


Conh act No. W-740% rig- 26 

MATHEMATICS PAN EL 

NUME RlCAL COMPUTATION OF THE CHARACTERISTIC VALUES 

OF A REAL SYMMETRIC MATRIX 

Wallace Givens 

DATE ISSUED 

. .  
r .. 

ORNL l V 4  

Copy No. 

OAK RIDGE NATIONAL LABORATORY 
Operated by 

CARBIDE AND CARBON CHEMICALS COMPANY 
A Division of Union Carbide and Carbon Corporation 

Port Offics Box P 
Oak Ridge, Tennessee 

3 4 4 5 b  0 0 5 0 0 4 9  2 





ORNL 1574 
Physics 

INTERNAL DISTRlSUTlON 

1. C. E. Center 
2. Biology Library 
3. Health Physics Library 

4-5. Central Research Library 
6. Reactor Experimental Library 

Engineering Library 
7-159. Laboratory Records Department 

160. Laboratory Records, ORNL R.C. 
161. C. E. Larson 
162. L. B. Emlet (K-25) 
163. 1. P. Murray (Y-12) 
164. A. M. Weinberg 
165. E. H. Taylor 
166. E. D. Shipley 
167. A. S. Householder 
168. F. C. VonderLage 
169. C. P. Keim 
170. R. C. Briant 
171. J. A. Swwtout 
172. S. C. L ind  
173. F. L. Culler 
174. R. S. Livingston 
175. A. H. Snell 
176. A. Hollaander 

177. M. T. Kelley 
178. G. H. Clewett 
179. J, H. Frye, Jr. 
180. K. Z. Morgm 
181. T. A. Lincoln 
182. C. S. HarriII 
183. D. W. Cardwe!I 
184. C. E. Winters 
185, E. M. King 
186. L e w i s  Net son 
187. D. D. Cowen 
188. J. A. Lane 
189. G. C. Wi l l iams 
190. M. J. Skinner 
191. P. M. Reyling 
192. R. Arnette 
193. N. Dismuke 
194. S. Atta 
195. W. C. Sangren 
196. J. Moshman 
197. G. Atta 
198. A. Kimball 
199. V. Klema 
200. R. Willoughby 

EXTERNAL DlSTRlBUTION 

201. R. F. Bacher, California Institute of Technology 
202-459. Given distribution as shown in TID-4500 under Physics Category 

DISTRIBUTION PAGE TO BE REMOVED I F  REPORT IS GIVEN PUBLIC DlSTRlBUTlON 

iii 





CONTENTS 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

CHAPTER 1 -THEMATWEMATICAL PROCEDURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 
1.1 Orthogonal Congruence and the Basic Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 
1.2 TheJacobi Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 

1.3 Reduction io Jacobi Form by Plane Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 
1.4 Relation Between Characteristic Values and Signatures . . . . . . . . . . . . . . . . . . . . . .  1 1  
1.5 Signature of a Matrix in Jacobi Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 

CHAPTER 2 . NUMERICAL REDUCTION TO JACOB1 FORM ........................ 19 
2.1 Characteristic Values of a Sum (Lidskri’s Results) . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

. 2.2 Bounds for the Characteristic Values of the Special Form of Error Matrix . . . . . . . . . . .  20 
2.3 The Digital Approximations to  cos 0 and sin 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

2.4 Criteria for Best Digital Approximation to a Plane Rotation . . . . . . . . . . . . . . . . . . . .  28 
2.5 Distinction of Cases According to Size o f  Elements ......................... 31 
2.4 Estimates Related to IC2 t S2 - 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 
2.7 The Digital Formulas for the Elements of  A’- ’  I ........................... 35 
2.8 Definit ion of Error in the Elements of A‘- ‘  J . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

2.9 Bounds for Errors in the Elements of A ’ - ’  I’ .............................. 38 
40 

41 
2.12 Summary of Error Bounds Obtained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 
2.113 Bound for the Total Computational Error in any Root Due to the Reduction to 

Jacobi Form.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 
2.14 Boutids for the Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 
2.15 The Sum of Squares of Errors in the Characteristic Values . . . . . . . . . . . . . . . . . . . . .  52 

2.16 Scaling Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 

- 
I 

- 

2.10 Continuation . Determination of p. p.-, 1. and pili 

2.1 1 Continuation . Determination of p., - p z l  = p, = /A* .......................... 
........................ 

2.17 Number of Operations Required . Time Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . .  54 

CHAPTER 3 . NUMERICAL COMPUTATION OF THE CHARACTERISTIC VALUES . . . . . . . . .  57 
3. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 
3.2 Inversion of the Error Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 

3.3 The Recursion Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 
3.4 Scaling and the Decomposition of  S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60 
3.5 ?he Digital Formulas when Z L - ,  : 0 or GZ-, : 0 . . . . . . . . . . . . . . . . . . . . . . . . . . .  41 

3.6 The Digital Formulas when 7’2,- 4 0 and Z t -  ,4 0 . . . . . . . . . . . . . . . . . . . . . . . . . .  63 
3.7 The Alteration of S to S’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

I 

- 

V 



- 
3.8 Bounds for I b j  - bi( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 

I 

3.9 Error Bounds for the Calculated Characteristic Values of S .................... 69 

3.10 Scaling Requirement for S 
3.11 Time Est imates. .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 

- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 

APPENDIX 1 - BOUNDS FOR THE NORM OF A SUM OF TWO MATRICES IN 
TERMS OF THEIR CHARACTERISTIC VALUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73 

APPENDIX 2 - MEANING OF THE SYMBOLS USED IN THE MNEMONIC CODES . . . . . . . . . . . .  75 

APPENDIX 3 - FLOW DIAGRAM, MEMORY CHART, AND CODE FOR THE 
REDUCTION OF A REAL SYMMETRIC MATRIX TO JACOBl FORM . . . . . . . . . . . . . . . . . . .  79 

APPENDIX 4 - FLOW DIAGRAM AND CODE FOR THE CALCULATION OF THE 
CHARACTERISTIC VALUES OF A REAL SYMMETRIC MATRIX GIVEN IN JACOBl FORM . . . .  95 

h 

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107 

. 

vi 



NUMERICAl COMPUTATION OF THE CHARACTERISTIC VALUES 
OF A REAL SYMMETRIC MATR1X 

Wallace Givens 

I N T R O D U C T I O N  

The numerical determination of  the characteristic values of a real symmetric matrix i s  a problem of 

considerable dif f iculty since “a large amount o f  information i s  given and one wants to make use of  all of  

it,”(’) A typical situation i s  that in  which the elements of  the matrix are the values of the (symmetric) 

kernel o f  an integral equation calculated at  the points o f  a plane net, With the advent o f  automatically 

sequenced high-speed digital computers, i t  i s  now feasible to calculate the characteristic values of 

matrices of orders at  least 40 and, with excellent input and output devices and fast (magnetic tape or 

drum) external storage of  numbers, possibly as high as 200. The number of elementary operations re- 

quired to obtain the solution varies approximately as the cube of the order so that a matrix o f  order 200 
presents a problem more than 125 times as d i f f icu l t  as one of order 40. It would seem to be impossible 

to  calculate with present devices the characteristic values of a matrix o f  order 1000 unless the matrix 

were of some very special form. 

The very large number of multiplications performed i n  a single calculation by a high-speed computing 

In their paper on 

von Neumann and Goldstine established the 

basic conditions for a complete error analysis, It i s  intended that the present paper adhere rigorously 

to the conventions of von Neumann and Goldstine. Na expl ic i t  use i s  made here of  results from [ lo1  

but the general approach to machine errors as established there i s  assumed known. Thus we suppose 

the matrix elements are given as aggregates of a sign and s digits in a number system to base(4) / 3  and 

that the norm of the matrix i s  l e s s  than one by an amount precisely specified in 52.16. No assumption 

of any kind i s  made as to the definiteness of the given matrix or as to  the location of the roots beyond 

that implied by the condition on the norm. In particular, nothing i s  assumed about the separation of the 

characteristic values. 

machine(2) makes the problem of the accumulation of round-off error a serious one. 

Numerical Inverting of Matrices of  High Order,” I 1  

The basic mathematical scheme mechanized in the computation was proposed by the author in “A 
Method of Computing Eigenvalues and Eigenvectors Suggested by Classical Results on Symmetric Ma- 

trices,” which has recently appeared in [3]. At the same Symposium a t  which 131 was presented, Goldstine 

reported on a method of  calculating characteristic values which had been developed by von Neumann, 

Murray, and himself. Both the method of th is  paper and that of von Neumann, Goldstine, and Murray(’) 

depend essentially on the device, which goes back to Jacobi [6], of making a sequence of rotations in 

coordinate planes so chosen that the coefficient o f  a cross-product term in the given quadratic form 

(associated with the matrix) becomes zero. The methods differ in several particulars, the most essential 

t 

(”Oral remark o f  von Neumann. 
1 ‘2)idul+iplica+ion and division t i m e s  are o f  the order o f  /2 mill isecond and addition and subtraction are ten t imes 

a s  fast. 

(3)References to the bibliography are given in this form. 

( 4 ) ~ y p i c a ~ ~ y ,  :’j = 2, s = 39 or ,s = IO, s = 11. 
( 5 ) 1  am much indebted to these authors for le t t ing me see a copy o f  their, a s  y e t  unpublished, manuscript[4Ia 
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being that after a nondiagonal element of the matrix i s  made zero, the cornputation of  the present paper 

does not afterward alter this element; therefore, at  most, A(. - 1)(n  - 2) plane rotations are needed, 

whereos with von Neumann, Goldstine, and Murray’s technique, i n ( n  - 1) plane rotations must be per- 

formed repeatedly unti l  a convergence criterion i s  satisfied. (The maximum number of  repeti t ions neces- 

sary can, howeverp be guaranteed.) The price we are obliged to pay for th is  substantial reduction in the 

amount of  cornputation i s  that we must stop short of  reducing the matrix to diagonal form and wi l l  obtain 

only one in  Jacobi or tr iple diagonal form.(6) A second stage of the computation i s  therefore required 

and i s  discussed i n  chap. 3. Since for this part of the computation even very large matrices may be dealt 

with by using only the internal starage of exist ing machines, the second stage w i l l  require less time 

than the first. Another advantage of the inethod proposed here i s  that no searching for a “large” off- 

diagonal element i s  required.(7) 

In  chap. 1 the mathematical foundations are established and in  chaps. 2 and 3 the equations of  the 

two parts o f  the computation are reduced to  digital form. The corresponding f low diagrams and codes are 

given i n  appendixes. A serious effort has been made i n  the main part of  th is paper to make the results 

applicable to most o f  the high-speed digital computing machines now in existence. The numerical time 

estimates and error bounds tabulated and the codes are necessarily more special and refer to the machine 

(the ORACLE i s  the Oak Ridge Automatic Computer and Logical Engine) constructed at the Argonne 

National Laboratory on the basic design o f  the Institute for Advanced Study Computer. The ORACLE i s  

now being tested for use at the Oak Ridge National Laboratory. This machine operates in  the binary 

system and has a precision o f  f3-’ = 2-39 2 10”’*’. Our best estimates (Table 5 and (3.9.6)) show 

that each of the characteristic values of a 100 by 100 real symmetric matrix, scaled so that the sum of 

the squares o f  i t s  elements i s  sl ightly less than one, can be found to an accuracy of 

+131,6OOp-” = k1.004.2-22 , 
or better than s ix  decimal places. Curiously, although n good deal of effort was spent to obtain error 

bounds for individual characteristic values, through the use o f  a recent result of Lidski: [SI, for order 

100 the squore root of  the sum of the squares of the errors in a l l  100 characteristic values i s  only 

+131,705/3-” (Table 5 and (3.9.11)). Since these guaranteed error bounds are i n  no sense probabilistic 

and are based on the pessimistic assumption that maximum possible round-off errors occur, accumulate, 

and never cancel, substantially more accurate results may be expected in practice. For al l  orders 

n _> - 10, the error i n  each characteristic value i s  less than 3 ~ 7 ” ~  p-” (Table 4 and (3.9.6)). 
The error analysis which follows w i l l  certainly be found tedious and may be deemed unnecessarily 

elaborate. This i s  at least in  part due to  a second muin purpose of the study: to examine the general 

concept of  error in a numerical computation and to determine how the error bounds are affected by vari- 

ations in  both method of computation and method o f  estimation. In 32.8, we try to show that the meaning 

of the phrase “error in a calculated number” requires a more subtle definit ion than i s  commonly realized. 

In 5 3.2, a method of inverting the problem of round-off error i s  proposed which we plan to  employ i n  
-- ......... ~ 

( 6 ) A  matrix S = ( s . . )  i s  in  Jacobi form i f  5 . .  = 0 for ( i  - j \  > I. Such matrices are of  importance in  the  theory o f  

F i n i t e  order matrices o f  this type are also studied in  a book ([21, i n  Russian) which 
21 2 1  

operators i n  Hi lber t  space [12]. 
became avai lable  only after this manuscript was nearly complete. 

(’)‘The von Neumann-Goldstine-Murray error guarantees presuppose that at each step an off-diagonal element o f  

abovcavcrage s ize  i s  found and rotated to zero. 
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other contexts and which suggests that i t  may be unwise to  separate the estimation of  round-off error 

from that due to observation and truncation (cf., (E), IC), and (D) of 110, p. 102410251 for a clear dis- 

cussion of  these terms). 

A major omission i n  the fol lowing is any discussion of the characteristic vectors, since these w i l l  

usual ly be wanted for checking the computation and w i l l  frequently be desired for other purposes, We 

plan to work out the details of the calculation of characteristic vectors and to obtain error bounds for 

them, but th is  has not yet been done. The general method of obtaining the characteristic vectors i s  

nevertheless clear: 

store the elements of the matrix T12 = k l , ,  with rik2 < 1; 
as the plane rotations K of Theorem 1.3 are obtained, calculate inductively a 

analogous to  the matrices (1.3.11) but defined by 7.''' I = F-' J - '  Kl i  so that 
'7 

and 5 i s  in Jacobi form; T ~ T n - 2  n 

sequence o f  7"J 

T:4T = S, where 

after f inding the characteristic values of S (cf., chap. 3), calculate the characteristic vector v i  of s 
corresponding to the value .kt by solving by recursion (but with scaling dif f icult ies) the equations 

SI/ L= v ' 
I 1 1' 

form a matrix with columns ut, say V; 

calculate T C ' =  W, the coluinns of which w i l l  be the required characteristic vectors o f  A. 

The entire computation i s  then subject to check, and, i f  necessary, refinement, by using 

AW = l ldiag (Al ,  ..., X,)i1 U' . 
The relation of the method proposed here to currently used techniques, which apply mainly to  the 

finding of a single characteristic value, i s  olso not discussed. A crit ique o f  exist ing algorithms i s  

given in [41, and we believe that discussion shows them to be unsuitable for use with fu l ly  automatic 

machines i f  a l l  the characteristic values are wanted and the matrix has large order (-100). 

Other omissions are any general discussions of the nature of computational instruments and algo- 

rithms and the seriousness of the possible accumulation of round-off error and the resultant need for 

investigations such as that intended here. For a l l  these matters we refer to flOI and 141. 
Finally, the author expresses h i s  cordial thanks to Miss  Virginia Carlock (now Mrs. E. D. Klema) 

for her preparation o f  the flow diagrams and codes. Although they have been partially checked by the 

author ond, in rnore detail, by Miss Ruth Arnette, the unavailabil ity of a computer has prevented them 

from being muchine tested, as yet. They w i l l  naturally require minor modification i f  used with machines 

other than the ORACLE for which they were prepared. 

The unexpected avai labi l i ty o f  the ORACLE after the submission of this paper for reproduction but 

before the codes were typed made i t  possible to machine test the codes in Appendixes 3 and 4 to the 

extent there indicated. On the Losis of exceedingly l irnited experience in using the machine to work 

test problems, the rough time estimates o f  Tables 6 and 7 o f  chap. 3 oppear to be too low by a factor of 

perhaps 3 or 4. In other respects, the results of the machine tests were in conformity with the theoreti- 

ca l  resolts. [Th is  paragraph added in proof on October 12, 1953.1 
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1.1 O R T H O G O N A L  CONGRUENCE AND THE BASlC SCHEME 

The basic problem we are considering i s  that of finding a complete set of invariants of a real sym- 

metric matrix under orthogonal congruence. For a full understanding of the sequel, i t  seems desirable to 

look at  th is classical problem from the fol lowing point of view. L e t  the class of a l l  n by n real symmetric 

matrices, under addition and under multiplication by real scalars, be regarded as  a vector space Dl o f  

2 n(n -+ 1) dimensions. Then, an arbitrary real orthogonal matrix T induces on h a nonsingular, linear, 

homogeneous tran sformation 

I 

r 
(1.1.1) A -------+ A T  = I"AT , 
where the prime denotes the transpose and T1" = The transformations o f  l?Z h u s  induced obviously 

form ci group G (actually a representation of the orthogonal group) and, hence, subdivide R into (maximal) 

varieties on which G i s  transitive. That is, two matrices A and B are orthogonally congruent i f  and only 

i f  there exists an orthogonal matrix T such thot A 7  = B ;  th is i s  also the requirement that A ona' B shall 

be on the same one of the maximal varieties making up ri. A variety containing a scalar matrix consists 

of just one point; i f  the characteristic values o f  A are distinct, the variety containing i t  will be of di- 
mension & n(n - since this i s  the number of essential parameters in an orthogonal matrix. The fact 

that a real symmetric matrix can be reduced to diagonal form by an orthogonal congruence and that the 

numbers on the diagonal (the characteristic values) form a complete set of invariants can now be stated 

in the form: 

(1.1.2) 

ln .  

a maximal variety of IT on which G i s  transitive always contains at  least one (point 
representing a) diagonal matrix; a l l  such points are obtained from any one such point { by, at most, a permutation o f  the diagonal elements. 

Any computational method designed to produce from a given digital matrix (i.e., one with elements 

representable by the machine) a diagonal matrix(') on the same variety can be regarded as  a method for 

the calculation o f  the characteristic values. 

The diagonal matrices form a l inear n-dimensional subspace 63 of fi, and (1.1.2) contains the assertion 

that each of the maximal transit ive varieties of rt intersects fi i n  a t  least one point. To characterize 

direct ly these intersection points, to which we shall refer as cbarnrtenstrc diagonal uectoTs, w e  introduce 

the projection operator A i n  ril,, where 

(1.1.3) 

i s  the mapping of a matrix A to the diagonal matrix 0 obtained Ly replacing i t s  nondiagonal elements by 

XBFO. Evidently, ,A i s  the identity on d and ( A 2 )  is  in  d for every A, so .I2 = \ #  and ,\ i s  an idempotent 

(pro i ect i on) operator. 

(')Note that we  here leave to one side a large c lass o f  methods (mainly i terative) designed to produce a single 

one o f  the characteristic vaIue5. We believe, however, that the mathematical indeterminacy of the characteristic 

vector corresponding to a repeated characteristic value indicates the need to consider methods such a s  the one 

presented here. 
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Now, introducing the norm, N(A), o f  a matrix A by the definit ion 

( I. 1.4) 

we see at  once that 

(1.1.5) N ( A N  <, N(A) 

and equality holds i f  and snly i f  A i s  diagonal: A in B. Since 

trace [(T’AT) (T’A?’)’] = trace (T‘ATT”A’T) = trace [A(TT’)A’fTT‘)] = trace An’ , 
when TT’ = T’7’ = 

same norm: 

( 1.1.6) 

Hence, as A varies over a maximal transit ive variety, 

In ,  we have the well-known fact that orthogonally congruent matrices have the 

N ( A )  i s  constant on a (maximal) transitive variety , 

(1.1.7) %W 6 k , 
where k is the constant value o f  N ( A )  on the variety. 

if A = A A  i s  diagonal. 

Moreover, equality holds, by (1.1.5), i f  andonly  

This  yields the direct characterization of the cbaracteristic diagonal vectors: 

le t  { A ]  be the set o f  matrices orthogonally congruent to the real symmetric m a t r i x A  
and let  1 ~ l A  be the projection of th is set into d; then each of the (at mest n ! )  vectors 
of \ A ~ A  of maximum norm has as i t s  components the n chcracteristic values o f  A. 

(1.1.8) 

A further projection o f  ( A I  onto (say) the one-dimensional space obtained by replacing a l l  but the ( 1 , l )  

component Ly zero would y ie ld  an interval with end points which are the largest and smallest choracter- 

i s t i c  values of  A. For, the (1,l) component o f  T‘AT is the value of the quadratic form %&’for a un i t  

vector x such that (7,0,0,. . .,O) = xT and every unit  vector may be used wi th  a suitable ?, so that our 

statement i s  equivalent to the classic description of the maximum and minimum characteristic values i n  

terms o f  extreme values of the quadratic form. The criterion (lal.8) i s  a direct description o f  the set o f  n 

Characteristic values without the use of a chain o f  conditional maxima of the quadratic form. 

The basic mathematical scheme on which we base our computational algorithms can now be outlined: 

(1) replace the original matrix A by a matrix S orthogonally congrumt to A and ly ing in a 272 - 1 di- 

mensional subspace h of  n containing .O; 
(2) determine the characteristic values of  7, and hence of A, by a method which, while theoretically 

applicable to a l l  of n5, i s  feasible to compute only for matrices o f  A. 
The f i rst  step #,us amounts to the basically advantageous concentration of data, which i s  especially 

“bulky” in th is problem, and the second step depends upon taking advantage o f  the simplif ication o f  the 

problem resulting from the special form of the real symmetric matrix. Moreover, in  (2) we are able to  

obtain adequate information on the characteristic values of  S by determining the signature of S - A I n  

for suitable values of A. The usefulness of th is  method appears to depend on the fact that the signature 

of s - XI,) i s  insensitive to  any variation of the characteristic values (including coincidence), provided 

A i s  not too close to the one being varied. T~AJS, in a certain sense (cf., 31.4 and chap. 3), we replace a 

quantitative problem by a sequence o f  qualitative ones. Any determination of a real number by finding a 

sequence o f  upper and lower b u n d s  can, o f  course, be regarded in  th is  light. 

