EL%Fll plus
the number of zeros specified in B . On the other hand, if B 1s of

the form specified in the second paragraph of 5.3, the degrees of
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freedom are Eiglil - Pm + E&%le . Therefore, eny simple structure

hypothesis specifying correlated factors and a f of thils form, 1is
equivalent to the general case, and may be tested by the methods in
Chapters II and III and in the first part of this section. For other
types of hypotheses that do not determine § uniquely the remarks
concerning orthogonal factors apply. Thus, the statistic for the
example given in Section 5.3 has 2&%:&1 -2p » 1 + 3 + 1 degrees of
freedom, since there is one degree of freedom available for rotation.
An intuitive idea of the test can be given as follows: 1in

Section 2.4 it has been shown that

-1

a>

>
>
]
b
t
Q>
+
<>
i
>
1
w>
w>

This implies that the determinant of 6-1

A equals the determinant
of a matrix with ones in the diagonal and the following typical non-

diagonal element:

m
a,, - 5 4, 4d
1§ 7 ik Uk
b
Q'ii q’J:i
where d,, (1=1,2, ..., p; k=1, 2, ..., m) ere the elements of
@ . Since lﬂ- is independent of the scale of the p variables, one

Al

|c

can as well use the sample correlation matrix, R , and the estimated
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A N /\‘ TANRA
population correlation matrix, P . Hence, if P =2+ 7 7',
T a e |
{7% = %?J equals the determinant of the following symmetric matrix:
c P
Ton = L Yoo Y b SRS YN S 7
L 12 k=1 1k 2k 1p k=1 lk ‘pk
N N N\ AN
le 222 le pr
m
Top = & Tox Tpk
1 k=1
M = 222 op ,
1
L i

where 7y, (i=121,2, ..o, p; k=1, 2, ..., m) are the elements of 5.
From the form of the non-diagonsl elements of M it is evident that they
are estimateg of the population partial correlation coefficients among
the p variables after the effect of the common factors, Y , has been

removed. Therefore, lél = lBl may be thought of as the determinant

N A
of the estimated partilglcorlziation matrix. This agrees with the
gpproach that would be taken if the y's were actually known. The sample
partial correlation matrix would be computed in this case and then checked
to see if it were significantly different from the identity matrix.
Quensel [é?] has shown that under certain conditions, if & sample of N

is taken from the joint distribution of X and Y (X =8 Y + G) , the
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distribution of the sample partial correlation coefficients among the
x's after eliminating the ¥'s, is the same as the distribution of the
correlation coefficients in a sample of X! - m drawn from a multivariate
normal population of independent variables. These conditions are
1. G has a multivariate normel distribution such that
E(G G') 1is a diagonal matrix.

2. Y and G are distributed independently of each other.

The moments of |R| wunder this hypothesis are derived in

Cramér's Mathematical Methods of Statistics [10 and Bartlett LMJ
has derived a test employing - |N -1 - 2p + 2 log |R| as a.;(2
6 e

with Eiglll degrees of freedom. Therefore, if the y's are known,
no difficulty arises, since the same test can be utilized by merely
replacing N by N -m and |R| by the determinant of the partial
correlation matrix. |

In factor analysis, the y's are, of course, unknown; however, for

m =0, T breaks down into T, = - (N -1) log, [R| . T 1is only

0]
2

asymptotically distributed as :( and for small sample sizes a

different multiplying factor may make the actusl distribution of Tm

closer to that of 'Y 2. Therefore, Bartlett [4] recommends as &

statistic




in
From the above discussion the author is inclined to prefer m rather
than %? in the multiplying constant. Either of these expressicns
reduces to Bartlett's other statistic for m = 0 , and the difference

between them is probsebly too small for concern.

For simple structure hypotheses it can be shown that L%l is

||
again equivalent to this type of determinant. In the orthogonal factor
case l%— equals the determinant of a matrix with ones in the diagonal
IC|

and typical non-diagonal terms of the following form:

m
r,, - X Vep W 7
13 . 74k Ykn 74n
(1) k,n=1 ,
x A
211 ZJJ

where the W, are the elements of W as defined in Section 4.5. For

kn
oblique factors %é}! is the determinant of a matrix with ones in the
c

diagonal and typical non-diagonal terms of the following form:

n N
13T, §~1 71k Tkn 7gn
(2) : ,
A A
Zii ZJJ
N N
where the £ are the elements of F , the estimated covariance

kn

matrix of the common factors standerdized to unit variances. Hence, for

simple structure hypotheses one is essentially testing whether the matrix
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of estimated partial correlations is significantly different from the

identity matrix. Also, - [ﬁ -1 - 227;—2 - m:} log, L;% is again
| P

recommended as the statistic to be used.

