STEMS LIBRARIES ;

M i

3 44sSk 0050049 2 |
o , | ORNL 1574
K Physics

RIET

i

MPUTATION OF THE

“VALUES OF A

ETRIC MATRIX

ilace Givens

SR

CENTRAL RESEARCH LIBRARY
DOCUMENT COLLECTION

DO MOT TRANSFER TO AMOTHER PERSON

send in nzama with docuy

arrange 3 loan,

~ CARBIDE AND CA

- OFFICE BOX P
‘RIDGE. TENNESSEE




ORNL 1574

-

Copy No. f___.._

Contract No, W-7405-eng-26

MATHEMATICS PANEL

NUMERICAL COMPUTATION OF THE CHARACTERISTIC YALUES

OF A REAL SYMMETRIC MATRIX

Waliace Givens

DATE ISSUED

OAK RIDGE NATIONAL LABORATORY
Operated by
CARBIDE AND CARBOM CHEMICALS COMP ANY
A Division of Union Carbide and Carbon Corporation
Post Office Box P
Ogk Ridge, Tennessee

RTIN MARIE DY SYSIEMS ARIES

NIRRT



May 20, 195k

Errata for "Numerical Computation of the Characteristic

Values of & Real Symmetric Matrix", ORNL Report 1574

Page 3, displayed formula: FOR ||diag (Rys-- ) v
g W | atsg @yeeangd || -

Page 25, (203,9)2. FR lilz lil READ ’E!( Pl .
o

Page 37, line -lk: FOR ¢  READ 1y in two places.
Page 64, lime -2: FOR b’i_l READ B _, -

Page 65, line 18: FOR subsummed  READ subsumed

Page T3, (A1.3): Insert a factor 2 before each 2.
Page 80: Move last semtence in right column up to line 017.
Page 93: The lower exit from box El should bave a minus sign.
Page 101, line -9: FOR 116A  READ 16A .
Page 102: The correction beginning at 2DA did not take into
. account the fact that the transfer at 06D cleared
the overflow toggle. An R 000 order has the effect

of restoring the overflow toggle to its correct
state. Replace the 2DA to 2DE storage assigmments

by

R 000 Tyr 2DB  at 2DA
34 olh R 001 2DB
Q 0AA qgqaa OA9 2DC
anan QAA c 000 200
Tr O6E 00 000 2DE

With this revision the code lhaa now been successfully
tested on the matrix of order 89 described om page 95 of the
Report. Upper and lower bounds were required to agree to 30
binary places and their decimal conversions to 9 places were
in no cass different from the (rounded) theoretical answers

by more thean a single unit in the ninth decimal place.

Wallace Givens
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NUMERICAL COMPUTATION OF THE CHARACTERISTIC VALUES
OF A REAL SYMMETRIC MATRIX

Wallace Givens

INTRODUCTION

The numerical determination of the characteristic values of a real symmetric matrix is a problem of
considerable difficulty since "‘a large amount of information is given and one wants to make use of all of
it.””{1) A typical situation is that in which the elements of the matrix are the values of the (symmetric)
kernel of an integral equation calculated at the points of a plane net, With the advent of automatically
sequenced high-speed digital computers, it is now feasible to calculate the characteristic values of
matrices of orders ot least 40 and, with excellent input and output devices and fast (magnetic tape or
drum) external storage of numbers, possibly as high as 200. The number of elementary operations re-
quired to obtain the solution varies approximately as the cube of the order so that a matrix of order 200
presents a problem more than 125 times as difficult as one of order 40. It would seem to be impossible
to calculate with present devices the characteristic values of a matrix of order 1000 unless the matrix
were of some very special form,

The very large number of multiplications performed in a single calculation by a high-speed computing
machine(?) makes the problem of the accumulation of round-off error a serious one. In their paper on
““Numerical Inverting of Matrices of High Order,”” [101©®) von Neumann and Goldstine established the
basic conditions for a complete error analysis. It is intended that the present paper adhere rigorously
to the conventions of von Neumann and Goldstine. No explicit use is made here of results from [10],
but the general approoch to machine errors as established there is assumed known. Thus we suppose
the matrix elements are given as aggregates of a sign and s digits in a number system to base4) B and
that the norm of the matrix is less than one by an amount precisely specified in §2.16. No assumption
of any kind is made as to the definiteness of the given matrix or as to the location of the roots beyond
that implied by the condition on the norm. In particular, nothing is assumed about the separation of the
characteristic values.

The basic mathematical scheme mechanized in the computation was proposed by the author in "‘A
Method of Computing Eigenvalues and Eigenvectors Suggested by Classical Results on Symmetric Ma-
trices,’” which has recently appeared in [3]. At the same Symposium at which [3] was presented, Goldstine
reported on a method of calculating characteristic values which had been developed by von Neumann,
Murray, arid himself. Both the method of this paper and that of von Neumann, Goldstine, and Murray (3
depend essentially on the device, which goes back to Jacobi [6], of making a sequence of rotations in
coordinate planes so chosen that the coefficient of a cross-product term in the given quadratic form

(associated with the matrix) becomes zero. The methods differ.in several particulars, the most essential

(”Orol remark of von Neumaonn.,

(2)Mulﬁplicaﬁon and division times are of the order of 1/2 millisecond and addition and subtraction are ten times
as fast.

G)References to the bibliography are given in this form,

D 1ypicolly, =2, s=39 or 8= 10, s= 11,

(5} am much indebted to these authors for letting me see a copy of their, as yet unpublished, manuseript [ 4],



being that after a nondiagonal element of the matrix is made zero, the computation of the present paper
does not afterward alter this element; therefore, ot most, &{n — 1){(n - 2) plane rotations are needed,
whereos with von Neumann, Goldstine, and Murray’s technique, 4n(n ~ 1) plane rotations must be per-
formed repeatedly until a convergence criterion is satisfied. (The maximum number of repetitions neces-
sary can, however, be guaranteed.) The price we are obliged to pay for this substanticl reduction in the
amount of computation is that we must stop short of reducing the matrix to diagonal form and will obtain
only one in Jacobi or triple diagonal form.(®) A second stage of the computation is therefore required
and is discussed in chap. 3. Since for this part of the computation even very large matrices may be dealt
with by using only the internal storage of existing machines, the second stage will require less time
than the first, Another advantage of the method proposed here is that no searching for a ‘‘large’’ off.
diagonal element is required.!”}

In chap. 1 the mathematical foundations are established and in chaps. 2 and 3 the equations of the
two parts of the computation are reduced to digital form. The corresponding flow diagrams and codes are
given in appendixes. A serious effort has been made in the main part of this paper to make the results
applicable to most of the high-speed digital computing machines now in existence. The numerical time
estimates and error bounds tabulated and the codes are necessarily more special and refer to the machine
(the ORACLE is the Odk Ridge Automatic Computer and Logical Engine) constructed at the Argonne
National l.aboratory on the basic design of the Institute for Advanced Study Computer, The ORACLE is
now being tested for use at the Oak Ridge National Laboratory. This machine operates in the binary
system and has a precision of 875 = 2739 &~ 10717, Our best estimates (Table 5 and (3.9.6)) show
that each of the characteristic values of a 100 by 100 real symmetric matrix, scaled so that the sum of
the squares of its elements is slightly less than one, can be found to an accuracy of

+131,6008~° = +£1.004-2722

or better than six decimal places. Curiously, although a good deal of effort was spent to obtain error
bounds for individual characteristic values, through the use of a recent result of Lidskii [8], for order
100 the square root of the sum of the squares of the errors in all 100 characteristic values is only
+131,70537° (Table 5 and (3.9.11)). Since these guaranteed error bounds are in no sense probabilistic
and are based on the pessimistic assumption that maximum possible round-off errors occur, accumulate,
and never cancel, substantially more accurate results may be expected in practice. For all orders
n > 10, the error in each characteristic value is less than 3,%/2 37° (Table 4 and (3.9.6)).

The error analysis which follows will certainly be found tedious and may be deemed unnecessarily
elaborate. This is at least in part due to a second main purpose of the study: to examine the general
concept of error in g numerical computation and to determine how the error bounds are affected by vari-
ations in both method of computation and method of estimation. In § 2.8, we try to show that the meaning
of the phrase “‘error in a calculated number’’ requires a more subtle definition than is commonly realized.

In § 3.2, a method of inverting the problem of round-off error is proposed which we plan to employ in

(6)A mafirix S = (Si') is in Jacobi form if S;0= 0 for \i - j\ > 1. Such matrices are of importance in the theory of
operators in Hilbert space [12]. Finite order méfrices of this type are also studied in a book (2], in Russian) which
became available only after this manuscript was nearly complete.

) The von Neumann-Goldstine-Murray error guarantees presuppose that at eack step an off-diagenal element of

aboveraverage size is found and rotated fo zero,



other contexts and which suggests that it may be unwise to separate the estimation of round-off error

from that due to observation and truncation (cf., (B), (C), and (D) of [10, p. 1024-1025] for a clear dis-

cussion of these terms)., '

A major omission in the following is any discussion of the characteristic vectors, since these will
usually be wanted for checking the computation and will frequently be desired for other purposes, We
plan to work out the details of the calculation of characteristic vectors and to obtain error bounds for
them, but this has not yet beea done. The general method of obtaining the characteristic vectors is
nevertheless clear:

(1) store the elements of the matrix T'2 = k]n, with nk? < 1;

(2) as the plane rotations Rij of Theorem 1.3 are obtained, calculate inductively a sequence of 7%/
analogous to the matrices (1.3.11) but defined by 7¢~1/ « 7i=17~1 Ri]. so that T°AT = §, where
T=7T""27 gnd §is in Jacobi form;

(3) after finding the characteristic values of S (cf., chap. 3), calculate the characteristic vector v, of §
corresponding fo the value X, by solving by recursion (but with scaling difficulties) the equations
S'vi = /\l.Ui,‘

(4) form a matrix with columns v, say V;

(5) calculate TV = W, the columns of which will be the required characteristic vectors of A.

The entire computation is then subject to check, and, if necessary, refinement, by using

AW = |[ldiag (Ay, oo, AN W,

The relation of the method proposed here to currently used techniques, which apply mainly fo the
finding of a single characteristic value, is also not discussed. A critique of existing algorithms is
given in [4], and we believe that discussion shows them to be unsuitable for use with fully automatic
machines if all the characteristic values are wanted and the matrix has large order (~100).

Other omissions are any general discussions of the nature of computational insfruments and algo-
rithms and the seriousness of the possible accumulation of rand-off error and the resultant need for
investigations such as that intended here. For all these matters we refer to [10] and [4].

Finally, the author expresses his cordial thanks to Miss Virginia Carlock (now Mrs. E. D. Klema)
for her preparation of the flow diagrams and codes. Although they have been partially checked by the
author and, in more detail, be Miss Ruth Arnette, the unavailability of a computer has prevented them
from being machine tested, as yet. They will naturally require minor modification if used with machines
other than the ORACLE for which they were prepared,

The unexpected availability of the ORACLE after the submission of this paper for reproduction but
before the codes were typed made it possible to machine test the codes in Appendixes 3 and 4 to the
extent there indicated. On the basis of exceedingly limited experience in using the machine to work
test problems, the rough time estimates of Tables & and 7 of chap. 3 appear to be too low by a factor of
perhaps 3 or 4. In other respects, the results of the machine tests were in conformity with the theoreti-

cal results. [This paragraph added in proof on October 12, 1953.]




Chapter 1
THE MATHEMATICAL PROCEDURE

1.1 ORTHOGONAL CONGRUENCE AND THE BASIC SCHEME

The basic problem we are considering is that of finding a complete set of invariants of a real sym-
metric matrix under orthogonal congruence, For a full understanding of the sequel, it seems desirable to
look at this classical problem from the following point of view, Let the class of all #n by n real symmetric
matrices, under addition and under multiplication by real scalars, be regarded as a vector space fll of
% n(n + 1) dimensions. Then, an arbitrary real orthogonal matrix T induces on M a nonsingular, linear,

homogeneous tran sformation

(1L1Y) Aems AT = TAT

where the prime denotes the transpose and T7” = 1 . The transformations of M thus induced obviously
form o group G (actually a representation of the orthogonal group) and, hence, subdivide Ml into (maximal)
varieties on which G is transitive. That is, two matrices A and B are orthogonally congruent if and only
if there exists an orthogonal matrix 7 such that A7 = B; this is also the requirement that A and B shall
be on the same one of the maximal varieties making up ll. A variety containing o scalar matrix consists
of just one point; if the characteristic values of A are distinct, the variety containing it will be of di-
mension % n{n -~ 1), since this is the number of essential parameters in an orthogonal matrix. The fact
that a real symmetric matrix can be reduced to diagonal form by an orthogonal congruence and that the
numbers on the diagonal (the characteristic values) form o complete set of invariants can now be stated

in the form:

a maximal variety of fl on which G is transitive always contains at least one (point
(1.1.2) representing aj diagonal matrix; all such points are obtained from any one such point
by, at most, a permutation of the diagonal elements.

Any computational method designed to produce from a given digital matrix (i.e., one with elements
representable by the machine) a diagonal matrix{!) on the same variety can be regarded as a method for
the calculation of the characteristic values,

The diagonal matrices form a linear n-dimensional subspace I of M, and (1.1,2) contains the assertion
that each of the maximal transitive varieties of [l intersects § in at feast one point. To characterize
directly these intersection paints, to which we shall refer as characteristic diagonal vectors, we introduce
the piojection operator A in M, where

A
(1.1.3) () = Am—>D = (a,5,)

it i
is the mapping of a matrix A to the diagonal matrix D obtained by replacing its nondiagonal elements by
zero. Evidently, A is the identity on 1 and (AA) is in i for every A, so A2 = A, and A is an idempotent

(projection) operator,

(MNote that we here leave to one side a large class of methods (mainly iterative) designed to produce a single
one of the characteristic values, We believe, however, that the mathematical indeterminacy of the characteristic

vector corresponding to a repeated characteristic value indicates the need to consider methods such as the one

presented here,



Now, introducing the norm, N(A}), of a matrix A by the definition
., 1/2
(1.1.4) NA) = | E (a2 = (trace A4")1/2
ij=1

we see at once that

(1.1.5) N(AA) < N{A)

and equality holds if and only if A is diagonal: A in . Since
trace [(T’AT) (TAT)] = trace (T'ATT A’T) = trace [A(TT")AYUTT’)] = trace AA” ,

when TT” = T°T = 1, we have the well-known fact that orthogonally congruent matrices have the
same norm:
{1.1.8) N{A) is constant on a (maximal) transitive variety .

Hence, as A varies over a maximal transitive variety,

(1.1.7) N(AA) <k,

where £ is the constont value of N(A) on the variety. Moreover, equality holds, by {1,1.5), if and only
it A = AAis diagonal. This yields the direct characterization of the characteristic diagonal vectors:

let {A} be the set of matrices orthogonally congruent to the real symmetric matrix A
(1.1.8) and let {A}A be the projection of this set into {J; then each of the (at mest n!) vectors
of {AIA of maximum norm has as its components the n characteristic values of A.

A further projection of { A} onto (say) the one-dimensional space obtained by replacing all but the (1,1)
component by zero would yield an interval with end points which are the jargest and smallest character-
istic values of A, For, the (1,1) component of T’AT is the value of the quadratic form xAx” for a unit
vector x such that (1,0,0,...,0) = xT and every unit vector may be used with a suitable 7, so that our
statement is equivalent to the classic description of the maximum and minimum characteristic values in
terms of extreme values of the quadratic form. The criterion (1.1,8) is a direct description of the set of n
characteristic values without the use of a chain of conditional maxima of the gquadratic form.

The basic mathematical scheme on which we base our computational algorithms can now be outlined:
(1} replace the original matrix A by a matrix S orthogonally congruent to A and lying ina 22 ~ 1 di-

mensional subspace & of Il containing §;

(2) determine the characteristic values of 5, ond hence of A, by a method which, while theoretically

applicable to all of 1, is feasible to compute only for matrices of &. k

The first step thius amounts to the basically advantageous concentration of data, which is especially
“bulky’’ in this problem, and the second step depends upon taking advantage of the simplification of the
problem resulting from the special form of the real symmetric matrix, Moreover, in (2) we are able to
obtain adequate information on the characteristic values of § by determining the signature of § ~ Al
for svitable values of A, The usefulness of this method appears to depend on the fact that the signature
of § ~ Al is insensitive to any variation of the characteristic values (including coincidence), provided
A is not too close to the one being varied. Thus, in o certain sense (cf., 81.4 and chap. 3), we replace a
quantitative problem.by a sequence of qualitative ones. Any determination of a real number by finding a

sequence of upper and lower bounds con, of course, be regarded in this light,




1.2 THE JACOBI FORM

From any sequence vy, vy, + ., v, 0f r + 1 linearly independent vectors, the Schmidt orthogonali-

zation process constructs a set of orthogonal unit vectors ey, .. ., €, such that v._, is o linear com-

i-1
bination of only the first j vectors e.. For, it is only necessary to let e; be a unit vector proportional to
(1.2.1) vigy - (Uj—l'el)el - (v]-__],ez)e2 - .. - (”j-l'ej—l)ej.-l ,

where (x,y) = Y, x,y, is the inner product. Then e is orthogonal to e, ey ..., and € and an
induction on j is easily established.

Applying this result to a sequence

(1.2.2) v, = %, v’ = uA, = uA?

T
y ., v, o= uA" ,

Y2 r

where « is an arbitrary nonzero vector, and the v, are linearly independent but

(1.2.3) uA™ = Coit + CquA 4+ ...+ cruA' ,

for suitable values of ¢y, ¢y, . . ., ¢, we determine a set of r + 1 orthogonal unit vectors ey, .. ., € 4.

Of course, it may happen that we must take r + 1 = » for (1.2,3) to hold.
Since e is a linear combination of (at most) vy, Vs eees Vilge e].A is a linear combination of (at

most) v, v v Hence, if the set €y eney € is completed in any way to an orthogonal basis

270 r+)
for the whole space, with respect to the new basis, the first 7 + 1 rows of A will have the form
(* * 0 0 e 0 ,
* * * 0 R 0,
(1.2.4) .
(* * * Ce RN *) .
That is, if x »y = xT describes the change from the original basis to the new e basis and xAx* =
yT'ATy" = yBy”,
ro+ 1
A
A~ = o o o o 0 .0
* * * 0 0 . 0 0 . 0
r+ 1S * * * * 0 ce 0 0 e 0
(1.2.5) B = .
k * * * * * . * 0 . 0
* *




Moreover, B = T’AT is symmetric, so the first r + 1 columns of B must have zeros corresponding to

the known zeros in the firstr + 1 rows of B, Hence

! 0
(1.2.6) B = '
0 K
with
a, bl 0 0 0 .o 0 0
b] a, b, 0 0 ces 0 0
0 b2 dy b3 0 “ e 0 0
(1.2.7) ] =
0 0 bs a, bd P 0 0
0 0 0 0] 0 e a, b'
0 0 0 0 0 “ee br 2,41

Since we can repeat the process, starting with o new vector n having its first r + 1 components zero, an
inductive argument shows that we can take B itself in the form (1.2.7) withr + 1 = n. The decompo-
sition of (1.2.6) with K present is then signaled by one of the b, being zero,

~ We shall refer to a real symmetric matrix § such that

(1,2.8) s = 0 for i — 7| > 1

as being in Jacobi, or triple diagonal, form.?) Since a diagonal matrix is a special case of one in triple
diagonal form, we could have asserted ab initio that a real symmetric matrix is orthogonally congruent to
one in triple diagonal form. The above discussion shows that the reduction does not depend on any com-
putation more involved(®) than the Schmidt orthogonalization process, ond in particular does not depend

on the determination of the characteristic values.

1.3 REDUCTION TO JACOBI FORM BY PLANE ROTATIONS
Instead of introducing a new orthogonal basis by applying the Schmidt orthogonalization process to
the vectors (1.2.2), we may suppose that the new coordinate system has been infroduced by making, in
sequence, a number of plane rotations, It is an easy theorem that an arbitrary rotation matrix (i.e.,
orthogonal and of determinant +1 rather than —1)is a product of plane rotations.(4) Somewhat less obvious

is the assertion that plane rotations in the coordinate planes generate the entire rotation group. This

D The discussion given here is based on an oral remark by von Neumann. The reduction is well known and has
been used effectively by various authors (cf., Lanczosl7]).

(3)” r+ 1 <nin (1.2.3), ‘a (numerically) rather unpleasant determination of o second vector orthogonal to all

Clranes e is also required for the above argument,

+1

(A)Indeed, it is only necessary to remark that the rotations which leave pointwise invariant an (n ~ 2)-dimensional
subspace (= the plane rotations) constitute a self-conjugate class and therefore generate an invariant subgroup
which must be the entire rotation group since the latter is simple when the underlying field is the real-number

system.



too can be proved(s) without much difficulty and suggests that any desired reduction by an orthogonal
matrix T can be carried out *‘stepwise’’ by writing T as a product of plane rotations and effecting these

in succession,

Let
l 7
1
1
1
12 Cij —si].
2 2
(1.3.1) Ri]’ = 1 T 1,
1
] S C
iy ij .
1

with zeros off the diagonal, except for the two indicated elements. Then ARl.]. is obtained from A by

the rule

(4), ifg # i, 9 #7,
(1.3.2) (ARij)q = Cij(A)i + Sij(A)] ifg = 1,

-si].(A)l. + Cij(A)j ifg =7,

where ( )k is the kth column of the matrix included within the parentheses.

Similarly,
(AR, )P ifp A i, 0 AT,
(1.3.3) RIAAR)P = < ¢ (AR + s, (AR ) ifp =i,
-sl.].(ARi].)l + ci].(ARi].)J ifp =7,

where ( )% is the kth row of the designated matrix.

5 we sketch @ proof. First observe that the group G generated by the rotations in coordinate planes operates
transitively on the vectors of any fixed length, For, this is true when n = 2, and the inductive hypothesis allows us
to transform any vector into one of the form (0, 0, «+», 0, *, *) and so, by a rotation in the X 1 coordinate
plane, into one of the form (0, 0, ..., 0, k), & 2 0. I, now, T is a rotation matrix, matrices Rln' eo s, Rn-] "
describing rotations in the coordinate planes X)X g XX 4 ee sy and X 1%, must exist so that (cnY)R]nRZn e s

R 4 ,= ¢, Hence T, = TR]nR2n se s R n is effectively of order n —~ 1 (bordered by zeros and a single +1

in the lower right corner), and an induction is easily established. The proof outlined permits one to conclude that

every rotation matrix can be written in the form

-1 -1 -1 -1 -1 -1 -1 =1
Ryg ++- (Rn-s ne2t e Ry n-—-Q) (R72~2n—~] "'Rln-'l> <Rn—-]n et Ry, R1n> :

where R;._],1 is a rotation in the X coordinate plane,



The only elements of the matrix which are aztually altered in both (1.3.2) and (1.3.3) are the four

elements (1), (i,7), (7,7), and (j,/). Moreover, neither the right multiplication by Rij nor the left multi-

plication by R,]. alters an element Ty if p and ¢ both are different from both ¢ and j:

(1.3.4) (Ri'].ARZ.].)M = a,, ifptdi, pékdij,qgdi,qdij.
Also,

(1.3.5) (RGAR )y = RIAR), = cya, + sga forp Ad, p A g,
(1.3.6) (Rz'jARz'j)pj = (Rz'jARij)jp = =Sy Ol forp #£ 4, p £ ],

and for the four elements affected in both (1.3.2) and (1.3.3),

(1.3.7) (RijARij)z’i = cl.].(cl.jal.z. + Sz'jaij) + As-l.].(cz.]az.]. Sijajj) .
(1.3.8) (Rz'jARij)]‘j = Cz‘j(("ij“'jj - Sijaij) -~ sx’j(cijaij - Sijaii) ,
and
(1.3.9) (RijARij)ij = (RZ.].ARZ.].)].Z.

= Cij(cijai,' - Sijaii) + si].(cz.]a].]. - ‘Sijaij) .
Since the trace of RJAR.. = trace A for R.. orthogonal,

t 1y 1}

(1.3.10) (Rz'jARij)z‘z‘ + (RijARij)jj = ay toa,

as is also evident from (1.3.7) and (1.3.8),

The usual reduction of a central conic in the Euclidean plane to its principal axes is obtained by
setting the left member of (1.3.9) equal to zero and determining c;j = cos 6 and s = sin @ from the
resulting equation. This involves determining cos # and sin 6 from a knowledge of tan 26 and requires
the computation of two square roots, the first to determine cos 20 and sin 26 and the other to find cos @
and sin 6. It is this basic operation which Goldstine, von Neumann, and Murray (4] employ to reduce
{approximately) to zero the sum of squares of the off-diagonal elements. The difficulty of their method
arises from the fact that if one coordinate plane rotation on the ith and jth components has been used to
reduce the (i,7) element to zero, it will in general happen that a later plane rotation, say on the jth and
kth components, will be required which wilf reintroduce a nonzero (i,j) element into the matrix and thus
require a new rotation in the P plane, etc. Despite this complication, the method, which goes back to
Jacobi, converges [11]. It has the distinct advantage that the end product is o diagonal matrix (except
for the ““small’ elements off the diagonal) with the approximations to the characteristic values on the
diagenal.,

By contrast, the method proposed here uses (1.3.6) ~ of, equally well, (1.3.5) ~ to determine
cos 0 = € ond sin 0 = Sy ond so requires only a single square-root operation, since the ‘‘half-angle
formulas’’ are not needed. Moreover, we shall see that once the (p,;} element of the matrix is made zero,

no later rotation involves this element, and the accretion of zero elements is monotonic and noniterative



in character. The price paid for this advantage is that one is forced to stop short of the actual locali-
zation of the characteristic values and to turn to a quite different (but, as it turns out, highly efficient)
method to complete the computation,

We now state the formal theorem which guarantees the possibility of obtaining the Jacobi form by the
procedure suggested above. The statement and proof will be clearer if it is kept in mind that we produce
zeros successively in the (1,3), (1,4), ..., (I,n), (2,4), ..., (2n), 3,5, ..., 37), ..., and
(n - 2, n) places by rotations in the (2,3), (2,4), ..., (22), 3,4, ..., (3n), (45), ..., (42), ...,

and (n — 1, n) coordinate planes, respectively,

THEOREM 13. Let A = A2 be an arbitrary real symmetric matrix and define inductively the se-
y
quence of matrices
(1.3.11) A = al2, A3, A14 _ alm = 423, A24 0, A% < A% L, amEn
by the formulas
(1.3.12) AT+l pi-ln fori= 2,3 .., n~2,
(1.3.13) AT = RIATTITIR fori=2,3 ..., n—1,
i < j = 3. , o,
where Rl.’. is given by (1.3.1) and Cii and s ;; are any numbers satis|ying
icl -1 _ i-1 j-1

(1.3.14) ;%1 ; = 5,41y
and

2 2 _
(1.3.13) (Ci].) + (51.7.) = 1.
Then
(1.3.16) (4) 00 = 0,
if
(1.3.17) (i%77) < (ij) with i’ = 1, , n - 2,

1
P+ 1 <j’=3 ...,n,
and the ordering is lexicographic:

(1.3.18) (i%i7 = (L3, (L4), ..., (Lnh (2,4), .., (2»),(35), ..., (n = 2,n) .