5 



1.2 THE JACOB1 FORM 

From any sequence u,,, u 1 ,  , . . , u of  r + 1 l inearly independent vectors, the Schmidt orthogonali- 

such that v.- i s  a l inear com- 

For, i t  i s  only necessary to l e t  e .  be a un i t  vector proportional to  

zation process constructs a set o f  orthogonal unit  vectors e l ,  .... 

(1.2.1) vi-1 - ( V j - , l ~ , k 1  - ( V j - , / e 2 ) e 2  - . . .  - bi - l / e j - l )~ j , - ,  . 
7 1  

bination o f  only the f i rs t  j vectors e i ,  
7 

where ( x r y )  = E xiyi i s  the inner product, Then e i s  orthogonal to e l ,  e 2 ,  . . . .  and .ej-,, and-an i 
induction on j i s  easily established. 

Applying this result io a sequence 

where ZL i s  an arbitrary nonzero vector, and the vi  are l inearly independent but 

(1.2.31 uA”” = cou + cluA + . . .  + c r d r  . 
for suitable values o f  co, cl, . . . .  cr‘ we determine a set o f  r + 1 orthogonal unit  vectors e l #  . . . .  
Of course, it may happen that we must toke r + 1 = n for (1.2.3) to hold. 

. . . .  Since e .  i s  a linear combination o f  (at most) vor v,’ e . A  i s  a linear combination o f  (at 

most) v l r  u 2 /  . . . .  v .. Hence, i f  the set e l ,  . . . .  er+, i s  completed in  any way to an orthogonal basis 

for the whole space, with respect to the new basis, the f i rs t  7 + 1 rows o f  A w i l l  have the form 

r I 

I 

(1.2.4) 

* (* 0 0 . . .  0) . 
* * (* 0 . . .  0) . 

* * (* . .. . . .  *) 

That is, i f  x -9 y = X T  describes the change from the original basis to  the new e basis a n d x A r ’  = 

yT’A7.y’ 5 yHy ’  , 
r + l  

r + l  

(1.2.5) B = 

f* 
A 

* 0 

0 0 . . .  0 0 . . .  0 

0 . . .  0 0 . . .  0 

0 0 0 . . .  i? 0 . . .  
* * * 

* * * * 

. . .  . . .  
* * * * * * . . .  0 . . .  0 

* * 
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Moreover, B = T’AT i s  symmetric, so the f i rs t  r + 
the known zeros i n  the f i rs t  r + 1 rows of B. Hence 

(1.2.6) 

wi th 

B = (  I 

0 

(1.2.7) I =  

f 

U 1 b ,  0 0 

a2 b2  0 

0 b 2  u3  b3 

0 0 b, ‘t4 

. .  
0 0 0 0 

0 0 0 0 

1 columns of B must have zeros corresponding to 

0 . . .  0 0 

0 . . .  0 0 

0 . . .  0 0 

. . .  0 0 b ,  

b* 0 . .. 

Since we can repeat the process, starting wi th a new vector n having i t s  f i r s t  r + 1 components zero, an 

inductive argument shows that we can take B i tse l f  in  the form (1.2.7) wi th r + 1 = n. The decompo- 

s i t ion of  (1.2.6) wi th K present i s  then signaled by one of the hi  being zero, 

We shall refer to a real symmetric matrix S such that 

s .  = 0 for l i  - j l  > 1 

as being in  Jacobi, or t r ip le diagonal, form.(’) Since a diagonal matrix i s  a special case of  one in  t r ip le 

diagonal form, we could have asserted ub inztio that a real symmetric matrix i s  orthogonally congruent to  

one in  t r ip le diagonal form. The above discussion shows that the reduction does not depend on any com- 

putation more involved(3) than the Schmidt orthogonalization process, and in  particular does not depend 

on the determination of the characteristic values. 

zi (1.2.8) 

1.3 R E D U C T I O N  TO JACOB1 F O R M  BY P L A N E  ROTATIONS 

Instead of introducing a new orthogonal basis by applying the Schmidt orthogonalization process to  

the vectors (1.2.2), we may suppose that the new coordinate system ha5 been introduced by making, i n  

sequence, a number of plane rotations. It i s  an easy theorem that an arbitrary rotation matrix (i.e., 

orthogonal and of determinant t l  rather than -1) i s  a product of plane rotations.(4) Somewhat less obvious 

i s  the assertion that plane rotations zn the C O W ~ ~ Z ~ J L Z ~ ~  planes  generate the entire rotation group. This 

I - -  __ -- 
( 2 ) T h e  d i s c u s s i o n  given here  i s  based o n  an o r a l  remark by von Neumann. The reduc t ion  i s  w e l l  known  and h a s  

been u s e d  e f f e c t i v e l y  by var ious  authors (cf,, LanczosL7l).  

( 3 ) l f  r + 1 .I n in (1.2.31, a (numer ica l l y )  rother unp leasant  de terminat ion  o f  a second vec tor  orthogonal  to  a l l  

e l , .  ” .  , e,+l i s  a l s o  requ i red  for t h e  above argument. 

(“Indeed, i t  i s  o n l y n e c e s s a r y  to r e m a r k t h a t  the  r o t a t i o n s  w h i c h  l e a v e  p o i n t w i s e  i n v a r i a n t  an  (n  - 2)-d imensional  

subspace (= the p l a n e  ro ta t ions)  c o n s t i t u t e  o se l f -can jugate  c l a s s  and there fore  generate an i n v a r i o n t  subgroup 

wh ich  m u s t  be t h e  e n t i r e  ro ta t l on  group s i n c e  the  l a t te r  i s  s imp le  when t h e  u n d e r l y i n g  f t e l d  I S  t h e  real-number 

s y s t e m .  
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too can be proved(5) without much dif f iculty and suggests that any desired reduction by an orthogonal 

matrix T can be carried out "stepwise" by writ ing T as a product o f  plane rotations and effecting these 

in succession. 

L e t  

i 
(1.3.1) R . .  = 

11 

1 

i 

1 
C .  

11 1 

1 

1 

--s . . 
21 

c . .  

1 1 1  

1 

2 2 , C i i  + S i i  = 1 , 

with zeros of f  the diagonal, except for the two indicated elements. 

the rule 

Then A R i j  i s  obtained from A by  

(1.3.2) ( A R  ..) = c .  ( A ) i  + s . . ( A I i  
11 

'I ' I i : i , ( A ) i  -1- c 'I . . ( A ) .  I 

where ( )k i s  h e  kth column of the matrix included within the parentheses. 

Similarly, 

(1.3.3) 

where ( )k i s  the kth row of the designated matrix. 

i f q  f i ,  4 f i ,  

i f q  = i ,  

i f q  = j ,  

i f p  f i , p  f i , 
i f p  = i I 

i f p  = j ,  

(')'Ne sketch a proof. F i r s t  Observe tha t  t h e  group G genetated by the r o t a t i o n s  in coord ina te  p lanes  opera tes  

For, t h i s  i s  t rue when n = 2, and the  i n d u c t i v e  h y p o t h e s i s  a l l o w s  u s  

transform ony vector in to  one  o f  the form (0, 0, . . . , 0, *, *) and so, by a ro ta t ion  i n  the x n- l ~ n  coord ina te  

t rans i t i ve l y  an the vec tors  o f  any f i xed  length, 

to  

plane, 

descr ib ing  ro ta t ions  i n  the coord ina te  p lanes  x xn, x 2 x n ,  . . . , and ~ ~ - ~ x ~  mus t  e x i s t  so tha t  1 

R n - ,  
i n  the  lower  r i g l i t  corner), and ari i nduc t ion  i s  eas i l y  establ ished. 

every ro ta t ion  mat r ix  can be wr i t ten  in the farm 

in to  o n e  o f  the form (0, 0, . . . , 0, k), k 2 0. If, now, T i s  a ro to t i on  matrix, mat r i ces  Rln, . . . , R,z- l  . . . 
i s  e f f e c t i v e l y  o f  order n - 1 (bordered by zeros and CI s ing le  +1 

The p r o o f  o u t l i n e d  permi ts  one to conc lude tha t  
R n - ~  n = e,. Hence  7 1  = T R l n R 2 n  . , . , 

where RT.' i s  a ro ta t ion  i n  the X . X .  coord ina te  plane. 
11 1 1  
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. 

The only elements of  the matrix which are actually altered in both (1.3.2) and (1.3.3) are the four 

nor the lef t  multi- elements (z,z), (zl l ) ,  ( 1 , 2 ) ,  and 

pl icat ion by R’ alters an element 

( 1.3.4) (R( IAR*I )eu  = P9 i f p # z , p ; t t l q f i , y f i .  

Moreover, neither the right mult ipl icat ion by K 

i f  p and 4 both are different from both z and 1: 
11 

i1 e 4  

AI so, 

(1.3.5) (Rz:A4RII)pz = ( ~ l ; A R l l ) l p  = ( l I u p z  3- 5 a for p A r ,  p A I , 
‘I PY 

( R  :’.AR ..) . = ( R  ‘ A R  . . ) .  = --s .  .a . + c ..a . for f i , p ,d j , 
fI fI PI 11 11 re 17 PZ 11 P I  

(1 ‘3.6) 

and for the f o u r  elements affected in both (1.3.2) and (1,3.3), 

(1.3.7) (RzrjARij)ii = I‘ ..(cijcdii + s ..a. .) + s . .(c. a .. +- s ..a ..) , 
‘ I  ‘1 *I ZI *I ‘ I  11 I1 

(K’.AR ..). = r . . ( c . .u  . - s .  .a. .) - s ~ . ( C .  a .  - s . .a .  .) , 
‘7 ‘ I  I1 2 7  11 I I  $1 11 11 ij t j  ‘1 t z  

( 1.3.8) 

and 

(1.3.9) ( R  TAR ..) .~ = ( R  I.AR ..) . .  
21 ‘I 11 fI 11 I f  

= c. .(c. .a. .  - s . .a . . )  + s. .(c. I ( .  . - .s . .a , . )  , 
‘I 11 11 I ]  I 1  ‘ I  11 11 2 1  $1 

Since the trace of li I . A R . .  = trace A for K . . orthogonal, 

( R I A R i l ) i i  i- ( R r . A R . . ) . .  = d i i  -t u . .  
=I 11 11 17 ? I  

(1.3.10) 

as i s  also evident from (1.3.7) and (1.3.8). 

* I  ‘ I  ‘ I  

The usual reduction of a central conic in  the Euclidean plane to i t s  principal axes is obtained by 

setting the le f t  member of (1.3.9) equal to zero and determining c.. s in H from the 

resulting equation. This  involves determining cos 0 and sin 8 from a knowledge of tan 28 and requires 

the computation of two square roots, the f i rst  to determine cos 20 and s in  28 and the other to find cos 8 

and s in 0. It i s  th is basic operation which Goldstine, von Neumann, and Murray [4] employ to reduce 

(approximately) to  zero the sum of squares of the off-diagonal elements. The dif f iculty of their method 

arises from the fact that i f  one coordinate plane rotation on the i th and j t h  components has been used to 

reduce the (i,j) element to zero, it w i l l  in general happen that a later plane rotation, say on the j th and 

kth coinponents, w i l l  be required which w i l l  reintroduce a nonzero (i,;) element into the matrix and thus 

require a new rotation in the x x .  plane, etc. Despite this complication, the method, which goes back to 

Jacobi, converges 1111. I t  has the d is t inct  advantage that the end product i s  a diagonal matrix (except 

for the “small” elements off the diagonal) with the approximations to  the characteristic values on the 

diagonal, 

= cos 0 and s . .  = 
‘I ‘ I  

‘ I  

By contrast, the method proposed here uses (1.3.6) - or, equally well, (1.3.5) - to determine 

cos (I = c , ,  and sin 0 = s .. and so requires only a single square-root operation, since the “half-angle 

formulas” are not needed. Moreover, we shall see that once the (p , j )  element o f  the matrix i s  made zero, 

no later rotation involves th is  element, and the accretion of zero elements i s  monotonic and noniterative 

11 ‘ I  
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in character. The price paid for th is advantage i s  that one is forced to stop short of the actual lacal i-  

zation of the characteristic values and to turn to a quite different (but, as it turns out, highly efficient) 

method to complete the computation. 

We now state the formal theorem which guarantees the possibi l i ty of obtaining the Jacobi form by the 

procedure suggested above. The statement and proof wi l l  be clearer i f  it i s  kept in mind that we produce 

zeros successively in the (1,3), (1,4), . . . , ( l , n ) ,  (2,4), . . . , (2,n), (3,5), a . , ( 3 , n ) ,  . . , and 

( n  - 2, n )  places by rotations in the (2,3), (2,4), . . . , (2,n), (3,4), , , . , (3,n), (4,5), . . ., (4,n), . . . , 
and (n - 1, n) coordinate planes, respectively. 

T H E  OR E M  1.3, Let A = A I 2  be an arbitrary real symmetric matrix and define inductively the se -  

quence of matrrces 

(1.3.11) A = A12, A’’, A I 4 ,  . . . ~ n - 2  n A I n  = A 2 3 ,  A24 ,  . . . , A2n = A34 ,  . . . , 
by  the formulas 

(1.3.12) 

( I .  3.13) 

f o r i = 2 , 3  , . . . ,  7 1 - 2 ,  

f o r i = 2 , 3  , . . . ,  7 1 - 1 ,  

i < j = ?, . . . ,  n , 

~i i + l  - - ~ i - 1  n 

A i - 1  j ~ 1 ~ i - 1  j - 1 K  
11  ij 

where R , .  is given by  (1.3.1) and c i j  and s i j  are any numbers satisfying 
I 1  

( I  .3.14) 

and 

Then  

t I .  3.1 6) 

i f  

t.1.3.17) ( i<j’)  ,< (i,j) , w i t h i ’ =  I ,  . . . ,  n - 2 ,  
i’ + I < j ’ =  3,  . . . , n ,  

and the ordering i s  lexicographic: 

(1.3.18) ( i : j ’ )  = ( l , ? ) ,  (1,4), . . . , ( l ,n ) ,  (2,4), . . . , (2,n), (3,5), . . . * (n - 2,  n )  . 
F o r  the final matrix 

An-2  G S = ( s . . }  , 
I7 (1.3.19) 

we have s , .  = 0 if z -t 1 < j ,  and since the matrices remain symmetric under (1.3.1?), 
11 

s . .  = 0 
11 

(1.2.8) 

and S is in  the desired Jacobi form. 

Proof of the Theorem. The conclusion (1.3.16) i s  vacuously fu l f i l led for A ” ,  since (i‘,j‘) 5 (1,2) 
For the matrices A’ i’’ the requires i’ = 1, and then j ‘  > i’ + 1 = 2, which contradicts j ’  

requirements (1.3.16) arethe same as they are for the equal matrix Ai”’ 

2. 

(cf., (1.3.18)). 

In the truly inductive case, we can suppose (1.3.76) holds when i = I - 1, 7 = 3 - 1 and use 

(1.3.13) to  establish the conclusion for i = I - 1 und j = J 6 n .  From (i’,j’) 5 ( I  - 1, I ) ,  we 

hove I’ _< - 1 - 1 < I - 1, so i’ f I, and i‘ A 1; hence (1.3.4) y ie lds the desired conclusion, 
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except in  the cases j ’  = 1, j ‘  = J (since (i’,j’) $ (I  - 1, 1 - 1) only when i ’  = I - 1 and 

j “  = I ) .  For j ’  = I, (1.3.5) applies, and 

Since i‘ < j ’  - 1 = I ’  - 1 and the inductive hypothesis applies. For j ’  = J ,  (1.3.6) gives 

(A”’ I),’, = -srJ(Ar-’ J - l ) i , ,  + c (A’”’ J - ’ ) i e J  . 
I J  

\‘hen i’ < r - 1, the inductive hypathesis makes both terms in  the r ight member zero, and when 

i‘ = = 0. - 1, the condition (1.3.14) on crI and s 11 i s  imposed to make (A’-’ J )  r - i  J 

1.4 R E L A T I O N  B E T W E E N  CHARACTER15TIC  V A L U E S  AND SIGNATURES 

Regarding the real symmetric matrix M as a point i n  the vector space h of 31.1, the matrices M ( X )  = 

M - X l n  l i e  on a straight line, The signature i s  then an integer-valued function o f  the coordinate h o f  a 

point on th is line, and the characteristic values of  M are identif ied with the points o f  discontinuity o f  th is  

function. For suff iciently large posit ive values of A, the signature of M(X) i s  - ) 2 ,  and for sufficiently 

large negative values, i t i s  trz.  At every point of discontinuity i t changes by an even integer, repeated 

roots of AI being signaled by a jump of more than two units in the value of the signature function, 

For aur purposes, i t i s  convenient to  regard zero as a posit ive number and to denote by P,(h) the 

= 2PM(X)  - number of nonnegative characteristic values of ht - X1,l. 
2n + rank (AI  - X l n ) . )  Ordering the 72 roots X i  of M by the requirement 

(Then, signature ( M  - X l n )  

- (1,4*1) Amin = A,, 6 X,-l <= 0 .  5 __ x, 5 A, - xmax I 

(1.4.2) A n  - x 6 A,-, - X 5. - . . I  5 - A, - x <_ I A ,  - A ,  

(1.4‘3) k’,(X) = I , 

we.see that the roots of  ,%I - X l n  are 

and counting the number of  nonnegative X i  - X gives 

which i s  equivalent to 

%+1 < X j  A , .  

I t  i s  convenient to le t  A be an upper bound and -A be a lower bound of the X i ,  i = 1, 2, . . . , 7 ~ .  Also, 

(1.4.34 X _< - p i s  equivalent to  PM(X) 2 PM(p)  . 
The algorithm on which we propose to  base the computation of characteristic values can now be 

stated formally. We state it for an arbitrary real symmetric matrix although i t s  approximation by a digi ta l  

computation i s  carried through only in the special case of a matrix in Jacobi form (cf., chap. 3). 
T H E O R E M  1.4. Let  M be a nonzero r e d  symmetric matrix uiith characteristic values Ai, i = 1, 

2, . . . , n. ordcred so that XZ+’ 2 A ,  and let 11 > maxL [Ail > 0. Define recursively, /or j = 1, 2, . . . , ri, 

1 1  



(1.4.4) 

where 

for j = 

f o r j  = I ,  + I , .  . . , n , 

for i = 

min (Aa* j ,pa )  f o r j  = I , +  1, . . . ,  n , 

1 ,  2, . . . , I ,  , 

I, 2, . . . , l a  , 

and the integer p a  =( n i s  determined by the requirements 

> 8  Aa'p a 
- Aa.Pa 

(1.4.81 

for some fixed posit ive 6 < A. Require that the sequences terminate with the first value of a -  a, for 

which 

(1.4.9) 

'Then the sequence does terminate for a iialue of - 
a . _ ( l + n L ,  (1.4.10) - 

where 1. i s  the least integer 2 log, (A/6). Moreover, 

(1.4.11) :ja. * - A,,i 0 . 
and the half-open intervals 

(1.4.12) 

are either nonoverlapping or coincide and are ordered so that 

(1.4.13) 

Finally, 

( 1.4.14) 5 hi < Rapi f o r i  = 1 , 2  " . . . ,  n ,  

H . = IX; < h < f o r i  = 1 , 2  , . . . ,  n ,  ... a ,  ' 

if pi is in Ha,i, p .  is in fro, . for 1 > i, and H . # H ., then p .  < p i  . 
I 8 7  a, 1 an1 I 

I 

a = 1, . . . , a  . 
Before proving the theorem, we w i l l  try to c lar i fy  i ts  meaning by describing in generol terms how the 

process of "localizing" the roots i s  envisaged. The theorem prescribes thot po = 0. If, fot example, 

I'M(po) = 0, we know that a11 the 1, 2, . . . , n.  Then 

p ,  = -2-'A, and finding y+j(p,) gives information about a l l  n of the roots which restr icts each root to 

an interval of length 2-'A. For the case P M ( 0 )  = 1, we hove -A < X i  < 0 for i = 2, 3, . . . , n, but 

0 5 A, < A. The theorem then requires /11 = 2-'A and 11, = 2-,A or 3.2-2A, depending on whether 

pni(pl) = 0 or 1, respectively. 

are zero and so hove -A < X i  < 0 for i = 

Evidently, in  th is case, a chain of values pw p,, . . . , pe w i l l  be used which successively restr icts 

8, A ,  to intervals of length A, 2-'A, 2",A, . . . , 2 - L 1 ~ ,  where L i s  the f i rst  integer such that 2 - L A  

or 

(1.4.15) L 2 log, (A/@ , 
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but which does not improve the information on the location of A,, A,, . . . or A,, after the f i rs t  step. After 

A ,  has been found i o  l i e  in a particular interval of length 2"'-A 5 8, the next value of  1.1, i s  required to be 

PL + I  = -2-'A, and the value of PM(pL  +,) yields information which l imi ts each of the remaining 17 - 1 
roots to  one of the intervals -A < Ai < -2"A or -2-'A 5 A, < 0. _- 

This phenomenon of chains of values of the p a  which give information about only a single root, 

interspersed with occasions which y ield information about a l l  the remaining rootsfappears to make it very 

d i f f icu l t  to give a real ly ef f ic ient  estimate of the maximum number of steps required for the desired 

localization. Thus, for the values of n, A, and 8 which are l ike ly  to be used in  any actual calculation, 

(i.4.10) i s  certainly too large an estimate. (Note that p L  i s  used to get values of A L + l f i  and AL+l , . ,  

which accounts for the term "l+" i n  the right member of (1.4,10).) When r2 = 1, the above example shows 

the estimate to  be exact. =+Ai - A (i = 1, 2, . . . , 2k), and for 

I, = log2 (A/&) 2 An, the algorithm comes to an end for 

For n = 2'+', At = 2'ih and A 
i .2k 

- 
( 1.4.16) a = 2[L 4- ( L  - 1) t- ( L  - 2) +.  . . + (L - 2 9 1  

= ( 2 L  - 2 q  (2  c 1)  

= ( 1  4- n L )  - L1 t- 2"2& f 1 )  - 2L1. 