The computation of the test statistic itself is a rather tedious
procedure, since the determinants of two p x p matrices must be
calculated. However, some simplification is possible, because

A A
P=2+ 9 ;' may be written in a form more suited for computation:

A

Tl I B | PAENEOTS Yo I D PRI Y

-

This follows from the fact that

P
P |{A ! B
------ = [D||A-Bn'lc|=|A||D-CA’lB ,
m c : D
a result of Roy's [30] , and therefore |[I+BC| = |I+CB|. Ina
similar menner it cen be shown that for oblique factors
A ‘ AV N -
Bl =|2+58% | =|2)jz+5 8 E - S|z + 55 E5)

A
This saves some labor since the determinant of 2 is easy to compute

and the other determinant involves only an m x m matrix, nota pxp.
Yet the computation of |R | still may involve an excessive amount of

computation. For this reason Lawley [QOJ has proposed an approximation
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to this statistic for large N . He suggests N L mid as an
1<3

approximation to Tm , Where the m are the elements of the matrix

13
M vhose determinant is #%% . One can sustain the approximation by

observing that for large N all the non-diagonal elements are small
if the null hypothesis is true. If the products of three or more non-

diagonal elements are neglected, IM] ¥1- X mis
1<
2 2
- Z m; s for 7 m;y sufficiently small. However, it would
i< 1<
still seem advantageous to use [# -1 - 2p + 2 g‘ﬁ] as a multiplying

and log, M| =

factor. The same approximation can also be derived for simple
structure hypotheses, where M 1is defined by (1) and (2) for orthogonal
and oblique factors respectively.

Another possible approximation is (N = m - 3)

143 1j

transformation to each of the m and summing the squares of the 2z's.

13
It seems that this is a much better approximetion te Tm , especlally

1 1l + mij 2
z el loge T + This is equivalent to applying Fisher's =z

vhen the null hypothesis is false. There are also some theoretical

grounds for this approximation. If miJ were & sample partial

correlation coefficient, then under the null hypothesis (N -m - 3)22

13
would be approximately distributed as a ){ 2 with 1 degree of

freedom. Therefore, the proposed statistic would be approximately
distributed as‘x’2 with £ p-1) degrees of freedom, if the various

z,.'s were independent. For large N this is the case. Since the

i3
actual correlations are only estimated, one may subtract the number of
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the quentities estimated from EK%FEQ- and claim some sort of validity
for the process. This is precisely the manner in which this approximation
is constructed. No claims of asymptotic ;{ 2 distributions are
advanced, but it nevertheless offers certain advantages over z m?j R
particularly as regards the power of the test. - ted

Lawley [13] maintains that a sample size of 200 is sufficlent
for a close enough spproximation to ix 2 and is also sufficient to
permit use of the first approximation ebove. From sampling studies
[lh, 26] this would seem to be substantiated.

Numerical examples of the techniques discussed in this section

are to be found in papers by Lawley [20, 22, 26] and Emmett [13] .

T.2 Determination of m

In the preceding section it has been assumed that m 1is known
a priori; for simple structure hypotheses this will be the case.
However, in practice m must sometimes be estimated from the sample.
This is accomplished by a sequential type of procedure. Quite naturally
the first thing that should be done is to test the sample covarience
(correlation) matrix to see if it departs significantly from a diagonal
matrix. Thus, the null hypothesis is that the population correlation
matrix is the identity matrix, and the alternative hypothesis is
m = 1 . If the test rejects this hypothesis, one next proceeds to
test m = 1 against the alternative hypothesis m=> 2 , and so on.
The procedure is terminated when the test accepts a null hypothesis

and this gives an estimate of m . Hence, T, 1is computed and tested

9]
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for significence, then T., ..., aud finally Tm . No probabilities

1’
can be assigned to the test as a whole, even asymptotically, although
for each separate test it can be done. However, this may not be of

too much concern, since the j{ 2 will usually have an extremely smell
associated probability if the null hypothesis is faelse. A real draw-
back is the terrific amount of computation, for at each stage new
estimates of the parameters must be celculated. In practice, it is
advantageous to obtain some indication of m ahead of time, say by the
centroid method. Then one can test this hypothesis, specifying m ,
using Lewley's method. Yet even here probabilities are altered somewhat,
since a hypothesis has been made from the data and the same data is used
to test it.

Nevertheless, with electronic digitel computers and readily

available codes for the method, this is no longer such a problem.

7.3 Asymptotic Variances and Covariances of the Maximum Likelihood Estimates

Anderson and Rubin [l] have considered this problem in some
t
detail. They reach the following conclusion: "the variances and

A
covariances of the elements of B are so complicated that they camnot
be used for all the usual purposes."” It is much easier to give the

inverse matrix of these quantities. This inverse matrix is

dog L dog LJ

A = E
5] 93 0 6 _

0. =6
J 0J

% = Ok
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where ej and Qk are the parsmeters to be estimated and 903 and

QOk are the velues of the parsmeters under the null hypothesis. For
the null hypothesis in the general cuse, C = V¢ + B B' , this results
ina p(m+ 1) matrix which must be inverted to obtain the matrix of

asymptotic variances and covariances. In partitioned form

Y b P P Y
P A Al .o Ai oo AJ . Am
1
P Al Bll . Bli BlJ Blm
1 ]
P Ai Bli . Bii Bij oo Blm
JAR. . . . .
1 1 |}
P AJ Bij ' Bij cas BJJ oo BJm
1 ] ' )
P A Bim . Bim .o Bjm cae Bmm