For the final matrix

(1.3.19) Am2m =S = (s)
we have S; = 0ifi + 1 < j, and since the matrices remain symmetric under (1.3.13),
(1.2.8) s; = 0 7 for |i — il > 1,

and S is in the desired Jacobi form,

Proof of the Theorem. The conclusion (1.3.16) is vacuously fulfilled for 412, since (i%;9) < (1,2)
requires i’ = 1, and then j* > i* + 1 = 2, which contradicts j* < 2. For the marices AP Y the
requirements (1.3.16) are the same as they are for the equal matrix APV (cf,, (1.3.18)).

In the truly inductive case, we can suppose (1.3,16) holds when i = 1 ~ 1,7 = J ~ 1 ond use

(- 1,7) we
have i <1 -~ 1 < ] = 1, so i’ A I, and i” # ]; hence (1.3.4) yields the desired conclusion,

(1.3.13) to establish the conclusion for i = 7 ~ londj = J < n. From (i7" <

10



except in the cases j° = I, j* = ] (since (i"j") $ (I -~ 1, ] - 1) only when i = I - 1 and
i” = J). Forj” = 1, (1.3.5) applies, and

-1, B I=1 J-1 -1 J-1 N
(4 ])z"z = CI](A / Dirr + SI](A I oy =0,

sincei” < j° - 1 = I’ ~ 1 and the inductive hypothesis applies. Forj” = J, (1.3.6) gives

-1 -1 j=1 I~1 j~1
(A ])z"] = —SI](A I )l’I + C[j(A ] )i’] *

When i° < I ~ 1, the inductive hypothesis makes both terms in the right member zero, and when

0.

’

i’ = I ~ 1, the condition (1.3.14) on ¢ and s, is imposed to make (Al-1

] J =1y =
1.4 RELATION BETWEEN CHARACTERISTIC YALUES AND SIGNATURES

Regarding the real symmetric matrix M as a point in the vector space M of 31.1, the matrices M(}) =
M ~ Mn lie on a straight line, The signature is then an integer-valued function of the coordinate A of a
point on this line, and the characteristic values of M are identified with the points of discontinuity of this
function., For sufficiently large positive values of A, the signature of M{(A) is —n, and for sufficiently
large negative values, it is 412, At every point of discentinuity it changes by an even integer, repeated
roots of M being signaled by a jump of more than two units in the vaiue of the signature function,

For our purposes, it is convenient to regard zero as a positive number and to denote by P, (A) the

number of nonnegative characteristic values of M — Al . (Then, signature M - )\]n) = 2PM()\) -

2z + rank (M ~ Al ).) Ordering the n roots A; of M by the requirement

(1.4.1) Ain = A 2 A € e £ A A = A
we.see that the roots of M — Al are
(1.4.2) A, =X €A ¢ —A <o S A=A -,
and counting the number of nonnegative A, ~ A gives
(1.4,3) P, =1,
which is equivalent to

Agp <A € A

It is convenient to let A be an upper bound and —-A be a lower bound of the A, i=1,2, ..., n Also,
(1.4.34) A £ pis equivalent to PM()\) > PM([,L) .

The algorithm on which we propose to base the computation of characteristic values can now be
stated formally. We state it for an arbitrary real symmetric matrix although its approximation by a digital
computation is carried through only in the special case of a matrix in Jacobi form (cf., chap. 3).

THEOREM 1.4, Let M be a nonzero real symmetric matrix with characteristic values A, i = I,

2, ..., n, ordered so that Az‘ﬂ < /\z., and let A > max, l)‘il > 0. Define recursively, forj=1, 2, ..., n

11



( Ay, = =AA%E = 4A
, 1
A max(Aa'].,;La) forj = L 2,...,1,,
4 a+l,j ° )

(1.4.4) i Aa,]' forj =1, + L...,n ,

and ) )

A%T forj = 1, 2,...,1,,
Aa+1'j = )
min (N* 7, p ) forj = I, + I,...,n ,

_
where
(1.4.5) [, = PM(ua) ,

6 T LL TN
(1.4.6) pa;—?( + Aa’pa),
and the integer p < n is determined by the requirements
(1.4.7 A% A < 5 A%? A S Aa'p“'l A < 8
4.7) - Ay 0 = Ay 28, a,p, -1 < ,
but
P,

(1.4.8) A A > 8

for some fixed positive § < A. Require that the sequences terminate with the first value of a= @, for

which

(1.4.9) AL~ Az < B fori = L 2,...,n.
Then the sequence does terminate for a value of ’

(1.4.10) a g I+ nL,

where L. is the least integer > log2 (A/8). Moreover,

(1.4.11) AP~ A, >0,

and the half-open intervals

(1.4.12) Hy o = A, € A < A% fori = 1, 2...,n,

a,i =

are either nonoverlapping or coincide and are ordered so that

(1.4.13) if p; is in Hy P Is in Ha.,i forj > i, and Hy ; # Ha']., then p; < p; -
Finally,
(1.4.14) Ay, A < A%E fori = 1, 2...,n1,

o =1L ...,a.

Before proving the theorem, we will try to clarify its meaning by describing in general terms how the
process of '‘localizing’’ the roots is envisaged. The theorem prescribes that po = 0. Hf, for example,
P, (1,) = 0, we know that all the A"? are zero and so have ~A <A.<Ofori = 1,2, ..., n. Then
MM\T0 i
fy = ~2~TA, and finding PM(I,L]) gives information about all n of the roots which restricts each root to
an interval of length 2= 'A. For the case PM(O) = 1, we have ~A <A, <Ofori = 2, 3,...,n but
0 < Ay < A, The theorem then requires p, = 27'A and p, = 272A or 3.272A, depending on whether

= 1 q #y Ha

PM(“I) = 0or 1, respectively.

Evidently, in this case, a chain of values fo By - -« py will be used which successively restricts
A, to intervals of length A, 2-TA, 272A, ..., 2~LA, where L is the first integer such that 2-FA <86,
or
(1.4.15) L > log, (A/3) ,

12



but which does not improve the information on the location of Ay Ay o w . or A after the first step, After
A, has been found to lie in a particular interval of length 2-LA £ 8, the next value of i, is required to be
By 4y = ~2-'A, and the valuve of Py(py 4y) vields information which limits each of the remaining n - 1
roots to one of the intervals —A < A, <27 A or -2-1A <A, <0,

This phenomenon of chains of values of the o which give information about only a single root,
interspersed with occasions which yield information abeut all the remaining roots, appears o make it very
difficult to give a redlly efficient estimate of the maximum number of steps required for the desired
localization. Thus, for the values of n, A, and § which are likely to be used in any actual calculation,
(1.4.10) is certainly too large an estimate. (Note that p; is used to get values of AL*¥7 gnd ALH,i'
which accounts for the term ““1+'" in the right member of (1.4,10).) When » = 1, the above example shows
the estimate fo be exact. For n = 281, A = 2~*A and A=t =A(i=12..., 2%), and for
[.=log, (A/8) » 5 n, the algorithm comes to an end for i
(1.4.16) o= 2L + (L~ 1) + (L -~ 2 +...4 (L - 2%]
(2L ~ 28)(2* + 1)

(1 + 2L) = [1 + 26(22 + 1) ~ 201
(W + 2) = 11 + dn(in + 1) - 207

i

i

i

i

steps.

Hence, for o matrix of order » = 32 with A = 1 and & = 2739 (about nine decimal-place accuracy),
L = 30 and
(1.4.17) a = 961 - 213 = 748
so that the upper bound given (961) is higher than the actual number of steps required (748) by 213 steps
or about 28%. For n =64, A= 1, and an accuracy of 35 binary places,

(1.4.18) a = 2241 — 987 = 1254 ,

and the bound (2241) is aobout 79% in excess of the actual number of steps required {1254). (Note that if
we had only required 30 binary-place accuracy when » = 64, some of the characteristic values would have
been found together and (1.4.16) would not have applied: L = 30){32 = £n,)

The algorithm of the theorem is based on the assumption that all the roots are to be found, but it is
clear that only very slight modifications are required to find only the largest (or the ¢ largest or smallest)
characteristic values. Moreover, equal roots reduce instead of increase the difficulty of the computation,
since equal or “‘nearly equal’’ roots are found, together with their multiplicity, simultaneously. Finally,
the method is easily adapted to a determination of all the roots to a low degree of accuracy, together with

a more precise determination of any selected root or roots.

Proof of the Theorem. For a =0, A, . =~A< A% = 1A, all the H_ ; coincide, (1.4.13) is vacuously
fulfilled, and (1.4.14) is true by the hypothesis on A. We are therefore permitted to establish the theorem,
except for (1.4.10), by induction on a, supposing that an integer p > 1 and <7 exists for which (1.4.7)

and (1.4.8) hold. (That the induction is actually over only a finite number of values of o is irrelevant

here.)
Suppose H, = H, ;=...=H, £H, 1=...= Ha,n, AHy == Hopny ;é[-[a,ns“
=L, = Ha,nV...l # Ha,nv M T H“:"V for n,, = n, so that n intervals coincide in v sets of 2,
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My = My weey B = 4y oo., n—mn, ; members. Since the intervals are disjoint and ordered by

(1.4.13),

a,n
a, 1 _ a,? _ - ! - -
(1.4.19) A=l = A% = ...= A > A, == A
a,rzlﬂ N B 2,7, _ - A
2 = = a,n 1 = o T Pagn,
ayngtl Aa,n3
2 = .., = “'"2” = .. = oyny
D
a,n +1 a,n
> AT o s ATE S A = ... o= A
& a,na_‘+] a,n,
2 e
a,n +1 a,n
> ATVE D = Ll = AT > A = ... = A ,
- RUCTFE RS Fitty

where, for convenience, we shall not explicity exhibit the dependence of the n, <n, <...<n, ona:

]
n, =n,%, actually.
From (1.4.6) and (1.4.8),
a,p
(1.4.20) AT s > Aa,pa ,
so that, determining n by
(1.4.21) T ] S Pq < n, o
we have
a.’na

(1.4.22) A > g, > Aa'”a .
That is, p, lies in the (coincident) intervals H“f”a..] by T e = Ha,nacnd hence is outside all the
other infervals:
(1.4.23) py > A%ed forj > n_,
and
(1.4.24) g, < Aa']. forj £ ny_4 -
The definition (1.4.4) can now be written
(1.4.25) Aywy; = A,,; ond AeFNi = A%

forj < m _qori > mn,,
(1.4.26) Aa+1j = p, and A” Yhi o~ AT

! I

forj = ng 4t Ling |+ 2,001,
and
(1.4.27) Agry,; = A,y and ATV <y

forj = 1 + 1,1 +2,...,n, .

Evidently, (1.4.11) continues to hold for o = a + 1. We agree that if I <n__,, (1.4.26) is omitted, and
it 1,2 n,, (1.4.27) is omitted. To show that at least one of the upper or lower bounds, A%T or A, i

’

is actually improved, it is sufficient to observe that », < [, < n _, contradicts n, , <n_. Hence,

a = [ PR
we have:
the step from ato a + 1replaces n —n, ;>0 (coincident) intervals of length
a,n
(1.4.28) A A, , by an eqgual number of intervals of half this length and does not
“a

alter the remaining intervals,

14



The infervals which are altered are replaced by coincident or disjoint (since they are half-open) new
intervals which remain disjoint from the unaltered old ones, and hence we have the required properties

of the H

@+l it

To prove that A ,; , and A**1 i continue to be lower and upper bounds for the respective roots Ay
as required by (1.4.14), it is necessary to consider only i = n,oyt bhng _++2,...,n, since these
are the only values of 7 for which the bounds with index a + 1 differ from those with index a. By the

definition (1.4,21) of n,, the order relations (1.4.19), and the inductive hypothesis (1.4.14),

c.,na+l

(1429 X < ... < Ay a1 <A £ Mg, = Aap, < ta

c ATPa L pTatt oy < A < el S A

et a1 T =
Since I, = PM(pa), (1.4.3) gives
{1.4.30) ’\IG.+] < p, < Ala ,
50
Moy < /\na..] and )&Ia > }\”a” .
or
(1.4.31) ng1 £ 1, £ n,
The new bounds are now established by comparing (1.4.26) and (1.4.27) with (1.4.30):
(1.4.32) A“”'”a-lﬂ = ... = Aa”ﬂa g, £ )\Ia < Ala-l
a+i, i, a+1,na__1+1
g =—<' Anm~1+'| A - * = A '
(A3 Apyy s = ooe = Mgy, S A5 Ay
+1, at+l, i, *1
< E)‘1+n<#azana= c= A *
. a’
It now remains to show that the intervals Hy ; are all of length <8 for some

(1.4.34) o< Y+ oal,
where 2L > (A/8) > 2 ~Vand L is a nonnegative integer. To do this, we first observe that (1.4.7) and
(1.4.8) require that the lengths of the intervals Ha' w Ho o ev ey Ha,pa-l all be equal to or less than

& while the length of H is greater than 5. Comparing this with (1.4.19) and (1.4.21), we conclude

bo
that

(1.4.35) b, o=y, + 1,

a -1

and that the step from ato a + 1does not alter the intervals H . for i < p . It follows that
s

(1.4.36) ot 2 ba
”pa = pa+] e = pa+k...'|l
th~1,p ’
(La37) 5 < AT L L e 2l (A”’a - A, ): 2=k 1A
Py [XPY

fora > 0,
by (1.4.28). Hence, 2¢=1 < (A/8), and therefore & — 1 L~ lork £ L. It follows that

(1.4.38) Posp, 2 g + 1.
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Since py=Lnzpy,,, 21+tso fong as @ = 1+ tL is a permissible value of a. It follows that (1.4.9)

holds for afirstvalue of @, say @, such that @ < 1 + nl, as was to be proved.

1.5 SIGNATURE OF A MATRIX IN JACOB! FORM
The theorem of §1.4 makes use of the determination of the (integral) value of P, (p) for a large number
of values of p. Since P, (n) = (the number of characteristic values of M > p), this may be expected to

be a difficult problem for a general real symmetric matrix M. In the particular case of a matrix § in friple

diagonal form, the following theorem serves as a suitable basis for the easy computation of P (y).

THEOREM 1.5, Let S be a real symmetric matrix in ] acobi form:

(1.5.1) S; T @p Spi4p T Sy = biandsi’. = 0 /071i — ]] > 1
Define a sequence of n + 1 functions {y, {,, ., [ of Nby the recursion formulas
( 2, .
(a; = My = (6,07 i if fiog # 0
2 I - .
= b)) i i fig = 0 fyp A0, andby 40
(1.5.2)  f; =
2 . i .
= (b if fiog = 00 fyopy = 0 andby g A 0
and
\ai - A z'ffi~1 = 0, andbi_l = 0
The initial conditions are
(1.5.3) fo = 1and by, = 0

(so [_;is irrelevant and need not be defined). Then

(1.5.4) Pp) = the number of agreements in sign between successive elements in the
sequence | = f,, fl(u), ey fn(p), where zero is considered positive,
Proof of the Theorem, lfno6,i = 1,2, ..., n - 1, is zero, no two consecutive {; can be zero,

For, /g £ 0 and if [y and ; were both zero for a smallest possible value of i > 1, /,_, # 0and
f; = "(bi~1)2 fimn # 0, contrary to assumption, Moreover, [1(A) = a; =~ A and f; is always given
by the first (or by its special case, the second) alternative in the recursion formula (1.5.2). Expanding
the determinant dl.(/\) of the principal minor formed from the first i rows and columns of § — Mn by its

last row and column gives

(1.5.5) d; = (a, = Nd,_; ~ (b,_P%d;_,
and hence (bl. £ 0),
(1.5.6) A =4\ .

A real symmetric matrix which is such that no two consecutive d; are zero is said fo be regularly
arranged, and it is a classical result due to Darboux (MacDuffee [9], p. 57-58) that for such a matrix
the signature is the number of permanences minus the number of variations of sign in the sequence of

{1.5.4). Our conclusion is the variant of this result obtained by counting only the number of positive
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terms in the canonical form (sum and difference of squores) of the quadratic form x(S -Mn) x " and
regarding zero os positive.

It is a curious fact that

$ cannot have a repeated characteristic value if

(1.5.7)

b, # 0 fori = 1,2,...,2 - 1
This follows from the observation that for a characteristic value A = g, {,(u) = d, (p) = det (S ~ pln) =0
and, since no two consecutive {,(A) can vanish simultaneously, d, (i) =/, _ () # 0 and therefore the
rank of § — pl_is n — 1, which guarantees that ;i is not a repeated characteristic value. This conclusion

permits an alternate proof of (1.5.4) in the special case in which no &, = 0, since the polynomials
(1.5.8)  det A~ §) = (~1)"/ (N, (~nyr-1 foo ANy, (-1)* 0, oo (1), 1

form o Sturm sequence of polynomials, each with leading coefficient plus 1, and hence the number of
roots of d (A} which are equal to or greater than y is the number of variations of sign in the sequence
(1.5.8) for A= u (ef., [30).

It remains to show that the theorem continues to hold when one or more of the b are zero. Since the
theorem holds for n = 1, we may use induction on the order. Assume that § has at least one b, =0 and

et b[ be the last such bi' Then

it

(1.5.9) S

where S, has order I, 5, order -1, and the sequence

(1.5.10) LA, L P, B0
defined by the theorem for S, has the property (1.5.4);
(1.5.11) P {A) = number of agreements in sign in (1.5.70) ,
2

and the f](z)()\) are a chain of principal minors of §, = Al, which are always colculated by the first of
(1.5.2).

The sequence for S is then

1 (M), 7(2) 1, /(2 (N, /(2)

(1.5.12) LA e 7O (D) (D) ()

if fl(” # 0, since the recursion formula is homogeneous where it is used to calculate terms after fl(”.

if fI(” = 0, then we get

2 2
(1.5.13) LAY o Y = 0, /D = (e = N (P

Since multiplying each term of the sequence (1.5.10) by f}” does not change the number of agreements
of sign in it and we are considering zero to have the some sign as plus one, the number of agreements
of sign in (1.5.12) or (1,5.13) is the sum of the number of agreements in the sequences computed sepa-

rately for $, and S,. Since the characteristic values of § are those of §, together with those of 5,

(1.5.14) P = P ) + P (N,

and we have the theorem for all 7,
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It should perhaps be noted that we do not exclude the possibility that there may be consecutive
zeros in the sequence 1, f((u), ..., / (). This will happen if and only if a; ~ A =5, ;=0 for some i
and either /; ,=0o0ra; ,; ~A=b, = 0. The matrix S — Al then decomposes and the elaborate recursion

formulas (1.5.2) are designed to properly ‘‘restart'’ the sequence.
properly q
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Chapter 2
NUMERICAL REDUCTION TO JACOBI FORM

2.1 CHARACTERISTIC VALUES OF A SUM (LlDSKlT'S RESULTS)
In a paper published in 1950, Lidskii 8] proved the following theorem,

i

Tueorem 2.1. (Lidskii). Let A, B, and §

teristic values a; 2> ay 2 o0 2 @, B 2 By, 2. 2 B, ando, 2o, 2.0 02 o

= = 2 =

A + B be three real symmetric matrices with charac-

respectively. Denote by K  the closed convex bull stretched around the n! points

(2.1.1) ZZI. = (al + B;,az + BL,eas, a, + ,8’:) forj = 1,2, ..., n! ,

where /3'1', [};, Ve, ,G,; is one of the n! permutations of /:’)1, 52’ ve ey Bn. Let L be the intersection of
K, with the region K, obtained by interchanging the role of A and B: Ky is the smallest convex region

containing the n! points
(2.1.2) by = (By + aj, By + a3 oo v, B+ al), i = 1, ..., n!,

.. . . ;
where a/is a permutation of the a,. Then (01,05, v 10, g )is apoint of L.
. . - . , X . .
For use in error estimates, it is convenient to restate a part of Lidskii’s result in the following forms:

CoroLLARY 2,1, LetS = TAT + E, where A and E are real symmetric matrices and T is a real
orthogonal matrix. Then, if s = (01, EPVIRI On) and g = (aI, Uys v oy an) are the characteristic
diagonal vectors obtained by ordering the characteristic values of S and A comparatively, o, 2 0, 2
eon 2 O anday; 2 oay, 2 ... 2 a;then
(2.1.3) s = a + d,

where d = ('81, 52, e, 5") is a vector lying in the convex bull of the n! points (61', v 67:), where

the E; are a permutation of the characteristic values €, of E.

The matrix E will in practice be known only as the difference between a matrix S calculated from A
(with errors due to round-off and digital approximation to real numbers) and T’AT, where T is a “‘suitably

chosen’’ orthogonal matrix, We shall be able to give an upper bound for the norm, N(E), and for

(2.1.4) UE) = max ]ez.] fori = 1, ,..,n .
Using the relation
(2.1.5) NE) = (€% + L. x (2] V7,

which follows from the invariance of the norm under orthogonal congruence and the diagonal canonical

form of a real symmetric matrix, Corollary 2,1.1 now implies the second part of the following corollary.

CororLarY 2.1.2. The characteristic diagonal vector s of § == T’AT + E lies in a sphere with
center a and radius N(E) and also lies in a cube with center a and edge 2V(E). That is,

n
1

(2.1.6) L, - a)’ < N¥E)

i=l
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and

(2.1.7) ls.

; — a; £ UE) .

Evidently, the sphere and the cube overlap in such a way that, in general, neither will contain the
other. When E has only a single nonzero root, however, 1{E) = N(E), and (2.1.6) implies (2.1.7). The
result (2.1.6) is older than Lidskii's theorem and follows from a fundamental maximym-minimum property
of the characteristic values.!"

The fact that the s; and a; can be ordered simultaneously in decreasing order of magnitude is shown
in the following: Suppose a; 2 a for i > 7 and (2.1.7) holds for some ordering of the s, but we do

not know s; 2 s fori » 7. If for some pairi 2 jof indicess; < S then s, < s; £ a; + v(E)
and s; 2 a; - v(E) 2 a; - UE), so |s; ~ a].] < YE). Similarly, \s]. - a;| ¢ v(E), and 5, and
s; can be interchanged. Repeating the process sufficiently often leads to (2.1.7) for both the s, and «;

simultaneously ordered in decreasing order,

2.2 BOUNDS FOR THE CHARACTERISTIC VALUES OF THE SPECIAL FORM OF ERROR MATRIX
A rotation Ry in the X coordinate plane alters only the elements in theith and jth rows and columns

of the matrix transformed by R, as we saw in §1.3. Moreover, the rotation Rl.]. operates on the matrix

ATV 7Y (ef,, (1,3.13) and (1.3.16)), which is of the form

a, b, 0 0 0 ... 0 0 0 ... 0 ... 0

by a, b, 0 0 ... 0 0 0 ... 0 . 0

0 b, ag b, 0 ... 0 0 0 ... 0 el 0

0 0 by, a by ... O 0 0 ... 0 oo 0

0 0 0 b, ag ... O 0 0 ... 0 ce. 0

. . . . . . 51—2 0 0 +++ 0 e 0

00 0 00 .'b:'-Z Zl—z—l i1 0 -« ;i-lj TG,
(2.2,7) '

0 0 0 0 0 0 a, | a a;,

0 0 0 0 0 -0 O

. . . . . e 0 ¢ * : '

00 0 0 0 -0 &,

0 0 0 0 0 0 a,,| a a

(I)Cf., []], p. 28. Although (2.1.6) can be seen to follow from this reference and von Neumann, Goldstine, and
Murray use the result, a specific statement in the form needed appears fto be difficult 1o find in the literature. We
therefore give a proof in Appendix 1, based on the ideas of § 1.1.
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where we omit the upper indices 7 = 1, j = 1 on all the a having two lower indices.(?) (The ;1, ey,

PRy Z;], s+, b;_, are unchanged after they are once formed and so require no indication of the matrix

to which they belong.) There is certainly no need for the computational procedure to alter the zeros in

the first i — 2 places in the ith and jth row and column; hence, it is appropriate to discuss an error matrix

: 7
0 0
0 0
0 0
-1 i-lj
(2.22) FY < 0 0 ... 0 &y, € ‘o ij coe € ’
I ¢ 0 ... O i i1 i coe € i
enz 6,,7'

where all elements not in the ith or jth row or column are zero, and we shall certainly arrange that
€ = Egpe Since we propose to set the (i ~ 1, j) element of the matrix Ri']A’."I j’lRij equal to zero,
independent of an actual computation of its value {using, however, this desideratum to determine the
angle of rotation Bi]. and hence the computation), the amount of the error €,_, ; may require special treat-
ment, Becouse the computation of the (i,i), (i,j), and {j,j) elements is more involved than is the compu-
tation of the (¢,£), (£,7), (j,k), and {k,]) elements for k £i — 1, i, ot j, they too are considered individually.

We now maoke the formal assumption that the error matrix E'/ = (6pq), where we omit the 7 and j as

superscripts on the €yt has elements bounded in absolute value as follows:

<

[qu|=‘upq forporg = iorjandp 2 i =1, 4 2 i -1,

Hap
(2.2.3)

max{uiq,yjq;q i+ 1, oo, i~ L i+, i.0,n 2.

L G x,) are the components of a characteristic (column) vector x ¥ 0 of E*/, with nonzero

characteristic value A, E¥x = Ax gives

(2.2.42) Xy =y = aes = o, =0,
(2.2.48) Eaixi+€a,“j=)‘xal a =i - Li+l.,...,;j-1i+1...,n,
(Z)We follow the von Neumann-Goldstine convention of representing digital quantities by barred letters.
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and

n

(2,2.4¢) Y €gi¥y = )\xﬁ, B = iandj .
k=i~

Since x; = x = 0 implies x; = x, = ... = x, = 0, we can normalize so that

(2.2.5) max (xi,xj) = 1,

Using this condition in the form

(2.2.6) lx,'l <1, lxil s 1,

(2.2.4b) gives, on taking absolute values and using (2,2.3),

Fioy it By

2.2.7 ) < ,
and
2 . :
(2,2.8) ]xalgﬂ{— fora = i+ 1, ...,i - Lji+ 1l ...,n.

Estimating the absolute value of the left members of (2.2.4c) with the aid of the last two inequalities

gives
Pict i+ Fier g e
(2.2.92) Il ‘xi| . i_Tr‘+ it Ry +'|—):l— {‘ “‘,‘al
and
Byt By b
(2,2.9b) W el g oy, ioe TRl il
o= il A] topy t T Al - I#jal '
where in J} therangeofaisi + 1, ...,j - Lj+ 1, ..., n Hence, remembering that x;, = 1 or
a
x, = 1,
7

(22100 A2 = Al Lo+ pgal ~ Doy gl + Big )+ 20 Lhggl £ 0 for B =iorj.
[«

The expressions in the square brackets are both positive, and the quadratic in |A| in the left member has

a positive and a negative root so that

1 1/2
(2.2.11) 0 < |A é"{{,uﬁ + pgg + {(,ui], + ”,3,3)2 + Al gy g )t 2ynﬁ]} ]
for B = i or j, but not necessarily for both, where

(2.2.12) O = Paiqt F gy toee e T lgiy T g hoeee g,

To simplify this unwieldy upper bound for every characteristic value, and hence tor the maximum

characteristic value of the error matrix E'7, we let

(2.2.13) p* = max {;Ll.i,pi].,pﬁ} ,

(2.2.14) o = rnox{dl.,crj} ,
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and

(2.2.15) ny = max{,ui__”, ,LZ._,].} .
We then have as an upper bound for the roots of £/
.. 1/2
(2.2.16) I [ N A R N

Some loss of precision in our later estimates would result if we were to replace By and gy ; by
their upper bound g and o by its bound (n ~ i ~ 1), but it will be instructive to make these estimates
temporarily, Thus

(22]7) V(Eif) < FL* + [((t*)z + 2n - i - 1) [L2 + 2“5]1/2

To see that even the last expression is an efficient bound, we observe that it is exact for the two

following matrices E/:

= g = po=pgfora=idi - 1L+ L., - Li+1,...,n

= €.. = ‘s o ut o=
M € € 0, so p 0,

two characteristic vectors corresponding to the nonzero roots have components

1 )
= .= x; 5 =0,x; = X o= +(n - z')/:’ and the roots are %pu [2(n ~ z)]/2;
, — — —_ * H N
@ €; = € = €; = vand all other €y = 0, so u = pg = 0, p* = v, the matrix is
effectively of order two and rank one with roots 0 and 2v = 2u* .