= ( 1  + n L )  - I1 t in (An + 1) - 21-1 

steps. 

Hence, for a matrix of order n i= 32 with A = 1 and 6 = 2-30 (about nine decimal-place accuracy), 

La = 30 and 

( 1.4.17) Cr. = 961 - 213 = 748 

so  that the upper bound given (961) i s  higher than the actual number of steps required (748) by 213 steps 

or about 28%. For n = 64, A =  1, and an accuracy of 35 binary places, - 
(1.4.18) r ~ .  = 2241 - 987 = 1 2 4  , 
and the bound (2241) i s  about 79% in  excess of the actual number of steps required (1254). (Note that i f  

we had only required 30 binary-place accuracy when n = 64, some of the characteristic values would have 

been found together and (1.4.16) would not have applied: L = 30$32= Anm)  

The algorithm of the theorem is based on the assumption that a l l  the roots are to be: found, but it i s  

clear that only very slight modifications are required to find only the largest (or the t largest or smallest) 

characteristic values. Moreover, equal roots reduce instead of increase the di f f icul ty of the computation, 

since equal or "nearly equal" roots are found, together wi th their multiplicity, simultaneously. Finally, 

the method is  easi ly adapted to a determination of a l l  the roots to a low degree of accuracy, together with 

a more precise determination of any selected root or roots. 

Proof of the Theorem. For a = 0, A a , i  =-A < n u s i  =+A, a l l  the coincide, (1.4.13) i s  vacuously 

fulf i l led, and (1.4.14) i s  true by the hypothesis on A. We are therefore permitted to establish the theorem, 

except for (1.4.10), by induction on a, supposing that an integer p a  2 1 and ,< n exists for which (1.4.7) 

and (1.4.8) hold. (That the induction is  actually over only a f in i te  number of values of a is irrelevant 

here.) 

Suppose I f  = ' I a J 2  = ._ - ~ a , n  g ~ H a , r , + l - * * .  - - - W  a , ~ 2 f ' ~ a , n ~ + 1 - ~ . . - ' ~ a , n 3 ~ ~ ~ a , n 3 + ~  I - 
a,  1 

- . . . = H for nv = n, so that n intervals coincide i n  v sets o f  n l ,  
+1 -- a,nv a l a y -  1 a,ny-  1 - . . . =  H f H  I 

13 
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n 2  - n ,, 
(1.4.13), 
(1.4.19) ha, = A u t 2  

. . , nk - nk-,, . . . , n -- members. Since the intervals are disjoint and ordered by 

- %, fl 

' a n n 3  

. . .  - - - A a f n  1 - > A a , l  

a,n + 1  - Aarn2  - > Ao.,n 1+1 

I AaPn3 - a , n 2 + 1  - - 

-. . . .  - - 

- . . . -- A a I n 2  - 
e . .  - I - 2 A  - 

> A  -. 
I . . .  - - , . .  - > Aa,n2+1 

where, for convenience, we shall not expl ic i ty exhibit the dependence of the n ,  < n 2  <. . . <n,on a: 

n = n ( n ) l  actually. 
P P  

From (1.4.6) and (1.4.8), 
i\ a ' p  a (1.4.20) > P ,  A,,, ,  I 

so that, determining n ,  by 
(1.4.2 1) % - I  1- 1 5 p ,  =< n a  I 

we have 
(1.4.22) 

- ..~ . . . - - H , , ~ ~  and hence i s  outside a l l  the That is, pa l i es  in the (coincident) intervals H a , n a - l  t l  

other intervals: 

(1.4.23) 
and 
(1.4.24) p a  < ' u , j  f o r i  =< n a m 1  . 
The definition (1.4.4) can now be wr i t ten 

i \a+l , i  = A a 8 i  (1.4.25) A a t 1 , j  = no.,, 

and 
(1.4.27) Aa+l,j  = A a , j  and A u + l f i  P a  

for j = + 1, l a  + 2,. . . , n a  . 
Evidently, (1.4.11) continues to  hold for 0. --. a + 1. We agree that i f  I ,  $ n a - , ,  (1.4.26) i s  omitted,and 
i f  l a z  nu,  (1.4.27) is omitted. To show that at  least  one of the upper or lower bounds, AaJ l  or 

i s  actual ly  improved, i t  i s  sufficient to observe that n a s  1,s n , - l  contradicts < n u .  Hence, 
we have: 

the step from a to a + 1 replaces n ,  - n u - ,  > 0 (coincident) intervals of  length 
by an equal number of intervals of half this length and does not _- A Aann a 

" # n u  

alter the remaining intervals. 

(1.4.28) 
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The intervals which are altered are replaced by coincident or dis joint  (since they are half-open) new 

intervals which remain dis jo int  from the unaltered old ones, and hence we have the required properties 

of the 

To prove that ond Aa+' continue to be lower and upper bounds for the respective roots A, 

as required by (1.4.14)1 i t  i s  necessary to consider only I = n a W l  + I ,  n,,, + 2, . . . I na, since these 

are the only values of  i for which the bounds with index a + 1 differ from those with index a. By the 

definit ion (1.421) of n a ,  the order relations (1.4.19), and the inductive hypothesis (1,4.14), 

Since ln -- P , ( p a ) ,  (1.4.3) gives 

(1.4.30) X I , + ,  < Pa s A I n  t 

so 

and A, > I 
AIa + I  < ' n a - 1  n 

or 

( 1.4.3 1) r? a - 1  I, g n a  . 

( 7 -4.32) 

The new bounds are now established by comparing (1.4.26) and (1.4.27) with (1.4.30): 
- - . . .  - - Aa+l l ,  = Pa e< 'ja =< ' l a . - l  a A + 1, n a - ~ + 1 

It now remains to show that the intervals N- ate a l l  of length =<ti for some 
a/ '  - 

(1.4.34) a $ 1 4 -  n L 1  

where 2L 2 - (A/(?) > 2'd-l and L i s  a nonnegative integer. To do this, we f i rs t  observe that (1.4.7) and 

(1.4.8) require that the lengths of the intervals Nu l  1, H a n 2 ,  . . . al l  be equal to or less than 

6 while the length of  H Comparing this with (1.4.19) and (1.4.21)1 we conclude 

that 

is greater than 8. 
" r P  a 

( 1.4.35) Pa ' a - 1  + 1 ,  
ond that the step from a t o  a + 1 does not alter the intervals f f a , i  for i < pa. It follows that 

( 1.4.36) P ~ + I  2 Pa * 

I f  Pa P a + l  = ' '  P a + k - l l  

(1.4.37) 6 < n - ' ' c ~ + k - l , p ~ .  ~ - ( K - I )  n u t p a  - ) <: 2-kt1A 

by (1.4.28). Hence, 2"" < (A/?$, and therefore k - 1 

= 
for a > 0 , 

( a + k  - 1,p a - - 

Id - 1 or k: 2 L.  It follows that 

(1.4.38) P a + L  2r P a  + 1 ' 

15 



Since p ,  = 1, n 2 
holds for a f i rs tva lue  o f  a, s a y  Ti, such that a 5 1 + n L ,  as was to be proved. 

2 1 + t so long as a = 1 + tL i s  a permissible value of a. It fol lows that (1.4,9) 

1.5 S I G N A T U R E  O F  A M A T R I X  IN JACOB!  F O R M  

The theorem of 51.4 makes use of the determination of the (integral) value of P M ( p )  for a large number 

of values of  p. Since piVj(p) = (the number of characteristic values of .$.I >, p), this may be expected to 

be a di f f icul t  problem for a general real symmetric matrix M .  In the particular case of a matrix S i n  tr iple 

diagonal form, the fol lowing theorem serves as a suitable basis for the easy computation of P x ( p ) .  

‘THE OR E M  1.5. Let  be  a real symmetric ina t r ix  in Jacobi form: 

s.. = ai, s. . - si+l = hi and s. = 0 for ji - j ]  > I . 
I t  l i  

(1.5.11 

Define a sequence o /  n + 1 /unctions io, i,, . . , , {, of h by the recursion formulas 

i f  f i - l  f 0 ; 2 
(a i  - W i - 1  - (b i - , )  

i / i i - l  = 0 L O  - {bi-,J2 fi-2 fi-* 

- ( b i J 2  if f i - l  = 0 , f i - 2  = 0 

and 

a .  - h i f  j i e I  = 0 , 

(1.5.2) j i  = 

The initial conditions are 

f = I and bo = 0 (1.5.3) 0 

( so  f-, is irrplevant and need not be defined). Then 

and bi-, L 0 ; 

and bi-l A 0 ; 

and bi-,  = 0 . 

P S ( p )  = the number v/  agreements in sign between successizle elements in the 
sequence 1 = fo ,  f I ( p ) ,  , . , , fn(p)) where zero i s  considered positiye. 

(1.5.4) 

Proof of the Theorem. I f  no b ,  i = 1, 2, . . , , n - 1, i s  zero, no two consecutive f i  can be zero. 

For, io f 0 and i f  f i l l  and j i  were both zero for a smallest possible value o f  i > 1, / i - 2  f 0 and 

ti = - ( h i - ] )  Moreover, j l ( h )  = a ,  - h and f i  i s  always given 

by the f irst (or by i t s  special case, the  second) alternative i n  the recursion formula (Ia5*2)* Expanding 

the determinant di (h)  of the principal minor formed froin the f i rs t  i rows and columns of S - XIn by i t s  

last row on$ column gives 

(1,5.5) 

and hence ( b i  f O), 

2 
/ i - 2  d 0, contrary to assurrption. 

d .  = ( a .  - A) dinl  - ( b i - l ) 2 d i - 2  

(1.5.6) /,(A) = dz(4 . 
A real symmetric matrix which i s  such that no two consecutive di are zero i s  said to  be regularly 

arranged, and i t  i s  CI classical result due to Darboux (MacDuffee [9], p.  57-58) that for such a matrix 

the signature is the number of permanences minus the number of variations of sign in the sequence o f  

(1.5.4). Our conclusion i s  the variant of this result obtained by counting only the number of  posit ive 
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t e rms  in the c a n o n i c a l  form (sum a n d  d i f fe rence  of s q u a r e s )  of the quadra t ic  form x ( S  - Xln) x ’ a n d  

regard ing  z e r o  as  pos i t ive .  

It is a c u r i o u s  f a c t  that 

(1.5.7) 
S c a n n o t  hove a r e p e a t e d  c h a r a c t e r i s t i c  v a l u e  i f  

hi f 0 f o r i  = 1 1 2 ,  ..., - 1 . 
This fo l lows  from t h e  o b s e r v a t i o n  that for a c h a r a c t e r i s t i c  v a l u e  X = p, /,&(p) = CL’,(p) = d e t  (S - pl,) = 0 

and, s i n c e  n o  two c o n s e c u t i v e  fi(h) c a n  v a n i s h  s imul taneous ly ,  H n - l ( p )  = /,-,(p) # 0 a n d  therefore  the 

rank of S - p1, i s  n - 1, which g u a r a n t e e s  t h a t  p is not  a r e p e a t e d  c h a r a c t e r i s t i c  v a l u e .  T h i s  c o n c l u s i o n  

permi ts  a n  a l t e r n a t e  proof of (1.5.4) in the s p e c i a l  case in which n o  bi = 0, s i n c e  t h e  polynomials  

form a Sturm s e q u e n c e  of polynomials ,  each with lead ing  coef f ic ien t  p l u s  1, a n d  h e n c e  t h e  n u m b e r o f  

roots of d,(A) which a r e  equal  to or grea ter  than  p is the number of var ia t ions  of s i g n  in the s e q u e n c e  

(1.5.8) for X = p (cf., [31). 

It remains  to s h o w  that t h e  theorem c o n t i n u e s  to hold when o n e  or more of the bi are z e r o ,  S i n c e  the 

theorem holds for n 5 1, we may u s e  induct ion on the order. Assume  that S has at least o n e  bi = 0 a n d  

let b, b e  the last s u c h  hi.  T h e n  

(1.5.9) 

def ined  by the  theorem for S y  has the property (1.5.4); 

(1.5.11) PS2(h)  = number of a g r e e m e n t s  in s i g n  in (1.5.1Q) I 

a n d  the /;*)(A) a r e  a c h a i n  of pr incipal  minors  of S 2  - A I ,  which a r e  a l w a y s  c a l c u l a t e d  by the  first of 

(1.5.2). 
T h e  s e q u e n c e  for S is then  

(1.5.12) 

i f  /,”) & 0, s i n c e  the recurs ion  formula i s  homogeneous  where  it is u s e d  to c a l c u l a t e  te rms  a f t e r  /l(’). 
I f  

(1.5.13) 

11 /yl * - , /;? (f :  1)  ‘I, ( 2 )  I * * * I (/yqy)) I * * I ( f ( ” p )  I 

= 0, then  we get 

1, f\? * * , f l  ( I )  = 0 1 / y  = - A), . . , , /yl . . . 1 /,,, ( 2 )  . 
S i n c e  mult iplying e a c h  term of the s e q u e n c e  (1.5.10) by /,[‘I does n o t  c h a n g e  the number of a g r e e m e n t s  

of s i g n  in  i t  a n d  w e  a r e  cons ider ing  zero to h a v e  t h e  s a m e  s i g n  as p l u s  one ,  the number of a g r e e m e n t s  

of s i g n  in (lS.12) or (1.5.13) is the sum of the number of a g r e e m e n t s  in t h e  s e q u e n c e s  computed sepa-  

ra te ly  for S, a n d  S,. S i n c e  t h e  c h a r a c t e r i s t i c  v a l u e s  of S are those of S,  toge ther  with those of S2, 

(1.5.14) KJX)  = k; ,(A) + ps (A) I 
2 

and w e  h a v e  t h e  theorem for all n. 
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I t  should perhaps be noted that we do not exclude the possibility that there may beconsecutive 

zeros in the sequence 1, / , ( p ) ,  . . . , /,(p). This will  happen i f  and only i f  ai - A = h i - l  = 0 for some i 

and either /i-, = 0 or ai+, - h = bi = 0. The matrix 5 - hln then decomposes and the elaborate recursion 

formulas (1.5.2) are designed to properly “restart” the sequence. 
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Chapter 2 
NUMERICAL REDUCTION TO JACOB1 FORM 

2.1 C H A R A C T E R l S T l C  V A L U E S  O F  A SUM ( L i D S K l ~ f l S  R E S U L T S )  
" 

In Q paper published in 1950, L i d s k i i  f8I proved the following theorem. 

T H E O R E M  2.1, (Lidsk;). L P t  A, B, and S = A i- B be three real symmetric matrices with cbarac- 

t q i s t i c  vnlues al  2 u2 2 . . , 1 u,, P I  2 p ,  2 . . >= p,, und ul 2 c2 >b . . . >, on, 

respectiuely. Denote b y  K a  the closed convcx hiill stretched uround the ni points 

- 
(2.1. I )  u .  

where /3;, Si, , . . , @; i s  one of the  n! permututions o/ 

K u  with the region K b  obtained by interchanging the role of A cincl B:  

containing the ti! points 

= (u, + p ; ,  a2 + [j;, . . . , + p,:) for j = I, 2, . . . , n! , 

p2, . . . , p,. Let L be the  intersection of 

K b  is t he  smallest convex region 

I 

- 
(2.1 * 2) 

where a E f i s  a pcmzutation of the  a.. 

bi = + a ; ,  /3, + a;, . . . , f i n  + a i ) ,  i 2: 1 ,  . . . ,  r z ! ,  

Then (cl, a2,  . . . , a n )  is a point o/ L. 

W 

For use in  error estimates, it i s  convenient to restate a part of Lidsk i i 's  result in  the following forms: 

COR o L L A  R Y 2.1.1. Let  S = ?' 'AT + E, where A ctnd E are teul symmetric matrices and 1' is ci real 

orthogonnl matrix. Then, i/ s = ( u ~ ,  p2, . . . , C ,  ,J and a = (ul I a*, , , . , a n )  ure the characten'stic 

cliugonal vectors obtained b y  ordering the characteristic values of S and r i  comparatively, oI 2 a2 2 
a >z a, a n d a l  2 u2 2 . . . >, an; then 

(2.1.3) s = a + c l ,  

where Cl = (8 , ,  cy,, . 
the   fare u pennutation of the characteristic values ei of E. 

. , is ii vector lying in the convex hidl of the  n! points (E;, , . . , E ; ) ,  where 

The matrix E w i l l  in  practice be known only as the difference between Q matrix calculated from A 

(with errors due to round-off and digi ta l  approximation to real numbers) and T'AT, where ?' i s  a "suitably 

chosen" orthogonal matrix. We shall be able to give an upper bound for the norm, N ( E ) ,  and for 

(2.1.4) 
Using the relation 

(2.1.5) 

v ( E )  = rnax / e i /  f o r i  = 1, . . . ,  n . 
1 / 2  

N ( E )  = [ (e , )2  + , . . + ( E n , ' ]  , 
which follows from the  invariance of the norm under orthogonal congruence and the diagonal cononicai 

form of a real symmetric matrix, Corollary 2.1.1 now implies the second part of the following corollary. 

C O R O L L A R Y  2.1.2. The churucteristic diagonal vector s of S - -  T'AT +- E lies itz a sphere 7uitb 

center a and radius N ( E j  aim' also l ies in a cube with center u and cdge 2 4 E ) .  T h d  is, 

12. 1.6) 
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and 

(2.1.7) I S i  - ail 5 U ( E 1  . 
Evidently, the sphere and the cube overlap in such a way that, in general, neither w i l l  contain the 

other. When E has only a single nonzero root, however, v ( E )  = N ( E ) ,  and (2.1.6) implies (2.1*7). The 

result (2.1.6) i s  older than LidskiY's theorem and follows from a fundamental maximum-minimum property 

of the characteristic values.(') 

The fact that the s i  and ni  can be ordered simultaneously in  decreasing order of magnitude i s  shown 

in  the following: Suppose ai 2 a .  for i 2 j and (2.1.7) holds for some ordering o f  the si, but we do 

not know si 2 s .  for i 2 j .  If for some pair i >, j of  indices s i  < s I ., then si < s .  I 6 a i + u(E) 

and si  2 ai - u(E) 2 ai - v ( E ) ,  so Isi - ai) u(E).  Similarly, 1s i - ai( 1. u(E) ,  and si and 

s .  can be interchanged. Repeating the process sufficiently often leads to (2.1.7) for both the si and ai 

simultaneously ordered in  decreasing order. 

-- 1 

1 

I 

2.2 BOUNDS F O R  T H E  C H A R A C T E R I S T i C  V A L U E S  O F  T H E  SPECIAL FORM OF ERROR M A T R I X  

A rotation K~~ in the x . x .  coordinate plane alters only the elements in the i th  and jth rows and columns 

of the matrix transformed by R i i ,  as we saw i n  81.3. Moreover, the rotation R ' I  . .  operates on the matrix 

A i - l  j - 1  (cf., (1.3.13) and(1.3.16)), which i s  of the form 

' I  

~ _ _ _  ~ _ _ _ _ _ _ _  _ _ _ _ _ ~  
("Cf,, [ l ] ,  p. 28. Although (2.1.6) can be seen to fol low from this reference and von Neumann, Goldstine, and 

Murray use  the result, a specific statement i n  the form needed appears to be di f f icult  to find i n  the literature. We 

therefore give  a proof in Appendix 1, based on the ideas of 5 1.1. 
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- 
where we omit the upper indices i - 1, j - 1 on a l l  the a having two lower indices.(2) (The dl, , . , , 
ni-1, b,, * - I b i -2  are unchanged after they are once formed and so require no indication o f  the matrix 

to which they belong.) There i s  certainly no need for the computational procedure to  alter the zems in 

the f i rst  i - 2 places in  the i th  and jth row and column; hence, i t i s  appropriate to discuss an error matrix 

- - 

i i 

i o  

i o  

(2.2.2) ii . . ,  

. I .  

E .  . 
I 1 - 1  

‘ j  i-1 

0 

0 

0 

E. 8 - 1  i 

E. .  z r  

E . .  
I2 

‘n i 

I . .  

. , .  

0 

0 

0 

E .  
r - 1  j 

E . .  
$7 

E . .  
I1 

E 
ni 

. . .  

. . .  

I 

where a l l  elements not in the i th or j th row or column are zero, and we shall certainly arrange that 

eks - - esk.  Since we propose to set the (i - 1 ,  j )  element of the matrix R’A”’  j - ’ R . .  equal to zero, 
I1 ’I 

independent o f  an actual computation o f  i t s  value (using, however, th is  dcsiderutum to determine the 

angle of rotation 8 . .  and hence the computation), the amount o f  the error may require special treat- 

ment. Because the computation of the ( i , i ) ,  ( i , j ) ,  and (1,j) elements i s  more involved than is the compu- 

tation of  the ( i l k ) ,  ( k , i ) ,  ( j , k ) ,  and ( k , j )  elements for k C i - 1, i, or j ,  they too are considered individually. 