A is the pxp metrix E (6 log L 0 log

L
with typical element
La Vii ° *33 J

E%l [ciJJ 2 , Where the ciJ are the elements of C-l . If the

elements of the ith column of B are denoted by d =1, 2, «ve, D)

and the column vector itself is denoted by Bi , then Bii is the

dlogl dlogl =
P XD metrix E[agg o8 J and B, = (N-l)[(BiC By) +

i %%

+ C-l Bi Bi C-ﬁJ . Ai is the p x p matrix E {éal;EkL aalggiL} .
J
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If ¢7T denotes the jth column of C

B -1 R
Bi Cl O s 8 O
-1
0 Bi C2 . 0
-1
Ai = (N-l) . . s s . C .
-1
L o O . e Bi Cp |
Bi' is the p xp matrix E 0 %og L 2 %og L and Bij =
J dki nj
(N-1) [(Bi C-'l 63) C-l + C-l Bi Bj C-%} . The inverse will then give

the asymptotic variances and covariances under certain conditions which
will also guarantee Tm being distributed asymptotically as ;{ 2 .
These conditions are

1. X have a multivariate normal distributiom.

2. 92| # 0, where o =y - p(e* v B B

3. B 1is uniquely determined by specifying that PB' w-l B 1is

a diagonal matrix with different and ordered elements.

The conditions also imply that \/ﬁ'(ﬁ -B) , N ($ - ¥) have a
limiting normal distribution. Anderson and Rubin [l} have proved
the ebove results.

Similarly for simple structure hypotheses they have proved that
if Y and G , as defined previously in this chapter, are normally

N N
distributed, and B 1is uniquely determined,\/N (B - B) ,\/N (F - F) ,
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and \/N (@ - ¥) are asymptotically normelly distributed; this implies
that T, is agymptotically distributed as 7Y 2 for simple structure
hypotheses. Asymptotic variances and covariances have not been obtained
for this case; the expressions are probably much more complicated than
in the general case. It is unfortunate that the factor analysis model
gives rise to such complicated expressions. However, if one cares to
invert an (m + l)p matrix, an estimete of the asymptotic veriances
and covariances can be obtained by substituting 6 and 6 for B
and C .

Meny of the results in this chapter have been obtained by Anderson
and Rubin, but a good bit of the material is not contained in their paper.
In addition, this chapter is obviously necessary to give a well-rounded
presentation of the theory and the actual computational procedure.

The next and concluding chapter will discuss some of the advantages
of Lawley's method as oppoéed to other techniques, and will also give

some suggestions for further reseerch.



CHAPTER VIII
SUMMARY AND CONCLUSIONS

In Chapter I the factor analysis problem has been divided into
the following five sections:

1. Model.

o, Estimation of the parameters in the model.

3, Testing of the fit of the model.

4. FEstimation of the parameters under simple structure

hypotheses.

5. Testing of simple structure hypotheses.

A partial correlation model has been proposed which has been shown to

be equivalent to the usuel factor analysis model. The method of

maximum likelihood has been used to obtain estimates of the parameters

in the model, and the resulting meximum likelihood equations are those

of Lawley [20} . Then as a test of the fit of the model, the likelihood
ratio criterion is employed as the test statistic. For simple structure
hypotheses an analogous procedure 1s followed.

This approach to factor analysis is recommended over all others
for several reasons. First, under the conditions given in the previous
chapter the meaximum likelihood estimates are asymptotically efficient
and asymptotically normal. Second, the results are in a sense independent
of scale; in particular, one mey g0 directly from results obtained

utilizing covariance matrices to those obtained utilizing correlation
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matrices. Other methods do not possess this obviously desirable
characteristic. Third, statistical tests can be devised which assess
the fit of the model, and when to stop factoring. Finally, with this
formulation simple structure hypotheses may be tested. The principal
disadvantage of the method is the large amount of computation necessary
to obtain a solution of the maximum likelihood equations. MHowevay,
as previously noted, with increasing availsbility of electronic digital
computers and coded routines, this difficulty is largely overcome. In
effect, if the usual factor analysis model is specified and the observed
variables are assumed to have a multivariate normel distribution, other
available methods of factor anaslysis cannot be recommended or even
defended on any statistical or mathematical grounds.

The normality assumption is a rather restrictive one. Even though
psychological tests are usually constructed to be approximately normally
distributed, the observed variables may have, say, a truncated normal
distribution. This may be the case in many applied studies. It would
be of interest to examine the estimation and testing aspects under this
assumption. Another important problem is the distribution of the test
statistic, Tm , for small samples. This is a difficult problem to
solve analyticelly and mey, perhaps, be solved only through the use of
sempling techniques on high-speed computers. Another important direction
for further research is the problem of non-linearity. Some suggestions
have been given in Chapter VI, but nothing has actuslly been done along

this line. The Uppsala Symposium on Psychological Factor Analysis lists

additional suggestions for research in the field.
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