We can summarize these results in the following theorem,

THEOREM 2.2, Let Tij be any real orthogonal matrix describing a rotation in the X% coordinate
plane and A1) pe g digital approximation to the matrix A*=17 given by (1.3.13) of Theorem 1.3.
Suppose that Ai=17 differs from AL=17 at most in the i-th and j-th rows and columns and that the ele-
ments of A1 1 which are guaranteed by (1.3.16) to be zero are also zero in Ai-1 1, and let bounds for

the elements of
(2.2.18) Ai-li Tl.’jZi*lf“lTi]. = Eil
be denoted as in (2.2.3), (2.2.12), (2.2.13), and (2.2.14). Then the ordered characteristic values of

Al=17, say [3’2'1 1, arnd the ordered characteristic values of At=1i-1 say a,’;"‘l i=1 satisfy

n
(2.2.19) Z (Bi-lj _ “Z'lj'l)z < N2(E)
k=1
aid
2220 B = ) 5 )

where V(Eij) is given by (2,2.16).
2.3 THE DIGITAL APPROXIMATIONS TO COS @ AND SIN 6

Basic to our method of reducing a real symmetric matrix to triple diagonal form is the determination

of a solution of equations (1.3.14) and 1.3.15) for cos 9i]. and sin aij‘ We shall accordingly describe the
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computation by which we propose to approximate this solution. For simplicity of notation, we temporarily

set
(2.3.1 €ij T €4 Sy = s,
(2.3.2) ?i:f:};’,-‘ =y, ad @2}77 = %,

where we continue to adhere rigorously to the convention that digital quantities are represented hy
barred letters, while the bar is not used when this requirement is not imposed. Our use of the bar over
the a's thus signalizes the replacement of the matrices A/ of Theorem 1.3 by another sequence Al of
digital matrices approximating them.

We require that

(2.3.3) cy = sx
and that
(2.3.4) c? 4 5?2 =1,
and we write the solution in the form
1 1/2
2
(2.3.5) c = ,
1 1 <y>2
—— _), p—— ————
2 2\ ;
(2.3.6) 5 = 2z c ,
x

wnere we are considering the case in which
(2.3.7) 0 < |

y
so that all the numbers involved are in range (i.e., > ~1 and < +1).

<[5

Regarding the extraction of o square root as one of our basic operations to be made available by a
subroutine of the computation, we should calculate in sequence z, w, ¢, %, v, ¢, and s and will, in fact,

calculate the corresponding barred quantities, where

(2.3.84) AR 7+ % =3,
x

(2.3.85) 22 = w , zZ X z = w,

(2.3.8¢) %:;, 7 +2-=71,

(2.3.84) ] ! T “

3. —_—t = ou -y T =7,

2 17 2 + u
1/2 ]

(2.3.8¢) _—= oy, — U =7 for T > 0,
u 2
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_ .
(2.3.8f) wV2 o ¢ vVt e ez 9.

!
il
o1

for7 = 0,
{2.3.8g) zc = s , Z X ¢ = S5 .

By x and * we designate specific computational procedures which lead to (rounded off) digital approxi-
mations to the product and quotient, respectively, of the two arguments, and by 7/, we understond the
digital output of a specific machine computation applied to the (digital) input ¥ that is approximately
the positive square root of U, It is by no means out of the question fo use (even in the same compu-
tation) more than one type of pseudo multiplication or pseudo division. We refrain from introducing a
notational complication as a reminder of this possibility. In (2.3.84 and e) it is tacitly assumed that
1/2 is digital; that is, the base of numerafion is even. Also, in (2.3.8¢), while 2 is not digital, we shall
suppose that 32" is a digital operation and shall refer to it as a ''right shift,”’ which is an appropriate
designation, at least for machines operating in the binary number system. Finally, the assumption
(2.3.7) guarantees that |z| < 1 and, hence, that the other unbarred quantities are numerically <1, but the
variation of pseudo division and pseudo square root algorithms forbids the same conclusion for the

barred quantities. Hence, we make the formal assumption:

when |y| < || then | + ¥ < 1,
(2.3.9) when [Z] < 1 then 2 x Z| < 1 ;
and when @ < v < 1 then0 < 7 < 1.

(For the ORACLE, unrounded division can yield |¥ * 7| = +1 only for ¥ = 1= 23 and 5 = -1, and we
shall always have |y| < 1 which prevents this. The special-division algorithm used in the ORACLE
invariably gives one os the last digit in a ‘‘rounded’’ quotient, and so | , y| # 1. For rounded or
unrounded division the maximum error is the same: 273%)

To give an upper bound for | ~ c|, we require bounds for the basic round-off errors. Since we desire
our results to apply to as wide a range of machines as is feasible without unreasonable complication, we

shall suppose that  + § and 5 ~ 7 are exact (so long as in range)} and that

(2.3.10) P < 7 ~- b4l £ ex .

. ?
(2.3.11) p g ~—| £ €1,

q

-— - 'ﬁ L . LR}
(2.3.12) o+ 2 -5 < €p (R for *‘right shift'’) ,
while
(2.3.13) BV - VY < €/,

without prematurely substituting numerical values for the various ¢'s.

With these conventions, we now obtain

(2.3.14) I - 2| < e
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and

(2.3.15) 17/"-w[==|5x§~zz[=[§x°z'-—§'5+'z—z_~zz
< F x 7 ~ 2 + g2 - 27
S ex + |[F o+ z| [z - z|
§€X+2€+'
Similarly,
(2.3.16) F - =g +2-2,2_2
2 2 2
<z + 2 W T
S W ““2—-}-"'2"'[10*—1//‘
=

€p + 'é“(ex + 2e:) .

Both « and % are g% if we assume that 2 preserves »>0. Distinguishing the case T =0, as in (2.3.8)),
we have 7> 0 so that Z > 4. Then, using |7~ u| = |T -1},

- 1 172 172 12
(2.3.17) T~ o =|—+ 7 -« 2422
2 ) u u
S 2] v e - H
= {5 U - + =
2 g 2
<€r 4+ 2Qu o~ 3 g oex + 3 + 2,
For numbers p and ¢ both >3,
b - 4 b - 4
(2.3.18) V2 - gV = <
172+ 41/ 21/2
so that
(2.3.19) § —cl = iy ~ 5V 4 V2 _ L1/
< [-1;\/ _ 171/2{ + '1-71/2 _ UI/ZI
o - v
< €/ +
= 21/2
< €y + %2’/2 (ex + 3e; + 2e;) = £(Gc 2.3.19) ,

where for some square root routines it may lead to an improved bound to note that in this last formula

the maximum efror of the square root routine when applied to « digital
(2.3.20) €v/ = — 1
number T >
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Note that Z £ 0 does not imply Z x £ £ 0, much less (Ex %) + 2#£0, and we must therefore discuss
the case in which T =0, % =3, and 5 = 4 + & would involve an improper division. For many existing
machines, the state of the machine which could reasonably represent +1 is actually used to represent
~1 and is operated upon as befits ~1; hence, it seems desirable to let T = ~1 in case ¥ = 0. Thenitis

necessary to use in (2.3.5) (and in (2.3.8/)) the negative value of the root to get

1\1/2 1 - (211)]/2[ n - 2ul
(2.3.194q) € = ¢ =|~1 + |- -
2u l2u|1/2 1+ (zu)l/zl l2u[1/2
l] - 221[ l',:é:«-— u‘
s = _S_[E-—u|={?..;|
2(2u| /2 | 2| /2
< glex + 260 & 2¢p)

so that the error bound £(Z,c; 2.3.19) still dominates aad may be used even in the special case T' = (.

Finally,

(2.3.21) [§ = s = |2 x € - % + T ~ & + 2T ~ 2
SIEx&~%F + 17z -z + |z - ¢
< €ex o+ |2 -z + &~ ¢
< Ex + €. + E(Fc; 2.3.19)

= € + €; + €, 4 52V 2 (e 4 3.+ 2¢)

= E(5,5; 2.3.21) .

To obtain a sense of the magnitude of the error bounds, it is desirable to substitute explicit values
for the various ¢’s. With most machines, rounded multiplication gives €x = 5B~°, where the machine
carries s places and operates to the base B (8 = 2 or 10, usuvally). The right-shift operation with o
binary machine will give ¢, = 5B~°, but with a decimal machine, €p = 0.967F° if the last digit is
discarded rather thon rounded. To simplify the circuitry, the machine under construction for the Oak
Ridge National Laboratory, the ORACLE, yields only €. = B~°, whereas rounded division gives
€ = B0

The square root algorithm can only with difficulty be made to give €,= %B~°, whereas €= 7% is
easy. Frequently, however, the larger errors occur only for the square root of a small number. The
usual algorithm used to compute the square root.is based on the recursion formula

Foog = %, - &, - @ ¢ x)] + 2.
A. 5. Householder, in his forthcoming book [5] on numerical methods, proves that if 0 <% < 1 and xg=1,
then the sequence is well defined and monctonic decreasing if it is required to terminate with the first
%, for which [352. - v * Ei)] * 2< 0. This X, =7y is shown by Householder to lie on the half-open

interval of length 2-5:
(2.3.22) B+ 2-2-2V/2 _ 92=s=1 < @G\) < [ + 2-2-2]V/2 | p-s-1

.

For small values of 7, the error in the square root approximation can approach 275, We are entitled by
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(2.3.20) to assume that € /is a bound for the error under the assumption 7 2 4. Then, since

] 2»25—2 21/2
(2.3.23) 5 o+ 275-2V2 ¢ V2 4 ) < 712 4 2-%
2 51/2 8
we have
1 1 21/2
(2.3.24) g2 . 527 < @) < V2 4 o+ ——-é-mrs 2-s

Hence, the maximum error made by an s-place binary machine in obtaining the square root of a digital

number with value >% need be no more than

1 21/2
(2.3.25) e, ~ [=+

2 SB'S A

and for the ORACLE, €, x 0.587° to an accuracy of better than twelve decimal places, since

g5 = 2739, Assuming only B5 < 104, we can certainly take

(2.3.26) e, = 0.5000287° .

In summary, we shall, when it is necessary to use numerical values, choose
(2.3.27) €x = €g = 1B~ , €. = B~ , oande, = 0.500027° .
Then
(2.3.28) g(s,s; 2.3.21) < 528~ and E(5,¢; 2.3.19) < 3.787° .

2.4 CRITERIA FOR BEST DIGITAL APPROXIMATION TO A PLANE ROTATION

When T = --1is the value used for cos eij' as was the case whenT = 0, it might af first glance seem
absurd to approximate sin 01.]. by 3 = % x (~1) = =% when using sin Gi]. = 0 would make the values exact
for 91.]. = 7. |t appears to be known to computers that this need not be the case; nevertheless, we examine
in some detail the question of what constitutes a ‘‘best’’ digital approximation to a plane rotation.

The equations ¢y = sx and c? + s2 = 1 are conveniently regarded as describing a straight line of
slope =z = 7/% through the origin of a cartesian plane and the unit circle in this plane. We seek one of
the points, t(c,s), of intersection of the line and circle and are obliged to replace it by a point with
coordinates {KB~%,1.3~°) for K and L integral and ~3° <K < 85, -5 < L < 7. A theoretically simple
criterion for the selection of one of these lattice points is to choose the one nearest, or a specified one
of the two or four nearest, to one of the actual intersection points (say, ¢ 2 0, =1 <'s < 1), This clearly
involves great practical difficulties, since the criterion of selection depends on the exact numbers
being approximated and it is the impossibility of obtaining or recording these in the machine which
introduces the laitice points. It is nevertheless true that one could accomplish something very similar
to this if one were to (1) calculate © and 5 as indicated in the last section, (2) convas all values of
¢ and s satisfying
(2.4.1) T ~ KyB™ < ¢ £T + Kypf™

and

S - LgB™ £ s £ Ly v BT,
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where
(2.4.2) Koﬁ"s > & 2.3.19) > (Ko + DB
and

LA™ 2 (s 2.3.200 > (L, + DB~ ,

and (3) select (c,s) by some specific criterion such as minimizing an approximation to some function,
such as

(¢ - s%)?
(2.4.3) Se? o522 2 T T

4 72 4 §2

presumably calculated by multiple precision methods to o high degree of aeccuracy. Even such a laborious

and hence wasteful method as that cutlined would not guarantee getting a '

'nearest’’ point in the absence
of a mathematical analysis, which could be of considerable difficulty,(3)

Let us now investigate more carefully how best to approximate a point of intersection when the

slope z of the line is small. Indeed,
(2.4.4) T = 0 implies t £ €g or w £ 2¢,
so that
(2.4.5) W < 2 + Ex + 26
and
(2.4.6) 2 S o+ 6 S eg + ex + ) .
Then
(2.4.7) 2 £ 2V (eg + ex + €)V2
and
(24.8) |2) = |2 + 2 -~ 2 < I3 + |z -~ 2 £ 212 (e + & + €)% + e .

Using (2.3.27) and B=5 = 2=39 as oppropriate for the ORACLE,

(2.4.9) lz{ § 21/2 2_19 + 2—39 < 2—18
Conversely, if

(2.4.10) Iz < 2V2 2-20 3| < 273%%, and T = 0
for a typical binary machine. Using [z| < 2-15,

(2.4.11) lel = (1 + z3~-172 5> 1 —»-;-zz > 1~ 237,

and the best digital approximation to ¢, taking negative values, is

(2.4.12) -1, =1+ 2739, -1 ¢+ 2738 or -1 + 238 4 2-3%
and © = ~1is in error by at most 6:2=40, Since we chose, for this case, § = =%,
(2.4.13) |5 - s[ = |-F - zc| = I—E + z - z(1 + ¢}

< IE -zl + 11+ c]fel g 2739 4 3.2-3%.2-18

BN¢ one imposes a maximum on the total number of digits which can be ‘‘remembered®’” at ony one time by the
machine, it is evident that the machine connot then solve a problem to an arbitrary degree of accuracy, It would
seem to be of some interest to try to secure upper bounds on the memory capacity which would be required to allow

a mochine to obtain a specified accuracy for the solution of precisely delimited categories of problems,
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and 3 is certainly in error less than 3.2-4%, By conirast, had we chosen to set ©=~1, 5 =0, 5 could
have been in error by as much as (2172 2%20) 240 o by 1,482,911 round-off errors!

It should be noted that we have not yet actually proved that our choice of an imperfect rotation
matrix is, in fact, better than the choice ¢ = =1, 5 = 0. To do this, it will certainly be necessary to
make use of the way € and 5 enter into the actual computation and to know how replacing very close
approximations to the numbers ¢ and s actually wanted by ~1 and 0 affects the characteristic values

being sought. The undesirability of using ~1 and O is indicated by considering the matrix{4)

2-2 2-2 9-22"
(2.4.14) Al2 o[ 2-2 9-2 0 ’
2—22 0 0

with characteristic function f(A) = A2(A = 27 1) — 2-44(\ — 2-?). Since f(2"]) and f(27 1+ 2744 differ
in sign, one root lies between 271 and 21 + 2~44, The product of the other roots then lies between
—2-45 and -2=43(1 + 2743)~1 and their sum between zero and ~2-44, The other roots are therefore
close(S) to +2/22-23, Forming

1 0 0 2-2 2-2 2-22\ /1 0 0
(2.415) | O -1 ~2~20) | 2-2 2-2 0 -1 +2-20
0 +2-20 -1 2-22 0 0 0 —2~20 -1
2-2 —2=2.p-42 0 2-2 2-2 0
- D=2 9-42 2-2 _n=-22 x| 9-2 -2 _n~22 ,
0 ~2-22 2-42 0 -2-22 0

we find that the matrix given by our method has (by chance!), after round-off, identically the same charac-
teristic equation as does the original matrix A 12 Using © = —1, § = 0 and insisting on setting equal to

zero the value of the (1,3) and (3,1) element of Al {as is essential to our method), leads to the matrix

-2 2720
(2.4.16) ~2-? 2-2 0],
0 0 0

with characteristic roots 2=1, 0, 0, and the two zero roots differ from the corresponding true values by
about 2172 2-24 _ (21/2216) =40 o1 by 92,682 round-off errors!

There is, of course, nothing in any way mysterious or surprising about the above result, It is in-
cluded in such detail to emphasize the importance of keeping clearly in mind the reason for computing
a number (i.e., what use is to be made of it) when deciding on o suitable method of approximating the

number.

(4)The matrix used is scaled to meet our later requirements,

(S xactly, 21722728 _ 2744 < &, < 222728 ang V223 g < V2728 g,
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2.5 DISTINCTION OF CASES ACCORDING TO SIZE OF ELEMENTS

The argument of the last section at least suggests thot while it may yet prove desirable to improve

ol

so as to minimize |€2 + 52 ~ 1, it certainly is not desirable to retain the initially calculated value of

At

and choose 5 so as to minimize [32 + 52 -1

. This distinction between the symmetrically related
quantities & and ¥ rests on our assumption (2.3.7) that [J] < |¥| so that T will be greater than 5 21/2
except possibly for round-off errors, while ¥ may well be small. It is not to be concluded, however, that
a “'sorting for size'’ or rearrangement of the elements of AT=171=" has to be done; we calculate © and §

by the formulas (2,3.8) in all cases and with |J| < |¥]; that is,

(2.5.7) y = zz;’:};.’-‘, ¥ = @211, and 5] < [3],
or
(2.5.2) = @-1i-h 5 = a@-1m and 3] < |5

i-17

Of course, this implies that the digital approximation to cos Gz.]. is ¢ in the first case and ¥ in the second:

(2.5.1a) cos 01.]. ~ T, sin Gi]. a5,
and
(2.5.24) cos 02.]. ~ 5, sin Oij ~oT,

corresponding to (2.5.1) and (2.5.2), respectively. This is easily arranged in on automatic computation
by merely interchanging the addresses of the storage positions to which € and § are to be delivered.
For ¥ = 7 = 0, the computation should proceed to the calculation of A=Vt o At=17 2 4i=17-1,

For ¥ =5 #£0, the division ¥ * X is improper and the remaining computations of (2.3.8) could be seriously

in error. (For some machines Z=~1, & = ~1, T =~k =0, and 5 + 7= 5 + 0.) It seems best to treat

Pz

this as a special case in our discussion, although some machines may be able to incorporate it routinely

in one of the two other cases. For 51‘1 = /4, cos n/4 = % 2177 can be stored in the form of its best

-17/2

digital gpproximation and this value, say 2 , substituted for T in the event that |¥] = |¥]. For 5 we

then take 2= 12 or its negative, accordingly as X and 7 agree or disagree in sign (which can be *‘sensed’’

by machines in a variety of ways).
Evidently neither & nor 5 need differ from the exact values of cos 91.]. and sin 01’]' by more than % 3%,

so the error bounds of (2.3.19) and (2.3.21) will continue to hold. In fact, for B = 2,

2-172 = 101101 010000 010011
(2.5.3) 110011 001100 11111
100111 o11110*
and for s = 39, 2= 2 ends in 101 and

(2.5.4) 9-43 | 9-48 o 9-172°% _ ol1/2 o g-d3 | 9-dT

2.6 ESTIMATES RELATED To |22 + 3% ~ 1|
Returning to the general cose ond estimating ]Ez + 52 - 1] by a technique taken from Goldstine,
Murray and von Neumann [4], we have
(26.1) 22,352 1 =224+ Ex®? -1
Ex)2-@E@?+%E1+ D) -1

S -2

ExT+f)EXxT - +TE? T xD +czxz+ 1) =1,

it

it
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SO

(2.6.2) |c2 +S—”<2€X+€X+lc EZxz+ 1) -1].
Now,

(263) Az xz+ N ~1=010+2x5)E+7")E-73"?

1 1 zZ Xz
- — —+
< I oz x z) 2 2 2 7
+ 2| =+ U o — + e [,
2 2 % 7 7
R
(2.6.4) €2z x 2 + 1) ~ 1| £ 22| - 3% + 2.1ee; 4 —
[z
< ey + 26 + 26y
Therefore,
(2.6.5) T2 452 — 1] € ey + dey+ 26 + 26,

= £(c? + 5% 26.5) .

To determine whether or not & should be corrected (on the basis of the assumption thats is Yeorrect’’)

and for use later, we now obtain an upper bound for the amount by which € differs from cos (arc sin’5).

Setting
(2.6.6) -0 ~-35)V2 = 1y, withy > 0forc >0
(and y < Oforc = -1) ,

and with the agreement that when © = ~1 the negative value of the sauare root is taken,
(2.6.7) 2 = 324 200 -39)V2, (1 - 59
and
(2.6.8) 21 = 5DV < B2 £ (1 = 5)VY = B2 + 52 - )

< 8(@? + 5% 26.5) ,
so thot

g "2; 2.6.5)

(2.6.9) E - (1 -39)12 ¢ (€ x5

2[(] _ —-2 ]/2{

Since |s| is the sine of an angle 0 < #/4, |5| cannot exceed 5212, |5 - 5|, and so

(2.6.10) 152 < (lz‘/z + 85 2.3.21))2 <]~ 38(5)
= \2 =2 2

provided

(2.6.11) £(3) < 0.085

Then

(2.6.12) E - (1 -39V < S 1 5% 269

T V1 L 38(5,s; 2.3.21)]1/2

or, making the sharper but still weak assumption that
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(2.6,13) €(5,s; 2.3.21) £ 0.002 ,

(2.6,14) g~ (01 =592 < 071 £(c? + 52 2.6.5)
= £(5,(1=-3912; 2,6,14)
With the usual values (cf., (2.3.27)),
(2.6.15) E(E% + 5% 26,5 < 6.5187%, £(5,(1-5212; 2.6.14) < 463575

This shows that T is a very good approximation to cos {arc sin 5) and that any improvement in its value
must be obtained by a computation which works within narrow limits of error,
Without premature commitment to the desirability of such a modification of T, we show that it is easy

to improve T by calculating

(2.6.164) e = @E@xZ~-~ND+3Ix7F ,

(2.6.16b) f=@E*2+2,

and

(2.6.16¢) T o7

as the corrected value of € in case T # ~1. For ¥ = =1, for many machines (~1) x (=1} = ~1 (sometimes

with an “‘overflow’’ indication) and (=1} + (~1) = 0 (pseudo addition!) so that the routine computation

of 7 in this case leads to
(2.6.164) ' f = (-5x35 ¢ 2 when@ = ~1
Then

T e+l xN T A=-1+[Ex®+ 2

and the routine formula provides the appropriate correction,

The computations for the error bounds are now

(2.6.17) 7-—-E~r. (e + 2 + 2]—E%E+~]~<a »f-z-f->
% 2 2 z
so that
- ® 1
(2.6.18) R E

We shall later need to have an upper bound on the magritude of the correction made in the volue of ©.

Observing that

(2.6.19) 2] g 2ex + E(E% + 5% 2.6.5) ,
we have
B z 1 10
2.6.20 7l |7 ~— < €+ € + —[2ex + E(T + 5% 2.6.9)]
( ) lfl=lf 25+25=R+2++]4 x + (T + 3 )
]
where because of round off we have used |¢| > 0.7 rather than [2| 2 2772, Hence,

2

10
(2.6.21) 7l < 7 [Sey + dey+ 2.7e; + 3udep)
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For the ORACLE, |f] < 6.487%, and so
(2.6.22) 7l < 687,

using the digital character of 7.
We can now obtain an efficient estimate of !(E*)2 + 52 —~1]. To do this, we write
(2.6.23) @2 = T2 - 25 + 72
so that
(2.6.24) (€2 + 52 = 1 = E2~Ex D+ (2 =T x) + [ExE+5x5 -1l - 2%f+ 7%,
which gives

(2.6.25) (@2 4+ 52 - 1] g & + x + [ = 2] | + |T)?

l 2

[i7AN
et
=]

2ey + 2|7} +

2 2 ] 71?
€y + 5R+«§-—€% + 1717 .

To avoid carrying the term [?lz into later estimates, we make the (in practice trivial) assumption:

€
=

A

1 - -
(2.6.26) €y, €, €2, ond— € are all < 75 and B75 < 1074,
R g 2 Vv = =

Then (2.6.21) guarantees

(2.6.27) I7] < 14875 and |7]% < 1968725 < 0.0287° .

Hence,

(2.6.28) 1E)2 + 52 — V| < 26y + 26, + ;. + 0.0287° = £(c*? + 5% 2.6.28) .
For 26y = 26, = €; = B,

(2.6.29) 1692 + 52 - 1| < 3.0287¢
In general, (2.6.14) yields

(2.6.30) &5 - (1 =592 < 0.712(*2 + 5% 2.6.28) = &, (1 - 59)/% 2.6.30) ,

and with our estimates,

(2.6.31) &~ (1-359V2 < 2.1587°

so that any further correction of * would certainly operate on the narrow margin of two units in the last
place.

It will also be convenient to have a comparison of T* with ¢ = (1 - 52)]/2. Now

(2.6.32) (1 sV (1~ )V - o 5 - s|
(1 ___Sg)l/Z

for an s such that s < sy <5, and hence, using s < 0.715,

(2.6.33) 0 -5Y2 - (1 =)V < 1025 - 5| g 1.028(5; 2.3.21)
This gives
(2.6.34) B - c| < |8 ~ 1 =59V 4 |1 -5)12 - (1)1

< 0.718(F%2 4+ 5% 2.6.28) + 1.022(5,s; 2.3.21)
S(e*,c; 2.6.34) ,
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and this £(Z*, ¢) can be estimated as (0.71.3.02 + 1.02.5.2)37%,0r
(2.6,35) E(T*, ¢; 2.6.34) < 7.5875

2.7 THE DIGITAL FORMULAS FOR THE ELEMENTS OF Af=17
The exact description of the computations by which we alter the digital matrix Ai=1 7~ o that it
becomes A*=1 1 for i =2, 3, ... ¢ 7~ landi<j=3,,..,ncan now be based on formulas (1.3.5)

through (1.3.9). We define(6)

gi=lj _ —ielj _ = —fm 1 - P
(2.7.1) a” g = a, ] cy % @, ] + o5y oxoa

forp=i-1, i1, ...,7-17+1,...,n,
which yields » — 7 replacements of elements in the ith row and the same number in the ith column; and

2.7.2 F=li =5~V 5. x i~ 1j=1 z.. Hi=1f=1
(2.7.2) i p p T TSy X G i ey xoar

forp=i+ 1, ...,7-17+1,..., n,
“where now we require

it Y
(2.7.3) a;. ;_1 = @7, ; = 0
for the (i ~ 1, /) and (j, i — 1) element being **rotated to zero."’