We m w  make the formal assumption that the error matrix E‘? = (epq) ,  where we omit the i and j as 

‘ I  

.. 

superscripts on the E ha5 elements bounded in  absolute value as follows: e 4 

bpql 5 P p q  - - P4p f o r p o r q  = i o r j a n d p  2 i - 1 , y 2 i - 1 I 

(2.2.3) 

max {p. y = i + 1, . . ., j - 1, j + 1, ..., nl 2 p . z q ’  p j q t  

If ( x ~ ,  x 2 ,  . , , x , )  are the components o f  a characternstic (column) vector x & 0 o f  E”, with nonzero 

characteristic value A, ~ ’ j x  = ~r gives 

(2.2,4a) x ,  = x 2  = . . .  = x i - 2  = J 

E a i X i  $. E x. = xr, J 

d l  ? 
a =: i - 1 , i  + I ,  . . . , j  - 1 , j +  l , . . . l n I  (2.2.4b) 

( 2 ) W e  follow the von Neumonn-Goldstine convention of representing digital  quantit ies by barred letters. 
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and 

(2.2.4~) 

Since x i  = x = 0 implies x 1  = x 2  = . , , = x = 0, we can normalize so that 
i 

max ( x . , x . )  = 1 . (2.2.5) r 7  

(2.2.6) l X i l  s 1 , l X j l  5 1 # 

(2.2.7) IXi-11 6 I 

Using this condition in the form 

(2.2.46) gives, on taking absolute values and using (2.2.3), 
P i - ]  i + Pi -1  j 

1x1 

,!3 = i a n d j  , 

and 

(2,2.8) f o r a  = i + 1 , . . .  , j  - l , i  + 1 , . . . ,  n ,  

Estimating the absolute value of the le f t  members of (2.2.4~) with the aid of the last  two inequalit ies 

gives 

and 

(2.2.96) 

where i n  

x = 1 ,  

(2.2.10) 

the range of a i s  i + 1, , . . , j - 1, j + 1, , . . , n. Hence, remembering that x i  = 1 or 
U 

i 

1 x 1 ~  - 1x1 [ p i j  + ppbl - [ p i - ,  + pi-l j )  + 2c' ~ ~ ( ~ ~ 1  s 0 for P = o r i  . 
U 

The expressions in the square brackets are both positive, and the quadratic in  1x1 in  the lef t  member has 

a posit ive and a negative root so that 

1 / 2  

+ 4 b i - l  p(cLi-1 i + Pi-1 i) + 2 P g I  1 ] 1 2 
(2211)  0 2 1x1 5 - [ PLij + Ppp + { (Pii -+ C'pd - 2  
for p = i or j ,  but not necessarily for both, where 

(2.2.12) a p  = pp  i + l  + Pp i + 2  + * + P p  j - 1  + Pp j + l  + - ' + P P r l  

To simplify th is unwieldy upper bound for every characteristic value, and hence tor the maximum 
. .  

characteristic value of the error matrix E ' ] ,  we le t  

(2.2.13) 

(2.2.14) 
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and 

(2.2.15) 

We then have as an upper bound for the roots o f  Ei j  

1 /2  (2.2.16) v ( E i j )  = /L* + [ ( p * P  -+ po(p;, 1 i + p i - ,  J )  + 2 4  * 

Some loss of  precision in  our later estimates would result i f we were to  replace pi-, and pi-, by 

their upper bound po and D by i t s  bound (n  - i - l ) p ,  but it w i l l  be instructive to make these estimates 

temporarily. Thus 

(2.2.17) 1/ 2 
v ( ~ ' i J )  _. 5 p* +- [ ( p * ) 2  + 2(n - i - 1) p2 + 2,1,2] . 

To see that even the last  expression i s  an efficient bound, we observe that i t i s  exact for the two 

fol iowing matrices ~ z j :  

i a =  cia= p = p O f o r n =  i - 1 , i  + 1, . . . , j  - 1, j f 1, . . . , n, 
E . .  = e . .  = E . .  = 0, so p* = 0, 
ihe two characteristic vectors corresponding to the nonzero roots have components 

", = . . .  = x .  

t l  * I  I 1  (1) 

- 2  - - 0, x i  --1 x .  = +(n - i)h and the roots are * p  [2(n - i)Iw ; 
I 

E . .  = .E,, = e . .  = v and all other = 0, so p = p o  = 0, p* I / ,  the matrix i s  
I I  

of order two and rank one with roots 0 and 2v = 2 p * .  

We can summarize these results in the fol lowing theorem. 

TH E 0 R E M 2.2. Let T . .  be any real orthogonal matrix describing a rotation in the x . x .  coordinate 

plane and /Iz-' J be a digital approximation t o  the matrix Ai"' 7 given by (1.3.13) of Theorem 1.1. 

Suppose that A'-' j dijfers from 1 at most in the i-th and j-th rows and colzmns and that the e le-  

ments  of Ai-' i ir,hich are guaranteed by (1.3.16) to  be  zero are also zero in A ' - l  J, and let hounds /or 

the elements  of 

(2.2.18) 

he denoted as in (2.2.3), (2.2.12), (2.2.13), m2d (2.2.14). 

Ai-' it say  pi-' j ,  ami thr ordered characteristic values of Ai-' I-', say ai-' j - ' ,  sa t i s fy  

a- . 11 ' I  

- .  

- .  

Z i - 1  j - ~ , p , x i - l  j - l y  iJ = Eij  
2 1  

Then the ordered characteristic values of - - 

n 

(pi-' i - c r i - l  i-1p - < ~ 2 ( ~ i i )  - (2.2.19) 

k = I  

a ; d  

(2.2.20) ipi-1 j - i - 1  1 =< v ( E i i )  , 
. .  

zvbere v ( E L 7 )  is  given by (2.2.16). 

2.3 THE D l G l T A L  APPROXIMATIONS T O  COS 8 A N D  SIN 8 

Basic to  our method of reducing a real symmetric matrix to t r ip le  diagonal form i s  the determination 

of a solution of equations (1.3.14) and 1.3.15) for cos 8.. and sin e... We shall accordingly describe the 
11 11 
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computation by which we propose to approximate th is  solution. For simplici ty of notation, we temporarily 

set 

(2.3.1) 

(2.3.2) 

where we continue to adhere rigorously to the convention that digital quantities are represented by 

barred letters, while the bar i s  not used when th is  requirement i s  not imposed. Our use of the bar over 

the a's thus signalizes the replacement of the matrices All of Theorem 1.3 by another sequence A'I of 

digital matrices approximating them. 

. .  I . .  

We require that 

(2.3.3) 
and that 

(2.3.4) 

and we write the solution in the form 

( 2.3.5) 

(2.3.6) 

c =  

1/2 

I 

- 
X 

wnere we are considering the case in which 

(2.3.7) 0 =< lul < 1x1 
so that all the numbers involved are in  range (i.e., 2 -1 and < + I ) ,  

Regarding the extraction of a square root as one of our basic operations to be made available by a 

subroutine of the computation, we should calculate in sequence z,  w, t ,  71, u, c, and s and wi l l ,  in fact, 

calculate the corresponding barred quantities, where 

(2 .3 .8~)  

(2.3.84 

(2.3.8d) 

(2.3.8s) 

W 

t l  
- =  

2 

1 
2 
- + t = u ,  

1 /2 
2 1 ,  - =  

U 

- .  w : 2 = r ,  

1 - - +  j- = 
2 U I  

f o r f  > 0 ,  
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( 2.3.8f) 
f o r T  > 0 ,  

for f = 0 , 
c - 
z x - E = s .  (2.3.8g) zc = s /  

By x and f we designate specific computational procedures which lead to (rounded off) digital approxi- 

mations to  the product and quotient, respectively, o f  the two arguments, and by V d, we understand the 

digi ta l  output of a specific machine computation applied to  the (digital) input i3 that is  approximately 

the posit ive square root of E. It i s  by no means out of the question to use (even in the same compu- 

tation) more than one type of pseudo multiplication or pseudo division. We refrain from introducing a 

notational complication as a reminder of this possibil i ty. In (2.3.8d and e )  it i s  tac i t ly  assumed that 

1/2 i s  digital; that is, the base of numeration i s  even. Also, i n  (2.3.8c), while 2 i s  not digital, we shall 

suppose that “+2” i s  a digital operation and shall refer to  it as a “right shift,” which i s  an appropriate 

designation, at  least for machines operating in the binary number system. Finally, the assumption 

(2.3.7) guarantees that ( z (  < 1 and, hence, that the other unbarred quantities are numerically <1, but the 

variation of pseudo division and pseudo square root algorithms forbids the same conclusion for the 

barred quantities. Hence, we make the formal assumption: 

when (rj < [XI then IF + rj < 1 ; 
(23.9) when 121 < 1 then [Z x Z( < 1 ; 

and when 0 < V < 1 then 0 < V . /  < 1 . 
(For the ORACLE, unrounded division can y ie ld  IX f rl = +1 only for X = 1 - 2--39 and = -1, and we 

shall always have [TI < 1 which prevents th is .  The special-division algorithm used in the ORACLE 
invariably gives one as the last  d ig i t  in  a “rounded” quotient, and so (2 Pr 71 f 1. For rounded or 

unrounded division the maximum error i s  the same: 2-39.)  

To give an upper bound for IC - ci, we require bounds for the basic round-off errors, Since we desire 

our results to apply to as wide a range of machines as i s  feasible without unreasonable complication, we 

shall suppose that p + ;? and 7; - 7 are exact (so long as in  range) and that 

(2.3.10) 

(2.3.11) 

(2.3.12) (R for “right shift”) , 

while 

(2.3,13) 

without prematurely substituting numerical values for the various E’S. 

With these conventions, we now obtain 

(2.3.14) IZ - z (  5 E +  
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and 

(2.3.15) 

Si m i I arl y, 

(2.3.16) 

1 
2 

< ER -+ ---(Ex + 2 E + )  . 3 

Both u and iT are 23 i f  we assume that +2 preserves 20. Distinguishing the case f = 0, as i n  (2.3.8f), 

we have t > 0 so that Z > &. Then, using l?i - U J  = If - t l ,  

(2.3.17) 

< e.: + 21u - Zil  e x  f 3 E +  + 2ER , 

For numbers p and q both 24, 

(2.3.18) 

so that 

where for some square root routines it may lead to an improved bound to note that in this  last formula 

the maximum error of the square root routine when applied to a digital 
number ’i; 2 & . (2.3.20) E J  = { 
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Note that E f 0 does not imply 'z x Z # 0, much less (5 x Z) -: 2 & 4 and we must therefore discuss 

the case in  which t I= 0, U = 4, and i7 = 4 $ would involve an improper division. For many exist ing 

machines, the state of the machine which could reasonably represent +1 is actually used to represent 

-1 and is  operated upon as bef i ts -1; hence, it seems desirable to  le t  C = -1 in case f = 0. Then i t  i s  

necessary to  use i n  (2.3.5) (and i n  (2.3.8/)) the negative value of the root to get 

& (EX + 2e+ -I-' 2ER) 

SO that the error bound ?E,,; 2.3.19) s t i l l  dominates and may be used even in  the special case t =  0. 
Finally, 

1s - S J  = IF x c - - zc f E - z? + zc - ZCI (2.3.2 1) 

To obtain a sense of the magnitude of the error bounds, it i s  desirable to substitute expl ic i t  values 

for the various E'S. With most machines, rounded multiplication gives = &-s, where the machine 

carries s places and operates to the base p (/? = 2 or 10, usually). The right-shift operation wi th a 

binary machine w i l l  give eR = i/3-s, but wi th a decimal machine, eR = 0.9/3-' i f  the last d ig i t  i s  

discarded rather than rounded. To simplify the circuitry, the machine under construction for the Oak 

Ridge National Laboratory, the ORACLE, yields only E +  = ,f3-", whereas rounded div is ion gives 
€+ = sp-". I 

The square root algorithm can only wi th d i f f icu l ty  be made to give E / =  whereas E J =  fi-' i s  

Frequently, however, the larger errors occur only for the square root of a small number. The easy. 

usual algorithm used to  compute the square root i s  based on the recursion farmula - - 
X Z + !  = x .  - [F, - (V : X i ) ]  + 2 . 

A. S. Householder, i n  h is  forthcoming book 151 on numerical methods, proves that i f  0 <E  < 1 and x o  =. 1, 
then the sequence i s  wel l  defined and monotonic decreasing i f  i t  i s  required to terminate wi th the f i rs t  

x 1  for which [Fi - (E + Fi)l + 2 5 0. This Xi =Sd i s  shown by Householder to l i e  on the half-open 

interval of length 2-": 

(2.3.22) 

- 

[C + 2 - 2 s - 2 ] 1 / 2  I 2 4 - 1  < (-cd 2 rz + 2-2s-211/2 + 2-"-1 

For small values of  ?7, the error in  the square root approximation can approach 2-s .  We are entit led by 
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(2.3.20) to assume that E J ~ S  a bound for the error under the assumption E; 2 &. Then, since 

[C + 2-”-2]1/2 < 5 1 / 2  + - 
8 ( 2.3.23) 

we have 

(2.3.24) 

Hence, the maximum error made by an s-place binary machine in obtaining the square root of a digital 

number with value ,>A need be no more than 

(2.3,25) 

and for the ORACLE, E J  2 O.S@-” to an accuracy of better than twelve decimal places, since 

/3”” = 2 - 3 9 .  Assuming only p-” 6 we can certainly toke 

(2.3.26) E J  = 0 . ~ 0 0 2 p - s  . 
In summary, we shall, when it i s  necessary to use numerical values, choose 

(2.3.28) E(X,s; 2.3.21) < 5.2fles and &(F,c; 2.3.19) < 3.7@-’ . 

2.4 CRITERIA F O R  BEST D ~ G ~ T A L  APPROXIMATION To A P L A N E  R O T A T I O N  

When C = -1 i s  the value used for cos d. . ,  as was the case when7 2: 0, i t  might at  f i rs t  glance seem 

absurd to approximate sin 8 . .  by S = lz x (-1) = -7 when using sin 8 . .  11 = 0 would make the values exact 

for 19..  = rr. It appears to be known to computers that th is  need not be the case; nevertheless, we examine 

in some detail the question of what constitutes o “best” digital approximation to a plane rotation. 

11 

11 

2 1  

The equutions cy = sX and c 2  + s 2  = 1 ate conveniently regarded as describing a straight l ine  of  

slope z = through the origin of a Cartesian plane and the unit c i rc le  in th is  plane. We seek one of 

the points, +(c,s),  of intersection of the l ine ond circle and are obliged to replace i t  by a point with 

coordinates (KPPS,LP-S) for K and L integral and -p 2 K < -/3” 6 L < p”, A theoretically simple 

criterion for the selection o f  one of these latt ice points i s  to  choose the one nearest, or a specified one 

of  the two or four nearest, to one o f  the actual intersection points (say, c 2 0, - 1  2 s < 1). This clearly 

involves great practical diff iculties, since the criterion of selection depends on the exact numbers 

being approximated and i t  i s  the impossibil i ty of obtaining or recording these in  the machine which 

introduces the lat t ice points. It i s  nevertheless true that one could accomplish something very similar 

to thi5 i f  one were to  (1) calculate E and S as indicated in the last  section, (2) canvas a l l  values of  

c and s satisfying 

(2.4.1) C - KO@-” - 5 c 5 - ? + KO@“”  

and 
- 
s - L o p s  =< s =< L o  + p-“ , 
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where 

( 2.4.2) 

and 

and (3) select (c,s) by some specific criterion such as minimizing an approximation to some function, 

such a5 

presumably calculated by multiple precision methods to a high degree of  accuracy. Even such a laborious 

and hence wasteful method as that outl ined would not guarantee getting a “nearest” point in the absence 

o f  a mathematical analysis, which could be of considerable diff iculty.(3) 

L e t  us now investigate more carefully how best to approximate a point of intersection when the 

slope z of  the l ine i s  small. Indeed, 

(2.4.4) 

so that 

F = 0 implies t _< - or TU 5 2eR 

- 
( 2.4.5) w 5 2ER + ex + 2E; 

and 

(2.4.6) 

(2.4.7) 

and 

(2.4.8) 

z2 5 ii; + EX =< 2(‘R 4- E X  + E + )  

[?I 5 2”2 ( E R  + E X  + €;)”2 , 

. 
Then 

I - IzJ = IF + z - zi =< 1ZI + Iz - z [  =< 2’12 (eR + + E + ) ’ / ~  + E+ , 

Using (2.3.27) and p’” = 2-39, as appropriate for the ORACLE, 

zi 5 2112 2-19 + 2-39 < 2-18 . (2.4.9) 1 -  

(2.4.10) I Iwl = 

Conversely, i f  
151 < 2‘12 2-20  - < 2-39, and t = 0 

for a typical binary machine. Using IzI < 2-18, 

z z  > 1 - 2 - 3 7  , (2.4.11) 1.1 = ( 1  + .2) - ’ /2  > 1 - - 1 
2 

and the best digital approximation to c, taking negative values, i s  

(2.4.12) -I, -1 + p9, -1  + 2-38, or -1 + 2-38 + 2-39  , 
and C = -1 i s  in error by a t  most 6 ~ 2 - ~ O .  Since we chose, for th is case, S = -2, 

(2.4.13) IS - s [  = 1-Z - z.1 = (-2 + z - z ( 1  + c ) I  
< [Z - z1 + 11 + c1 Iz[ I< 2-39 + 3-2-39 .2-18  , - - - 

( 3 ) l f  one imposes a maximum on the total number of digits which can be“remembered” a t  any one time by the 

machine, i t  i s  evident that the machine cannot then solve a problem to an arbitrary degree of accuracy. It would 

seem to be of  some interest to try to secure upper bounds on the memory capacity which would be required to al low 

machine to obtain a specif ied accuracy for the solution o f  precisely delimited categories o f  problems. 
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and S i s  certainly in error l e s s  than 3.2-40. 

have been in error by as much as (2’12 2+20) 2- 40, or by 1,482,911 round-off errors! 

By contrast, had we chosen to set C = -1, S = 0, S could 

I t  should be noted that we have not yet actually proved that our choice of an imperfect rotation 

matrix is, in tact, better than the choice C = -1, S = 0. To do this, it w i l l  certainly be necessary to 

make use of the way C and S enter into the actual computation and to  know how replacing very close 

approximptions to the numbers c and s actually wanted by -1 and 0 affects the characteristic values 

being sought. The undesirabil ity of using - 1  and 0 i s  indicated by considering the 

(2.4.14) 

with characteristic function /(A) = h2(A - 2-’)  - 2-44(A - 2-2 ) .  

i n  sign, one root l i es  between 2 - ’  and 2-’  + 2-44.  

-2-4s and -2-45(1 + 2 ” 4 3 ) - 1  and their sum between zero and -2-44. 

close(5) to t2112 2-23.  Forming 

Since f (2- l )  and /(2-’ t 2144) differ 

The product of the other roots then l ies between 

The other roots are therefore 

-1 

0 2-2 2-22 0 

-1 0 -2-20 

we f ind that the matrix given by our method has (by chance!), after round-off, identically the same charac- 

ter is t ic  equation as does the original matrix A 1 2 .  Using C 7 -1 ,  S = 0 and znskting on setting equal to 

zero the v a l u ~  o/  the ( 1 , 3 )  and ( 3 , 1 )  element 01 A13  (as i s  essential to  our method), leads to the matrix 
- 

(2.4.16) 

with characteristic roots 2-’,  0, 0, and the two zero roots differ from the corresponding true values by 

about 2112 2 - 2 4  = (2’12 216) Y4’, or by 92,682 round-off errors! 

There is, of course, nothing in any way mysterious or surprising about the above result. It i s  in- 

cluded in such detail to emphasize the importance of keeping clearly in mind the reason for computing 

c) number (;.e., what use is  to be made o f  it) when deciding on a suitable method of approximating the 

ii urn ber . 
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2.5 DISTINCTlON O F  C A S E S  ACCORDING T O  S I Z E  O F  E L E M E N T S  

The argument of the last  section at least suggests that while it may yet prove desirable to  improve 

c so as to  minimize IC2 + Z2 - 11, it certainly i s  not desirable to  retain the in i t ia l ly  calculated value o f  

C and choose S so as to minimize IC2 -t- Y 2  - I [  This dist inct ion between the symmetrically related 

quantities F and 5 rests on our assumption (2.3.7) that 171 <. 1x1 so that 7 wi l l  be greater than & 2‘12, 
except possibly for round-off errors, while F may well  be small. It i s  not to  be concluded, however, that 

a sorting for size” or rearrangement of the elements of 4’” I - ’  has to be dons; we calculate F and 7 

by the formulas (2.3.8) in a l l  cases and with 171 < IF [ ;  that i s ,  

(2.5.1) 

or 

- 

- .  
11 

j 7  = Z { - ’ j - ’ ,  X z Z(- ’ j - ’ ,  and 171 < , 
1 - 1  j 2 - 1  I 

- i - l j - l  7 = zt-lj-1, and [;j/ < . 
i - l j  I 2 - 1  z (2.5,2) x =  a 

Of course, th is  implies that the digi ta l  approximation to C O S  8. .  i s  C in the f i rst  case and F in  the second: 

(2.5. la) cos 0. .  2 c, sin 8 . .  2; s , 
and 

Z I  - - 
21  2 1  

- - (2.5.2~) cos 0. .  *, ”v ,-L 5 ,  sin 0 . .  2 c , 
Z J  

corresponding to (2.5.1) and (2.5.2), respectively. 

by merely interchanging the addresses of the storoge posit ions to  which 2 and 5 are to be delivered. 

This i s  easi ly arranged in an automatic computation 

I - ,  . - .  
For ;S = j i  = 0, the computation should proceed to the calculation of A i ” ‘  i+’ from A’”’  = A “ ”  j - ’ .  