The four elements in the ith or jth row and in the ith or jth column require the more compli cated

computations
- = cieljel | = Zim1 =1
2.7.4a) B, ¢y x @l + 5, % g i
o= mielfel = il e
(2.7.45) By = €y x @} + Sy <@ T,
and
i1 7 - - - —
(2.7.4¢) a;" o= Cif X By * Sy X By
together with
- - T B —im1j1
(2.7.5a) BGj = €5 X 4 j 0 = Sy Xoap 0,
2.7.5 F.o= €. x @=li=1 _ 3 x g-lj-]
(2.7.56) 7 Cij i 74 i
and
T L - = -
(2.7.5¢) T =TT e Ty X Ty o+ Ty X< T
Finally, we avoid the complications of using (1.3,8) for the computation of Zf;:"‘} and use instead”)
(1.3.10):
(2.7.6) P C P B PR N P
" 7 7 i i i i i i
This has the desirable effect that
(2.7.7) trace A’~17 = trace Ai=17~1

(6)We posipone to §2.'|6 a discussion of the sqaling which we impose on the original matrix and which will

guarantee that the additions required do not allow any element to grow out of range,

(7)|f may be worthwhile to use both formulas and compare the results as a check on the operation of the machine.
Also, the code should be soarranged thot an overflow causes no error, as may well be the case when we know that
the right member is correct modulo 2.
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and hence
the proposed computation of a matrix in triple diagonal form produces a matrix for
{(2.7.8) which the sum of the characteristic values is exactly the same as for the originally

given (digital) symmetric matrix.

In all of these formulas, we agree to set

(2.7.9) {? if (2.5.1) holds ,

17 g, if (2.5.2) holds |,
and of course
~ cq if (2,5.1) holds ,
(2.7.10) oo o= 4
2 5 if (2.5.2) holds ,
where we have introduced the notation
(2.7.11) €q = € or c*

depending on whether or not it is decided to correct ¢ to c*. Of course,

— = _ o172 pim et omim) jo]
(2,7.12) < o= Sy <= 2 ifzi=17-1 = a;__1;, 40
and 1o
(2.7.13) - T Ve gai=li=1 o Fi-li-V g,

ij ij ie1i ie1j
A sequence of digital matrices approximating (1.3.11) will be completely defined if we agree, as in

(1.3.12), that
Rimli _ ji-2n fori=3,4,...,n-1

2.7.14 — — o Ly

( : Af=1i o pf-Ti-] whenever zi=1 /=1 = zi~1/-1 - 0
i-11 i~17

and can show that the above formulas for the elements of A*~! 7 will actually lead to digital numbers;

that is, the additions will stay in range. To secure this, we later (cf. (2,16.2)) impose a condition on

the norm of the ariginal matrix, N(A) = N(A 12),

2.8 DEFINITION OF ERROR IN THE ELEMENTS OF A~ 1/

The characteristic values of A= 17 may differ from those of Ai=17=1 for three reasons:

(n 'EZ% + 51.2]. - 1 may differ from zero, '

(2) The formulas (2.7.1, 2, 4, and 5) involve pseudo multiplication rather than true multiplication
and use digital numbers ¢;;and 5, affected by the error (1).

(3) The program for the computation requires that (2.7.2) shall not be used to calculate the (i—-1j)
element of AL~ 117 but that it shall be made zero, as specified in (2.7.3).

We propose to discuss these errors and shall refer to them for brevity as (1) trigonometric, (2) round

off, and (3) that due to method.
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If we now return to the point of view from which we regarded our problem in § 1.1, it becomes evident
that the meaning of the expression “‘error in the (q,b) element of AP=ViT g seriously ombiguous, Ex-
plicitly, if our problem was the computation of the sum of the characteristic values of A = A2 (rather
than their individual values), then (2.7.8) would allow us to assert that the elements of Ai=1/ gre
exactl Tqu is, while the computation did not assist in the trivial task of finding (trace ;’l_), at least it
produced a matrix with the same trace and so did not reduce the information on the value of this function
which was available to us originally.

Since our problem is to determine the individual characteristic values, we actually wish to compare

-1j=1 (since it is this class which

Ai=17 with the class of all matrices orthogonally congruent with Al
determines and is determined by the characteristic values of Ai=17i=Y). One way of doing this is to
select for comparison a single matrix of the class and compare the corresponding elements of the two
matrices, How to choose this matrix in such a way as to secure an efficient estimate of the maximum
alteration of any individual characteristic value is by no means evident, Moreover, a judicious choice
for this purpose need not be equally good if it is desired to obtain an upper bound for the alteration in

the sum of squares of the characteristic values. To obtain any error bounds at all, however, one is

practically forced to limit the choice of a comparison matrix to
(2.8.1) BI=1H0) = RO ATVITVR(0)
for some value of 6, since these matrices are known to agree with Ai=1] everywhere outside of the ith
and jth rows and columns.
Two obvious competing choices for 0 are
(2.8.2) 6 = 6.,

where

i

i1l
(cos Oi].)a,

. el jal
ik (sin 6;‘,‘) @

1%
(cf., (1.3.14)), and
(2.8.3) 0 =

where

..
ij

sinc = 5 and cos o = cos (arc sin §) 0 -
A numerical computation will be required before we can select the more efficient of these choices, but
it is evident that (2.8.2) is designed to eliminate the error due to method, while (2.8.3) will allow lower
bounds of error fo be given for the 4(n — i) - 2 elements calculated from (2.7.1) and (2.7.2). Moreover,
selecting for T the corrected T* rather than T tends to reduce the error bounds p for the 4(n —i) -~ 2
elements at the expense of the error attributed to Zi;:]] j Referring to (2.2.11) it appears probable that
we shall want to minimize y when n is large, and this implies the choices EO =C%and O = Ty e

Thus we have at our disposal the choice of a corrected value T* for T or of the uncorrected value ©
(which represents an actual variation in the ;omputa’rion), and ‘we can also choose 0 = Oij or § = o fo
select the matrix B2~ 17 () with respect to which we compare Al-1T (offecting error bounds obtainable
but not influencing the actual computation). Using & will reduce the trigonometric error and this can be
expected to reduce the bounds obtainable for round-off error, but it will have the undesirable effect of
increasing the error attributed to method. Choosing 4 = 01.], gives lower bounds for the error due to

method, particularly when €, = ¢, but 0 = 7, reduces the bounds on trigonometric error (and hence on
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round off) and is especially efficient when T, = @ and » is large. The extent to which the choice of
comparison matrix influences the error bounds is brought into sharp focus by the fact that the correction
of ¢ to ¢* appears to allow larger errors in the GZ.]. estimate but leads to lower bounds when the a;;
comparison matrix is used., With numerical values appropriate for the ORACLE, the error bounds are, in

decreasing order: 6..c*; 0..C; 0...¢; o
c g orde 10 617,c, Ui and O

2.9 BOUNDS FOR ERRORS IN THE ELEMENTS OF Ai=17

We wish to compare those elements of A*=17 which may differ from the corresponding ones of B~17 (6)
and which therefore lie in the i/th or jth row ond ith or jth column for both 0= 91.]. and 9=:ai].. More-
over, we should distinguish the cases [Zf::: ;.""Il <, = or > Il&”::: {.."'ll and allow ) to equal & or the
corrected value ©*. Fortunately, the twelve possible cases need not all be distinguished explicitly.

In (2.2.3), we used o to denote an upper bound for the error in all the elements given by (2.7.1)
and (2.7.2). Introducing the dependence on & by writing ypq(@) for this bound and referring to the form
of (2.7.1) and (2.7.2), we see that ppq(@) is an upper bound for an expression m{6) of the form

(2.9.1) m(B) = (decos @ + bLsin0) - (@ x Sy + b x 5),
where we can deal simultaneously with the cases (2.7.9), (2.7.10), (2.7.12) and (2.7.13), even when the

error in the (i=1, i) element is concerned, so long as we use no assumption on the relative magnitude

of |a| and |7

Breaking up this error quantity into a part due to the use of the wrong numbers, €, and § instead of

cos 8 and sin 6, and a part due to the use of pseudo multiplication instead of true multiplication gives

(2.92)  ml0) < |alcos @ ~ To) + Blsin6 - 5)| + |a@, - @ x Tl + |55 - B x 3]

A

|a(cos 8 - &4) + b(sin 8 - E)L + 2 .
Since @ and  are two elements of the digital matrix A= they certainly have numerical value less

than one, and hence

(2.9.3) m(0) < lecos @ — T, + [sind ~ 3| + 2¢, .

ol
In point of fact, however, to be sure all calculated quantities stay in range, we are forced to scale the
elements of our original matrix down sufficiently so that N(A) is less than one by a sufficient margin

so that even after possible accumulation of round-off errors
(2.9.4) N(AR=TI=Yy <1,

This loss of useful significant digits immediately after the decimal (or, binary) point must be taken into

account if we are to get efficient estimates for error bounds, since the right member of (2.9.3) is certainly

too large unless both || = 1 and |5] = 1 and these cannot happen simultaneocusly.
Using

(2.9.5) a2 + 52 <1,

we get

(2.9.6) m0) < lcos @ — T2 + (sinf - HAY2 4 2¢,
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since by the Schwarz inequality the inner product cannot exceed in numerical value the product of the
lengths of the two (two component) vectors. For individual values of upq((?), (2.9.6) will be our best
estimate. Where a sum of values of tyg is concerned, as it is in (2.2.12), we get a significant im-

provement in error bounds by the following more carefu! argument, Let

(2.9.7) e (0) = ]Epi(cos 6 ~ &) + Zz'p].(sin g - 3| + 2,
where we omit the upper indices i~1 j~1 on the @'s. Then

(2.9.8) mz’p(()) < \Epi\ fcos 6 — Eol + ]?ip].] [sin & - 5| + 2¢ .

A sum of N values of the right member will be of the form

(2.9.9) (L 13,0 ) lcos 6 ~ | + (mei) lsin 0 — 3| + 2Ne .

Under the assumption that

(2.9.10) (Z@ilz) « 2 and (Z@j‘z) e with a2 4 B2 < 1,

itis easily proved that

(2.9.11) Ll < NV24] and Z:ld},ﬂ < NV2Ip) .

Hence,

2.9.12) Lm0 < ~'2 [104 leos & = ol + [BlIsind ~ 5| + 2N, ,
< N2 (1af? + 1812) V2 (leos 6 = Fol2 + |sing - 512) 12 4 2ve,
< N2 [{eos 0~ 2% + (sin0 ~ 2|12 & e,

which is better than we would have obtained by summing (2.9.6), since we got only N'/? instead of N
in the term in the right member with the larger coefficient,
These considerations evidently apply to both o, and 7, {cf,, (2.2.1.; and (2.2.14)), ond so, putting

N=n~1i-1, we can take

2.9.130) 0 = (n - i — N2 {[8(5(,)]2 * {&'(;)]2}‘/2 2~ i~ De

b 14
-~
EE*, c; 2.6.34) for 6 = 91.]. =arcsinsandcy = c* ,
&(e, ¢; 2.3.19) for 0 = 91.]. = arc sins and Ty = T ,
(2.9.13b) S(Eo) = <
g (0 - ~5'2)]/2; 2.6.14) for 6 = 0 = arc sin ¥ and Ty =T .
L%E‘(E*, (1 -~ 59172 2,6.30) for 0 = 0, = arc sin Tand T, = *
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and

£(s, s; 2.3.21) for 0 = Gi]. = arc sinsandcy = c*orc ,
(2.9.13¢c) €¢) =
0 forG:ai].=arcsin§und"c'o=EorE'* .
2.10 CONTINUATION. DETERMINATION OF jt, j1; ; ;, AND p_;

For use in our basic error-bound formula (2.2.16), we require an upper bound i for the error in the

individual elements of A1 7. This is obtained from (2.9.6). We define
(2.10.) wo) = (€A + EXNV2 4 26,
making use of the notation in (2.9.135, ),

To estimate the magnitude of i, we express it directly in terms of the €'s and approximate its value
with our usual choice: 2ey =26, = €, = 87°, ond €, = 0.5000237°, Then, noting that £(3) = 0 for
0= 0 and incorporating the 2¢, term with the others by using 2 < 0.71.2.82, we get

0.71(5.82ey + 2e, + 26; + 4e) =~ 5,627 for € = ¢ ,

(2.10.2) {A(Ul.]-) <
0.71 (4.82¢, + 2e, + e, + 0.0287%) ~ 31557 for &g = & .

For a large mairix, this reduction in the upper bound for the error made in 4(n ~ i — 1} elements of the
matrix at each of » — i steps and for i = 2, 3, ..., n — 1 may make correction of € to ©* worthwhile,
Estimating €, as 0.7587° increases the value of (1(01.].) for ¢y = ¢ to 6.3387°, which is in accord with the
obvious fact that the poorer the square root routine the more important is the correction of € to %,

For 8 =0.. = arc sin s,
1y
(1(3.162¢, + 2.863¢, + 3.894e. + 1.02¢, + 0.0142875)2
+ (17426, + 14436, + 3.184e. + 1.02¢)21V/2 4 2¢,  if5, = &%,

(2.10.3) o) ~
[(0.7072¢, + 1.4143¢, + 2.122¢. + e’

|+ (170726 + 141436, + 31226 + eNTV2 4 2¢, ifeg =2 ,

and, using the same values for the €'s as in (2.10.2),

il
ni

{U7.4267)% + (5.2866)211/2 + 1175~ 100287 ife, -
(2.10.4) P(Qi,') ~
{{3.6828)% + (4.6828)211/2 + 1} 75 = 6,968 iy = ©

It is to be noted that the change from p(Oij) a 3.1587F to H(Gz’j) x5 10,1287 is due to a difference in
methods of estimation of error and in no way affects the actual calculation, While we must yet consider
other error bounds before determining whether or not the less natural choice 9 == vis the more effective,
the reduction of the error bounds obtained by our methods from approximately 1087 to about 33 ¥ is a
striking indication of the desirability of a questioning approach to the definition of *‘error in a calculated

number,’’

40



That the bound 6.9637° for the uncorrected value © is smaller than that for & in the 01.7. estimate is
not surprising, since T was a direct approximation fo cos ()ij' while ©* was a better value only in the

sense that ©*

and 5 were better approximations to cos & and sin 6 for some 6, not necessarily for the
desired angle 91.]..

Nothing in the above estimates of (6) needs to be altered to apply them to the error in the (i~11)
element, ond we have not been able by other means to obtain a worthwhile improvement in error bound.
Hence we set

(2.10.5) iy z.((9) = u(h) for both ¢ = Ty and 0 = 81.]. .

The error in the (i~1 ;) component requires special treatment, since this element of A°7 17 is not
caleulated but is set equal to zero. This is, moreover, the exact value of the corresponding element of

B f(()ij) by definition of 01.]., and hence
(2.10.6) i j(f)z.j) =0,

(Whether T or © is used elsewhere does not offect the conclusion that this ““computation” is exact.)

For iy ].(02.7.) the situation is different, since zero is to be compared with

(2.10.7) {=sin ai].)a:::} i:“ + {cos gi‘j)a:::]' ;:'1 =t [-5% + (] —'52)]/2?] )
with the plus or minus signs in the cases (2.5.1) and (2.5.2), respectively. (For |%| = |J|, the value we

find for p;_, J will be valid; cf., (2.5.4), for example.)
Since -s% + (1 ~ 52)1/237 = 0, ond |7«?|2 + ]ﬂz <1,

(2.10.8) x4 (=525 < (G -9 [1=59V2 (192} 7
Also, using (2.6.33) to estimate (1 ~ 52)1/2 - (1~ 52)]/2,

(2.10.9) =55+ (1 =512 < [1+ (10234125 - 4 ,

We may therefore take

(2.10.10) iy flog) = 143E(G,s; 2.3.21) .

2,11 CONTINUATION., DETERMINATION OF Ky = i = ”jf = pu*

In 82.7, we gave the explicit formulas for the computation of the elements in the (i,i), (i,7), ond (j,7)
positions. Since we leave the sum of the (i,i} and (j,/) element unchunged(e) (cf., (2.7.6)), the errors

made in these elements will differ only in sign, and we can toke

(2.11.1) uﬁ(()) = ;Lii(@) for both 6 = 91.]. and 6 = Ty

The computations described by (2.7.4a, b, ¢) and (2.7.54, b, c) are the special cases of

(2,11.2a)

il
i
@}

= 6"]XC0+€]2X

o}
<

(2.11.25) T, = Fg1 X S + Typ X

(B)If may be convenient to calculate both the (7,7) and (j,j) elements and to use the (approximate) invariance of
their sum as a check. Our use of (2,11.1) is not affected by this change, and the check should require the sum of

the {i,7) and (j,j) elements to be altered by no more than Zuii(f)).
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and

(2.11.2¢) T =T XCot TyXxX5s

obtained by choosing for 2,4, @,,, €,;, and €, , properly signed and permuted values of Ei::"’ i.'"‘, E‘i”‘l ;:"1,

E;"1 71.."], and E;"] ;"1, where Eij and Ez.]. have been replaced by their values Ty and 5 (in proper order).
We base our estimates of Hij and p;; on the last three formulas, making only the symmetric assumption

(2.11.3) @07+ (B, )7 + (6,07 + (€02 < 1,

and we can therefore set

(2.11.4) {ii].(()) = p; {0} for both 0 = 9‘.7. and 0 = Ty
The error we seek to estimate is | — 7|, where

(2.11.54) ry = €y,cos 0+ ¢e,,sin0,

(2.11.55) r, = €, cos 0 +¢,,sind,

and

(2.11.5¢) r=rycos 0 +r,sin0

Hence,

(211.6) |r =~ 7| = |rycos O+ rysin —~ 7, x Ty + 7, x5|

< lrycos O+ rysin@ — 7.0y + 75| + 26y
= lr.‘(cos 0 - 'c_o) + 7(sin €@ - 3) + (ry - 7])'50 + (ry = ?'2)5[ + 2€y

< frylcos 0 — T + ry(sin 6 ~ 3)| + |(r, = 7)) + (ry = 7)8] + 2¢5

Since 7, is the inner product of (E‘ 1,212) and the unit vector (cos 9,sin 8), we have
()2 < (5,02 + (&),
and, similarly, (72)2 < (521)2 + (522)2. The assumption (2.11.3) therefore implies (r.l)2 + (r2)2 < land

(2.11.7) Iry{cos 6 ~ Tg) + rylsin @ = )| < [(cos 6 — Tp)2 + (sin 6 ~ 57172,

We will overestimate (50)2 + (5)2 if we suppose ¢y = € rather than ¢, since certainly € ,> 0.587%,
which guarontees &(c*? + 5% 2.6.28) < E(c? + 52 2.6.5), which in tumn is less than 15:1074 by the
assumption (2,6.26). Using‘® (1 + 15.107)1/2 < 1,008,

(2.11.8) (ry =~ F)Eg + (ry = 7,051 < 1.008 {(ry ~ 7)? + (ry — 7)711/2
From
(2.11.9) Iry = 7)< U8, )% + (€, 2 [cos 0 — T2 + (sin 0 — 5)21V2 + 2¢,

and a similar inequality for |r, — 7,|, we have
(Z1110) iy — 7705 + (r, = 7)5] < 1.008 (e + 4:2V/2 c e, + 8e2)1/2= 1.008 (e+2:2V/2¢,),

where we have abbreviated [(cos 0 — 50)2 + (sin 0 ~ 5)2],/2 as € and used (2.11.3) both directly and

(9)The cofrect approximation is of course 1,0008, Through a numerical error 1,008 was used in the following

estimates. |t seemed befter to weaken our assumption (2.6.26) te 37° pS 1073 than 1o recompute the tables,
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in the form

(2.11.11) (2,92 + (7,002 + [(5,)? + (5,42 < 21/2
Substituting in (2.11.6) now gives

(2.11.12) Ir ~ 7| < 2.008[(cos 6 - Fg)2 + (sin 0 = V2 + 4,852, .

It is therefore possible fo set as a common upper bound (and therefore as their maximum 1*)of the errors in

the (3,4), (,7), and (j,7) elements,
(2.11.13) 0 = p 0 = 10 = p(0) = 2.008[E X(E,) + EX5)11/2 + 4.852¢,
Thet is,

2.008{[8 @, c; 26,3402 + [€(G,s; 23.2012}1/2 + 4.852e, 17, =T
(2.]].]4) H*(Gl]) =
2.008{[€(z,c; 2.3.19012 + [E(5,s; 2.3.21)]2}‘/2 + 4,852¢, ifSg=7¢ .
and
(2.11.15) l“*(”ij) = piloy) = Vi;'(“ij) = 4"]';‘("1';')
{2.0088(‘5*,(1 - )12, 2,6.30) + 4.852¢, ifg, =&,
02,0085 (5, (1 = 512 2,6.14) + 4.852¢4 5, =¢ .

Using previous estimates given in (2.6.35) and (2.3.28), we have

i

2.008[(7.5)% + (52711237 + 2.426875 < 20.7548™  ifg, = *
(2.11.16) p(0,) <
2.008[(3.7)% + (5.2211/2 375 4 2426875 < 15242875 ifTy =< ,
and using (2.6.31) and (2.6.15),
2.008.2,15875 + 2.426875 < 6.744B87° ifgy = &,
(2.11.17) u*(aij) =
2.008-4,6387° + 2.42637° < 11.72437° i3, = ¢

2.12 SUMMARY OF ERROR BOUNDS OBTAINED

We now have obtained values for all of the bounds entering into the formula (2.2,16), which gave an
upper bound v(E%) for the maximum root of the error matrix. Subject only to our mild assumptions on the

precision of the machine employed, namely,

1
(2.6.26) €x, Egi €5, ond ey are al g 8~ < 1074
(this also insures (2.6.13)), we have
1
(2.3.19) E(F,c; 2.3.19) :—2—2‘/2(6,< + 2ep + 3ex) + €y,
(2.3.21) (5,5 23.21) = F(2.3.19) + (e + €.},
{2.6.5) E? + 5% 2,65 = 3ey + 2ep + 2e; + 4e, ,



(2.6.14) g€ (1 ~ 5912 26.14 = 0.718(2.6.5) ,

(2.6.28) E(E*?2 + 52 2.6.28) = ey + 2ep, + e+ 0.0287° ,
(2.6.30) g, (1 - 5912 26.30) = 0.715(2.6.28)
(2.6.34) S(E*,c; 2.6.34) = £(2.6.30) + 1.025(2.3.21) .

Distinguishing various cases where necessary, (2.9.13), (2.11.13), (2.10.6), (2.10.10), and (2.10.1)
give the values listed in Table 1.

Collecting the numerical values previously calculated as appropriate for the ORACL.E, we have

E(z,c; 2.3.19) < 3.7 B~ ,
€(5,s; 2.3.21) < 5287,
2.12.1 £(c ,( ~ 3YV2 26.14) < 4.6385 ,
€@*? + 5% 2.6.28) < 3.028-s ,
g, (1 - 53)V2 2,6.30) < 2.1587°
£(c*,c; 2.6.34) < 7.5 g5

(cf., (2.3.28), (2.6.15), (2.6.29), (2.6.31), and (2.6.35)). Table 1 now becomes the following for the
ORACLE (Table 2).
Substituting in (2,2,16), which is conveniently written

/2
. 1 Fo *
(212.2)  o{ED) = (20720 + —[(,11._” by ) — u*<L>} b,
2 " p

we get, by comparing the calculated matrix with the matrix obtained when the rotation is through 01.].,

(212.3) T, = % BoUEY)

4.50M(n -~ i — 1) + 91276z — i — NV2 4 26326112 + 20.754 ,

A

(212.4) T, = & BUEY)

< 3843[n ~ i ~ 1) + 63820 ~ i - D2 4 19429172 1 15242 ,
and, using for comparison the matrix obtained when the rotation is through e

(2.12.5) &, = & PoulE)

< 3.356[(n - i — 1) + 4.630(n — i ~ V2 4+ 20841172 4+ 11,724 ,

and

(212.6) T, = &: B5u(EY)

< 25100n - i — 1) + 21500 — ¢ -~ DV2 4 19.716]1V2 + 6.744 .

The bound 1(E*7) for the maximum alteration in any root of the matrix is now seen fo be substantially

better in the 9 estimate, both when C, has the uncorrected value © and the corrected value ¢*,
the dominant terms (n large) are not very different: 3.843(n — i ~ 1)1/ 2 and 3.356(n ~ i ~ 1) /2. For c*,

the change is from 4.501(n ~ i — 1)V 2 to 2.510(n ~ i ~ 1)'/2 and the error bound is nearly cut in half.

For ©
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TABLE 1

v % i
2, =* ¢ v c*
E@E,) £(2.6.34) &(2.3.19) £(2.6.14) /(2.6.30)
£(3) £(2.3.21) 0
o 2o~ i1+ [SUe) + €20 i - V2
u* 2008 [E2zy) + £2)] 7+ a52e,
Fiot 0 1.43(2.3.21)
# [e2zy + 22| 7 4 2,
TABLE 2
In Units of B~ = 2-39 Estimating with 0, Estimating with o,;
Computing with T = o z ¢ o>
€(cy) < 7.5 3.7 4.63 2.15
£(3) < 5. 0
£ = [@2(50) + & 2(5)}”2 < 9.127 6.382 4.63 2.15
p* < 20.754 15.242 11.724 6.744
i S 0 7.436
B, = p < 10.127 7.382 5.63 3.15
o = max (i _y 0ty ) < 10.127 7.382 7.436 7.436
o
— 1 1 1.321 2.361
K
{-?— a2 2.049 2.065 2.083 2.141
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Moreover, a decision to correct T to ¢*

would appear reasonable from the 0,; estimates, whereas on the
basis of the less efficient 61.7. estimates it might seem to lead to a larger error! Since we have only
upper baunds for the errors, we cannot conclude with certainty that the use of ©* will actually lead to
smaller errors; indeed, with a suitable choice of numerical data it could well happen that the use of ©
would lead to a cancellation of round-off errors, while for ©* they would accumulate, Cur precise claim
is only that when €* is used, the guaranteed maximum error is smaller than it is when T is used.

It would be easy to substitute in the above formulas other values of the €'s, but we refrain from doing
this since reasonable variation of these quantities does not drastically affect the numbers obtained. (It
was the intent to arrange the formulas so that they could be easily applied to any machine capable of
the computation described.) [t is worthwhile noting, however, that if unrounded multiplication is used,
so that € = (7%, the dominant term in V(Eij) is at least multiplied by 21/ because of the coefficient

26\( in the formula for o in Table 1.

2,13 BOUND FOR THE TOTAL COMPUTATIONAL ERROR IN ANY ROOT
DUE TO THE REDUCTION TO JACOBI FORM
In making the r_czfa’rion in the Sy coordinate plane to replace the (i ~ 1, j) element of Ai=17=1 by
zero (thus getting At-1 7), an error of less than V(Ei].) is introduced in each root of the matrix. Hence
the maximum alteration in any root caused by the entire computational process of reduction to triple

diagonal form, which we denote by A])\, satisfies
71
(2.13.1) Args X Y uED .

Since the bounds for V(Ei].) given in the preceding section do not involve j, we need to sum an expression
of the form (n — i) V(Ei].) fromi=2toi=n~1,0r

n-1
(2.13.2) Y @ - i){a[(n T D TR A ) L c}‘“ + u*} .

i=2

Settingn — i — 1 = k, we require
0

(2.13.3q) Y ¢+ ])[a(k PRRTYS V5 B VZ I u*}

k=n-3

= aSbem) + —pn -~ @ - 1),

where
(2.13.35) a = @V46 = € = [2%E) + 23|12,
and

1 Mo o
c Ty iy + 'u“z'-lj)T o "

and where, for convenience in later use, we introduce the function

n-3

(2.13.4) Styen) = % & + NG + 8272 4+ )12,
k=0
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1/2 C)l/2

Since {x + 1) (x + bx + is monotonic increasing for x > 0,

(2.13.5) S{b,c,n) < fn-2 (x + Dix + 2xV2 4 )2 4y Sl(b,c,n) .
4]

To get some idea of the behavior of the error bound for really large values of , it may be worthwhile
to write out a closed form of the integral, although a table for small values of 7 is more readily calcu.

lated from the sum formula. Routine computation gives

1
(2.13.6)  S,(5,cm) = (0.dm — 0.356m /232 4 55 B%7 - % + 80) ¥ - ¥y

2
~ b(76* + 16 - 1) [4m1/2N1/2 + NV - VY

128

1/2 1/2 A
N + m + 5b
+ (dc ~ b5)in =,

where we have set

(2,13.7) m =n — 2 and N = m + bm'/2 & ¢ .

Substituting the previously obtained values of b and ¢ in the various cases:

(2.13.8) 6 = 0,5, = & AN < 4501 {(0.4»; ~ 3.1944, 1/ 2)N3/ 2

+ 17.943(N3/2 _ 135.075) ~ 20.1937

4m V2N 12 L 18,254 V2~ 5.131)

N2 4 V2 4 45635

+ 22,002 in 56945 } + 10.377m{m + 1)

cnd

N o= m + 9127m"72 + 2632 ;

(2.13.9) 6 = ()z'j' Co = © BSA]/\ < 3.843 {(0.4772 - 2.2337m VN 3/2

+ 7.365(N3%2 _ 85.6398) - 3.3885 {47”'/2/\"/2 + 12.764(NV2 _ 4.4078)

1/2 1/2
N 3.191
+ 36.986 In ‘ '7”‘599 : ” + 7.62Wmlm s 1)

and
N = m + 6382m1V/2 4 19.429 ;
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(2.13.10) 6 = 0., = & BAN < 3.356{(0.4771 ~ 1.6205m 1/ 2)N3/2

+ 1.3615(N¥2? — 95,143) + 3.0397{4"1‘/%\"“ + 9.26(8NVY7 . 4,565)

N2 4 V2% 4 2315
+ 61,927 In + 5.862m(m + 1)
6.880

and

N = m + 4.630mV2 4+ 20841 ;

(213.11) 0 = 0, T = €% AN < 2.510{(0.4772 ~ 0752571/ 2N3/2

~ 32427(N%? _ 87.546) + 3.1618[4772'/2/\1'/2 + @3WNY2 - 4.441)

1/2

N + mV?2 4+ 1.075
+ 74,2424 In + 33720 + 1)
5,515

and

N = m + 2.150m"/2 1+ 19716225 .
Substituting n = 10, 20, 30, 40, 100, 200, and 1000 (which is an impossibly long problem with present

speeds and memory capacities), we get Tables 3 and 4. It should be emphasized that the Ql.f. estimates

TABLE 3
BSAI)\ <
Estimating with 01.]. Estimating with o,

Crder of Corrected Uncorrected Uncorrected Corrected
Matrix cosine: ¢*¥ cosine: ¢© cosine: © cosine: ¢c*
10 2,036 1,500 1,227 773

20 10,231 7,594 6,175 3,951
30 25,875 19,082 15,496 9,937
40 46,150 35,609 29,265 19,045
100 380,345 290,569 237,110 155, 483
200 1,832,987 1,423,113 1,170,053 782,691
1000 77,555,220 62,491,073 52,521,052 36,814,476
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TABLE 4

~5/2
n=5/2BSA A
Estimating with GZ.]. Estimating with 9
Corrected Uncorrected Uncorrected Corrected

n cosine: ¢* cosine: ¢ cosine: ¥ cosine: ¢*
10 6.438 4,743 3.881 2.445
20 5719 4,246 3.452 2.209
30 5.249 3.871 3.144 2.016
40 4,561 3.519 2.872 1.882
100 3.803 2.906 2.372 1.555
200 3.240 2.516 2.069 1.384
1000 2.453 1.977 1.661 1.164
Asymptotically 1.804 1.5372 1.3424 1.004

are included to show thot what may seem a “‘natural'’ way of estimating errors is much less efficient
than one which depends on a different concept of “‘error in a computation.” For an actual computation,
the reduction to Jacobi form cannot introduce an error in any root greater than the value tabulated under
the 9y estimation, and thus, with the corrected cosine, a 200 by 200 matrix can be so reduced with a

12 decimal-place machine without introducing an error of more than one unit in the sixth decimal place.

2.14 BOUNDS FOR THE NORMS

Another estimate of the error in the ser of characteristic volues will be obtained if we compare the
norm of the originally given matrix A with the norm of the matrix A% 72 ” in triple diagonal form. This
comparison is also required to discover the scaling needed to guarantee that every calculated quantity
remains in range. Surprisingly, it leads to bounds for the error in a single characteristic root which may
for values of # as small as 40 be even better than the estimates based on the results of Lidskii.

As in our previous estimates, we may use for comparison with the (computed) digital matrix A" 17 the
matrix B17V () for either 8 = 01.]. or 0 = o (cf., (2.8.1)).
Since the norm is invariant under an (exact) orthogonal congruence,

(214.1) NBEVHA)] = (a1 iy |

Moreover, our earlier error bounds refer to elements of the matrix E¥/(8), which is zero except for certain
elements in the ith and jth rows and columns, where

(2.14.2) ATV gitVig) = Ef(E)

The friangle inequality for vectors with n? components gives, for arbitrary matrices My and M, the well-

known norm inequality

(2.14.3) NM) = NMy = M, + M) < NIMy = M) + N(My)
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and since N(M) = N{-M) ,

(2.14.4) IN(M,) — NM)| < N(M ~ M) .
Using (2.14.1),
(2.14.5) IN@ATTVT) - N(AFTVITY < NIZETVT < BETVA(O] = NLEF(O) .

The digital equivalent of (1.3.12), namely,
(2.14.6) AT - AT fori =2,3, vo., n -2,
now gives ~
(2.14.7) N(A" ™2™ — N(A) = 5 i INGAETVA) = N(AFTV TN

i=2 j=i+]

and hence
(2.14.8) IN(A”72 ™)~ N(A)]| < nz1 f; NLE#(6)] .

i=2 j=it+l

To obtain a bound for N(E¥), we write, using Him1 3 = B By Bia and By S p* and referring to (2.2.2),

(2.14.9) NXEY) < 2{u2 ol P22+ B Ue, ) x (ep,.)zl} .
p=it
2]

The (n — i — 1) component vectors €, . and €t b= i+, .., i=1ji+1,...,n, have, by the dis-

pi
cussion of §2.9 (cf., in particular, {2.9.8) and (2.9.10)), lengths bounded by the length of the sum of the

vectors l'&'pilg(‘é’o), IEM.]S(E) and 2¢.(1, 1, ..., 1), Hence,

(21410 |L(e,)? ]2

A

S(Eo)[zlapiiz]vz + 8(3)[2'5,,,-‘2] /2 2egln ~ i - ])1/2
lalE(Zy) + IBIEG) + 26x(n — i ~ D2,

and (cf., (2.9.10)) o? + B2 < 1. We therefore obtain

(2.14.11) [E(e,22]V2 < [E%ey) + €3] V2 4 260n ~ i = DV2,

iIA

and the same bound is valid for[Z(ep’.)zj 172,

Abbreviating
(2.14.12) (€2, + g2 - €

and substituting from Table 1 and (2.14.11) in (2,14.9),

(2.14.13)  N(E%)

A

2'/2{(8 +26)? (k-4 ].)2 + 22.008€ + 4.852¢,)2

£2[8 4l — i = DV 226|212,
or
(2.14.14)  N(EH) < 2{(2€x)2(n i e 1) 42268 — i = 12

o o ] 1 1/2
+[B2 4 20088 + 4852607 + € + 2607 -l 2]}

50



Since this bound does not depend on j, one summation in (2.14.8) is at once performed, and

n=1
(2.14.15) NE2m N 5§ 2n -~ 4.2
i=2

’

or puttingn — i -~ 1 = £k,

_ - n=3
(2.14.16)  |N(A”727) ~ N(A)| < de, oG+ D+ k24 V2 2 46 Slgrm)
k=0
where )
=
Y
and

(2.14.17) o= (2€X)"2[82 + (2.0085 + 4.852¢,)? 4«%(8 + 26y)? +_;.(,11._, 7.)2] ,
and § is the function introduced in (2.13.4). As before, S(g,r,n) < S (q,7,7) and
(2.14.18) N(A) = degSlgrmn) < NAP2 ") < N(A) + deg Silgmm)
where the closed form of the integral $,(g,7,7) can be calculated from (2.13.6) and the values of ¢ and r are
those obtained from (2.14.17) and Table 1 or, for the ORACLE, from Table 2 of §2.12.

For the ORACLE, using only the 7, bounds,

(2.14.19) g = 9.26 and r = 202,363 when E’o = c ,
and
(2.14.20) g = 4.30 and r = 82.702 when Ty = c*,

Tabulating the B%(4¢x)S (g,7,7) = 25 (q,7,n), as given by (2.13.6 and 7), which reduce to
(2.14.21)  5(9.26, 02363, ) = (0.4n — 3.241n"/IN3/2 — 28,287 (v3/% - 2,878.701)

+ 131.096 [4m'/2n1/2 £ 18.52(N1/2 — 14.225)

NV2 L ph/2 4,63

+ 723,705 In
18.855

and
(2.14.22) N = m+ 926m"2 4+ 202.363 ,

when &4 = &, and fo

(2.14.23)  5,(4.30, 82.702, n) = (0.dm — 1.505x'/2N3/2 - 15,994(N%/2 - 752.097)

+ 28.454 [ 4m "/ 2N1/2 4 8.60(NV/2 ~ 9,094)

1/2 1/2
N 2,15
+ 312,318 In : tr R }

11.244

and
(2.14.24) N = m+ 430m /2 ¢ 82.702 ,

when €, = ©*, we get Table 5,
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TABLE 5

ZﬁSSl (qlrln) n-5/2(2[3551 (qlrln))
0 = J..
1
Esfimote]s EO - EO -
m + 2 =n ¢ c* c c*
40 21,944 16,763 2.169 1,645
100 180,529 131,585 1.806 1.316
Asymptotically 0.8 0.8

2.15 THE SUM OF SQUARES OF ERRORS IN THE CHARACTERISTIC VALUES

We now apply the results of the last section to obtain an upper bound for the sum of squares of the

errors in the characteristic values. Let )\;2, a=1 2 ..., nbe the characteristic values, arranged in

any fixed order, of the given digital matrix A=A'2 Ordering the characteristic values )\’;1’1 iof AT-T7

in o suitable fashion relative to those of Af-Vi- ! we can set
Y et g
(2.15.1) A-Vi o N = ¢if
and will have
(2.15.2) Y (9% < NEETO)
a=1
by (2.14.2), (2.1.6), and the fact that the characteristic values of the matrix B:=17(0) are the same as
those of the matrix Ai=V7=V o which it is orthogonally congruent. Summing equations (2.15.1),

-2 12 23, 424 (2
(2.15.3) D S L - S I

Ta

A PR S

+ (ﬁ';“‘" , fora = 1,2, ...,n.

In (2.14.8) and (2.14.16), we obtained an upper bound for the sum of the upper bounds, N(E'T), of the

lengths of the 5(n ~ 2)(n — 1) vectors &7 and can therefore write, af once,

a=]

1/2
n
(2.15.4) {)_“ (\n-27 - Aa)z} < 4€S(grm)

with ¢ ond r again given by (2.14.17). Of course S{q,7,n) can be replaced by its upper bound SI(q,r,n), as
in the closed formula (2.13.6).

Since A A was used to denote the maximum alteration in any one root,

(2.15.5) A‘/\ < 4€X5(q,r,7z) .
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Hence the values of 4¢ S (q,7,7) tabulated at the end of the last paragraph dlso serve to give an upper
bound for A A,

This upper bound for A A should be expected to be less precise than the corresponding one found in
§ 2.13, since it is based on the pessimistic supposition that the entire error is concentrated on a single
root. Surprisingly, the asympiotic value of the bound for the square root of the sum of the squares of the
errors in the characteristic values is 0‘8725/26‘5 {for both & and ©*), whereas for a single characteristic
value, our use of Lidskii's theorem gave the asymptotic error bound ].3424715/2f3"5 for ¢ and
1.004n3/23=5 for T*,

The greater relative efficiency of the bounds based on the norm appears to be due to the possibility
that at any single inductive step (from Af=17=V o Ai=1 7y the error may very well be concentrated on
a single one of the roots and that we are unable to give really effective guarantees that the same root
will not be affected at each step. The nature of the algorithm, dealing as it does with a matrix of smaller
size after each step, makes it appear highly unlikely that any such accumulation of error on a single root
will occur, ‘and we are accordingly inclined to believe that our guaranteed error bounds are in fact very
much larger than the actual errors which can occur. Additional hand computation to compare the bounds
for A M as given in this section with those of the preceding section does not seem worthwhile, but
when the ORACLE is available for such a computation, the two error bounds may be calculated (from the
sum formula) and their minimum tabulated for the values of » as lorge as are likely to be actually used

in practice,

2.16 SCALING REQUIREMENT

In the entire discussion above, we assumed that the computation began with a matrix A with elements
which were not only digital but were small enough so that at no stage in the computation did any calcu-

lated element X violate the requirement ~1 < ¥ < +1. Even the stronger requirement that

(2.16.1) N(AT=TT) <
was needed for our determination of error bounds.
Despite the existence of an implicit assumption, it is easy to look back over the description of the

computation and to see that the scaling requirement
(2.16.2) N(A) < 1 = 4e.S(grn) ,

gives ex post facto justification for our various conclusions and, in particular, guarantees that {2.16.1)
will hold for all the computed matrices and that every calculated quantity will lie in range.

In practice, one will not want to calculate the norm, since this invelves the extraction of a square
root, and one will not form the sum of the squares of the elements exactly, since this would require

double-precision methods. Hence, we suppose that

7
(2.16.3) Y a; x @, < (1 ~ 4eS(grm)]? - n?e ,
i j=1
where the left member is calculated by the machine and is compared with the right member, which-is
supposed precomputed (for a given order z and a machine of specified characterization) and recorded,

perhaps by using the integral form §, of the upper bound in place of S. If the test for proper scaling is
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to be carried out on the machine, it is of course necessary to exercise due care to avoid having the sum
in the left member grow out of bounds undetected. Since one will ordinarily record only the elements of

A on and above the diagonal, it may sometimes be convenient to impose the more stringent condition

- - 1 1
(2.16.4) Z a, x @ < -f[] - 4€x5(qﬂ,n)]2 - _2_”25)(

i<y

rather than to form the more accurate expression

1
2

a; x 3; + F 4 X o
1 i<j

(2.16.5)

ToR

H

Where one is not working near the limits of accuracy obtainable, the required scaling can even be ac-
complished by hand or machine methods by the device of counting the number, say n,, of the Zil.]. with

numerical values between B~7 and B~ ~! and, overestimating each of the elements, requiring that

k
(2.16.6) Y 28792 < [1 ~ 4¢S(grm1? ,

=1

where either £ = s ~ 1 or n, is the number of Ez‘j with numerical value less than B'k (and not neces-

sarily > g=%~1),

2,177 NUMBER OF OPERATIONS REQUIRED, TIME ESTIMATES

Since the time required to multiply or divide two numbers will normally be much longer than that
needed to add or subtract them, it is usual and proper to give rough estimates of the length of time re-
quired for a computation by counting only the multiplications and neglecting the usually much less fre-
quent divisions and the more rapidly performed additions and subiractions. The actual computation will
also involve a rather large number of operations which can be classified loosely as logical in nature
(storing numbers, computation of variables governing inductive processes, etc.). With the current design
of machines, computations involving extensive sorting or other operations involving combinatory analysis
are especially onerous, difficult to code, and time consuming. It is one of the advantages of the method
under discussion that it does not require anything analogous to the determination of the numerically
largest nondiagonal element and so avoids this and all other lengthy sorting operations. We can therefore
reasonably base our time estimates on multiplications and divisions alone and depend on multiplying the
time of these operations by two to allow for the additions and logical operations.

Very much more serious than the omission of time allowances for additions, subtractions, and logical
operations is the failure to estimate the time needed to use an external storage during the course of the
computation, as would be required for a large matrix. A method, in use at the Institute for Advanced
Study, based on the iterative use of plane rotations to obtain a diagonal form (cf.,[4]),is applicable to
matrices of order < 18, using only the internal memory, This code also produces the characteristic
vectors, and if they are not required, our reduction to Jacobi form might very well be made to apply to
matrices of order at least as high as n = 36, since 53637 = 666, leaving 1024 — 666 = 358 storage

spaces for orders. The speeds of external memories vary widely, so we make no attempt to estimate the
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additional time required when the internal memory does not suffice, but we do wish to emphasize that
the following figures refer to what may be only o fraction of the total time in this case.t10)

After calculating ©; ond 5, we require only 4(z — i + 2) + 4 multiplications fo calculate the
27 - i+ 2) — 1 values for those elements of A'"! 7 which may be different from the corresponding
ones of A2 1771, For € and 5, two multiplications, two divisions, and a square root operation are required.
The square root operation is a sequence of computations R (3?1. -7 % EEi) + 2o0ra seqéjence
of operations usually taking less time than two divisions, (Note that * 2 is usually very fast, since it
is a right shift on binary machines.) A tedious discussion (which need not be given here) shows that for
the ORACLE, Householder's routine will always terminate with an Eq for ¢ < 14 when it is applied to
find the pseudo square root of a number 7 » . Since the sequence is terminated when it is calculated
that (?cq -7 % ?q) + 2 £ 0, we estimate a maximum duration of 30 division ﬂmes‘for extracting the root,
Hence the calculation of © and 5 will take at most two multiplications and 32 divisions. For &, two

€6

more divisions (one is 2", however) will be needed.

The multiplications and divisions in a single inductive step can therefore be estimated to require

no more than

(4(n ~ i) + 14l 7y + 347,

seconds, where Ty is the maximum time in seconds for one multiplication and 7. for one division, There

are {n - i) repetitions of the process before i is increased by one, Summing to get the total time required,

we have
n—1
¥ {[4@ =24 14 - N7y + 340z — ;)f@}
2
n—2
= [(4:2 + 14k) Ty + 34k7. ]
k=1

i

2
?(n - -~ D2e -+ 70 =Dl - W7y + 172 - )z - D7

i

~—;—~(n - D - Vldn + 157 + 5171 .

For the ORACLE, multiplication requires approximately zmillisecond and division about a third more.

Replacing 517, by 687y and taking 7 as a full millisecond to allow for additions and logical operations

as suggested above, we get the values in Table 6.

(m)lndeed, in the Mmstitute for Advanced Study code, the repeated caleculation of the norm for checking purposes

consumes more time than the basic computation, (Oral remark of H, H. Goldstine.)
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TABLE 6

Time to Reduce to Jacobi Form

Order of the 1
Given Matrix Qa“‘g‘(n - Dn - NY4bn + 83)107° seconds
10 3 seconds
20 19 seconds
30 55 seconds
40* 2 minutes
100* 26 minutes
1000* 15.7 days (of 24 hr)

*For matrices of order greater than about 36, the intemal memory will not suffice, and the estimates will re-
quire sharp upward revision, The reliability of present machines would probably not permit a matrix of order 1000

to be reduced in any reasonable times
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Chapter 3
NUMERICAL COMPUTATION OF THE CHARACTERISTIC VALUES

3.7 INTRODUCTION

The second stage of our computation is by no means uniquely determined by the first stage. What we
have accomplished so far is no more than the concentration of data implied by the replacing of a general
real symmetric (digital) mairix requiring 4#2(n + 1) numbers for its description by a new matrix, nearly
orthogonal congruent to the first, and having no more than 2z —~ 1 nonzero elements. Any method which
yields the characteristic values can now be applied to the calculated matrix $=4""27 whichis in Jacobi
form. Some methods will be unsuitable in that they make no effective use of the large numbers of zeros
among the components of S, Other methods con be expected to be quickened and facilitated by this fact.
This is especially true where storage in the internal memory of the computing machine of 2 — 1 numbers
is easy but La(n + 1) numbers cannot be so stored.

The method we present in detail here, for which we shall obtain guaranteed error bounds, appears to
have the following advantages: it is not based on the assumption that the matrix is positive definite
(or even that it is nonsingular); any given root or roots may be obtained individually without the necessity
of finding dll the roots (for example, the root or roots of smallest numerical value can be found as easily
as the largest); multiple roots facilitate rother than complicate the computation; it is feasible to determine
some or all of the roots to a limited accuracy, and to follow this, if desired, by a more precise evaluation
of certain ones; the accuracy is high and is independent of the order of the matrix (cf., (3.9.5)); and the
number of multiplications required is approximately proportional to the accuracy desired and to the square
rather than to the cube of the order of the matrix. An objection to the method ~ at least in the form

proposed — is that it requires scaling of numbers and so involves a floating-point technique.

3.2 INVERSION OF THE ERROR PROBLEM

Considered in broad terms, a method of computation should be regarded as an operator which is applied
to a selected one of a class of permissible M-component data vectors and which yields an ordered set of
N numbers, that is, a solution vector.'" This single-valued mapping of a region of the ‘‘data space”
onto some region of the ‘‘solution space’” is what we mean by a numerical method.

Along with the numerical method, one has o theoretical method which amounts to a single-valued
mapping of the same region of data space onto a region of the solution space which presumably also con-
tains the permitted digital approximate solution vectors. A striking difference between the numerical and
theoretical procedures is that the former maps only a finite number of data vectors onto only a finite
number of solution vectors, while it is of the very essence of a large class of theoretical solutions that

a continuous variation of the data vector is possible and leads to continuous variotion of the solution

vector. |t is also true that even when the theoretical operator has a many-valued inverse, it will usually

“)Strictly, orne will allow both M and N to vary and N may depend on both M and the particular data vector given.
Thus, if one calculates the real roots of a polynomial of degree M, the number N of these real roots will depend both
on M and on the values of the ccefficients, The distinction between a single method and a class of methods is

likely to be o matter of convenience and to be ussociated with a specific code written for the solution of a problem,
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be so that a continuous variation of the solution vector can be shown to lead to o continuous voriation of
each of the corresponding data vectors. (That is, perhaps after excluding exceptional loci of lower di-
mension, the complete inverse map of a suitable neighborhood of a solution vector is a nonoverlapping
set of neighborhoods of the corresponding data vectors.)

One of the reasons new methods seem to be needed to obtain satisfactory error analyses of numerical
methods appears to be this lack of continuity in the numerical operator which results from the discreteness
and which implies the lack of a significant topology in the data and solution spaces.

What we now propose as a device for the error analysis of certain types of computational methods is
this: replace the given (digital) data vector d by another data vector  * (not necessarily digital) which

is chosen to be near to d and to have the property that

(3.2.1 ) = Nd) =5,

the given solution vector, where &) is the theoretical operator and "l is its numerical approximant. The
error function, which should be a measure of the discreponcy between &(d) and L(d) = §, can be calculated
for ((d) and 5(4”), with full advantage now being taken of the continuity properties of <.

More explicitly, we suppose, given as a data vector the 2. digital numbers

@,i=1...,, the elements on the diagonal of §, Z],, i=hL ..., n =1,

il
(3.2.2) d: the elements in the (j, j + 1) positions, and i, a number the relation of which

to the roots A, is sought,

where S is a matrix in Jacobi form, however obtained. The computation, 11, will yield a single integer
s = N(d), or its digital counterpart 5 = sf37%, which is intended to be the number of nonnegative roots of
§ - jil . Evidently, a bound for the error in the integer s will be of little use, since if it is not zero it
will only be possible to conclude how many roots of § may be incorrectly located relative to fi without
having an estimate of how far the erroneously placed roots are from jz. It now proves feasible to find a
data vector d” = (alf,bjf,ﬁ) that is close to 4 and such that SHd?) = 5. 1f we now let S7= (5;]) be the matrix
with elements s 7. = a/, s].' 4= s]f+] ;= b;, and other Si’j =0, we can show that no root of S” can differ
from the corresponding one of S by more than a certain small quantity AyA, Then, since exactly s roots
of S are » [, at least s roots of S are 21 = Ay, and at least 7 — s roots of § are <+ A A, The com-
plete algorithm for obtaining all the roots then consists of obtaining the value of s for a sequence of

values of [, as is described in detail in §1.4 and 1.5,

3.3 THE RECURSION FORMULAS

The recursion formulas of Theorem 1.5 for a chain of principal minors of § — )\]n are now to be trans-
lated into a sequence of digital computations. The fact that the basic mathematical relation between
signature and the signs of the principal minors fails when two successive minors ore zero must be re-
flected in the computation. Moreover, two successive small values of the minors can occur at any place
in the sequence and will result in a loss of accuracy in the remaining terms if not compensated for by
scaling. DPespite these apparent sources of instability, we shall find that the signature of E“‘X]n (and
hence eventually the characteristic values of S) can be determined fo a high degree of accuracy by using

a limited type of floating-point operation,
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Observing that the nondiagonal elements

(3.3.1) by = S;ie1 = Sie1 s i=14L2 0 0,n-1,
enter the computation only in the form of their squares, we first calculate the complete 2s place square
of b,

- - -
(3.3.2) () = b, x x b,

and then shift this 2s place number to the left by a suitable number Bi of places (i.e., multiply it by
,8'81') and discard(?) all after the first s places to obtain a digital quantity 7, and a nonnegative integer

ﬁi that satisfies

(3.3.3) Bl < F, <1 and 0 < 52 - 5'51' 7, < B'S‘ﬂi ,

Wiﬂl

(3.3.4) 0 < B, <25 -1, ifb, £ 0
oY

(3.3.5) 7 = O ond B, = 2 ifh, =0 .

(Note that a guestion of tactics is involved here. For ;i = 0, the matrix is a direct sum of two
matrices, and the problem can be split info two problems for smaller matrices. While we are obliged
to respect fully this situation in specifying the details of the computation, we refrain from doing it
formally in advance, since the computation would still be affected by (sufficiently) small values of the
;i in much the same way as by a zero value, and no essential difficulty would be avoided, Alsc, memory
requirements are not severe and the solution is therefore not much facilitated by an explicit reduction
to two smaller problems.)

We eventually calculate the sequence of minors of § - X]n for a number of values of ;\, but for the
present restrict attention to a single value X = ;. Scaling as before, we have for the diagonal elements

a; ~ ; of § ~ ;]n,
(3.3.6) BV <) < Vlanda ~ 7 = B 15, + 08~

and, since we do not guarantee 13:‘ ~fg <1,

g =0 ifa, 20,
(3.3.7) -1 ga, £ s ~ 1 with

l()l <1 ifa,':‘] ’
or
(3.3.8) b; = 0, a; = s ifa, ~f=0.
When «; = ~1 and the (right) shift introduces an error, |0] = 0 or % for a binary machine, and a reasonable

round-off procedure could be used to get |f] < & for a decimal machine, but we do not assume this.