-! X i s  improper and the remuining computations of (2.3.8) could be seriously 

U = 0, and 4 f 6 = 4 + 0.) It seems best to treat 

For F = 7 d 0, the division 

in error. (For some machines ’z = -1, E = -1, 7 = 

t h i s  as a special case in our discussion, although some machines may be able to incorporate it routinely 

in  one of the two other cases. Far Oil = r/4,  cos 17/4 = A 2’12 can be stored in the form o f  i t s  best 

digi ta l  approximation and th is  value, say 2-’12, substituted for 7 in the event that 1x1 = IT]. For s we 

then take 2- ’12,  or i t s  negative, accordinglyas rC and 7 agree or disagree in sign (which can be ‘‘sensed” 

by machines i n  a variety of ways). 

Evidently neither -C nor S need differ from the exact values of cos 0 and sin 0 
11 ‘ I  

so the error bounds of (2.3.19) and (2.3.21) w i l l  continue to hold. In fact, for @ = 2, 
by more than d p-’, 

2 - ” / 2  = .lo1101 OlQOOO 010011 

(2.5.3) 110011 001100 1 1 1 1 1 1  
1001 1 1  0 1 I 1  10+ 

and for s = 39, 2-1’2 ends in  101 and 

(2.5.4) 2 - 4 3  + 2-48  < 2 - 1 / 2 3 9  - 2 - 1 / 2  < 2-43 + 2 - 4 7  . 
2.6 E S T I M A T E S  R E L A T E D  TO IC2 t s2 -I 11 

Returning to the general case ond estimating IF2 + S2 - 11 by a technique taken from Goldstine, 

Rlwray and von Neumnnn [4], we have 

(2.6.1) 7 2  + T2 - 1 = 7 2  + (c x 3 2  - 1 
= (7 x F)? - (Zy f .;;2(Z2 + 1) - 1 
= (7 x z + c -Z)  (C x ’F - TZ) 4- P ( Z 2  - f x Z) + C2(? 42  .+ 1) - 1 , 
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so 

(2.6.2) IC2 + s 2  - 11 5 2Fx + €X + \ 2 ( Z X  z + 1 )  - 11  . 
Now, 

(2.6.3) F2(2  x Z + 1 )  - 1 = (1 + 5 x iT) (7 t ; ’ I2)  (C - ;’I2) 

(2.6.4) 
€R + 2 . 1 . E ;  4- - 

5 4 9  + 2 E t  + 2 E R  , 

Therefore, 

(2.6.5) IC2 f s2 - 11 2 3EX + 4€/ -t 2€+ -t 2ER 

€(E2 + S2; 2.6.5) . 
To determine whether or not C should be corrected (on the basis of the assumption that: is“correct”) 

and for use later, we now obtain an upper bound for the amount by which C differs from COS (arc sin 5). 

Setting 

wi th  y 2 0 f o r E  > 0 
(and y 5 - 0 for-d = -1) , 

-2  1/2 - (2.6.6) C - ( l - s )  - + y  / 

and with the agreement that when C = -1  the negative value of the sauare toot i s  taken, 

-2  1 / 2  
(2.6.7) c2 = y 2  t 2y(l - s ) + ( 1  - 2) 
and 

(2.6.8) )2y(l - ?2)1/21 =< ly2 ? 2y(l - -2  s ) 1/21 = 172 + y2 - 11 

- < ?(F2 + S2; 2.6.5) , 
so that 

(2.6.9) 

Since Is( i s  the sine of an angle 8 < n/4, IS1 cannot exceed & 2 l I 2 +  IS - S I ,  and so 

(2.6.10) 

provided 

(2.6.1 1 )  

Then 

(2.6.12) 

2 1 3  
’ 2  2 

21i2 + €(E; 2.3.21) < -+ - e ( S )  

E(S) =< 0.085 . 

? ( F 2  + S2; 2.6.5) 

2”’[1 - 3E(S,s; 2.3.21)I 1/2  
IC - (1 - ,2)1/21 $ ____-- 

or, making the sharper but s t i l l  weak assumption that 
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(2.6.13) E(S,s; 2.3.21) -< - 0.002 , 

(2.6.14) IC - (1 - - 2  s ) 1/2 1 5 0.71 E(F2  + Y2; 2.6.5) 

E E(2,(1 -S2)"2; 2.6.14) . 
With the usual values (cf., (2.3,27)), 

e ( C 2  + 7'; 2.6.5) 5 6.51/j4', z(?,(l --F2)ly2; 2.6.14) _< 4.63 bCs , 
I (2.6.15) I 

This shows that C i s  a very good approximation io cos (arc sin 7) and that any improvement in i t s  value 

must be obtained by a computation which works within narrow l im i t s  of error. 

Without premature commitment to the desirabil ity of such a modification of F, we show that it i s  easy 

to improve C by calculating 

(2.6.16~) 

(2.6.166) 
and 

(2.6.16~) 
as the corrected value o f  C in case C C -1. For C = -1, for many machines (-1) x (-1) = - 1  (sometimes 

with an "overflow" indication) and (-1) + ( -1)  = 0 (pseudo addition!) so that the routine computation 

o f  7 in this case leads to 

(2.6.16d) f = (-s A S )  : 2 when7 f= - 1  . 
Then 

- e = ( F x F -  1 ) c S x S  

- / = = ( T + C ) Q  I 

F " - T - j  - 

- 

C" = 7 + [(S x F) + 21 = -1 + [ (S x S) :- 21 

and the routine formula provides the appropriate correctioir. 

The computations for the error bounds are now 

(2.6.17) 

so that 

(2.6.18) 

We shall later need to have an upper bound on the magnitude of t h e  correction made in  the value o f  7. 

Observing that 

(2.6.19) 
we have 

] e [  - 6 2eX i- <(C2 + S2; 2.6.5) , 

1 
2 

where because of  round off we have used IC1 2 0.7 rather than IF( 2 - 2'/2. Hence, 

(2.6.21) 

33 



For the ORACLE, 171 _< - 6.4f3-”, and so 
- 

(2.6.22) - I / l  _i 6P-” t 

using the digi ta l  choracter o f f .  

We can now obtain an efficient estimate of  l(C*)’ + S2 -11. To do this, we write 

(2.6.23) ( ~ ) 2  e 7 2  - 2 7  + i2 
so that 

(2.6.24) (C* j2  + S2 - 1 = (E2 - C  x 7) + (S2 - Y  x -S) t [C x 7 + S x S - 11 - 2:7+ T2  , 
which gives 

(2.6.25) 

To avoid carrying the term lT12 into later estimates, we make the (in practice t r iv ia l )  assumption: 

1 
2 

E ~ ,  E+, and- F J  are a l l  5 p-” and p-” 2 ._ low4 . ( 2.6.26) 

Then (2.6.21) guarahtees 

(2.6.27) \ / I  =< 14/?-” and 6 196/3-2s < 0.02/3-” . - 

Hence, 

(2.6.28) I(?*)’ + S2 - 11 < 2eX + 2~~ 1- E+ + 0.02/3-“ E €(‘F** + E*; 2.6.28) . 
For 2eX = 2~ = E+ = p-”,  R 

(2.6.29) \(C*)2 + S2 - 11 < 3.02/3-‘” . 
In general, (2.6.14) yields 

( 2 . 6 3 )  
and with our estimates, 

12 - (1 - Z 2 ) ” 2 \  2 0.71?(7*2 + S2;  2.6.28) Z(C*, (1 - S2)l/’; 2.6.30) , 

(2.6.31) IC* - (1 -S2)1 /21  < 2.15p-” 

so that any further correction of C” would certainly operate on the narrow margin of two units i n  the last  

place. 

It Y i l l  a lso be convenient to have a comparison o f  E” wi th  c = ( 1  - s’)~’~. Now 

(2.6.32) 

for an so such that s < s o  < S ,  and hence, using s o  < 0.715, 

(2.6.33) 1(1 -F)”’ - (1 - s2)1/21 < 1.02 IS - S I  5 - 1.02?(S; 2.3.21) I 

< 0.71F(Fk2 + S’; 2.6.28) + 1.02?(S,s; 2-3-21} 

L ?(F*,c; 2.6.34) , 
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and this F(F*, c) can be estimated as  (0.71 03.02 + 1.02.5.2)/3-S,or 

(2.6.35) E(?*, c; 2.6.34) < 7.5[3-s , 

- 
2.7 THE DIGITAL FORMULAS F O R  T H E  ELEMENTS OF A i - '  j 

- 
The exact description of the computations by which we alter the digital matrix A'" i - '  so that it 

, n can now be based on formulas (1.3.5) 
- 

becomes Ai'' j for i = 2, 3, . I , n - 1 and i c j = 3,. . 
through (13.9). We define(6) 

(2.7.1 ) 'i p 
c. .  -$-1 j -  1 - 4 - 1  j 2'-1 f e - + sii x 2 - 1  i-1 

P Z  ir P i  P I  

f o r p = i - l , i + l ,  ..., j - l , j + l , . . . ,  a ,  

which yields n - i replacements of elements in  the ith row and the same number in the ith column; and 

i p  11 P '  *? p i  P i i= -'.. 
(2.7.2) $-1 j - I $-1 j - zi-1 j - 1  + F..  zi-1 j -  1 

f o r p = i i  l , . .  ., j -  1, j +  1 , .  .., a t  

where  now w e  require 

for the (i - 1, j )  and ( j ,  i - 1)  element being "rotated to zero." 

The four elements in the ith or jth row and in  the ith or j t h  column require the more complicated 

computations 

and 

together with 

(2.7.5a) 

- - c , ,  x zz-lj-1 - - 
qij 1 1  i r  ' 1  I '  

5 . .  x q - 1 C - 1  (2.7.50 ) 

and 

(2.7.5~ ) $ - ' I  = 2 - 1  r 2 F., t y  x qi f f.. x 7. .  . 

i = ( Z y  I - '  + z!-l j - 1 )  - $-1  i 

J z  1 7  2 1  11 

Finally, w e  avoid the complications of u s i n g  (1.3.8) for the computation of 2-l ? and use instead") 
I ?  

( 1.3.10): 

(2.7.6) 

This has the desirable effect that 

(2.7.7) trace A"-' i = trace ' q i - 1  i - 1  , 

I 

a t  ? i  I J  

-. - 
.I__---.--- 

(6)We p o s t p o n e  to $2.16 a d i s c u s s i o n  o f  t h e  s c a l i n g  which w e  i m p o s e  on  t h e  o r ig ina l  ma t r ix  a n d  wh ich  w i l l  

(7 ) l t  m a y  b e  w o r t h w h i l e  to u s e  both f o r m u l a s  and c o m p a r e  t h e  r e s u l t s  a5 a check a n  the o p e r a t i o n  of the mach ine .  

Also, the code s h o u l d  b e  s o a r r a n g e d  t h a t  on o v e r f l o w  c a u s e s  n o  error,  as m a y  w e l l  b e  he case w h e n  w e  know t h a t  

the right m e m b e r  i s  c o r r e c t  modu lo  p .  

g u a r a n t e e  t h a t  t h e  a d d i t i o n s  r e q u i r e d  do not a l l o w  a n y  e l e m e n t  to g r o w  out of range.  
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and hence 

the proposed computation of a matrix in  triple diagonal form produces a 
which the sum of the characteristic values i s  exactly the same as for the 
given (digital) symmetric matrix. { (2.7.8) 

In a l l  of these formulas, we agree to  set 

(2.7.9) 

and of course 

(2.7.10) 

S if (2.5.1) holds , 
Eo i f  (2.5.2) holds , 

. .. s. - 
li 

C o  i f  (2.5.1) holds , 
S i f  (2.5.2) holds , 

_- 
c.. I 

‘1 

matrix for 
original I y 

where we have introduced the notation 

- - (2.7. I 1) c =  c or c* , 
depending on whether or not i t i s  decided to  correct C to C*.  Of course, 

.- 

(2,7,12) 

and 

(2.7.13) 

A sequence of digital matrices approximating (1.3.11) w i l l  be completely defined i f  we agree, OS in 

(1,3,12)# that 
- - 

f o r i = 3 , 4 , . . . , n - 1  ~ i - 1  i - ~ i - 2  7i ... 

(2.7.14) 

I 

and can show that the above formulas for the elements of  Ai-’ j w i l l  actually lead to  digital numbers; 

that is, the additions w i l l  stay in range, To secure this, we later (cf. (2.16.2)) impose a condition on 

the norm of  the original matrix, N ( A )  = N ( A  1 2 ) .  

2.8 D E F I N I T I O N  O F  E R R O R  IN  T H E  E L E M E N T S  O F  A i - ’ j  

- -_ 
The characteristic values of Ai-’ j may differ from those of A’-’ j - ’  for three reasons: 

( 1 )  F:, + si, .-- 1 may differ from zero, 

(2) The formulas (2.7.1, 2, 4, and 5) involve pseudo multiplication rather than true mult ipl icat ion 

- 2  

and use digi ta l  nuinbers F.. and 7 . .  affected by the error (1). 
11 21 

(3) The program for the computation requires that (2.7.2) shall not be used to calculate the (i-1 j )  
I 

element o f  A i - ’  but that i t  shall be made zero, as specified i n  (2.7.3). 

We propose to discuss these errors and shall refer to them for brevity as (1) trigonometric, (2) round 

off, and (3) that due ta method. 



If we now return to  the point of view from which we regarded our problem in 8 1.1, it becomes evident 

that the meaning of the expression “error in the (u,b) element of A’”7’ ’  i s  seriously ambiguous, Ex- 

pl ic i t ly ,  i f  our problem was the computation of  the sum of  the characteristic values of A = A ’ 2  (rather 

than their individual values), then (2.7.8) would al low us to assert that the elements o f  A ’ - ’  i are 

exact1 That is, while the computation did not assist in  the t r iv ia l  task of f inding (trace A) ,  at least it 

produced a matrix with the same trace and so did not reduce the information on the value of th is  function 

which was available to us original ly. 

- 
- -  

- 
- 

Since our problem i s  to determine the individual characteristic values, we actually wish to compare 

Ai-’ i with the class of  a l l  matrices orthogonally congruent with A“’ i-’ (since it i s  th is  class which 

determines and i s  determined by the characteristic values o f  A’-’ I - ’ ) .  One way of  doing th is  i s  to  

select for comparison a single matrix o f  the class and compare the corresponding elements of  the two 

matrices, How to choose th is  matrix in such a way as to secure an eff icient estimate of the maximum 

alteration o f  any individual characteristic value i s  by no means evident, Moreover, a judicious choice 

for th is  purpose need not be equally good i f  i t  i s  desired to obtain an upper bound for the alteration in 

the sum of squares of the characteristic values. To obtain any error bounds at  all, however, one i s  

practical ly forced to l im i t  the choice of  a comparison matrix to 

- - 
- 

(2.8.1) Bi-’ l (0 )  = K ( l ( @  2 - 1  1‘’ K L I ( 8 )  , 
-. 

for some value of 8, since these matrices are known to agree with A’-’ 1 everywhere outside o f  the Ith 

and j th rows and columns. 

Two obvious competing choices for 0 are 

6, = 8 .  
* J  I 

(2.8.2) 

where 

(cf., (1.3.14)), and 

(2. a. 3) 

where 

sin o = 5 and cos u = cos (arc s in  7) 2 C o  . 
A numerical computation w i l l  be required before we can select the more efficient o f  these choices, but 

i t  I S  evident that (2.8.2) i s  designed to eliminate the error due to  method, while (2.8.3) w i l l  allow lower 

bounds of error to be given for the 4(n - 1 )  -I 2 elements calculated from (2.7.1) and (2.7.2). kloreover, 

selecting for C, the corrected C* rather than T tends to reduce the error hounds p. for the 4(n - 2 )  - 2 

elements at the expense of the error attributed to 2:: 1. Referring to (2.2.11) i t  oppears probable that 

we shall want to Ininimize p when n i s  large, and this implies the choices T o  = C* and 0 = (T 
17 ’  

Thus we have at our disposal the choice of  a corrected value T* for Co or of the uncorrected value C 

(which represents an actual variation in  ihe computation), and we can also choose 0 0 or N =  (7 to 

select the matrix H z - ’  7 ((I) with respect to which we compare A‘” i (affecting error bounds obtainable 

b u t  not influencing the actual computation). Using C* w i l l  reduce the trigonometric error and this can be 

expected to reduce the hounds obtainable for round-off error, but it wi l l  have the undesirable eftect o f  

increasing the error attribirted to  method. Choosing 13 = 0 gives lower bounds for the error due to  

method, particularly when T o  = 7, but 0 = CJ reduces the bounds on trigonometric error (and hence on 

- 21 ‘ I  

17 

L l  
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round of f )  and i s  especially efficient when Co = P and n i s  large. The extent to which the choice o f  

comparison matrix influences the error bounds i s  brought into sharp focus by the fact that the correction 

of C to T” appeors to allow larger errors in  the 6.. estimate but leads to lower bounds when the 0.. 
11 27 

comparison matrix i s  used. With numerical values appropriate for the ORACLE, the error bounds are, in 

decreasing order: 9.  Oii,C; u., 7. and D .  .,F*. 
11 11‘ I f l  

- 
2.9 BOUNDS F O R  E R R O R S  IN T H E  ELEMENTS O F  Ai-’ 

- 
We wish to compare those elements of A’-’ j w h i c h  may differ from the corresponding ones of Bi-’ j (6 )  

and which therefore l i e  in the ith or j th  row and i th or j th  column for both OL: 8.. and 8-  o... More- 

over, we should distinguish the cases l s i f ~ ’  i-’1 <, =, or > Fir,’ ;-’I  and al low F0 to equal c o r  the 

corrected value 2. Fortunately, the twelve possible cases need not a l l  be distinguished expl ici t ly. 

‘1 21 

l i  

In (2.2.3), we used p to denote an upper bound for the error in a l l  the elements given by (2.7.1) 
(8) for this bound and referring to the form 

P 4  
and (2.7.2). 
of (2.7.1) and (2.7.2), we see that p 

(2.9.1) m(6) 3 (Z cos 8 + g sin 8) - (Z x Co -t 5 x 2)  , 
where we can deal simultaneously with the cases (2.7.9), (2.7.10), (2.7.12) and (2.7.13), even when the 

error i n  the (2-1, i) element i s  concerned, so long as we use no assumption on the relat ive magnitude 

of and 151. 

Introducing the dependence on 8 by writ ing p 

P 4  

P 4  
(0) i s  an upper bound for an expression m(8) of  the form 

Breaking up th is  error quantity into a part due to the use of the wrong numbers, Co and 5 instead of  

cos 8 and sin 8, and a part due to  the use of pseudo multiplication instead of true multiplication gives 

(2.9.2) m(O) 5 lZ(cos 0 - co) + b(sin 8 - ?)I + lZo - a x Col i- - b x SI I - - 

5 l ~ ( c o s  8 - c,) + b(sin e - + 2% . - - 
Since Z and T are two elements o f  the digital matrix A i - ’  j - ’  , they certainly have numerical value less 

than one, and hence 

(2.9.3) m(O) 5 - \ C O S  8 - c0l + js in 8 - S( + 2~~ . 
In pc in t  o f  fact, however, to be sure a l l  calculated quantities stay in range, we are forced to scale the 

elements of our original matrix down sufficiently so that N(A)  i s  less than one by a suff icient margin 

so that even after possible accumulation of  round-off errors 

N(Ai-1 j - 1 )  < 1 . (2.9.4) = 

This loss of useful significant digits immediately after the decimal (or, binary) point must be taken into 

account i f  we are to  get eff icient estimates for error bounds, since the r ight member o f  (2.9.3) i s  certainly 

too large unless both 121 = 1 and I & ]  = 1 and these cannot happen simultaneously. 

l l s ing  

(2.9.5 1 z2 f 52 5 ... 1 , 
we get 

(2.9.6) 
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since by the Schwarz inequality the inner product cannot exceed in  numerical value the product o f  the 

lengths of  the two (two component) vectors. (e), (2.9.6) wi l l  be our best 

estimate. i s  concerned, as i t  i s  in  (2.2.12), we get a significant im- 

provement in error bounds by the following more careful argument. Let 

(2.9.7) 

where we omit the upper indices i-1 j-1 on the a’s. Then 

For individual values of p 
P 4  

Where a sum of values of p 
P 4  

m .  (0) = IUPi(cos 8 - Fo) + z .(sin 8 - ’s)[ + 2eX , 
‘ P  P I  

7n (0) 
iP 

lzpjl [COS 8 - F,I + \ i iPjl  / s i n  O - SI + 2eX . (2.9.8) 

A sum of iV values of the r ight  member w i l l  be of the form 

Under the assumption that 

with a 2  t p 2  < 1 , (2.9.10) (E i Z p i 1 2  ) = a2 and (E \ Z p j 1 2 )  = p 2  z 

i t  i s  easily proved that 

- F N112 [ (cos 0 - + (sin 6 - ?)2]  ’ I2  + 2NeX , 

which i s  better than we would have obtained by summing (2.9.6), since we got only N ’ / 2  instead o f  ili 

in the term in the right member with the larger coefficient. 

These considerations evidently apply to both oi and o (cf., (2.2.1*, and (2.2.14)), and so, putting i 
N = n - i - 1, we can take 

(2 .9.13~)  u = (tz - i - 1 ) ’ l 2  { + 1 ?(S) ] , / ’ I2 + 2(n - i - l ) c x  , 

I @ * ,  c; 2.6.34) 

26, c; 2.3.19) 

for 6 = 8 . .  = arc sin s and CO -- F* , 

for 8 = 8 . .  = arc sin s aodF,, = 7 , 

11 

11 

for 6’ = 0.. = arc sin S a n d  7, = F I p(F, (1 - ?’)’I2; 2.6.14) t r  

?(C*, (1 - 72)1/2; 2.6.30) for 8 = CI.. = arc sin F and Co = S* , 
‘I 

(2.9.13b) = 
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and 
- - 1 (S,  s; 2.3.21) for 0 = dii = arc s in s and Eo = c* or c , 

for 0 = u.. J I  = arc sin S and Eo = c or C” , - 
(2.9.1s) t“6’) = 

2.10 C O N T I N U A T I O N .  D E T E R M l N A T I O N  OF 1-1, i, AND pi-l  

For use in our basic error-bound formula (2.2.16), we require an upper bound p for the error in the 
’i-1 i individual elements of A . This i s  obtained from (2.9.4). We define 

(2.10.1) p(0) = [ E 2 ( E 0 )  + €?(3P2 + 2E, , 
making u s e  of the notation in (2.9.13h, c) .  

- 
1 0  estimate the magnitude o f  pI we express i t  directly in terms of  the E ’ S  and approximate i t s  value 

Then, noting that e@) = 0 for with our usual choice: 2cX = 2~~ = E+ - /3-”f and EJ = 0.50002,P1-’. 
4 = (r.. and incorporating the 2cx term with the others by using 2 < 0.71 -2.82, we get 

11 

-. 0.71 ( 5 . 8 2 ~ ~  + ’ 2 ~ ~  + 2 ~ ; ~  + ~ E J )  * 5.62/”-s 

0.71 (4.826, + 2 ~ ,  + E+ + 0.02(3-”) * 3.15/3-’ 

for Co = c , 

for C ,  = 2 . 
For a large matrix, this reduction i n  the upper bound for the error made in 4(n - i - 1) elements o f  the 
matrix a t  each of  n - i steps and for i = 2, 3, . . . , n - 1 may make correction of C to E* worthwhile. 
Estimating E J  as  0.75g-’ increases the value of p(u..) for Co = C to 6.33/3-’, which i s  in accord with the 

obvious fact  that the poorer the square root routine the more important i s  the correction of C to Ck. 

p(u. .) < 
‘ I  

(2.10.2) 

27 

For 8 = 8 . .  = arc sin s ,  
‘ I  

[(3.162~x + 2.8636, + 3.8946+ + 1.026,/ + 0.0142p-s)2 

t- (1.7426, + 1 . 4 4 3 ~ ~  + 3.1846, + 1 . 0 2 ~ ~ ) ~ I ” ~  -t 2eX if;, = C* , 

[(0.7072~, + 1.41436, + 2.1226:. + 
- + (1.70726, t 1.41436, + 3 . 1 2 2 ~ ~  + E J ) ~ I ~ / ’  -1- 2eX i f c ,  = c 

([(7.4267)2 + (5.2866)211/2 + l)FeS % 10.12[3-‘ if:, = C* 

- ([(3.6828)2 + (4.6828)2]1’2 + 1>/3-“ % 6,96/3-’ ifc, = c . 
10.12/3-’ i s  due to a difference in 

methods af astirnation of error and in no way affects the actual calculation. While we must yet  consider 
other error bounds  before determining whether or not the less natural choice 8 = u.. i s  the more effective, 
the reduction of the error bounds obtained by our methods from approximotely lop-” to obout 3/?-‘” i s  a 

striking indication of the desirability of  a questioning approach to the definition of “error in a calculated 
number.” 

‘ I  

{ 
I (2.10.3) 1-1(Bii) !& 

and, using the same values for the e’s as in (2.10.2), 

(2.10.4) doii)  2z 

I t  i s  to be noted that the change from p(uij)  3.15PLs to p(Oii)  
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That the bound 6.96/3” for the uncorrected value F is smaller than that for F in the 8. estimate i s  

not surprising, since C was a direct approximation to cos 0 .  while C* was a better value only i n  the 

sense that C* and S were better approximations to cos 0 and sin 6 for some 0, not necessarily for the 

desired angle O i i .  

Nothing i n  the above estimates of  p(8) needs to be altered to apply them to the error in  the (i-1 i) 

element, and we have not been able by other means to obtain a worthwhile improvement i n  error bound. 

Hence we set 

‘I 

‘ I f  

for both 0 = u.. and 0 = Bii . 
ZY (2.10.5) Pj-1 $4 = /48) 

The error in  the (1-1 j )  component requires special treatment, since th i s  element o f  xi-’ i i s  not 

This is ,  moreover, the exact value o f  the corresponding element o f  calculated but i s  set equal to zero. 

Bi-’ j ( O . , )  by definit ion of  Oi., and hence 

(2.10.6) 

(Whether C or 2 i s  used elsewhere does not affect the conclusion that this “computation” i s  exact.) 

( I  

pi-, i(o..) = 0 . 
2 1  

For p i - 1  I“...) the situation i s  different, since zero i s  to be compared with 
‘7 . .  

(2.10.7) 

with the plus or minus signs in the cases (2.5.1) and (2.5.2), respectively. 

f ind for pi-’ 

(-sin a j i ) i i f ~ i  i-’ + (cos a .  )Z::’ I-’ = + [-ST + ( 1  - ~ ~ ) 1 / 2 7 ]  , 
11 I i 

(For 1x1 = 171, the value we 

w i l l  be valid; cf., (2.5.4), for example.) 

Since -s?c -t (1 - . T ~ ) ’ / ~ T ;  = 0, and /TI2 + lr/2 < 1, 

Also, using (2.6.33) to estimate ( 1  - S2)”* - ( 1  - s 2 ) l / ’ ,  

(2.10.9) I-zx + ( 1  - ? ) ’ / 2 y 1  < [ l  + (1.02)2]’/2 (s - S I  

We may therefore take 

(2.10.10) i ( ~ i i )  = 1.43Z(S,.~; 2.3.21) . 
2.11 C O N T I N U A T I O N .  D E T E R M I N A T I O N  O F  p i i  = p . .  = pii = p* 

‘ I  

In 82.7, we gave the expl ic i t  formulas for the cornputation of the elements i n  the (i,i), (i,j), and ( j , ~ )  

Since we leave the sum of  the (i,i) and ( j , ~ )  element unchanged(*) (cf., (2,7.6)), the errors positions. 

made in  these elements w i l l  differ only i n  sign, and we can take 

for both 0 I- 19..  and 0 = nij . 
11 

(2.1 1.1) P i i 0  = P i p )  

The computations described by (2.7.4~2, 6 ,  c )  and (2.7.5~~~ b, c) are the special cases of 

(2.11.26) 

(2,11.26) - - 
T 2  = “ 2 1  x Fo f e2* x s , 

(‘)I+ may be convenient to ca lculate  both the ( 2 , ~ )  and (i,~) elements and to u s e  the (approximate) invariance of  

Our use  of (2.1 1.1) i s  not affected by this change, and the check should require the sum of their sum as a check. 

the (z,i) and ( j , j )  elements to be altered by no more than 2pi i (0) .  
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and 

(2.11.2c) 

obtained by choosing for a l l ,  F ~ ~ ,  Z21,  and F 2 2  properly signed and permuted values of  Zf-l i - ’ ,  2-l j - ’  

zi-1 j - 1  , and ;Z*-l !-’, where 7 . .  and S . .  have been replaced by their values Co and S (in proper order). 
We base our estimates of p.. and p i i  on the las t  three formulas, making only the symmetric assumption 

i r  
1 1  1 1  ‘ I  fl 

fI 

(2.1 1.3) + ( Z 1 2 ) 2  + + (e22)2 < 1 , 

(2.11.4) Pip) = PJO)  

and we can therefore set  

The error we seek to estimate i s  - -i[, where 
- (2.1 1.54 

(2 .113 )  

r 1  = e l l  cos i3 + F 1 2  s in  0 , 

r 2  = e 2 1  cos 8 + Z22  sin 0 , I_ 

for both 0 = Oii and 0 -- oii . 

and 

(2-11.5~) 
Hence, 

(211.6) 

T = r 1  cos 0 + r 2  s in  8 . 
( T  - F /  = lrl cos 0 + r2  sin 0 -. 7 ,  x Co + 7, x SI 

6 Irl cos 0 + r 2  s in 8 - TICo + Y2SI + 2cX 

= Irl(cos 8 - E,,) + r 2 ( s i n  8 - S) + ( r l  - Fl)Zo + ( r 2  - ?;)SI + 2eX 

- 5 irl(cos 8 - To) + r2(sin 0 - :)I + l ( r l  - F,)Fo + ( r 2  - 

Since r l  i s  the inner product of  (Zl  ,,el2) and the unit vector (cos €‘,sin O ) ,  we have 

( r J 2  ,< ( Z 1 1 ) 2  4- ( e 1 2 ) 2  

and, similarly, ( T ~ ) ~  <, ( F 2 1 ) 2  + (e22)2. 
(2.1 1.7) 

The assumption (2.l la3) therefore imp l ies  ( r 1 ) 2  + ( T ~ ) ~  < 1 and 

lrl(cos 8 - c0) + r 2 ( s i n  0 - s)\ < [(cos e - c0l2 + (sin o - F ) ~ I ~ / ~  . 
We wi I1 overestimate (Co)2 + (F)2 i f  we suppose C ,  = C rather than C‘, since certainly E J  2 0.5/3-’, 

which guarantees E ( F * 2  + S2; 2.6.28) < ? ( F 2  + S2; 2.6.5), which in turn i s  less than 15*10-4 by the 

assumption (2.6.26). Using(9) ( 1  + 15 - lom4) 1’2 < 1.008, 

(2.11.8) 

From 

(2”11.9) 

and a simi lar  inequality for Ir2 - F21, we have 

(ZlI.10) 

where we hove abbreviated [(cos 0 - F J 2  + (sin 0 - S ) 2 ]  

- 
\ ( r l  - T l ) F o  + ( r 2  - r 2 ) S [  1.008 [ (r l  - Fl)2 + ( r 2  - F2)q . 

- 
\ r l  - r l l  5 [(z1112 + ( ~ , , ) 2 ] ’ / ~  [(cos o - + (sin o - s ) ~ I ~ / ~  + 2cX 

l(rl - Tl )Co  + ( r 2  - T2)St < 1.008 (E’ + 4 ~ 2 ” ~  E + 8 ~ : ) ’ / ~ =  1.008 ( E +  2-2’12 E ~ ) ,  

as E and used (2.1 1.3) both directly and 

(9)The correct approxirnotiori  i s  o f  course 1.0008. Through a numerical error le008 w a s  used i n  the following 
< estimates. I t  seemed better to weaken our assumption (2.6.25) to 8“’’ = l om3 than to recompute the tables. 
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Substituting in (2.11.6) now gives 

(2.11.12) It. - 71 < 2.008[(cos 0 - Co)2 + (sin 0 - Z’)?11/2 + 4.8526, . 
It i s  therefore possible to  set as a common upper bound(and therefore as their maximum p * ) o f  the errors in 

the (i,i), ( i , j ) ,  and ( j , j )  elements, 

(2.11.13) 

That is, 

p * ( O )  = p . . ( O )  11 = piii(c)) = p j j ( 0 )  = 2.008[F2(F’,) t F2(F)I”2 -t 4.852+ . 
2.008([F(Z*, c; 2.6.34)12 + [€(F,s; 2.3.21)12}’/2 + 4 . 8 5 2 ~ ~  

2.008(C~(C,~; 2.3.19)12 + CE(S,s; 2.3.21)12)”2 + 4 . 8 5 2 ~ ~  

i f  7, = C” , 
i f  -6, = c , - p*(O. . )  = 

2 1  
(2.1 1.14) 

and 

--* 2.00@(7*,( 1 - 5’) 1’2; 2.6.30) + 4.8526, 

2.0081(C,(l - S2) ’ ’2 ;  2.6.14) + 4 . 8 5 2 ~ ~  

if?, = c , 

i f  co = Z . - 

Using previous estimates given in (2.6.35) and (2.3.28), we have 

(2.1 1.16) 
( 2.008[(7.5)2 + (5.2)211’2/I-s + 2.426@-s < 20.754/3” i f  Co = C* , 

- p*(O. . )  < - ’’ 2.0081(3.7)2 + (5.2)211’2[3-s + 2.426p-’ < 15.242#3-5 -- c I 

and using (2.6.31) and (2.6.15), 

- 2.008 *2,15[rs + 2.426/3-’ < 6.744j3-s i f  C ,  = P I 

2.008 ~4 .63/?-~  + 2.426/3-’ < 11.724/?-” ifc, = c . I 

I**(“. ..) = 
t l  

(2.11.17) 

2.12 SUMMARY O F  E R R Q R  BOUNDS O B T A I N E D  

We now have obtained values for a l l  of the bounds entering into the formula (2.2.16), which save an 

Subiect only to our mild assumptions on the upper bound v(Ei7) for the maximum root of the error matrix. 

precision of the machine empioyed, namely, 

1 
are at1 5 p-” 5 1 0 - ~  

and TC-J (2.6.26) EX, E R ,  .E+, 

(this also insures (2.6.13)), we have 

L 

i 
?(F,c; 2.3.19) = - 2 1 ’ 2 ( ~ x  +- 2~~ +- 3 ~ + )  + G J  , 

2 
(2.3.19) 

(2.3.2 1) E(S,S; 2.3.21) = E(2.3.19) + ( e X  + E + )  , 

(2.6.5) I ( T 2  + S2; 2.6.5) = 3eX + 2~~ +- 2 t+  + ~ E J  , 
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(2.6.14) F(C, ( 1  - S2) ’I2; 2.6.14) = 0.71 F(2.6.5) , 

(2.6.28) L ’(Fk2 + F2; 2.6.28) = 2~~ + 2~~ + E+ + 0.02@-” , 

( 2.6.30) F(z* -- 1 ( 1  - S2)lI2; 2.6.30) = 0.71 c(2.6.28) I 

(2.6.34) bl(C*,c; 2.6.34) = Z(2.6.30) + 1.02?(2.3.21) . 
Distinguishing various cases where necessary, (2.9.13), (2.11.13), (2.10.6), (2.10. IO), and (2.10.1) 

give the values l is ted in Table 1. 
Collecting the numerical values previously calculated as appropriate for the ORACLE, we have 

(2.12.1) 

e ( 7 , ~ ;  2.3.19) < 3.7 p-” , 
I(F,.s; 2.3.21) < 5.2 p-” , 

E ( F * 2  + S2; 2.6.28) < 3.02p-5 , 
€ ( E ,  ( 1  - S2)l”; 2.5.14) < 4.63p-” , 

E(F*,  ( 1  - F2)’I2; 2.6.30) < 2,15/3-” , 
I (F*,c; 2.~5~34) < 7.5 p-” 

(cf., (2.3.28), (2.6.15), (2.6.29), (2.6.31), and (2.6.35)). 

ORACLE (Table 2). 

Table 1 now becomes the following for the 

Substituting in (2.2.16), which i s  conveniently written 

we get, by comparing the calculated matrix with the matrix obtained when the rotation i s  through @ .  ’, 

(2.12.3) Co = C*: Fv(Eij) 

11 

< 4.501[(n - i -- 1) -t 9.127(7~ - i - + 26.3261”2 + 20.754 , 

(2.12.4) T o  = C: p”v(Ei i )  

< 3.843[(n - i - 1) -t 6.382(n .-- i - 1 ) ’ l 2  + 19.4291’12 + 15.242 , 
and, using for comparison the matrix obtained when the rotation is through D . . ,  

‘ 1  

(2.12.5) Co = C: p”v(E2’) 

< 3.356[(n - i - 1) -t 4.630(n - i - 1 ) ’ l 2  + 20.8411’/2 + 11.724 , 
and 

(2.12.6) Co : --*. c . p”v(Ei7) 

< 2.510[(n - i - 1) + 2.150(n - i - l ) l I 2  + 19.7161’’2 + 6.744 e 

The bound for the maximum alteration in  any root o f  the matrix i s  now seen to be substantially 

For C 

For C*, 

to 2.510(n -. i -- 1) ’I2 and the error bound is nearly cut in half. 

better in the 0. .  estimate, both when Co has the uncorrected value C and the corrected value C*. 

the dominant terms (n large) are not very different: 

the change i s  froin 4.50l(n - i - 1) 

f l  
3.843(n - i - 1) 1’2 and 3.356(n - i -- 1) ’ I2 .  



TABLE 1 
n I 

U . .  t l  

- 
cO 

ll 0 

c f* I -_ c* c 

€(To) i”’(2.6.34) e (2.3.19) ?(2.6.14) 2 (2.6.30) 

? (F) cl‘(2.3.21) 0 

1/2 
U 

1 
2 E x ( n  - z - 1) t [z  ’(C,) + 2(S) ] (n  -- L - 1) ’I2 

Pi 1 j 0 1.43F (2.3.2 1 )  

1/2 
P* I! 2.008 [F2(1.,) + E2(F)] t 4 . 8 5 2 ~ ~  

P ll 
TABLE 2 

Estimating wi th  0 . .  Estimating with (J 
1 7  ‘ I  

In Units of p - . ~  = 2-39 

Computing with C, = E* - - 
c C 

-y* 

I ( F 0 )  < 7.5 3.7 4.63 2.15 

5.2 0 

1 

9.127 1 6.382 1 4.63 2.15 

20.754 1 15.242 I 11.724 6.744 

0 7.436 

10.127 I 7.382 5.63 3.15 

7.436 7.436 10.127 7.382 

2.361 

2.141 2.065 
2*049 I 2.083 
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Moreover, a decision to correct C to C* would appear reasonable from the 0 estimates, whereas on the 

basis of the less eff icient 19 estimates it might seem to lead to a larger error! Since we have only 

upper bounds for the errors, we cannot conclude with certainty that the use of C* wi l l  actually lead to 

smaller errors; indeed, with a suitable choice of numerical data it could well  happen that the use o f  C 

would lead to a cancellation of round-off errors, while for C* they would accumulate. Our precise claim 

i s  only that when C* i s  used, the guaranteed maximum error i s  smaller than it i s  when C i s  used. 

‘ 1  

11 

It would be easy to substitute i n  the above formulas other values of  the E ’ S ,  but we refrain from doing 

this since reasonable variation of these quantities does not drastical ly affect the numbers obtained. (It 
was the intent to arrange the formulas so that they could be easi ly applied to any machine capable of 

the computation described.) It i s  worthwhile noting, however, that i f  unrounded mult ipl icat ion i s  used, 

so that ex = p-“, the dominant term i n  v ( E . . )  i s  at least multiplied by 2 ” 2  because of the coefficient 

2~~ in  the formula for 0 in  Tabla 1. 
11 

2.13 BOUND FOR T H E  TOTAL C O M P U T A T I O N A L  ERROR I N  ANY R O O T  
D U E  T O  T H E  R E D U C T I O N  T O  JACOB1 F O R M  - 

In making the rotation i n  the x i x j  coordinate plane to replace the (i - 1, 7 )  element of Ai’-’ j-’ by 

zero (thus getting A i - ’  j ) ,  an error o f  less than v ( E . . )  i s  introduced i n  each root of the matrix. Hence 

the maximum alteration i n  any root caused by h e  entire computational process of reduction to tr iple 

diagonal form, which we denote by Ali i ,  satisf ies 

- 
Z? 

(2.13.1 

Since the bounds for v ( E . . )  given i n  the preceding section do not involve 1, we need to sum an expression 

of the form (n - i) v ( E . . )  from i = 2 to i = n - 1, or 
I? 

11 
n- 1 

(2.13.2) (n - i) ( a  [(YZ - i - 1) + b(n - i - 1)1/2 + c j 1 / 2  + p*}  . 
i’2 

Setting n - i - 1 = k, we require 

1 
2 

= a S(b,c,n) + - p * ( n  - 2) (n - 1)  , 
where 

(2,13.3b) 

and 

and where, for convenience in  later use, we introduce the function 

(2-1 3.4) 
72-3 

S(b,c,n) = (k + 1 )  (k + b k ’ I 2  + c ) ’ l 2  . 
k ’0 
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Since (x + 1) (x + h x 1 / 2  + c ) ’ I 2  i s  monotonic increasing for x 2 0 , 

(2.13.5) S(b,c,n) < (. + 1)  (x + bx ‘I2 + c ) 1 / 2  dx = s (b,C,,?) . I 
0 

To get some idea of the behavior of the error bound for real ly large values of n, it may be worthwhile 

to write out a closed form of the integral, although a table for small values of n i s  more readily calcu- 

lated from the sum formula. Routine computation gives 

(2.13.6) Sl(h,c,n) = (0 .4~~  - 0 , 3 5 L ~ r n ’ / ~ ) ~ ~ ’ ~  + - 1 (3s2 - 320 + 80)(N3/’ - c 3/21 
120 

where we have set 

(2.13.7) m = n - 2 and N = rn + hn2’/2 + c . 
Substituting the previously obtained values of b and c i n  the various cases: 

(2.13.8) 8 = O . . ,  Fo = C“: /3‘A,X < 4.501 ( 0 . 4 ~ ~  - 3 . 1 9 4 4 ~ j ~ ’ ~ ) N ~ ’ ~  zr 

+ 17.943(N3/2 - 135.075) - 20.1937 4m1’2N1/2 + 18.254(N’l2 - 5.131) I. 
i 10.377m(h + 1) I) N1’2 + r n 1 / 2  + 4.5635 

9.6945 
i- 22.002 in 

and 

N = m + 9.127~7”~ + 26.326 ; 

(2.13.9) 0 = 0 . .  Co = F: F A , h  < 3.843 (0.4m - 2.2337m1/2)iV3/2 vf 

+ 7.621m(m + 1) 
N1I2 + ~ r z l ’ ~  + 3.191 

7.599 
+ 36.986 In - 

and 
N = 7/1 -+ 6.382n~”~ + 19.429 ; 
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- 
(2.13.10) 0 = uii, co  = 2: P5A1X < 3.356 - 1 . 6 2 0 5 ~ i ’ / ~ ) N ~ / ~  

+ 1.3615(/V3/2 - 95.143) i 3.0397 4 ~ n ~ ’ ~ N ’ ’ ~  -t- 9.26(Nli2 - 4.565) I 
t. 5.862m(m + 1) 

l\r1’2 + m 1 / 2  + 2.315 

6.880 
+ 61.927 In 

and 

N = rn + 4.630m1/2 + 20.841 ; 

F*: /JsA2,X < 2.510 - 0.7525m1/2)N3/2 
- 

(2.13.11) Q = oij, co  = 

- 3 . 2 4 2 7 ( ~ ~ / ~  - 87.546) $- 3.1618 4m1’2N 1 / 2  + (4.3)(iV ’I2 - 4.441) [ 
N ’ / ~  + ,’I2 + 1.075]} + 74.2424 In -t- 3.372m(m + 1) 

5.575 

and 

N = m + 2.150m1’2 + 19.716225 . 
Substituting n = IO, 20, 30, 40, 100, 200, and 1000 (which i s  un impossibly long problem with present 

It should be emphasized that the 8 . .  estimates speeds and memory capacities), we get Tables 3 and 4. 