(Z)For ,31. = 0 this amounts to using unrounded multiplication,
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The exponent to be associated with zero in (3.3.5) and (3.3.8) is of course arbitrary, The values

chosen may ke convenient since the inequalities

(3.3.9) b2 - g™l 7, < msnf
and
(3.3.10) @ - @ < g

will certainly hold in all cases, and the maximum values of B; and a; occur when all the 25 and s binary
digits of (bi)z and @; — i, respectively, are zero,
Neglecting, for the moment, the possible occurrence of zero vaolues in the sequence of minors £ (S h

we substitute

m

(3.3.11) LGS = B
info the recursion formula
(3.3.12) i = @ = Dy - e, D,
and get
TP YT ~B. g .
(3’3.]3) m, ~ B az Hie 1 TH -p—i m_y - B Bia 12 Hy -éi..]mi_.2 .

Since we are interested only in the signs of the m;, we need to calculate and record only the differ-

ences between successive values of y1;; therefore, we introduce

(3.3.14) Vo= oy o= gy e with pgo= 0,

and write the formula for m in the two forms
(3.3.15) m, ~ B Z'(ﬁiml.m] - B i1 i']‘q'. m, 2)

Viti =B LB %Yo

R BT B Pimiin = 4ii1milg) -

In § 3.6, the corresponding digital computations are given in full detail, a choice between the two forms
being made so that the exponent inside the parentheses is nonnegative. Before doing this, however, we

consider the general question of scaling and the special precautions which need to be taken when one

or both of ;s and m;_, are zero.

2

3.4 SCALING AND THE DECOMPOSITION OF §

The determinants

(3.4.1) 1:(5S)

are used only to determine the number of changes of sign in the sequence

(3-4.2) ]l /‘I f2l"'l fn .

Each /; could therefore be multiplied independently by a positive factor without affecting this count.
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Since f; , and f; | are used together in the recursion formula for /;, the scale factor between successive
f; must be calculated and used except when one of the /; is zero, in which case the recursion formula
reduces fo a single term. We shall therefore actually calculate a sequence

y22

ey

-
= 8] ;
Figy s ey {_; e,

(3.4.3) 1 - p-s, g7, 87

where, however, we record only the relative scale factor v; = p; - p;.y ond the digital quantities 7,

with only 7; _, and m;_ | being retained in the memory while 7, is calculated.
Taking into account the possibility of rescaling the sequence of /, by an arbitrary positive factor

(which need not be a power of 3) whenever a zero occurs, we will have

(3.4.4) = B, i= leeiin,
with
(3.4.5) ny > 0 and n; , = n;

except where /., = O or [ = 0. Even this rather loose connection between the determinants /. and the
digital quantities i, must fail if the sequence /; contains consecufive zeros. This is the result of the
theorem connecting the signature of 5 - il with the number of changes of sign in (3.4.2) being invalid
if consecutive zeros occur. Neither can we permit (3.4.3) to contain consecutive zeros, since the re-
cursion formula could then yield only zeros for all the remaining terms of the sequence.

Despite these evidences of instability, the Jacobi form is so special that the difficulty is easily
evaded. Thusif/, | =0fori> 1is the first occurrence of a zero in the determinantal sequence, (3.3.12)

gives
(3.4.6) [ R LY

and /; = 0 only if -é;i“_] = 0, Hence, the chain of principal minors of a symmetric matrix in Jacobi form
can contain consecutive zeros f; = /; = 0 only if the matrix decomposes into a direct sum of a matrix
of order i — 1 and one of order n — i + 1. Since the number of characteristic values of a direct sum matrix
S = El + EZ greater than 7 is the sum of the numbers-for E] and 52, we need only to arrange that the
initial values be reinstoted whenever f,_, = ‘7’-1'..1 = 0. We therefore assume that (3.4.4) and (3.4.5) hold
under the condition thai the f; are the exact values of the minors of a submatrix of §7~ 7l , where 5°
is a symmetric mairix in Jacobi form with elements "‘near’’ those of S and which decompnses as S does
whenever both _{;ial = 0 and m;_; = 0. The essential step in the error andlysis is to find bounds for
the amount by which the elements of 5 must be changed to the elements of $7 so that (3.4.4) holds for
the digital 7, as calculated with the usual uncertainty due to round-off error. The presence of the scale
factors n, in (3.4.4) does not materially aid in the etror analysis, since we must make the digital re-

quirement analogous to (3.4.5), namely, »; > Ooand n;_; = n, except when 7, _; =0 orm; = 0,

3.5 THE DIGITAL FORMULAS WHEN ';i—2 = 0 OR %i-l =

As initial values of M; o M;_y and v;_, we agree to store

(3.5.1) m_y o= 0, mg = 1 ~ 7, and py = 0.
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With fi-2 = 0, the basic recursion formula reduces to

(3.5.2) fi- @ - Dy -

Since f._, # 0 can be assumed, the computed partial sequence

(3.5.3) 0 1 - B~ my oo ,;_5 = 0, m,_, £ 0

can be rescaled after the zero and extended to

(3.5.4) 0, 1 ~ B=5, @, ... ,m_o, =0 @, = om_4 1p;,

where we have introduced the digital sign function
1 - B~* if x
~(1 - B=%) it x

I

(3.5.5) 3(x) =

A IV

!

and where +p, = m,

cif i, _y 20 and P, = 7, if @, _, <0. (A more straightforward digital translation of

(3.5.2) would be to define 7, = o(7; ;) x p,, but there is no need to do the multiplication when the sign
of m,_, has already been ““sensed’’ by the machine and 7, or its negative can be as easily stored as
the value of 7i..)

The formal definition mechanized inthe code and assumed in the later error analysis is the following:

(it i _, = 0 (and necessarily I £ 0) ,
replace m, _, by m¥_, = ol@, _,)
(3.5.6) 2 and set i iz 0
m; o= by it <0
L alsoput v, = a,

Evidently we can even have 7, = 0, so it is appropriate to consider next the case 7, _, # 0, m;, ,=0.

The recursion formula reduces to
- )
. 2 ~ .
(3.5.7) o= =0, )0 % B TG0
For G,_, =0, ‘l;i_] = 0 and the matrix decomposes with ji a characteristic value of the submatrix

of the first i — 1 rows and columns of S. Then the computation should continue by dealing with the

minors of the matrix §2 = (qu) for p >4, g 2 i. This is accomplished by the definition:

itm, | = 0 (necessarily m,_, #£ 0) and 9,07 =0,
(3.5.8) replace ;4 by fn";*_, = 1 - B7%,
and setin, = P, v, = o, .

For ;9 £ 0, /; # 0 in (3.5.7) and the sequence can be rescaled after m; | = 0 by setting
(3'5-9) %i = 5("%}'_]/2‘_2) = —E(/[i_z) = ‘—E(ﬁ;i-—Z) ’

where ., is necessarily positive and f;_, has the same sign as i, _, by the inductive hypothesis
(3.4.4). Hence we define:
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iti, ; = 0(necessarily . _, # 0)

and 7, 1 # Ofnecessarily g, _;, > 0) ,

(3.5.10) ﬁ (1 - B-9) ifm_, >0,
set ﬁz‘i =
s f o= -
1~ 8 ﬂfmz’-z‘o.
_ leave v, = v, . since its value is irrelevant,

3.6 THE DIGITAL FORMULAS WHEN }?z'i__z # 0 AND 7'771._1 # 0

While it is necessary to provide in the code for the possibility that some #ii; shall be zero, in actual
fact this will happen for i > 0 only when i is, to within round-off errors, a characteristic value of a
principal minor of S formed from the first i rows and columns. The formulas of this section will therefore
be those usually employed in calcul ating the sequence.

To calculate {;; we must add the terms

G~ Wy % 6 F) e

i1 i I -

N

and

”‘(gi-l)zfi_z ~ “(/ig“ﬁi-].‘fiow) (/3~ui"2”i~2’—’;i~2) .

Since n, _, = n._,, it would be possible to compare the size of these terms and scale the larger to the
interval g-1 < |Z] < 1 before adding them. This refinement is unnecessary for accuracy, as our later
analysis will show. We have not even calculated and recorded the individual exponents p_yand g
and we do not know the value of n_y=n g Instead, we require 7, = ny_y =0, _ oS0 that when (3.4.4)
is substituted into the basic recursion formula (3.3.12) and Ziz. ~ i and (Zl.__])2 are replaced by their

digital approximants, we can divide through by n_ and obtain (3.3.15), which we rewrite as

o N2
PGy = BT )
witho, = v, ~ a whenp < 0,

(3.6.1) m, = < and

/ﬁ(/} ii)_imi—-] = i)

L witho, = v, + v, B;_ywhenp, = 0,
where
{3.6.2) p; = v,y o+ o, = By

The value of a, is determined directly by the machine as the number of shifts necessary to scale the
numerical valve of the guantity in parentheses to lie between 3~ and one, and then v, is determined
by the appropriate formula. Since many machines (and in particular, the ORACLE) can easily accumul ate
correctly the sum of two digital quantities and detect any overflow and scale for it, we permit o = -1

for a single right shift and so allow ~1 <0 <5 ~ 1. When the value of m; given by the formula is zero,

o, is indeterminate and so is Vi but this is appropriate since the computation of 7771.” from }ﬁl. =0 and

i,y involves, by (3.5.8) and (3.5.10), no use of the value of v
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The precise digital formulas are:

itp, < 0, let r,o= by xom;_y (ﬁi_] X m, 2) B .
(3.6.3) ) _ _ R
ifp, 2 O letr, = (p, x m;_,) #f TGy % Mo
(it # O0andp, < O,
1 1
setin, = f§ P r;and v, = 0, + &;,
where -1 < o, < s - landB~' < |7 < 1,
= ;= = i
ifr, # Oandp, > 0,
(3.6.4) < B o )
setm, = B' x riondy, = o, + L,y — v;_q .
where -1 < 0, < s -~ land [3’] < m <1,
ifr. = 0,
H
set iz, = 0 and leave v, = v, _,, since its value is irrelevant .

(In coding these formulas, a technical difficulty may intervene, as it does for the ORACLE, to
prevent a direct order to shift lpil places, since we have not guaranteed that |p.| <s. For the ORACLE,
orders for more than 63 shifts are reduced module 64 before they are performed and this could clearly
lead 1o a serious error, Since we desire that s or more shifts shall reduce the number to zero, or at any

rate o 37%, it seems simplest to examine |p | and replace p, by *sif |p;| shifts cannot be ordered.)

3.7 THE ALTERATION OF S TO §”

The subtraction of two terms of nearly equal size in calculating 7, can easily lead to an incorrect
determination of the sign of the corresponding minor of § - ’ﬂ]n. What we are able to show is that only
small changes in the elements @, and b]. of S are required to moke the calculated signs exactly correct

for a new matrix $" - /ﬂn, where

(3.7.1) $* = (s ) with 57 = 0if lp — qf > |
Sop = %
s’ = s/ = 6,
p pHl P+l p p

The computation of the seauence of 7, for a single choice of fi involves each @, and bi at most once.
This separation of the whole problem into parts in each of which a data number is used at most once
makes it possible to replace the round-off errors by alterations in the given constants.

The alteration of the elements Ei’bj to al.’,lvj’ is to be made sequentially so that to guarantee the sign

of 7. to be the same as that of the j-rowed principal minor of §” il we suppose @, ..., d
i 1

4 and

ba oo b, o have been previously altered to the corresponding primed quantities and that we have at

our disposal @ and b! A number of special cases must be considered because 7, may be cal cul ated

~1°

by one of the special rules of §3.5 or by the general rule of §3.6 and alsc because if either 7@, _,orm._,

64



was computed by a special rle, the following inductive assumption requires minor modification (typi-
cally, 1 — B~% is used where +1 should have been). It is, however, easy to see that the modifications
ina, and Zi~] which may be required in the general case dominate those for each of the special cases.
For the main step of the inductive proof we therefore suppose that ;g # 0, - £ 0, and that both
were computed directly rather than being obtained by a rescaling substitution as in (3.9.6, 8, or 10). The

inductive hypothesis is

(3.7.2) /.’=/3"‘fnfa]., forj=1,2,...0,i-1,
with

(3.7.3) n,_, = m_y > 0and v, | = p_, By

This implies

(3.7.4) (3.7.2) for j = i, n,y = My and v, = Biq

where the f].' satisfy (exactly) the recursion formula

(3.7.5) (2= a; ~ W/, - b V! i= e, i,

j-1! i e

in terms of the primed values of the matrix elements. We have the right to choose ai’,bi’_ e ond the

integral exponent —u, and are to show that, after dividing 3.7.5) for j = ibyn, , =n, ; =n,
- ; oy } -
(3.7.6) B im, = ) - @B Tm,_y - BB TR, .

where g, = v, + . , and 7, and v, are given by the rules {3.6.2, 3, and 4),
Hy i Hi i i

When 7, = 0, p; may have any value in the last equation, and this case may be subsummed in other
respects under the cases in which 7 # 0. From (3.6.3),

. — - = P;
ifp, <O, r, = D;m; ¢ = q;.4m; 0B g .
(3.7.7)

. - L, Py —
ifp, 20, r, =P, 0, " =~ Gyt Gy

= i
where the terms involving a right shift by |p | places contribute less than 87° to the error(3) ([10],
Eq. (2.22)), and so

(3.7.8) 79 < &x + B7% 14l < e+ B7°

Forming 7, from r, by left shifts introduces no error, but if 1 < [r,| <2, the single right shift (without
rounding) introduces a maximum error of no more than (8 ~ 1)57°~ 1 Hence,

) A ——

. - - - 0.
prl. < 0, m; = B z[pl. P P /711._2‘[)’ h+q,

(3.7.9) o p.
ifp; 2 0, Wy = BB, B - G A
where
ly]l Ui . -5 (e S w1
(3.7.10) a6 e BT s (B p .

(3)This is evident if we form the complete 25~ place product, shift the number to the right by |pi[ places,

filling in zeros after the /3 point, and then discard all after the first s places.
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Substituting from (3.7.9) in (3.7.6), after the latter has been multiplied by B'ui—ai gives,

4

- Pi -~ ol
(" Py~ B mia B
- 8" Haf ~ D, _y - gilp ’"‘b; )47, _, ifp, <0,
(3.7.11) < Y
B 'Bif gy~ Gt B
B; -
" - g7"ig z(a N,y - B AR, , ifp, >0 .

-G, -0,
Since |pz.| may be large, the entire error 8 'nor 8 ¢ must be absorbed by the choice of a/in the first
case and by the choice of bl  in the second case. Moreover, it is convenient to let

(3.7.12) b;-l = b, if p; < 0 and a; = g. if p; 2 0.

i=1 H =

In the first case

PicnPia1 . - = Pi=s -~
(3.7.13) BB ) - g 0, < BT L g BT,
by (3.3.9). Similarly, itp, 20,

I\
<

—-p;. a. _ o =0 it a,

(3.7.14) BB el - ) = B {< B~pimi-s < prs-l e e 1
hS ; ,

by (3.3.6) and (3.3.7). When p, <0, (3.7.11) will therefore be valid if when p; <0 we choose 4 so that
the terms B, 77,_; and (3 (af-— [)7,_, differ by the amount of the error terms, which are now bounded by
/:JM( gl + B s=1 Similarly, when p; 2 0, we are to choose b ; sothatg, m;_, is different from
P ’”](bi_;])znzi~2 by an amount not greoter than ﬁﬁ—ailé] + gl l?eplcxcmg P, by [3 @; = 1) when
a; 20 and by %@, ~ ) = 0p~=], with |9] < 1, when «; = -1 and replacingg, ; by 8 l-‘(oi_‘]fpms

an error term less than 87, we know that

a. _ _ -0, o -
Btlal—aji 4l £ B Tlal+ B7° 1 if p, <0,
(3.7.15)

BTGP = By ) 1l g BT AT #p,20 .

. ~ ~1
Using a; > -1, lm, 3l 2 B o, 2 -1, B,

> 0, and l’;z—i,.zl ZB"], the required alteration of @ and

f:)z-__] is to
(3.7.16) al = a; + 1, for p, < 0
or
(bi,—-l)2 = (—61'-1)2 + g;u] forp; 2 0,
where
(3.7.17) l“‘?il < B]"ai(éx + B..Sﬂ N B,.S_1) ,
or
(3.7.18) léi_ll < B-—,@i-l(€>< + B-—s-r] + B-s-1) )
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Taking €y = 3B8~5, the alterations in § required to make the calculated sequence of signs of the

minors exact satisfy:

laf =@ < 1287° ond b]_, = b, , ,
(3.7.19) B =12 <Jo -
al = d. and [(bi’__‘)2 - (bi_.‘)zl < 6p7%

and, when
la;—-'ﬁi] < 10608=° and bi’—l = b,

-1 7
(3.7.20) B = 10, 3 or ’
a] = @, and |(B7_)2 - (b,_)? < 10687° .

looking back at the source of the large error bound for B = 10, we see that it is basicallydue to the
crudeness of scaling by powers of 10. Thus, in (3.7.17), the factor f)’z in the right member could be re-
placed by 3 except when «; = ~1, and it is clear that the right shift to form 7, from @, ~ 7i is wasteful in
that o quantity lying between one and two has been scaled by dividing it by 8 = 10 rather than by 2. If
this right shift were performed with round off, the term (3 — ])/’3""""] in (3.7.10) is reduced to 53~°, and

this implies that

{3.7.21) \7)il < BUey + (1 4 B+ ﬁ'])f}'s] and iéi_]i < Bleg + (V+ 48 + ﬁ_l)ﬁ's} '
or, for 8 = 10,
. (3.7.22) 9, < 66087° and |£, 4| < 6657° .

The improvement in accuracy which is suggested by this improvement in error bound may well be illusory,
since we have to compute the sequence of signs for various values of I and, while some characteristic
values could be misplaced by an error in the signs of the in; for one 7, it is unlikely that the same emor
would be repeated for different values of i, It therefore seems likely that the entire computing process
we have detailed in this chapter is unnecessarily accurate and that in particular the rather time-consuming
scaling might be relaxed, For example, in a binary machine, three binary digits might be treated as a
unit and f thus effectively made equal to eight.

When o zero occurs in the sequence of values of Ei,fhe above consideraticns require re-examination,
Thus the computation of 77} by (3.5.6) gives the exactly correct value ﬁa](?il ~ [, except when o = -1,
and then altering a; by less than 7% will make ﬁ.—a]?}"] the value of the (1,1) element of §7— 1. This
is less than the change permitted by (3.7.17), which therefore continues to apply. The same conclusion
holds for the required change in u; whenever (3.5.6) is used to calculate 7, since the rescaling is by

17,2417 " ond, by (3.5.2),
(3.7.23) ™Y, =@ - E .
The proper rescaling of f; ;| for use in the computation of the correspondingly scaled /;,, would be

foam lin = l/,-_,["‘fz-_1 = 1,

Since +1 is not digital, + (1 — 87°) is used instead. This introduces a new eror of less than 7% in

one of the terms used to calculate 7, It is not necessary to increase the error bounds given, since

+1°
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in estimating the term in question we overestimated ‘777,'._2‘_‘ or lfrii_.ll"] as 3, whereas we could now

use the smaller bound (1 - B“S)"" for this factor,

Finally, inspection of the rules (3.5.8) and (3.5.10) shows that in all cases the bounds (3.7.17) and
(3.7.18) will hold.

3.8 BOUNDS FOR [b] ~ b]

Before determining the effect on the characteristic values of § of its alteration to 7, we need to

obtain a bound for 1191.' - ZI] from the bound for {(blf~])2 - (Zi_l) 2| given in (3.7.18). It will be essential

to use the fact that (&, _ ‘)2 has been scaled to

(3.8.1) 7, = BB"’"‘(ZZ._,)2 > B! .

Setting

(3.8.2) 2o g% 92 32 2 BAG 02 and 2 = gl
for nonnegative x and y, we have

(3.8.3) x2 — y2 = 2,

and hence

(3.8.4) x 2 2~ Z)V2 = (1 - f2]ymHVE x50 - B2

Since B,.120, (3.7.18) gives

1«2/31-

g < B
Ble, + p~s*1 + Bm==N .

By overestimating || under the assumptions € 8% <1, 2<B8< 10, and 7° < 10-4 1zl < (M + B~
< 0.0111 so that x > ¥(0.9889) /2 > 0.994y. This rough estimate of x now yields

(3.8.5) [z|B

1t

»~1(€x + ﬁ--sﬂ ¥ Bws--l)

A

(3.8.6) N Tl
o x + y 1.994y ) )
Hence

(1/2)5 -
(3.8.7) BT b L~ bl < 0.5028V2(¢ |,

or, using (3.7.18) and B;,_,20,
(3'8-8) lb' - Zi—'l‘ < 0.502B1/2(€x + BMS'” + ﬁ-—s—'l) .

i1
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3.9 ERROR BOUNDS FOR THE CALCULATED CHARACTERISTIC VALUES OF §

The number P(1) of changes of sign in the digital sequence 1~ f3-9, My, Ty v o s, M, is now known

to be exactly the number of characteristic values of $” which are >7. Also,

LA T 0 0

KR PR
0 7, 9, B . . 0
(3.9.1) §% -~ § = . . . . = E ,
0 oy Mmoo T 0
0 0 T

with

either 7_, = 0 and |T;Z.I < [:5‘2(€xﬁs + B+ ﬁ‘])ﬁ‘s ,
(3.9.2)

orn, = 0 and |7,_,| < 0.5028"2(e 85 + B + B-NB-°,

fori = 1,2,..., nas follows from (3.7.17) and (3.8.8).
Let A be a characteristic value of the error matrix £ and let x be a corresponding vector normalized
so that its component of maximum numerical value is +1, say x; = +1. Then the ith of the equations

Ex = Ax yields
(3.9.3) LI A A A A kA

1

Hence, using the maximum values of |Tl_~ |+ [7]i] and of [7;[ from (3.9.2),

(3.9.4) Al < (BZ + 05028V (.55 + B + BHBT

Since this inequality holds for each characteristic value of E, it holds for one of maximum numerical

value. Using the form of Lidskii's theorem stated in Corollary 2.1.2, we have the following theorem.

cr

computed from E and i by the rules (3.5.6), (3.5.8), (3.5.10), (3.6.2), (3.6.3), and (3.6.4), then ut least

P(p) characteristic values of § are equal to or greater than i ~ AN, and at least n — P(Ji) characteristic

THEOREM 3.9. If P(J) is the number of changes of sign in the sequence 1~ 75, gy g o

values of § are equal to or less than i + '1\2)\, where

(3.9.5) AN = (B2 + 050272 (e 5 + B+ BB
With €, = %[5,

(3.9.6) AN < I587° for B = 2 and AN < 1077687F for B = 10 .
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Whether or not one will accept as a maximum possible error 1077 units in the last significant figure
(for a decimal machine) will, of course, depend on the circumstances of the problem. For matrices of
order 20, Table 3 of §2.13 shows that the bound for the error in the second stage of the problem is about
one fourth of the minimum error bound obtained for the first stage. Moreover, it is siriking that Azx\ does
not depend on the order of the matrix so that once a matrix has been reduced to Jacobi form the size of
the matrix which can be treated is not limited by round-off error. It is clear that scaling by powers of 2
rather than by powers of 10 would reduce the error bound for a decimal machine to a figure comparable
to that obtained for a binary one. We refrain from carrying through the details, since it seems of greater
interest to contrast the efficiency (at least for the obtaining of error bounds) of binary scaling with that
of decimal scaling.

A second bound for the error can be obtained from the norin of the matrix [, since by (2.1.6) the

characteristic values of §”and §, /\i' and A, respectively, can be ordered so that

(3.9.7) YO - )7 < NYE)

From

(3.9.8) NYE) = ()2 + X (m)? + 27,_)2,
i=2

Inyl < B and (3.9.2), we get
(3.9.9) NAD) < (B2 + (n - DRHe P + B+ BNI(BETHZ,

since one easily shows that the maximum of (Tli)z + 2(7;._,)2 is obtained for the case 7., = 0. Hence,

simplifying the formula by using the same upper bound for |77]\ as for the other 7,
e 1/2 2 s . L -1 p-s
(3.9.10) N(E) < n'f (exﬁ s B+ BB
Taking £p° = L, as usual,

(3.9.11)  N(E) < 12212275 for B = 2 and NE) < 10602721075 for S = 10 .

3.10 SCALING REQUIREMENT FOR;

The only normalization we have required so far in this chapter is that the elements of § be digital.

. Two

In the actual computation of the characteristic values, we need to know a value of A > max A,
possibilities for A are the maximum of |6, 4| + |@,| + |b,| and the norm of the matrix S. The former is
easily calculated and is certainly <3. Since it would be quite inconvenient to use a value of A greater

than one, we shall suppose that either

(3.10.1) o, o+ 1@l + 15 < 1 fori = 1,2 ... ,n,
with Zo =0 = Zn, or that

n ‘ nel _
(3.10.2) YL@ 2k () <

i=1 i=1

The latter condition will be automatically fulfilled if S has been obtained by the reduction to Jocobi

form of a matrix normalized as is required in §2,16. Then we can take A = + 1.
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3.11 TIME ESTIMATES

Counting two multiplications for a single use of the recursion formula to calculate m; and allowing
a third multiplication time to perform the scaling operations which may be required, 3» multiplication
times are required for the computation of each sequence of 7. By (1.4.10), no more than 1+ nL
repetitions of the sequence will be needed, where L is the least integer > log,(A/8) and & is the length
of the interval into which the machine is required to place each characteristic value.

Taking A = 1, appropriate values of & for a 39-place binary machine (such as the ORACLE) would
be &= 2-20 230 4 235 and for an 1l-place decimal machine, they would be 5= 10-6 or 10-8,
Allowing a millisecond for each multiplication time to cover additions and logical operations, as is

roughly appropriate when the true multiplication time is about a half millisecond, we get Table 7.

TABLE 7. TIME IN SECONDS FOR THE COMPUTATION TO AN ACCURACY & OF THE n CHARACTERISTIC
VALUES OF A MATRIX GIVEN IN NORMALIZED JACOBI FORM: 3n(1 + nl)

n
o 10 20 30 40 100
2-20 6 24 54 96 600
2-30 9 36 81 144 900
2-35 11 42 95 168 1050
10-¢ 6 24 54 96 600
10-8 8 32 73 130 810

Added in proof January 15, 1954,

The method discussed in this report is now in use on the UNIVAC at the AEC Computing Facility of
New York University. The codes were written by J. H. Alexander and W. Miranker. As a test, the char
acteristic values of a symmetric circulant of order 32 and without zero components, but with multiple
roots, were found. The maximum error in any root was 18 units in the last (eleventh) decimadl place. The
errors in XA, and E(Ai)z were 2.10~ 1! and < 21.10~ 11, respectively.

The existing codes for the UNIVAC will also calculate characteristic vectors but it is clear that they
will fail for problems for which some of the & of the Jacobi form are *'smail.”’ Another method of finding
the characteristic vectors, when the Jacobi form and its characteristic values ore known, has been de-

vised and is now under study.
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Appendix 1
BOUNDS FOR THE NORM OF A SUM OF TWO MATRICES IN TERMS OF
THEIR CHARACTERISTIC VALUES

Since the characteristic values of ~T7AT, for T orthogonal, are the negatives of the characteristic

values of A, the result of (2.1.6) will be established if we prove the following somewhat stronger theorem.

THEOREM Al. I/ A and B are real symmetric matrices with characteristic values a; and b,

i=1...,mn respectively, and if C = A + B, then

~ 172 1/2

7 n

(AL1) min Z (a, + bﬂ(i))2 < N3(C) < max Z (a, + bﬂ(i))‘2 ,
i=1 i=1

where the minimum and maximum refer to the n! permutations n(i)of 1, 2, . .., n.