TABLE 3 

‘I 

.- 

p I , h  < 

Grder of 
Matrix 

10 

20 

30 

40 

100 

200 

1000 

Estimating with 0 . .  
1 1  

Corrected 
cosine: C* 

2,036 

10,231 

25,875 

46,150 

380,345 

1,832,987 

77,555,220 

Uncorrected 
cosine: C 

1,500 

7,594 

19,082 

35,009 

290,569 

1,423,113 

62,49 1,073 

Estimating with 0.. 
17 

[Jncorrected 
cosine: C 

1,227 

6,175 

15,496 

29,265 

- 

237,110 

1 , 170,053 

52,521,052 

Co rr e c t ed 
cosine: C* 

773 

3,95 1 

9,937 

19,045 

155,483 

7a2,69 i 

36,814,476 



TABLE 4 

Corrected 
cosine: C* 

6.438 
5.7 19 

5.249 
4.56 1 

n 
Uncortec ted 
cosine: c 

4.743 
4.246 
3.871 
3.5 19 

I 

10 
20 

30 
40 

100 
200 

1000 
Asymptotically 

n -5’2psh , A  

Estimating wi th 8 . .  
11 

3.803 
3.240 

2.906 
2.516 

2.453 1.977 
’1.804 1.5372 

Estimating with u.. ‘ I  

Uncorrected 
cosine: c 

- 

3.88 1 
3.452 
3.144 
2.872 

2.372 
2.069 

1.661 
1.3424 

Corrected 
cosine: C* 

2.445 
2.209 
2.016 
1.882 

1.555 
1.384 

1.164 
1.004 

are included to show that what may seem a “natural” way o f  estimating errors i s  much less ef f ic ient  

than one which depends on a different concept o f  “error in a computation.” For an actual computation, 

the reduction to Jacobi form cannot introduce an error in  any root greater than the value tabulated under 

the 0.. estimation, and thus, with the corrected cosine, a 200 by 200 matrix can be so reduced with a 

12 decimal-place machine without introducing an error of more than one uni t  in the sixth decimal place. 
2 1  

2.14 B O U N D S  FOR THE NORMS 

Another estimate of the error in the set of characteristic values w i l l  be obtained i f  we compare the 

norm of the originally given matrix X with the norm of  the matrix i n  t r ip le diagonal form. This  

comparison is also required to discover the scaling needed to guarantee that every calculated quantity 

remains i n  range. Surprisingly, i t leads to bounds for the error in  a single characteristic root which may 

for values of  IZ as small as 40 be even better than the estimates based on the results of LidskiY. 

. As in  our  previous estimates, we may use for comparison with the (computed) digi ta l  matrix xi-’ the 

matrix Bi-’ i(6‘) for either 6, = 0 . .  or cl = 0.. (cf., (2.8.1)). 
‘ I  * I  

Since the norm i s  invariant under an (exact) orthogonal congruence, 

(2.14.1) l y [ ~ i - l  ’(e)] ~ ( i i - 1  j - 1 )  . 
. .  

Moreover, our earlier error bounds refer to elements of  the matrix E’](@), which i s  zero except for certain 

elements in  the i th and jth rows and columns, where 

(2.14.2) 22-1 j - B i - l  j (e)  F: Ei j (b )  . 
The triangle inequality for vectors with n 2  components gives, for arbitrary matrices M 1  and M ,  the wel l -  

known norm inequality 

(2.14.3) N(M J = N i M ,  - M, 4- i M z )  t< NlM, - MZ) 4- IV(LM2) , 

49 



and since N ( M )  = N(-M) , 

(2.14.4) IN(Ml)  - N(M2)1  6 N(M1 - 
Using (2.14.1), 

(2.14,5) IN(Ai-l j )  I N(zi-l j-1 )I 5 - ~ ~ 2 - 1  J - ~ i - l  = N [ E ~ ~ ( O ) I  . 
The digital equivalent of (1.3.12), namely, 

(2.14.6) zz i + l  = gz-1 n f o r i  = 2 ,  3, ..., n - 2  I 

and hence 

(2.14.8) 
n-1 n 

To obtain CI bound for N ( E 1 7 ) ,  we write, using p i - ,  = p, pi i t  pji, and p . .  5 p* and referring to (2.2.2), 
2 1  - 

(2.14.9) 

P f i  

The (n - i - 1) component vectors E . ana’ E ., p = i i- 1, . . . , j - 1, j + 1, . . . , n, have, by the dis- 

cussion of 82.9 (cf., i n  particular, (2.9.8) and (2.9.10)), lengths bounded by the length of  the sum of the 

vectors I;? il€‘(F,,), lZpJl?(F) and 2cX(1, 1, . . . , 1). Hence, 

P I  P I  

P 

and the same bound i s  val id f o r [ z ( ~ ~ ~ ) ~ ]  ’I2. 

Abbreviating 

(2.14.12) [&2E,) i- 82(F)] l l 2  = F 

and substituting from Table 1 and (2.1411) in  (2,?4.9), 

or 

(2.14.14) N(EiJ) 5 - 2 ( 2 ~ ~ ) ~ ( 7 2  - i - 1) i- 2 = 2 ~ , F ( n  - i - 1)1’2 

1 2 1 
+ [ e 2  i- (2.008F + 4 . 8 5 2 ~ ~ ) ~  +-(E 2 + 2 4  +-(pj-l 2 J)2]}1/2 . 



S i n c e  t h i s  bound does not  depend on i, o n e  summation in (2.14.8) is at o n c e  performed, and  

(2.14.15) 

where  

and 
1 1 

2 2 
2 g 2  + (2.008h’ + 4 . 8 5 2 ~ ~ ) ’  +-(F 1- 2 ~ ~ )  +-(pi-l  > 2 ]  , (2.14.17) 

and S is t h e  function in t roduced  in (2.13.4). A s  before, S(q,r,n) < Sz(g,r,n) ond 

where  t h e  closed form o f  t h e  integral  S1(q,r,n) can be c a l c u l a t e d  from (2.13.6) a n d  t h e  v a l u e s  of q a n d  r a r e  

t h o s e  ob ta ined  from (2.14.17) and Table 1 or, for t h e  ORACLE, from Table 2 of 92.12. 

For t h e  ORACLE, us ing  on ly  t h e  0.. bounds,  
27 

(2.14.19) 7 = 9.26 and r = 202.363 when Co = C , 
and 

(2.14.20) y = 4.30 and r = 82.702 when Z, = 7” . 
Tabu la t ing  the PS(4~X)Sl(q,r,n) = 2S&q,r,n), as  g iven  by (2.13.6 and 71, which r educe  to 

(2.14.21) S,(9,26, 202.363, 1 2 )  = (0.4rn - 3 . 2 4 1 r , ~ ’ / ~ ) ~ ~ / ~  - 28.287 ( N 3 l 2  - 2,878.701) 

+ 131.096 4m1’2N1/2 + 18.52(N1/’ - 14.225) i 
I I V ” ~  + ni’/2 + 4.63 +- 723.705 In 

18.855 
and 

(2.14.22) 

when Co = c, and  to 

A’ = r n  + 9 . 2 6 ~ ~ ~ ” ~  + 202.363 , 
- 

(2.14.23) S,(4.30, 82.702, n) = (0.41~ - 1.505m1/2)Ai3’2 - 15.994(iV3/2 - 752.097) 

N1/2 + ,’I2 + + 312.318 In 
11.244 

and 

(2.14.24) 

when So = F*, we g e t  Table 5. 
N = m + 4 , 3 b ~ ’ / ~  I-  82.702 , 
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TABLE 5 

Asy mptot i cal l y 
..- 

2.15 THE SUM O F  SQUARES OF E R R O R S  IN THE CHARACTERISTIC  V A L U E S  

We now apply the results of the l a s t  section to obtain an upper bound for the sum of squares of  the 
errors in the characteristic values. Let hA2, a = 1, 2, . . . , n be the characterist ic values, arranged in 

any fixed order, of the given digital matr ix A = A 1 2 .  Ordering the characteristic values A:-’ i of A ’ - ’  j 

in a suitable fashion relative to those o f  4 ’ ” ’  7 - ’ ,  we can set 

A:--1 j - hL-1 j - I  = dij (2.15.1) ‘ a  

-, - I  

- .  

and wi I I have 

(2.15.2) 

by (2.14.2), ( 2 . 1 ~ 5 ) ~  and the fact that the characteristic values of the matrix B i - ’  i ( 0 )  are the same as 

those o f  the matrix A ’ - ’  j - ’  to which it i s  orthogonally congruent. Summing equations (2.15. l) ,  
- .  

I 271 (2.15.3) ~ n - 2 n  a - x;2 = 4 2 3  + + . . . + Qa 

. . .  
+ +:-In , f o r a  = 1, 2 , . . . , n .  

In (2.14.8) and (2.14.16), we obtained an upper bound for the sum o f  the upper bounds, N ( E i j ) ,  of the 

lengths of the h(n - 2)(n - 1) Vectors +ii and can therefore write, at once, 

(2.15.4) 

w i th  q and r again given by (2.14.17). Of course S(q,r,n) can be replaced by i t s  upper bound S [ ( y , ~ , n ) ,  as 

in the closed formula (2.13.6). 
Since h ,A was used to denote the maximum alteration in any one root, 

(2.15.5) hlA ,< 4 ~ ~ s ( c i , r , n )  . 
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Hence the values of 4 ~ ~ S , ( q , ~ , m )  tabulated at the end of the last  paragraph also serve to give an upper 

bound for A ,A. 

This upper bound for A,h should be expected to be less precise than the corresponding one found in 

3 2.13, since it i s  based on the pessimistic supposition that the entire error is  concentrated on a single 

root. Surprisingly, the asymptotic value of the bound for the square root of the sum of the squares of  the 

errors in  the characteristic values i s  0.8n5'2/3-S (for both 7 and F*), whereas for a single characteristic 

value, our use o f  LidskiY's theorem gave the asymptotic error bound 1 . 3 4 2 4 r ~ ~ / ~ p - ~ '  for C and 

1.004n5/2/3-s for Z*. 

TSe greater relat ive efficiency of the bounds based on the norm appears to be due to the possibi l i ty  

that at any single inductive step (from A''' I - '  to A''' 1 )  the error may very well be concentrated on 

a single one of the roots and that we are unable to give real ly effective guarantees that the same root 

w i l l  not be affected at each step. The nature o f  the algorithm, dealing as it does with a matrix of smaller 

s ize after each step, makes i t  appear highly unlikely that any such accumulation of error on a single root 

will occur, and we are accordingly inclined to believe that our guaranteed error bounds are in fact very 

much larger than the actual errors which can occur. Additional hand computation to compare the bounds 

for A,A as given i n  th is section wi th those of the preceding section does not seem worthwhile, but 

when the ORACLE i s  available for such a computation, the two error bounds may be calculated (from the 

sum formula) and their minimum tabulated for the values of n as large as are l ike ly  to be actually used 

i n  practice. 

-. - 

2.16 SCALING REQUIREMENT 
- 

In the entire discussion above, we assumed that the computation began with a matrix A with elements 

which were not only digi ta l  but were small enough so that at no stage in  the cornputation did any calcu- 

lated element X violate the requirement -1 F < tl. Even the stronger requirement that 

(2.16.1) N(?' 7) < 1 
wa5 needed for our determination of error bounds. 

Despite the existence of  an impl ic i t  assumption, it i s  easy to look back over the description of  the 

computation and to see that the scaling requirement 

(2.16.2) N ( A )  .: 1 - 4ExS(q,r,n) , 
gives e x  post /acto justit ication for our various conclusions and, in  particular, guarantees that (2.16.1) 
w i l l  hold for al l  the computed matrices and that every calculated quantity w i l l  l i e  i n  range. 

In practice, one wi l l  not want to calculate the norm, since this involves the extraction of a square 

root, and one wi l l  not form the sum of the squares of  the elements exactly, since th is  would require 

double-precision methods. Hence, we suppose that 

n 1 Z i j  x z.. < [ l  - 4rxS(q,r,n)12 - n2cx , 
' I  

(2.16.3) 
i ,  j = l  

where the le f t  member i s  calculated by the machine and i s  compared with the right member, which i s  

supposed precomputed (for a given order YL and a machine of specified characterization) and recorded, 

perhaps by using the integral form SI of the upper bound i n  place of S. I f  the test for proper scaling is 
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to be carried out on the machine, it i s  of course necessary to exercise due care to avoid having the sum 

i n  the le f t  member grow out of bounds undetected. Since one w i l l  ordinarily record only the elements o f  

A on and above the diagonal, it may sometimes be convenient to impose the more stringent condition 
- 

1 1 
I .  z ?  2 2 

(2.16.4) 

rather than to form the more accurate expression 

Z i j  x a..  < - r 1  - 4€,$q,r,n)l2 - - -"2Ex 

'2 7 

(2.16.5) 

Where one i s  not working near the l imits of accuracy obtainable, the required scaling can even be ac- 

complished by hand or machine methods by the device of  counting the number, say ni, of the 2 . .  with 

numerical values between p - i  and p - i - '  and, overestimating each of  the elements, requiring that 
17 

(2.16.6) 

where either k = s - 1 or nk i s  the number of ;I . with numerical value less than /3-' (and not neces- 

sariiy >P- ' - ' ) .  - 
I ?  

2.17 NUMBER O F  O P E R A T I O N S  R E Q U I R E D .  TIME ESTIMATES 

Since the time required to multiply or divide two numbers w i l l  normally be much longer than that 

needed to add or subtract them, it i s  usual and proper to give rough estimates o f  the length o f  t ime re- 

quired for a computation by counting only the multiplications and neglecting the usually much less fre- 

quent divisions and the more rapidly performed additions and subtractions, The actual computation w i l l  

also involve a rather large number o f  operations which can be classif ied loosely as logical i n  nature 

(storing numbers, computation of variables governing inductive processes, etc.). With the current design 

of  machines, computations involving extensive sorting or other operations involving combinatory analysis 

are especially onerous, d i f f icu l t  to code, and time consuming. It i s  one o f  the advantages o f  the method 

under discussion that i t  does not require anything analogous to the determination o f  the numerically 

largest noiidiagonal element and SO avoids th is and a l l  other lengthy sorting operations. We can therefore 

reasonably base our time estimates on mult ipl icat ions and divisions alone and depend on multiplying the 

time o f  these operations by two to allow for the additions and logical operations. 

Very much more serious than the omi ssion o f  t ime allowances for additions, subtractions, and logical 

operations i s  the failure to estimate the time needed to use an external storage during the course o f  the 

computation, as would be required for a large matrix. A method, in use at  the Inst i tute for Advanced 

Study, based on the iterative use of plane rotations to obtain a diagonal form (cf.,[4]), i s  applicable to  

matrices of order 6 18, using only the internal memory. This  code also produces the characteristic 

vectors, and i f  they are not required, our reduction to Jacobi form might very well  be made to apply to 

matrices of order at  least as high as n = 36, since 4.36 -37 = 666, leaving 1024 - 666 = 358 storage 

spaces for orders. The speeds o f  external memories vary widely, so we make n o  attempt to estimate the 
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additional time required when the internal memory does not suffice, but we do wish to emphasize that 

the following figures refer to what may be only a fraction o f  the total time in  th is  case.'") 

After calculating 7, and 5, we require only 4 ( n  - i + 2) + 4 mult ipl icat ions to calculate the 

2(. - i .+ 2) - 1 values for those elements o f  X i - '  1 which m a y  be different from the corresponding 

ones of 2"' 1-l. For C and S, two multiplications, two divisions, and a square root operation are required. 

The square root operation i s  a sequence of computations Ti-+?ci+l = x i  - ( E j  - 5 :- Ti) f 2 or a sequence 

of operations usually taking less time than two divisions. (Note that + 2 i s  usually very fast, since it 

i s  a sight shi f t  on binary machines.) A tedious discussion (which need not be given here) shows that for 

the ORACLE, Householder's routine w i l l  always terminate with an X for q 5 -_ 14 when i t  i s  applied to  

find the pseudo square root of a number Z 2 j!, Since the sequence i s  terminated when i t  i s  calculated 

that (% - i; .: x ) ;- 2 5 0, we estimute a maximum duration of 30 d iv is ion times for extracting the root. 

Hence the calculation of C and S w i l l  take at  most two multiplications and 32 divisions. For F, two 

more divisions (one i s  "'-f 2", however) w i l l  be needed, 

- 

4 

'ir 4 

The multiplications and divisions in  a single inductive step can therefore be estimated to  require 

no more than 

[4(/2 - i) + 141 T X  + 347.: 

seconds, where T~ i s  the maximum time in  seconds for one multiplication and 7.;. for one division. There 

are ( n  - i) repetit ions of 

we have 

f f - 1  

{ [4(n - i ) 2  + 14(n 
i -2 

the process before i i s  increased by one, Summing to get the total t ime required, 

72-2 
= [ ( 4 k 2  3- 14k)7, + 34kr: 1 

k =1 

For the ORACLE, multiplication requires approximately im i l l i second and division a b u t  a third more. 

Replacing 517; by 68rx and taking 7x as a fu l l  mil l isecond to al low for additions and logical operations 

as suggested above, we get the values in Table 6. 

""Indeed, in h e  Fnstitute for Advanced Study code, the repeated calculation o f  the norm f o r  checking purposes 

consumes more time than the basic computation. (Oral remark of H. H. Goldstine.) 



TA5LE 6 

Order of the 
Given Matrix 

10 
20 
30 
40* 

100” 

1000 * 

Time to Reduce t o  Jacobi Form 

-“---In - 2)(n - 1)(4n -t- 83)10k3 seconds 
1 
3 

3 seconds 

19 §eCQild§ 

55 seconds 

2 minutes 

26 minutes 

15.7 days (of 24 hr) 

*For  mafrices of order greater thon about 35, the  internal memory will n o t  suffice, and the estimates will re- 

T h e  rel iabi l i ty  of present machines would probably not permit a matrix o f  order 1000 quire sharp upwnrd revision. 

to be reduced in any reasonable time. 
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Chopter 3 
NUMERICAL COMPUTATION OF THE CHARACTERISTIC VALUES 

3.1 1NTRODUlCTlON 

The second stage of our computation i s  by no means uniquely determined by the f i rs t  stage, What we 

have accomplished so far i s  no more than the concentration o f  data implied by the replacing o f  a general 

real symmetric (digital) matrix requiring ~ L ( N  + 1) numbers for i t s  description by a new matrix, nearly 

orthogonal congruent to the first, and having no more than 20 - 1 nonzero elements. Any method which 

yields thecharacteristic values can now beapplied to the calculated matrix ?; which i s  i n  Jacobi 

form, Some methods w i l l  be unsuitable in  that they make no effective use of  the large numbers of zeros 

among the components of  T. Other methods can Le expected to be quickened and faci l i tated by this fact. 

Th is  i s  especially true where storage in  the internal memory of  the computing machine o f  2n - 1 numbers 

i s  easy but ;n(n -c 1) numters cannot he so stored. 

I 

The method we present in  detail here, for which we shall obtain guaranteed error bounds, appears to 

have the following advantages: i t  i s  not based on the assumption that the matrix i s  posit ive definite 

(or even that i t  i s  nonsingular); any given rooi or roots may be obtained individual ly without the necessity 

of finding a l l  the roots (for example, the root or roots of smallest numerical value con be found a s  easily 

as the largest); multiple roots faci l i tate rather than complicate the computation; i t  i s  feasible to determine 

some or a l l  o f  the roots to a l imited accuracy, and to follow this, i f  desired, by a more precise evaluation 

o f  certain ones; the accuracy i s  high and i s  independent o f  the order of  the matrix (cf., (3.9.5)); and the 

number of multiplications required i s  approximately proportional to the accuracy desired and to  the square 

rather than to the cube of the order of the matrix. An objection to the method - at ieast in  the form 

proposed - i s  that it requires scaling o f  numbers and so involves a floating-point technique, 

3.2 INVERSION OF T H E  ERROR P R O B L E M  

Considered in broad terms, a method o f  computation should be regarded as an operator which i s  applied 

to a selected one o f  o class of permissible M-component data vectors and which y ie lds an ordered set o f  

N numbers, that is, a solution vector.(') Th is  single-valued mapping o f  a region o f  the"data space" 

onto some region of  the "solution space" i s  what we mean by a numerical method. 

Along with the numerical method, one has a theoretical method which amounts to  a single-valued 

mapping o f  the same region of  data space onto a region o f  the solution space which presumably also con- 

tains the permitted digi ta l  approximate soluiion vectors. A striking difference between the numerical and 

theoretical procedures is that the former maps only a f in i te number o f  dota vectors onto only a f in i te 

number of solution vectors, while it i s  of  the very essence o f  a large class of  theoretical solutions that 

a continuous variation of the dota vector i s  possible and leads to continuous variation of  the solution 

vector. I t  i s  also true that even when the theoretical operator has a many-valued inverse, i t  w i l l  usually 

("Strictly,  one w i l l  a l l o w  both M and N to  vary a n d N  may depend on both 1M and the particular data vector g iven.  