Proof of the Theorem. Writing A = TJA T and B = UgB U, for Ty and U, orthogonal,
Ay = lldiaglay, ap o0, a)ll and By = Hdiag (bq, &g« v vy b
NY(C)is one of the values assumed by the function
(AL2) NUT’AGT + U’BgU) = NAT Ay + V'BWIT] = NHAy + V'BgV)
where T and U are allowed to vary independently over the manifold of all orthogonal matrices so that

V = UT'~Vis also an arbitrary orthogonal matrix. Hence, N2(C) lies between the minimum and maximum

values of

i

”
N¥4g) + NAV'BGV) + F (A, (V'ByV),
)7 =1

(AL3) N4y + V’ByV)

i

n

NHA) + NABY) + X (A,),; (V'BV),;
i=1

since the norm is unchanged under an orthogonal congruence and A is diagonal.

Grouping together the equal characteristic values of A, we may write A, as a direct sum in the form
(A].4) Ao = Z @ a;]na ’
a

where « aé for a # B, and En_ = n. We now proceed to show that if V'B,V is not a direct sum of the
same form as Ay then N2(A0 + V'BOV) does not have an extreme value. Let the (7,j) element of V’BOV
be different from zero where the ith row is a row of the matrix of order n_and j refers to nﬁfor a £ B.
Then we consider N2(A0 + W'BoW), where W = VRZ.]. and Ri]. is the rotation (1.3.1) affecting only the
ith and jth rows and columns. The only terms in the last member of (A1.3) which are changed when V is

replaced by W are

(AL.5) a{V'BoV); + ag(V'BgV),,
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and, for ¥, this becomes, by (1.3.7) ond (1.3.8),
(AL6) (@, cos?0 + agy sin? Ok,

; + la, sin2 0 + ag cos:z@)kj]. + (sin 20) (@ ~ aB)k

ij

where (V'Bov)pq =k Hence,

pe’

d
(AL7) —d—é-[N:Z(A0 + WBWI = (a, - “;S)[(kj,‘ - k;;)sin 20 + 21ai]- cos 241 .

For @ = 0, this reduces to 2(a, ~ aﬁ)kﬁ which is different from zero, since we assumed ki’.;éo with
a # B so that a, £ ag. It follows that N2(A0 + W'B W) cannot have a maximum or minimum value for
W=V,

Assuming now that A, is written as o direct sum, as in (Al.4), and that VB,V decomposes into a

direct sum in the same way, if R = 3 @ R is a direct sum of rotation matrices of sizes n,
N4, + V’ByV) = NAR(Ay + V'BgVIRl = NHA, + R'(V'ByV)R] ,

and, for a suitable choice of the R, V’B,V can be replaced by the diagonal matrix R*(V’B V)R without
changing the value of the norm function, the extreme values of which are being sought. It follows that
the maximum and minimum values of NZ(T'AOT + U’BgU) are attained for one of the n! numbers

Nl’(Ao + P’ByP), where P is a permutation matrix, and the theorem follows.
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Appendix 2
MEANING OF THE SYMBOLS USED IN THE MNEMONIC CODES

A full gccount of the symbolism of either mnemonic or machine coding for the ORACLE would involve
a great many details of the construction and operation of the machine and would be so long as to be
quite inappropriate here. This information can be obtained from memorandums issued by the Mathematics
Panel of the Oak Ridge National Laboratory. The following discussion presupposes familiarity with the
general mode of operation of an automatically sequenced high-speed digital computer and is limited to
those features of the notation believed necessary to an understanding of the codes in the following
appendix.

The arithmetic unit of the ORACLE contains two registers, called the accumulator (=A or Acc) and
the Q register. Addition and subtraction orders permit all eight combinations of holding or clearing the
accumulator before adding to or subtracting from it either the number or the magnitude of the number in

the indicated memory location. The symbols are:

H & = hold the content of A and add to it the number at 4,

Hm a = hold the content of A and add fo it the magnitude of the number at q,

H- a = hold the content of A and add to it the negative of the number at 4,

H-~m a = hold the content of A and add to it the negative of the magnitude of the number at «,

The orders'C, Cm, C~, and C—~m are obtained by replacing the word ““hold"’ by *‘clear.”

) Multiplication involves both the number previously stored in Q ond the number stored at the address
indicated in the M or Mr order. The M order gives the correct 2s-place product in A and Q, but the part
in Q uses the sign digit position of Q for the (s + 1) digit of the product, Where the complete 2s-place
product is used in the sequel, the A and Q registers are treated as a single (2s + 1)-place register and,
after suitable shifting to scale the product, only the part in A is finally stored. Under Mr, the rounded
product is at once available in A,

The only division order we use is denoted by D. It produces the quotient of the number in A by the
number at the given address ond positions the quotient in Q (not in A} in a form suitable for immediate
storage,

The multiplication and division orders used are:

M a = produce the 2s-place product of the number in Q by the number ot address 4,
Mr @ = multiply, and round to s ploces, the number in Q by the number at «,
D a = divide the number in A by the number at address a (quotient is in Q).

The ORACLE has an elaborate set of shift orders of which only three are of interest here. The right

shift orders are:

R -p- = produce in A 27P (contents of A) and drop dll places after the first s. (Note: the signis
always unchanged under an R order, so even R -40- applied to a negative number gives ~2~37
and not zero.)

Rq -p- = regarding A ond Q as an extended (2s + 1)-place register AQ, produce 2=P (contents of AQ),

drop the last p places, ond record in AQ.
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For the left-shift order L, it becomes important to note that the accumulator A actually has 41 toggles:
one toggle, A_,, used in detecting overflow, one sign digit toggle, A, and 39 “place’ toggles A,
i =1, ..., 39 If the initial contents of these are [a_ja,a; ... a0 witha,=0o0r 1,
L -p- = produce inA[ctp__] ap OLPH . .a3900. ..o,

Thus L may well alter the sign of the number in A, Indeed, L -2- applied to -1 in A gives zero in A,
We shall use L in two essentially distinct ways: to shiff addresses ond as a device for scaling a number
by a power of 2. The order L. -20- shifts the oddress of a right order into position for substitution as the
address of a left order. When we use L for scaling, we will have a_; = ag (which is always true if A
is filled directly from the memory by a '‘clear’’ order), and L -p- will produce the number 2P (contents of

A) as the new number in A as long as a_, = a, continues to be true. When a_, # a;, we detect this

‘

situation by the ‘‘setting of the overflow toggle,’” order R -1-, and obtain a scaled number beginning with
either a =0, a; = Tor with a; =1, a, =0, Since the content of A is interpreted as

39
-y + r a, 270,
i=1
a number in A will be > fwhen ay=0, a;=1and will be g - % when a=1,a,=0.
The transfer orders may be unconditional, conditional on the sign of the number in the accumulator

(+ if 20 or — if <0), or conditional on the setting of the overflow toggle (y = yes or n = no) and may call

for the execution of either the right or left order of the indicated address (r or ). The right orders are:

Tr a = execute next the right order at address g4,

T+ra = if the number in Ais > 0, execute etc.,

T—ra = if the number in A is <0, execute etc,,

Tnr a = if the overflow toggle has not been set, execute etc.,
Tyr a = if the overflow toggle has been set, execute ete.

The left orders are obtained by replacing r by £ and right by left., There is also a stall order:
NTr — = proceed to the next order in sequence (right precedes left).

The address of such a ‘‘no transfer’’

order is irrelevant and is generally so indicated in the following
codes, If the condition of a conditional transfer order is not satisfied, the machine of course proceeds to
execute the next order in sequence.
There are 16 substitution orders from A to the memory and a similar set from Q. Denoting the ten
toggles oy oy ... a4 by I, ajg 07+ o» Ay by L, agp ayy o v aygby lll,and aggasy ... agy bylv,
O0cla a = replace part 1l at memory position a by part Il of the accumulator and part IV at @ by part
IV of the accumulator,
Similarly, 000a « uses only part IV of the accumulator {which retains its initial value), while acoa a
substitutes the entire contents of A (except that toggle A_, is never involved in the substitutions) into
the memory at address a, .
The substitutions from Q are denoted similarly, with q replacing a. To put the number at Q into

position a, the order is qqaq a. To bring the number at # into Q the order is Q a.

The command part of an order is always denoted in machine code by two sexadecimal symbols and
the address by three, whereas I, HI, [Il, and IV are each ten binary symbols which equal two and one-half

sexadecimal symbols. This would appear to make it difficult to modify the code by substitution orders,
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and, indeed, complications do arise when the machine operates with its full 2048-word memory or with a
testing feature called *‘bredkpoint,”” In the following codes, neither of these is done; so the initial
symbol of an address is always 0, 1, 2, or 3, and hence no more than ten binary places are ever required
to specify an address. The symbols I, Il, I, IV may therefore, for present purposes, be understood to
denote command of left order, address of left order, command of right order, and address of right order,
respectively,

The notation of the following mnemonic codes is intended to make possible the reading of the code
with as little thought of the machine as is consistent with the requirement that the translation into ma-
chine code shall be essentially routine, (It is more than routine if the storage is consolidated, that is,
if in the assignment of storage a single memory location is used to store different quantities at different
times.) We therefore write **H V)"’ and understand it to mean “‘add the number V, to the number in the
accumulator,””  Since, in the code of Appendix 3, V, is assigned memory position 100 (= 256, decimal)
and H is 20 in machine code, this order becomes 20 100 and is inserted in the memory as the half word
0010 0000 0001 0000 0000, Similarly, *aaca T5" is read ‘‘substitute (the number in the) accumulator for
TSH and is translated into sexadecimal **5F 12F'* or binary 0101 1111 0001 0010 1111, When it becomes
necessary to refer explicitly to the memory position at which a number is stored, we write M( ); thus,

M(V,) = 100 ond M(T'g) = 12F.

For several purposes, and in particular for treating integral variables such as counting indices, it is

convenient to introduce the notation:
o=k 2719, k¥ = B 2739 and kY = & 2719 4+ k2739
Sometimes, for convenience in substitution, addresses are stored as *M( )*. Thus, since, in Appendix 3,
EH is stored at 1A0, M(E.‘ .') = 1A0 and *M(ﬁ1 ])* is 001A0 GO1AQ.
If an address is supplied elsewhere in the code, we normally indicate this irrelevance by a dash and

understand zeros to be supplied in the initial code.
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Appendix 3
FL.OW DIAGRAM, MEMORY CHART, AND CODE FOR THE REDUCTION OF A
REAL SYMMETRIC MATRIX TO JACOB! FORM

The following code is designed to be self-restoring in the sense thot it need not be reinserted into
the memory before o second problem is solved, All that is necessary is that the new matrix elements
be read in, beginning at 1A0, the order of the matrix be inserted in Q in the form *n* (= n 2=17 4+ n 2-39),
and the control be started at 005, If o fast input were available, this feature couvld be sacrificed and
the code substantially shortened,

A part of the flow diagram refers to tests which are essentially for malfunction of the machine, since
they are not otherwise required. In particular, the {(approximate) constancy of the norm could be tested
only at the beginning and the end rather than after each plane rotation, as in the present code, with a
saving of about one-half the present computation time, The total time, however, is about 8 minutes for
a matrix of order 32, which is as large as the present code will handle.

The limitation 7 < 32 permits the precomputation and storage of the addresses of the elements in
the two columns, the I and J, columns, affected by the rotation. These are calculated in advance of

the manipulations involved in the actual rotation and are stored for convenience in the form *M(Ei] )* .
1

beginning at 160 for the ], column and, similarly, beginning ot 180 for the J, column. The addresses of
the ], column thus need not be recomputed every time ], is increased by one. By sacrificing this
feature, which allocates 2n storage positions, consolidating other storage, and simplifying the code by
dropping the self-preparatory feature, matrices of order » < 40 could probably be treated. It would
also be desirable to include the calculation of the preduct of the ““plane’’ rotation motrices, but then
one could have only n < 23 (about), since Ln(n + 1) + n? spaces are required for the original matrix and

its transforming orthogonal matrix,
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REDUCTION OF A REAL SYMMETRIC MATRIX TO JACOBI FORM

Mnemonic Code

_ IGHT ORDER = OX
: EFT ORDEIIi: - RIGHT ORDE - Ag;oGi,:AcéiT LB - EXPLANATION
FF FFF FF FFF 000 ~1*
00 001 00 001 1 *1x
40 000 00 000 2 2=
00 000 00 000 3 0
80 000 00 000 4 -1
Start—~qqag | *n* T4 017 5 05 Enter with *a* in Q and store (at 110)
H *n* 0o0a A, 6 A, = [001A001A0]
H- | #1% 0aba A, 7 = M@,
C - H *]* 8 Ayy ="M@ )"
A = "M@, )"
000 | A, Q Ay, 9 A, = "M@, )"
M *n* Rq -2- A = *(1A0 + $n( + 1) ~ 1)*
0qC0 AM 000a AL B
c A H- 1 C
H AL 0ada AL, D
c *]* Oafla I* E Set J, =1
C A Oade Sy F
0000 | S, z, 010 Sy =Q, @, M, 7,
aoa | 052 z, 1 $,=C, @, H T,
00ca | 068 A, 2 7,052 restores “*first fime anly””
storage of trace in R,
0ala | S, Oala 061 3 Z, 068 similarly for (norm)? ~ R,
C Al Qufa Ss 4 S;=Q dyy Mo dy,
0000 | S, 7 040 5 Z: ) g: z:: ::2 EO‘O'(’)
6
aaoa AL 7
A, T 006 8
9
A
B Correction at 017 clears A, so 00D will
c caleulate A, correctly
D
E
F
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Note: in complex expressions ?ZPQ is written (P, Q)

FT ORDER RIGHT O B
ILE - = e RDERN Rl - OXR EXPLANATION
c g H D, 020 20 B, = [0016000160]
T 000 024 1 = MM, g9
0:00 | 0B9 H «32+ 2 TPy - ,
=*"MOM -1, T
000a | 027 0004 0BA 3
C 0600 070 4 Il = address at which M(J, ~ 1, ],) is
0400 072 000 073 5 stored in both [l and |V
000 | 079 000 07C 6
0400 | O7F C 7 IV = address af which M(J, ~ 1, J,) is
0200 | 071 0400 079 8 stored in both il and |V
0200 | 07C 000 07E 9
000 | 072 0002 074 A
c *J H D, B D, = [0018000180]
He | e i T, c = *M{M(1, 7 )%)*
C oK H D, D Tg = :M(im(fr 12):):
e - e T c Ty, = *M(*M(iv ]])*)*
5 Tio = "MEMU o 1))
H *32* eleleted Tio F
C T, 0400 031 030
C 000 032 1
0a0a | Y, C 2 Y, = M, )
asan | X, c T 3 6= Uz J)
0400 | 035 NTr 4
C 000 036 5
000 | Y, C 6 Y, =M g
aaa | Xy ¢ Tio 7 Xa=UnJy)
0c00 | 039 NTr 8
C 000a. 03A 9
0o | Y, C A Yo = M, T
Tetele! 5 LB 070 B Xs= Uy 1y
C
D
E
F
(o) ~c g H k 040 40 L1,
OcQa | *J.* Oufa “I.* 1 Ty =T but cf. 046
0002 | v, H~ ** 2 Vy=1,*
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C B
II_EFT ORDEII?I _ RIGHT ORI)ERW Aglcéil?d(éif . oxR EXPLANATION
000z | v, C Z, 3 Vy=i*i=], - initially
000c | OF3 NTr 4 Z,=0,0,0, M(C,)
C 045 T 0EO— Add. Sub. 5
O 1, H ** 6 46 Jo+ 17,
Oafa | *],* 000a v, 7 V, =1,
C Z, 000a OF3 8 Z,=0,0,0 MC,)
C Iz H- *x 9
000a | v, NTr A V,=i* i=], ~ linitially
C 048 T4 0E0— Add, Sub. B
C 0 acaa T, C 4C 0-T,
C i, H T, D 4D Add 7, to T,
ama | T, C 04D E Testfori=n
H- S, T+ 052 F S, =C @, H T,
C 04D H > 050 50 vl
0200 | 04D T4 04D 1
C T, acan R, 2 52 T, = trace » R, first time
C NT ooon 052 3 NT = [40000 40000]
C T, H— R, 4 ~052 destroys 052
anaa R4 C~m R, 5 Fractional part of trace exactly constant
T+% | 057 T{ 3E0 ~ Stop 6 56
C 0 NTr 7 57 05, and S,
aoaa 52 folsToled S4 8
Q @, Mr a, 9 59 Add @, x 7, 105,
H S, anoo, S, A Test for i = n
C 059 H- S, B S, =Q &, M, a,
r+72 | 05F C 059 C 5C
H 1 0ala 059 D i+l
T4 059 NTr E
C S, H P F 5F Sy +* 1% =Q, @y Mr, Gy,
020 | 061 NTr 060
Q Mr 1 61 Hand IV =a,, i <j
H S, aaan S, 2 Add 7, xd, 105,
C 061 H- Ss 3 Sg=Q a,, M, 7,
T+r | 066 C 061 4 64
H *]* 0ala 061 5 Next 7, in 061
T 061 C S, 6 66
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II_EFT ORDE:QI ”IRIGHT ORDERW Aggl%m%iT ,LBoxR EXPLANATION
L -1- H S, 7 S, 2+5, = (norm)? to R, first time
ama | S, aaan. Ry 8 only
C NT 00aa 068 9 Destroys 2nd order 068
C S, o 059 A S¢=Q a,, M, d,,
0a00 | 04D C s, B S,=Q @, M, 7,
0u0a | 061 C 54 [
H-- R, anad, R D & - |(norm)? ~ (initial norm)?{ =R ; if
c 5 Hem Rs e R5<D, stop at 3E1
T+2 | 020 T 3E1-Stop £ 6F
C-m T-4 072 - 070 70 H=(,~1J,)
C-m Ted op2-~ (3) 1 71 H=(,~1,15)
Cim Hem 2 72 H=(, =L ) V=(,=17,
T+4 | 079 C 3 73 IV=(,~1],)
o | § c 4 IV=(J, ~ 1.1y
aox | X C y 5 K= (=171,
D % qgaq 3 6 y=Uy=1 1)
C W, 0200 095 7 W, =0, sin, 0, cos
0002 | 096 T 087 8 sin— 1l of 095, cos =V
C H- 9 79 HW=(, - LI V=(,=-V )
araa | T, C—m T, A (=1, 1) =, = 1. J), go to 082
T+ | 082 NTr B
C H C 7C ho=(,=117,
W= (,~17)
awea | T, C-m T, D Test (J,~1, 7,0 =~J,~ L ]}
T+1 | 084 C _ TE\V={,-17,)
b 9999 E F W=, -7
C W, 000 095 080 W, =0, cos, 0, sin
000c. | 096 T4 087 1
C 272/ P cos 2 82 21/2/2: [5A827999FD]
aga | sin T4 09C 3 cos § = sin 0 =21/2/2
C 2V/2/9 aana cos 4 84
C- 227 anaa sin 5 cos § =—sin §=21/2/2
T 09C NTr 6
Q F Mr z 7 87
R .1- acaa. cos 8 (ExE)+2=7
C-m | cos Tor 097 9 Avoid overflow ot 08C if T =0
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:hEFT ORDEi . RIGHT ORD}:RIV Ag;'%i/:A(éET LBOXR EXPLANATION
Cin cos H 2-1 A 8A
aoao. | cos C 2~ B
Dr cos 9999 X, C 271 (2=T+T)=%to X,
C- ~1 H -1* D (1~ 1%)to X,: stores €, = approximation
acaa | X, c- X, E 8E tow!/2
D X, qqqq X3 F TP
C X, H X, 090 F[(-5 = E) +E] + 2< 1% go to 094
R -1- anaq, X, 1
H -1* T-r 094 2 With ¢, -lc, o) +E]+ 2= € in
c X, e X, 3 93 accumulator go to 08E
T4 08E C X, 4 94
acaa Rq -40- 5 it from 080 or 077
Mr z aoao 6 IV from 081 or 078
T4 09C C 095 7 97 | Substitute ~1 for cos @ or sin 6 and ~%
0a00 | 09A C 096 8 for sin § or cos 0
000a | 098 cC -1 9
[%7ste3 NTr A
C- E anaa. B
C cos Rq 41- C 9C Test (cos )2 + (sin B2 2 1
Mr cos anan z, D Avoid overflow error by forming
c .in Ra a1 £ cos x {cos * 2) + etc.
Me | sin H z, F
H- 2~! foleToled z, 0AQ Test completed at 14B
Cm z, TL 148 1 Returns to 0A2
Q cos Mr X, 2 A2
oo Py, Q sin 3
Mr X5 H B 4 By =g J7) xcos 6+ (], [,)x sin 6
aaoa | Py Q cos 5
Mr X, foteteted Z)'i]. 6
Q sin Mr X 7 'ﬁi/=(]],]2)xcos 0+ (], J,) xsin
H 2% aaaa 2 8
Q cos Mr B 9
oteTotel T5 Q sin A
Mr 7, H T, B T, =new (J;, J))
s | T, a ‘i c = F;; x cos 0 + B, x sin 0
Mr Xy aaaa 9y
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e _ B
) :_EFT ORDEE . RIGHT ORDERIV ’ Ag;%RN?A%ET - OXR EXPLANATION
Q cos Mr X E Eiii=-(]1,]1)xsin O+ (] ],) meos @
H- ;;ij [oaleled 7y F
Q sin Mr X 080
v felere’sd ﬁil' Q cos 1
Mr X H~ 'ffjj 2 ?].j=~(]i, I xsin @+ (], J,) xcos @
foToTare) a].]. Q cos 3
Mr 'q'll pretered T 4
r 7, 5 Ty =new (J, J,)
T, feretere) Te 6 =q;; X o8 6+, x sin 0
4 H X, 7 Ty=new{J, J,)
He s po— T, 8 =old (1, J,) +old (1, ],)
—new ([, ]
Cc 000 0BC 9 B9 022 sets = (j, =1, ;)
0a00 | OClH C A 023 sets IV=(j, ~1, ],
0200 | OBD 000 0C4 B
- c Rleiet Y, C OBY sets 1= (z, /)
. C foreToTd Y, D 0BB sets Il = (5, ],)
Q Y, Me cos E
- acaa Y Y, F Yy=1( J,) xcos 8+ (i J,) xsin @
Mr sin H Y, 0co
i Q Y, 1 Store new (7, J,)
Mr sin fatslerod Y3 2 Yy=—i J,) xsin @+ (i ]2)xcos g
Q Y, Me cos 3
H- Ya i, 4 Store new (i, ]2)
C 0B9 H *1x 5 i+ 1y
0200 | OB9 C 0BA 6
H *1* 0000 OBA 7
C oB9 000 Th 8
R -20- 000 T 9
C T4 H- *n* A
: H- D, T-1 oB9 B If i <nreturn to OBY
C Y, 0000 0CF C CcC (f4+ J4) IV of OCF
) cC Y, 000c 000 D (715 T5) —1Vof 0DO
C Y6 000 0D1 E (J s J5) 1V of D1
C T5 I3 7251 F Store new (correct) {f,, J,)
C T'5 QA 0Do Store new (correct) (], ],)
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T =R RIGHT ORDER
II‘EF ORDF” - RO - Ag;%m%% LBOXR EXPLANATION
C T, aoan 1 Stare new (correct) (J4, J,)
() -c *] 5 H- *n* 2 D2 fJy<ngotofy+ 11,0 (6); if
@-T-1 | 046 C ], 3 p3| Ji<n=Tigete ), +1 = 0t (6)
H- o H *x 4
(&) -T-1 | 00 NTe 5 D5 | Punch matrix elements @, to @, (all)
Q 4, Pq 6
C 0D6 He- Sy 7
T+7 | ODB C 0D6 8 08 S, =Q, a,, Py, 0
H ] 0a00 0D6 9 To next matrix element
T4 0D6 NTr A
c 0DD caoa 0D6 B DB Restore @, of 0D6
T 3FE NTr C End of problem: control counter shows
Q 7, Pq D 3FF
00 000 00 000 E
00 000 00 000 F
H *q* 0200 OFC 0EOQ EO Address subroutine
C 0 acaa Vg 1 E1 Enter: | of accumulator contains (45
anon |V, acaa Ve 2 or 04B
caga |V, NTr 3 0-Vy, V Vs, and V
C v, H-- v, 4 Vy=i% Vy=J* =] % or [ *
oo |V, Cm Vs 5 Vy= (-
acoa |V, C *n* 6 Ve=li~J*
H x> Hem v, 7
H- -1 000a Ve 8 Ve=(2n~i~J] + 1)
Q V5 M V4 9
Rq -2- 000q Vs A Ve={2"1 i~ (2n =i~ ]|+ VI
C Vs, T+4 OEE B Ifi > J, go to OEE
C v, H Vs C EC i =min {{, J}
aaoa |V, Tr 0EF D
C v, Vs E EE J =min {i, J}
anca | Vg C AL F EF
H 1> H Vs 0F0
0000 Vs C Ve 1
L -20- Vg 2 Vg = MG
asaa |V, c 3 IV = M(C,) or M(C,)
H v, 000 OF5 4 C, = [0015F 0015F]
C Ve acan 5 C, = [0017F 0017F]
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ILEFT ORD‘ElRI - RIGHT ORDERN Ag;—%i?AGEET LBOXR EXPLANATION
NTr NTr 6 M, J)* = 15F + i if ]
C - 0005 v, 7 <I7F 4 it g,
C— Ve H v, 8
£ OFC C v, 9 F9 | Ifi > n, goto OFC
H~ -1* 000a v, A v+ 1
T 0E1 NTr B
T4 NTe C FC OED prepares i for exit to 046 or 04C
D
E
F
00 000 00 000 100 Vit [ -lgign
00 000 00 000 1 Vyr Jhor JX =%
00 000 00 000 2 Vai (i~ )"
00 000 00 000 3 Ve li= J[*
04} 000 00 000 4 VS: *M(Zi])*
00 000 00 000 5 Vg
00 000 00 000 6 z,
00 140 00 1A0 7 AL =M@ )
00 000 00 000 8 A, ,i at 006: M(,,) Il and IV
00 000 00 000 9 A, ot 007: M(Z, )= and IV
00 000 00 000 A AL at 002: M@, )~ Il and IV
00 15F 00 15F B Cyi 15F = MOM(L, )%~ 1
00 17F 00 17F c Cys 17F = MOM(1, J,)*) ~ 1
40 000 40 000 D NT = NTr, 0, NTr, O
24 000 20 10F E $,; at 010: M3, )~ I
00 000 00 000 F T,: current value of trace
00 000 00 000 110 *n*: from Q at start
24 10F 5F 112 i Z,=C, T, oo, R,
00 000 00 000 2 R,: stores initial trace
00 000 00 000 3 Ty
00 000 00 000 4 *J
00 000 00 000 5 R,
0o 000 00 000 6 S,
60 000 3D 000 7 S, at 00F: M(@, )1l and IV
00 000 00 000 8 S, stores current (norm)?
60 000 D 000 9 Ss; at 014: M(@,,) =~ 1l and IV
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ll.EFT ORDEIIQI _ RIGHT ORDERW Aggl%mfc_iT LBoxR EXPLANATION
60 1A0 3D 1A0 A S, = Q. TAD, Mr, 1A0
60 000 3D 000 B S,; at 013: M(@,,) il and IV
00 000 00 000 C R,: stores initial (norm)?
* * * * D Z = (norm)? tolerance
00 000 00 000 E Ry; stores S, - R,
00 000 00 000 F cos
00 000 00 000 120 sin
00 000 00 000 1 5
00 000 00 000 2 X
00 000 00 000 3 z
00 120 00 11F 4 W, =0, M(sin), 0, M(cos)
00 11F 00 120 5 W, = 0, M(cos), 0, M(sin)
00 000 00 000 6 T,
5A 827 99 9FD 7 Digital approximation: 21/2/2
00 000 00 000 8 X,
00 000 00 000 9 X,
00 000 00 000 A X,
FF FFF FF FFE B 2%
00 000 00 000 C Xe=Uqe JD)
00 000 00 000 D Xg=(y, 1,
00 000 00 000 E Xg=Ug I3
00 000 00 000 F T, = correct new (], J,)
00 000 00 000 130 T, = correct new (], J,)
00 000 00 000 1 T, = correct new (J,, J,)
* * * * 2 &, = tolerance in box 9C
00 000 00 000 3 B
00 000 00 000 4 B
00 000 00 000 5 7
00 000 00 000 6 g
00 000 5F 11C 7 Z,=0,0, aana, R,
00 000 00 000 8 zZ,
60 000 8C 000 9 S at 015: M(@, )~ Il
00 000 00 000 A Y, =G0y
00 000 00 000 B Y, =05 J,)
00 000 00 000 C Y, = new (i, J,) or new (i, J,)
00 000 00 000 D Y, = M, T)*




ILEFT ORDEIRI _ RIGHT ORDERN Aggi%ilﬁkéiT LBoxR EXPLANATION
00 000 00 000 E Y= "M(Jy, [5)*
00 000 00 000 F Y= *M{J, Jy)*
00 602 00 002 140 Q%
0o 160 00 160 1 D,
00 180 00 180 2 D,
00 020 00 020 3 *32%
00 000 00 000 4 Tg = *MOM(J 5, T,))*
00 000 00 000 5 To = *MOM(J 40 T30
00 000 00 000 6 Typ = "MEM(, J0%)*
00 000 00 000 7 T
00 000 00 108 8 Zg=0,0,0 MC,)
00 000 00 10C 9 Z,=0,0,0, MC,)
00 000 00 000 A zZ,
H- g T+4 3E2 B Insertion at QA1
T4 0A2 NTr C

(Storage D — F irrelevant)
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UNCLASSIFIED

OWG. 22003
. | ——— e o — —
05 Preparation Sox 46 . Box rjz =y, Vp= ‘4* I {_;1 +1< A £ p |
Restore changes made in previous From ! fvy=17 * = (v ~ ¥ | 46 /o Box | Vp = Jg*, Vy=7%=(y —():k—]l
. * * * % - ————— — From 2 S S
use of code and adept it to Box D3 (Jy+ 0 = Y, Box 02 ” ‘ — g
matrix of order »n. *(J‘ + 1% — *./2* ' EO (o + 0% =%/ I EO
——— )= (e + )% —> V. l {Up + 11—V 4
i_E cer with ¥7% M{@p) = A0 + 7, 1*+ 07—V, ] Calculate addresses of 102C [V of 2OF3 . ! Calcuiate addresses of
e r
| nrer m. n | M{T,,) =1AC + f ']‘4 0 ST =Y L —ammi clements in Jj column and dd bo i fo p:epa ¢ l elements in J, column _—
3 = N r -
Lm_Q_ra—gaifi:J M{T),) = 1A0 + BHhln+ 1)~ {0B —> IV of OF3 to store (cf., address sub- gocress subroutine fo store and store (cf., address
Set J, =1 in */* storage prepare address subroutine o routine) as Jp column addresses subroutine)
Adapt Sy, S3, Sg, S7, and Sg store as J; column addresses Acc =C, 048, T1,QEO
to n; restore 052, 068 from Z,, Z5 Acc = C, 045, Ti, OEO
56
Transfer to 3EO [ = STOP
, ac 52 No
. Clear T, ‘l'] + 4'7/,: ~> T ves First time only; Ves
— /= { initially T, = trace —> R, |
to zero N
f=2n? T,—Rp=07
Test for exact constoncy of (fractional part of} trace J
6F 20 7 ves
4 = ‘
5({ - s — — Transfer 3E4 | = STOP o I:Denofe dpq by (P, 0)] (Jy=1,Jp) =07
P> M(T;) +(—> MIT;) Find *M{v; ~ 1, /¥ at 160 + J, - 2 No
&6 No and store M{/, —1, J/;)) at II of )
59 No Sp + %54 = (Norm)? — S, 070, 072, OTF and ot IV of 073, 079, 07C
57 S 17 07, =5 5F 61 No First time only: Find *M{{v; =1, ) * at 180 + v, ~2 20 Yes
C Clear S, and 3_ {”iniﬂlalll 2lves | Set 7, =7, Sq + 0 ® Ty —> S, | Yes {Norm}® —> Ry Yes and store M{J, — 1, J,)) at 1T of 074, 079, St J1=07 M @
Sy to zero ( a >0 ?y in box 61 Mig;;) - M(T;,) 207 Restore initial conditions in O7C and et IV of 072, 074, CTE A )
T i boxes 59, 4D, and 6 Find *¥M((/p, Jp))* at 180 + vy~ and
€ - ’84— R3E =07 store at Yg; store {Jp, Jp) ot Xg
Using 180 + v, — 4: *M(lv,, J)* — Y,
and (Jy, J) == X4. Using 180 + /- 4:
l Test for approximate constancy of (norm)? My, Sp)F —> Y5 ond (o, ) —> X5
f-(./,—4,‘/,);&)—' 82 84 97 o3
| or l cos 8 =sinf cos 8 = ~sin 8 cos 8= —1,sinf=~7 if through 7E R
L(J,—(,Jz)vf?Jl ='\2 () =\V2 * <> c0s8 = ~7, sinf = —1 if through 73 | () Xg = X3 > Acc
—T == 7€ 8A 1
} - - o=t T 8E No
|72 79 Yes 7c Yes T == ) ) 87 Yes 27 (27 +7) =7 to X, pr—— 94
Yes No No Square root in box 08E is (Z®Z)+2=1 |No Successive approximations _ Yes X, —> ¢0S Or 5in
- =y~ U= (=) 7 J= ) = =l =1, 407 - T 5 X)) + X, + "2 ——@
(:H» Iy =1, )] = |ty =1, ) (=1, dp) = (=4, ) (=) = =y =1, ) oo B: oot cos i 005, [T o 107 "2 stores af Xy [i 7+ Xp) 2]* 2 76 X — sin o cos
No sin in 096 { - 1* —> Acc = X3 X3 < 1 !
73 \
(=, ) =T, =, ) =F, T+T=7 o
Square root in box 8E is sin 8: sin — 095, cos —> 096 -

Reduction of a Real Symmetric Matrix to Jacobi Form.
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£6

148
[TRANSFER
= STOP
| 70 3EZ
| A2
i 2
- iNo i
9C 7
'; Qs ® {cos + 2) Tey
@———f sin ® (sin + 2} Yes .,7’/,/
-2 M<E, ? .
eller 7
L | T
‘S
7

From
Box 71 (:D
|

o2 Yes c3

i

-
i {5} rotation completed; |
b or, unnecessary if from T1 t
|-

Address Subroutine

£0

UNCLASSIFIED
LWG. 22004
= @ eos 8+ (Y, Vi ®sind
= {4, /p} @ COS & + (U, /o) @ sin 89 Yes oo
Yppi v 2/ ! f M————j
= new (), '{)=§/./®c056 +Ev;.j®sm€ | P UL ®ees 8+ 1, Upt @ sin 8-> (7,40 Sfore new (v, Jy} i
= \~“ & sin § 4 (U], ) @ cos § _.'_._| A @sin 8 417,051 @ cas 8 —(7,u5) | NO tore ¢ newn/,,./n)'.__...
Fapl®sin8 + (U L@ cos 8 (= - dinitially, 4/ new/ £ 7 Store new (v,
-new(‘/( L2)—:;! ®posG+ ”®sm€ h
=new(\/‘2,‘/2) [CAPAR 'J J;—new A
D8
1 M{U, ) +
AR
&5 No oB
7 i [ Yes Punch 5;‘/ from Restore M{t1,4))
[Va<n? L"C__,_{ u'e<(n»f)?b\10 Q, /== {initially |.YeS in sox DS i = End of probiem; control counter shows 3FF.
— : j ML, /0 =M e Transfer to SFEE
U
Lo
* i
_ "—./':+!)—} ~rm|n{*l/*}§
[o4] —_————— L _
Cleer v3, Vi Vis crd vg 70 zero H
[ -y EF No
e JR— -: Fe
T FM{EAPE - R 4 v —> oo | = ,
e e T Extract IV =M/, /¥, form FMG, 75 ves Exit fo ]
~JE—H* —>\/5 Gad store in 15F + 7 if U=, or store next order of
‘ A malt routine

[ 1T of Acc contuins | RS
I’ivt (last order executed) | —=JFC

WATE A7 u=u,. 2

The box number refers

Yo 1he memory ‘ocation at which the Lox peging, with an initiel zero being emitted.

Reduction of a Real Symmetric Matrix to Jacobi Form (continued).
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000 j-1*|M*

60
80

MEMO LOC TONS OF ELE ENTS N Jy CO
E OR OCATO SOFEE NS NJ COU SORED M JZ)*.

co|l T ]

200
20

. [
£0 i
T

FerTs e T T T L L L L]
IN R TIN 1 l‘rl ] ) - ‘f
| ﬂtﬁ RN RN
T
! gu muxr |
] | |
ﬂ_A 4\») | .
t Ll T T

SORED AS M( Jy)

n,n), Y, 2) {2, 3) ,,(n_h" .U

40

60

80 I

co
EO

300

20 J

40|

60

go|
20

co
EO
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Appendix 4

FLOW DIAGRAM AND CODE FOR THE CALCULATION GF THE CHARACTERISTIC VALUES
OF A REAL SYMMETRIC MATRIX GIVEN IN JACOBI FORM

The mnemonic code which follows is included for completeness and to give a detailed development of
the flow diagram. While it is believed to be a workable code which translates the theory of Chapter 3
into practical form, errors found on machine testing were corrected wherever memory space was available,
and the resultant organization of the memory is somewhat chaotic, A tedious but straightforward re-
writing would correct this and also make the code applicable to matrices of order as high as 138 (about).

Since the code was envisaged as being applied to the Jacobi matrix produced in the first stage of the
problem, where the memory limitations are much more severe, no attempt was made to conserve memory
space. The present storage assignments permit the code to be used if the order of the matrix is equal
to or less than 89. This number occurred because it was desired to test the theory on special numerical
examples of the following easily proved theorem: If, for a symmetric matrix in Jacobi form, all the diagonal
elements are equal, a, =a, and all the (i, i+1) elements are equal} c’:)], = b, then the roots uf the matrix are

kw

/\.1a = a + 2b cos
741

! k$1,2,...,ll.

The code of this appendix was used to calculate the 16 roots of a direct sum of a matrix of this kind
of order 11 ond one of order 5, with @ = 0 and & = 2=2. The machine gave all the answers correct to the
required accuracy of nine decimal places in a computing time of no more than 1 or 2 minutes. The code,
nevertheless, contained an error, now corrected at memory positions 06D and 2DA to 2DD, which was

detected when the roots
-3 2-—1 ke 0
Ay = 277 ¢ cos T 0.125 + 0.5 cos (2&)

of o Jacobi matrix of order 89 were calculated (requiring about 45 minutes), For 60 of the resulting
answers (including the first 11 and last 20), both the upper and lower bounds had exactly their theoretical
values under the requirement

- ~30
U].—~Lj<e:2 s

and at least one of the bounds was correct in 11 other coses. 1t was not possible to test the code after
the correction ot 06D was made, since the ORACLE was then dismantled for shipment to Oak Ridge.
However, it is now.thought probable that the code is correct. (These details are mentioned by way of
caution to any coders who may regard a routine as fully checked when it does not give “obviously”
incorrect answers in a problem for which the correct answers are unknown.)

The orders at 300 to 309 are used to store the initial values of the Ei and Zi, and theirlocations
could be reused after their computations have been performed. From 30A to 313, the orders refer solely
to the obove test problem. Storage for the orders at 300 to 313 is at 2CD to 2D9 and 320 to 324 contains

a load code; so five portions of a single tape will be stored automatically at the proper positions.
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CALCULATION OF THE CHARACTERISTIC VALUES OF A REAL SYMMETRIC MATRIX GIVEN IN JACOBI FORM

Mnemonic Code

:—E'—TjORDElRI |IIRIGHT ORDERIV Ag;%m%% I_BOXR EXPLANATION

FF FFF FF FFF 000 -1
00 001 00 001 001 1
40 000 00 000 002 2-!
00 000 00 000 003 0
80 000 00 000 004 -1

Start— C 0 fototated S, 005 2 Enter code; re-enter from 01A
C-m| &, T-1 009 006 15, £ 0, go to box 4
awne| 7, C (78)* 007 3 03, (78)* g,
forsteiel 8, TY on 008 Transfer to box 6
0 b, M b, 009 4 Form b2 exactly; left shift all 2s places;
Lay - Ty?, 00F 00A 5 transfer on overflow; store both parts;
. - - T 008 count number of left shifts in S, trans-

1 2 fer to repeat shift
C- -1* H s, 00C
ava| S, C T, 00D
Q T, T¢ 00A 00E
-1 aaaa 7 00F Undo last left shift

c S, aoan. £, 010 S, not increased last time
C 006 H- Sy on 6 Sy =C-m b __,, T-1 009

@ ~T+2| 028 C 006 012 7
H x| 0400 006 013
0200 | 009 R -20- 014
000 | 009 C 007 015
H 1% 0400 007 016 (i + 1)—i
R -20- 000 00F 017
C 008 H . 018
0a00 | 008 R -20- 019
000z| 010 T4 005 01A

~C U, H— L, 01B 43 Ifﬁj - Zl.<z, go to box 45,7 3 2*

H-- z Tor 023 01C
c U, H L, 01D 44 Caleulate next i s average of U, and
R -1- etered B 01t Ei
NTr NTr 01F i = 0 coded for first use
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h :,EFT ORDES ”IRIGHT ORDERIV Ag;%m(é% L&oxR EXPLANATION
C s, 0004 T, 020 S, =0,0,0,273; M(L,) = 274
0 art i 021 Sets P =0, #_, =0
-1 ot By 022 I R

@ -1, 028 c 018 023 45
He | s, Tol | 09A-hnmuers| 024 5, =C U, Hey L
C 1B H o 025 4 IR I
00+ | 018 00z 01D 026

@~T£ 018 NTr 027 Go to examine next root

B)~C @ H i 028 10 4, - H,i = Vrestored at O7E
™f | 02C -1- 029 11] 12 | Transfer if no overflow 1o box 13
anai. B; C -1* 02A
soge | a T/ 037 () 028
wca| T, Com T, 02¢ 13 1£%, ~ i £ 0, go to box 15, otherwise
Tor| O2F asos 5, 020 14| 077,
c (39)* naca | a 02€ 5 = 39

. @) -TE 037 c T, 02F 15
- L -1- Tyl 033 030

C 030 H *x 031
0400 | 030 Tr 02F 032 Scale @, - i
R -1 acian B, 033
T4 097 Ho “]x 034 097: 0= a,, 030 - Acc, and returns
R -20- 000~ | o 035 fo 034r
C xx 0400 030 036

) ~Coml T+t | os-(o 037 16 167, , = 0, go to box 13

R Tei | osco(e) 038 17| |17, = 0, goto box 23

(5)-c v, H a, 039 31 = vyt = By
M~ By T+4 065 03A 32| Mfp; 20, goto box 34
ca| T, Cim T, 038 33 pi T,
H~ (39)* T47 03E 03C Because shift counter operates mod 64,
H (39)° T, 03E 03D stare min {p,|, 39} in IV of 041; calcu-
c (39 000c 041 03E fate r, in box 33
Q 5, Me L 03F
parkis P Q 7y 040 IV becomes g, _,
Mr m, 041 IV from 03E
plaioted T, C r; 042
H~ T, Tyt 051 043 35| 1f r, overflows, go to box 3
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lLEFT ORDE:?' mRIGHT ORDI:RN Aggl%m%% LBoxR EXPLANATION
oaoa |, C-m |, 044 38
T-r| 047 Q . 045 l£r, £ 0, go to box 40
4qaq m;_, aaqaa. 7, 046 39 iy "y 0=y

~T4 071 c r; 047 40
L -1- Tyl 048 048
C 048 H b 049 Scaler,
0400 | 048 Tr 047 04A
R -1 Q 7, 04B
qg9qq Mo acao ZI 04C
T4 095 H- “1x 04D 095: 0~ o,, 048 ~ Acc, returns to 04Dr
R -20- 000 o, 04E
NTr C ** 04F
0a00 | 048 £/ 054 - @ 050 Transfer to 7, unless altered to 7,
R - Q Wiy 051 36 by 06C
qaaq | i, aaon: T 052 Enter 051 from 043
C -1* aaan o 053

@a C 'z H a, 054 41
e | v, , L5 071~ (By) 055

~C 7 T-r | o058 056 18| | 167,_, <0, go to box 20
c 5 Q 1-1* 057 19
Tr 059 c- 5, 058 20
Q ~1e 1 aaaa i, 059 059r and 05AZused in both box 19 and
aqa | @, c %, 05A 22| bBox20
wan| v, | T 071 - @ 058 A=,

€)=Coml 7, Tt 060 05C 23 15,4 £ 0, go to box 27

C 1o Q 7, 05D 24| 25 (1 - 1) =7, ,
waz| i, _, qadq m_ 05E 2] 250 5, - 7,_,
c a, aasa v 0SF 2% @,

@*«T{ 071 C i, , 060 27| Ifi@,_, <0, go to box 29
T-r| 062 Cc- 1-1 061 28
T 063 c 1-1% 062 2
Q 0 ansa . 063 Substitution acts in both box 28 and
qaaa| 7, _, 1 071 - 064 box 29
H- (39)* T+4 067 065 34 Enter from 03A
H (39)* Tr 067 066 p; 2 0; substitute min lp,, 39} in IV
c (39)* 000 | 06A 067 of 06A



EFT ORDER RIGHT ORD BOX
:“ ORDt” - OR ERIV Aot [T 0 . EXPLANATION

Q 7o Mr 7,y 068 Calculate r, in box 34

0L r; Q B; 069

Mr i R 06A

woa | Ty, C S, 068 Sq=0,0,0, 06E

000 | 050 c T 06C Prepare 050 to exit to ,

H- v - T 2DA 06D At 2DA: exits to box 38 if no overflow,
@ e o, H B, 06E 42 otherwise to n,
h H~ Vi fatetals) Vi1 06F S¢ =0,0,0, 054

c S 000c: 050 070 Restores ) at 050
B~C 7, T~/ 075 071 56 1f7,_, <0, go to box 59
T o T—r 077 ~ @ 072 57 17, _, <0, go to box 8

c T, H- -1 073 58 T, is used to count P

e | T, Tr 077 = @ 074 T,=0,0,0,ML,) - 1+PwithP =0

c 7y Tor 077 = () 075 59 restored at 020

c T, H~ -1 076 60

swa | T, C 03A« @ 077 8,9| Boxes 8 and 9. coded together

H 1 0400 03A 078

c 06E H~ -1 079 (4 )i

000s|  O6E c 040 07A

H- -1 000c 040 078

L -20. 000 068 07C

000 | 05C c 028 07D

H I 0400 028 07E S5 = C, M@,) + 1, He, M@ + 1

H- S, Ter 080 07F i+ 1>n+ 1, restored = |
(By) =12 028 c T, 080 T, = [001C2001C2}, M(B,) = 1C3
T ow0|  03a 0002 05E 081

c 1o 000c 040 082 T,o = [0016A0016A1, M(F,) = 16B

0400 | 05C 0400 068 083

C T, 0400 028 084 Tg = C @y Hey

NTr NTr 085
DR 018 005 | T, 086 7| [T, =0,1,01,

c T, 000 T, 087 T,=0,00L,

000x| 08B 000 08D 088 k = f initially

0400 |  O8F 0400 091 089 (£ + 1)~ & at 094

C T, H- T, 08A 48 (P = B)* = Acc

T-r| O8E c- 088 45| IV contains L,




Note: In storage positions 0AQ to 0B9, digits not otherwise indicated are coded as zero

100

:J_Ff OHDEIRI IHRIGHT ORDERIV Aggl?;m%iT LBOXR EXPLANATION
H i Tr 091 08C
c [0 aooa 08D 50 IV contains L,
Tr 091 C i 08E 52
H- Ter 091 08F Il contains U,
NTr i 090 53
aan C T, 091 51 | Il contains U,
H- Ty T+ 018~ 092 T,=0,0,00U,
C T, H *1* 093 54 k + )=k
0c0c | T, T 087 094 Transfer to next comparison
C 0 oo o 095 Correction at 04D; clear o, in case
c 048 Tr 04D 096 0, = ~1* before
c 0 o 2, 097 Correction at 034; clear a, in case
c 030 Tr 034 098 % = 1" before
00 000 00 000 099
o n* NTr 09A n* stored at 203
P 218 T2 09C 098 Punch the 7 upper bounds
Q n* NTr 09C
P 274 T? 3FE 09D Punch the  lower bounds
00 000 00 000 09E 3FE contains 0; control counter shows
00 000 00 000 09F 3FF at end of problem
00 000 00 000 0AQ P,
00 000 00 000 0A) a,
00 000 00 000 0A2 o,
00 000 00 000 0A3 v
00 000 00 000 0A4 '
00 000 00 027 0AS (39)*
00 000 00 04D 0A6 (78)*
00 000 00 000 0A7 ii
00 000 00 000 0A8 B,
00 000 00 000 0A9 7, _, initially O
7F FFF FF FFF 0AA #,_y: initially 1 = 1%
00 000 00 * 0AB % 2 2738, governs accuracy
00 000 00 273 0AC s,
00 000 00 000 0AD s,
27 * 4B 009 0AE Sgt s 1124 (n = 1)




:_EFT ORDE:?I “IRIGHT ORDERN Ag\%m?fi'r LBOXR EXPLANATION
00 000 00 06E 0AF S,: oddress of 7, exit
00 000 00 054 0B0 S, address of 7, exit
24 * 22 * 081 S, iis 21A + o; [V is 273 + n
o0 000 00 000 082 T,
00 000 00 000 083 T,
00 000 00 000 0B4 T,
00 000 00 000 0B5 T,
00 * 00 * 086 Tgo His 21A + n; IV is 273 + n
00 000 00 000 087 T,
00 000 00 273 088 T,
24 - 2 0A8 0B9 Syt 11is 0BY 4+ (n + 1)
00 000 00 000 0BA Matrix elements begin
CONTENTS CELL NUMBER EXPLANATION

OBA

0B9 + n

0B9 + 059 = 112
113

M2+ k-0

First diagonal element of motrix

Last diagonal alement of matrix

89 (decimal) = 059 (sexadecimal)]

First off-diogonal element

{.ast off-diagonal element

[In the code, G, is understood as 16A; the address is always increased by one before it is used]

7y

.|

168
116A + (n = 1)

Sealed (5,)2

= 2
Seoled (_y”n])

[In the code, B¢ is understood us 1C2; the address is always increased by cne before it is used]

By
Bn—l

1C3

1C2+ (n = 1)
21B

21A + »

274

273 + n

< 2CCh

Scaling exponent of (Zl)2

Scaling exponent of (End)2

First upper bound
Last upper bound
First lower bound

Lust lower bound
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LEFT ORDER RIGHT ORDER

: : m o e LBOXR EXPLANATION
00 1c2 00 1c2 2CD Toi 1C2 = M(B,) — 1 = M(8,)
7F FFF FF FFF 2CE -
80 000 00 001 2CF =140
00 16A 00 16A 200 Tio 16A = M(7,) = 1 = M(F,)
00 000 00 000 201 T
24 0BA 22 0A7 202 Tg = C @, Ho, &
00 000 00 * 2D3 T,p: contains n*
24 2CF 5F - 2D4 Ty =C —1+ 1% anan, I
24 2CE 5F * 205 Ty = C 1= 1, aoan, U,
* * * * 206 T,s: coatains @ = @, for test
24 206 5F * 207 Tio=C Tig acoa, @,
* * . * 208 Ty contains b = b for test
24 208 5F 16A 09 Tig = C Ty ccca, b,
4F 2DB 43 044 2DA Correction if p; 2 0 and r, overflows, go
14 001 5F 0AA 208 to
7F 0A9 5F 0AA 2DC (, completed at G6E)
24 000 41 06E 2DD g, = =1 = Acc
00 000 00 000 2DE
00 000 00 000 2DF
C ~1+1* acaa L, 300 Stores U, = 1 — 1*, L, = =1 + 1*
C 300 H- Tis 301
T+4| 305 C 300 302 Tia = C =1+ 1% aoom, L
H 1 000 300 303
¢ 300 NTr 304
c 1-1* cana U, 305

305 H-- Tha 306 Ty = C 1-1% acaa, U,

T+4|  30A C 305 307
H M 000 305 308
Tt 305 NTe 309
c Ts cana 7, 30A 30A - 313 refer to test problem
C 30A H- Tie 308
T+L|  30F C 30A 30C T,s = value of @, for test
H N 0004 30A 30D Tyo = C Ty oa0e, 7,
7 30A NTr 30E
c T, asaa b, 30F Ty, = value of b, for test
C 30F H- Tie 310 Tig = C Ty, cona, b, _,




LEFT ORDER RIGHT ORDER BOX

{ il i % ASS’;%EJ?A?EEIT LR EXPLANATION
T+4 003 C 30F 3N Transfer to 003 = stop
H ** 000 30F 3i2
T 30F NTr 313

(314 — 31F irrelevant) For test: [d,] + 25, < 1

Ld 000 T4 321 320 1 Ld = load to double space; must be fol-
14 OAS T4 322 321 lowed by a transfer order
Ld 20D T 323 322
Ld 300 T4 324 323
Ld 30A T4 003 324 Transfer to 003 = stop
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25-place 31_2
—> A and Q registers

1 2 No
Read in H 5, = O‘I

Yes

Shift A ond Q left

B places, 5,2 =p% 7

gl ey <y,
Store B;, G;

Store §; = 0
B}. =25

@)

o -

LV/ irrelevant |

.__T.____l
—®

47
k=7
/=1 in code
{cf., box 46)

15

UNCLASSIFIED
OWG. 22005

Left shift 7, - a, places,
- = —-Q;—= -1 —
G~ =B %5, B €| B<!

10
9 _{*“_ o 1" 13 No p
rEL = No [ i
? - = ; v
initialiy, -"" Overflow 7 ‘—“‘ G,-p=07? E \J)
/=1 reset at B Yes Yes
14
=0 a=5
12
Bi=1(7 -1+ 8, "/=Tb—"'
39

33 Lﬁ/ =0, y is irrelevant @
=7 ® N
(G @)+ 8 38 Yes | A2
Exit 7, —> 7, r,=07 Left shift r; o, times
No m=B%r;, B“ét‘iy,-|<4
35 No
Overfiow ?
Yes
38
rr=(2@m_y )+ 8 Right shift r; once
'"7/'—1®”_7i—2 H/'=r/"‘"/31 o= \Tr_’/

Exit 7o —>

42

( :) vi=o; t By vy

a6

45

r(/+1) — / )—Eo—‘ j=n? }ﬁs—c—@ = Print out routine

There are

Calculation of Characteristic Yalues of a Symmetric Matrix Given in Jacobi Form.

no boxes numbered 24, 30, 37, or 55,
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