Thus ,  i f  one  c a l c u l a t e s  t h e  real roots  o f  a polynomial of degree  M, the  number N of t h e s e  real  roots  wi l l  depend both 

on M ond on the  v a l u e s  of t h e  coefficients.  The distinction between a s i n g l e  method and a class o f  methods  i s  

l i k e l y  to he D matter of c o n v e n i e n c e  and to be a s s o c i a t e d  with  a s p e c i f i c  code written for tho s o l u t i o n  of a problem. 
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be so that a continuous variation o f  the solution vector can be shown to lead to a continuous variation of  

each of the corresponding data vectors. (That is, perhaps after excluding exceptional loc i  of lower di- 
mension, the complete inverse map of a suitable neighbarhood of a solution vector i s  a nonoverlapping 

set of neighborhoods of the corresponding data vectors.) 

One of the reasons new methods seem to be needed to obtain satisfactory error analyses o f  numerical 

methods appears to be this lack o f  continuity in  the numerical operator which results from the discreteness 

and which implies the lack of a significant topology in  the data and solution spaces. 

What we now propose as a device for the error analysis of  certain types o f  computational methods i s  

replace the given (digital) data vector d by another data vector d ’ (no t  necessarily digital) which 
- 

this: 

i s  chosen to be near to 2 and to have the property that 

(3.2.1) 
- 

3(d’) = YL(,i) = s , 
the given solution vector, where 5 i s  the theoretical operator and ‘<I i s  i t s  numerical approximant. The 

error function, which should be a measure of  the discrepancy between LJ(2 and h(2) = F, can be calculated 

fork!(>) and .Cl(d’), with fu l l  advantage now being taken of the continuity properties o f  2.  
More explicit ly, we suppose, given as a data vector the 2ti digital numbers 

- -  
i = 1, , . . , ‘ 2 ,  the elements on the diagonal of S, b . ,  j = 1, . . . , n - 1, 

I 
the elements in  the ( j ,  j + 1) positions, and p ,  a number the relation o f  which 

to the roots X i  i s  sought, 

(3.2.2) 

- 
where S The computation, TL, w i l l  y ie ld a single integer 

s = K,(d), or i t s  digital counterpart F = s/l-”, which i s  intended to be the number of nonnegative roots o f  

S - Til,,. Evidently, a hound for the error i n  the integer s w i l l  be of  l i t t l e  use, since i f  i t  i s  not zero it 

w i l l  only be possible to conclude how many roots of  s may be incorrectly located relat ive to jY without 

having an estimate of  how far the erroneously placed roots are from ji. I t  now proves feasible to f ind  a 

data vector d ‘=  (azI,bI,jJ that i s  close to 2 and such that kJ(d‘) = s. If we now le t  S ‘ c  (sl;) be  the matrix 

with elements SI. = a’ s ’  = 6I, and other SI. = ‘3, we can show that nu root of §’can dif fer 

from the corresponding one of  S by more than a certain small quantity A2A. Then, since exactly s roots 

of S ‘  are 2 - i;, at least .T roots of  S are 2 E - h2X, and at least n - s roots of 7 are $7 + h,X. The com- 

plete algorithm for obtaining a l l  the roots then consists of  obtaining the value of s for a sequence of 

values of 

s a matrix in  Jacobi form, however obtained. 
- 

- 

I ‘ I  
- -- sI’+, 

zz I ,  ’ j j + l -  I 11 

- 

a5 i s  described in detai l  in  3 1.4 and 1.5. 

3.3 T H E  R E C U R S I O N  F O R M U L A S  

The recursion formulas o f  Theorem 1.5 for a chain of principal minors of S - hln are now to be trans- 

lnted into a sequence of  d ig i ta l  computations. The fact that the basic mathematical relation between 

signature and the signs o f  the principal minors fa i ls  when two successive minors are zero must be re- 

flected i n  the computation. Moreover, two successive small vaiues o f  the minors can occur a t  any place 

in  the sequence and w i l l  result i n  a loss o f  accuracy in  the remaining terms i f  not compensated for by 

scaling. Despite these apparent sources o f  instabil ity, we shall f ind that the signature o f  s - AIn  (and 

herice eventually the characteristic values of  q) can be  determined to a high degree of accuracy by using 

a l imited type of floating-point operation. 

- -  
- 



Observing that the nondiagonal elements 

- I 

(3.3.1) t5. = - “ j  i t 1  I - s i t 1  i I i =  1 , 2 , . . , , r z -  1 , 
enter h e  computation only in  the form of  their squares, we f i rst  calculate the complete 2s place square - 
o f  bit 

(3.3.2) (hi) = bi x x hi , 
- - 2  - 

and then shi f t  th is  2s place number to the le f t  by a suitable number pi o f  places (i.e., mult iply i t  by 

{+‘i) and discard(2) a l l  after the f i rst  s places to obtain a digi ta l  quantity Ti  and a nonnegative integer 

/Ii that satisfies 

-pi  - -s-f i i  
(3.3.3) Ti < 1 and 0 ,< - &f - /3 y i  < p I 

wit11 

(3.3.4) o ~ p i _ < 2 s - 1 ,  - - i t i i  o 
or 

(3.3.5) 
- 

i f h ,  = 0 . 
- 

(Note that a question of tact ics is involved here. For h i  = 0, the matrix i s  a direct sum of two 

matrices, and the problem can be sp l i t  into two problems for smallsr matrices. While we are obliged 

to  respect fu l ly  this situation in  specifying the details o f  the computation, we refrain from doing i t  

formally in advance, since the computation would s t i l l  be affected by (sufficiently) small values of the 

bi i n  much the same way as by a zero value, and no essential d i f f icu l ty  would be avoided. Also, memory 

requirements are not severe and the solution i s  therefore not  much faci l i tated by an expl ic i t  reduction 

I 

to two smaller problems.) - -  - 
We eventually calculate the sequence of  minors of  S - A l ,  for a number o f  values of A, but for the 

Scaling as before, we have for the diagonal elements 
- I  

present restr ict attention to  a single value A = p. 
- I  I -  

N .  - p o f  s - pl,, 

,a 
I (3.3.6) 

and, since we do not guarantee 1;i; - 

[3” _< - jFil < 1 and Zi - p -- /? i p i  + OB-’ 

< 1, 

(3.3.7) 
i f  ai 2 0 , 

i f  a.= -1 I 

or 

(3.3.8) p .  = 0, ai  = s i f Z i - p = O .  

When ‘xi = -1 and the (right) shi f t  introduces an error, 101 = 0 or h for a binary machine, and a reasonable 

round-off procedure could be used to get 16’1 6 4 for a decimal machine, but we do not assume this. 

I 

c 

~ ..__.__.I._._ 

(2’For (5 = 0 this amounts to using unrounded multiplication. 
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The exponent to be associbted with zero i n  (3.3.5) and (3.3.8) i s  o f  course arbitrary, The values 

chosen may be convenient since the inequalities 

(3.3.9) 

and 

(3.3.10) 

w i l l  certainly ho ld in  a l l  cases, and the maximum values o f  p i  ond ai occur when a l l  the 2s and s binary 

digits o f  ( b i )  and Zi - p, respectively, are zero. - 2  
- 

Neglecting, for the moment, the possible occurrence o f  zero values in  the sequence of minors ri@,S) ,  

we substitute 

(3.3.11) 

into the recursion formula 

(3.3-12) 

and get 

Since we are interested only in  the signs of the mi, we need to  calculate and record only the differ- 

ences tetween successive values of pi ;  therefore, we introduce 

(3.3.14) 

and write the forniula for mi i n  the two forms 

v .  = p i  - p i m l  , with po = 0 , 

(3.3.15) 

In 3 3.6, the corresponding digi ta l  computations are given in ful l  detail, a choice between the two forms 

being iiiade so that the exponent inside the parentheses i s  nonnegative. Before doing this, however, we 

consider the general question o f  scaling and the special precautions which need to be taken when one 

or both of mi-  and i n .  are zero. 
I - 

1 - 1  

- 
3.4 S C A L I N G  A N D  T H E  D E C O M P O S I T I O N  O F  1 

‘r h e d eterm i n an t s 

(3.4.1 ) fi(cl, 5 
are used only to determine the number of changes o f  sign in the sequence 

(3.4.2) 

Each f i  could therefore be mult ipl ied independently by a posif ive factor without affecting th is  count. 

1, / I f  /2, ’ ’ I f, 
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Since f i - 2  and f i - ,  are used together i n  the recursion formula for f i ,  the scale factor between successive 

f i  must be calculated and used except when one of  h e  f j  i s  zero, i n  which case the recursion formula 

reduces to a single term. We shall therefore actually calculate a sequence 

(3 "4.3) p - p r l  I;i n I 

1 - p-7, p 'PI ?)! - ,, p-'%i2, * . , 
where, however, we record only the relat ive scale factor vi = pi - p i - ,  and the digital quantities Zi,  

with only ' N i - 2  and mi-, being retained in the memory while Z i  i s  calculated. 
I 

Taking into occount the possibi l i ty  o f  rescaling the sequence of  f i  by an arbitrary posi t ive factor 

(which need not be a power of 8 )  whenever a zero occurs, we wi I I  have 

(3.4.4) - Pi 
i = 1, ..., n , fl  = p Y1.Z 

1 i' 

with 

(3.4.5) r iz  > G and n i - l  = n2 , 
except where /,-, -I 0 or f ,  = 0, Fven this rather loose connection between the determinants f, and the 

digital quantities iii must fai l  i f  the sequence / .  contains consecutive zeros. This is the result of the i 
theorem connecting the signature o f  5 - F l n  with the nuinker of changes ot  sign in (3.4.2) being inva l id  

i f  consecutive zeros occur. Neither cari we permit (3.4.3) t o  contain consecutive zeros, since the re- 

cursion formula could then y ie ld  only zeros for all the remaining terms o f  the sequence. 

I 

Despite these evidences of instabil ity, the Jacobi torrn i s  so special that the di f f icul ty i s  easi ly 

evaded. Thus i f  f i -  f- 0 for I > 1 i s  the f irst occurrence of  a zero in  the determinantal sequence, (3.3.12) 
gives 

(3.4.6) 

_- 
end / 1  - 0 only i f  b Z - ,  - 0. Hence, the chatii of principal minors of  a symmetric matrix in Jacobi form 

can contain consecutive zeros = 1, = 0 only i f  the matrix decomposes into a direct sum of a matrix 

of order z - 1 and one of  order 72 - z + 1. Since the numLer of  characteristic values o f  a direct sum matrix 

7 = Y ,  + S 2  greater than ji i s  the s u m  of  the  numl-eas for Y, and Pz ,  we need only to arrange that the 

in i t ia l  values Le reinstated whenever f,-, = L, - = 0. We therefore assume that (3.4.4) and (3.4.5) hold 

under the condition that the f ,  are the exact values of  the minors o f  a submatrix o f  S ' -  i l l r L ,  where I' 

i s  a symmetric matrix i n  Jacobi form with elements "near" those of  Y and which decomposes as C does 

whenever bot11 h t - l  - 0 and &,-, = 0. The essential step i n  the error anolysis i s  to find bounds for 

the amount t y  which the elements of  C must be changed to the elevents of ) ' s o  that (3.4.4) holds for 

the digi ta l  GL, as calculated with the usual uncertainty dLe to round-off error. The presence of  the scale 

factors n1 in (3.4.4) does not nioterially aid i n  the error analysis, since we must make the digital re- 

quirement onaloyous to (3.4.5), namely, v L  ,> 0 and n , - ,  -- n Z  except when GL- 

- -  I - - 
I 

- 
- - 

- 
I 

- 
= 0 or mt - 0. 

3.5 T H E  D I G I T A L  F O R M U L A S  W H E N  E i m 2  = 0 OR m i - l  = 0 

As in i t ia l  values o f  i i i i -2 ,  Ei-,, and vi-l we agree to store 

- - 1 - p-", and v o  = 0 . 
= 0, 'no = (3.5.1) m- 1 
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With f i - 2  = 0, the basic recursion formula reduces to 

(3.5.2) f i  = (Zi - F ) f i -  1 * 

(3.5.3) 0, 1 - p-”, El, . e .  , 7ni-2 = 0, m i - l  f 0 

= :(Ei- 1), *pi , (3.5.4) 0, 1 - p-”,  ml, . . . , - - 0, E*-, 

Since f i - ,  f 0 can be assumed, the computed partial sequence 

- 

can be rescaled after the zero and extended to 

- - 

where we have introduced the digitol sign function 

(3.5.5) 
1 - p-” 
-(1 - p- ” )  

- 
u(x) = 

i f x  2 - 0 , 
i f x  < 0 ,  

and where tP, = ETnt i f  1 0 and -p, - ?fir i f  E, - ,  < 0. (A more straightforward digi ta l  translation of 

(3.5.2) would be to define E, = x Fz, but there is no need to do the multiplication when the sign 

of E , - ,  has already been “sensed” by the machine and f l ,  or i t s  negative can be as easi ly stored as 

the value of  E,.) 

The formal definit ion mechanized in the code and assumed in  the later error cnalysis i s  the following: 

i f  = 0 (and necessarilyFii-l # 0) , 

rep1 ace mi -, by Zl- = Z(Ei I 1) 

(3.5.6) 7R . - 
and set 

L E .  - Pi 

also put vi = ai . 
Evidently we can even have E l  = 0, so it i s  appropriate to consider next the case 0, E i - ,  = 0. 

The recursion formula reduces to 

(3.5.7) 
- 

For :,-, = 0, b z - ,  = 0 and the matrix decomposes with T; Q characteristic value of the submatrix 

Then the computation should continue by dealing with the 
- 

of the f i rs t  i - 1 rows and columns of 5. 

minors of the matrix 5 ,  = ( S p y )  for p 2 i, q 2 i. This  i s  accomplished by the definit ion: 
- 

(3.5.8) 

i f  = 0 (necessarily # 0) andqiwl = 0 , 
replace mi- by Et-, = 1 - p-” , 
and set mi = p i ,  vi = ai  , 

For 5 z - 1  f 0, f ,  f 0 in (3.5.7) and the sequence can be rescaled after mi-, = 0 by setting 

I - -  (3.5.9) m, - - d-q,  - J n t J  = -a/,/J = -“(“,,J I 

where 4,-, i s  necessarily posit ive and 

(3.4.4). Hence we define: 

has the same sign as E,-2 by the inductive hypothesis 
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(3.5.10) 

i f  iiil - 
and 

2 8 (necessarlly G2 - ?  d 0) 

# 0 (necessarily q L l l  > 0) , 
- (1  - p-” )  

1 - p-” 
set Z -= 

( leave vi 2. L ’ i - l ,  since i t s  value i s  irrelevant 

3.6 THE D I G I T A L  F O R M U L A S  W H E N  Z i - 2  f 0 A N 5  & 0 

Wriile i t i s  necessary to provide in the code for ttie possibi l i ty  that some Et  shall be zero, in actual 

is., to within round-off errors, u characteristic value o f  a 

The formulas of t h i s  section w i l l  therefore 

fact this wi l l  happen for i > 0 only when 

principal minor o f  S formed from the f i r s t  i rows and colurrins. 

be those usunlly employed i n  calculating the sequence. 

-_ 

?To calculate I,, we must  add the terms 

and 

Since n l , 2  - n l - l ,  i t  would be possible to compare the s i re  of these terms and scale the larger to the 

interval [j-’ 5 _. 1x1 < 1 before adding them. This refinement i s  unnecessary for accuracy, CIS our later 

analysis w i l l  show. h e  have not even calculated and recorded the individual exponents l ~ ~ - ~  and p I - 2 ,  

and we do not know the vulue of n L  -, = TL, -2 .  - -. - riz - so that when (3.4.4) 
i s  substituted into the basic recursion tornwla (3.3.12) and iiz - ;i; and are replaced by their 

d ig i ta l  appxoximants, we can divide th rough by nz and obtain (3.3.15), which we rewrite as 

Instead, we require 7~~ = - 

(3A. 1) 

c 
where 

(3.6.2) p, = vi - , i- 0, . - P,,] . 
The value of  ui i s  determined directly by the machine us the number of shifts necessary to scale the 

numericul vulue of the quantity in  pnrentiieses to  l i e  between p-’ and one, and then vi i s  deterrriined 

by the appropriate formula. Since many machines (and in particular, the ORACLE) can easi ly accumulate 

correctly the sum of two digital quantit.ies and detect any overflow and scale for it, we permit u 2 - I  

for cl single right shift  and so allow -1 5 .~~ (7 WCieri the value of 7 i i j  given by the formula i s  zero, 

vi i s  indeterminate and so i s  vi, but this i s  appropriate since the computation of Zi+, from Ei := 0 and 

u i .  

s - 1. 

- 
involves, by (3.5.8) and (3.5.10), no use of the value of vi .  

I -  1 
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The precise digital formulas are: 

(3.6.3) 

(3.6.4) 

+Pi - 
x E .  i f  pi 2 0, l e t  ri = (pi x mi-,) +/3 - q i - ,  1 - 2  ; 

i f  ri f 0 and pi < 0 , i i f  ii f 0 and pi 2 0 , 

set ;Xi = PDi x ri and vi - ai t ai , 

where-1 =< vi =< s - 1 and p- ’  =< IEil < 1 , 

where -1 5 ai 5 s - 1 and /3-’ 5 E ,  < 1 , 
i f  r i  - 0 , 

set Zi = 0 and leave v .  = vi-’, since i t s  value i s  irrelevant . 

(In coding these formulas, a technical d i f f icul ty may intervene, as it does for the ORACLE, to 

prevent a direct order to shif t  lp,l places, since we have not guaranteed that (p,I < s. For the ORACLE, 
orders for more than 63 shif ts are reduced modulc 64 before they are performed and this could clearly 

lead to  a serious error. Since we desire that s or more s h i f t s  shall reduce the number to zero, or a t  any 

rate to ips”, i t  seems simplest to examine i p f l  and replace pi by +s i f  ] p i (  shifts cannot be ordered.) 

I 

3.7 T H E  A L T E R A T I O N  O F  1 T O  5’ 

The subtraction of  two terms of nearly equal size i n  calculating iiii can easi ly lead to an incorrect 

determination of the sign of the corresponding minor o f  7 .- E l n .  What we are able to show i s  that cnly 

small changes in The elements ai and 6 .  of 5 are required to make the calculated signs exactly correct 

for a new matrix S ’ -  ,El 

(3*7.1) S’ = (SJ with s’ e 4  = 0 i f  Ip - 71 > 1 

- 
- - 

1 
where 

rlt 

- 
The computation of the sequence of F j  for a single choice of T; involves each Ti and 6 .  at most once. 

Th is  separation of  the whole problem into parts i n  each o f  which a data number i s  used a t  most once 

makes i t  possible to replace the roundloff errors by alterations i n  the given constants. 

I 

- 
The alteration of the elements Z i J b .  to  nz:lb.’is to be made sequentially so that to guarantee the sign 

o f  E .  to be the same as that o f  the i-rowed principal minor of C ’  -Til we suppose a l l  . . . I -6. 1 -  1 and 

h , ,  - * ’ I l l i w 2  have been previously altered to the corresponding primed quantities and that w e  have at  

our disposal 7ij and 6 i - 1 .  A number of special cases must he considered because iTii may be calculated 

by one o f  the special rules of 33.5 or by the general rule of  53.6 and alsc because i f  either mi-? or mi-, 

1 I 

- - 
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was computed by a special rule, the following inductive assumption requires minor modification (typi- 

cally, 1 - pes i s  used where +1 should have been). It is, however, easy 'to see that the modifications 

in  ai and 
- 

which may be required i n  the general case dominate those far each o f  the special cases. 

For the main step of the inductive proof we therefore suppose that Z i - 2  d 0, E j - ,  L 0, and that both 

were computed direct ly rather than being obtained by a rescal ing substitution as in (3.9.6, 8, or 10). The 

inductive hypothesis i s  

with 

(3.7.3 

f o r i =  1,2 ,  ..., i - 1  , 

This implies 

(3.7.4) (3.7.2) for j = i, 7% I - n., and vi = pi - pi,l I 
i -  1 

where the f, satisfy (exactly) the recursion formula 
I 

j -  1, ..., i , 

We have the right to choose ~ ~ ~ ~ , b ~ ~ - ~ ,  and the 

- 2 .  (3.7.5) f.' 1 = (a' i - q:-, - y-,) f j - 2  I 

i n  terms of the primed values of the matrix elements. 

integral exponent -pi and are to  show that, after dividing (3.7.5) for j = i b y  n i - 2  = = nit  

(3.7.6) 

where pi = vi + pi-, and Ei and vi are given by  the rules (3.6.2, 3, and 4). 

When Zi = 0, pi may hove any value in  the last  equation, and th is  case may be subsummed in  other 

respects under the cases i n  which Er 4 0. From (3.6.3), 

(3.7.7) 

where the terms involving a right sh i f t  by jpil places contribute less than ,El-' to the 

Eq. (2.22)), and so 

([lo], 

(3.7.8) l'ilol < E X  + p-.7, g01 i E X  + p - s  . 
Forming Ei from T~ by lef t  shif ts introduces no error, bu t  i f  1 
rounding) introduces a maximum error o f  no more than ( p  - l ) / j -s- ' .  Hence, 

Aril < 2, the single r ight shi f t  (without 

(3.7.9) 

where 

(3.7.10) 

(3 )Th is  i s  evident i f  we form the complete 2s- place product, shift the number to the right by (pil places, 

f i l l ing in zeros after the /3 point, and then discard a l l  after the  f irst s places. 
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p i 4 .  
Substituting from (3.7.9) in ( 3 . 7 ~ 5 ) ~  after the latter has been multiplied by /3 I, gives, 

(3.7.11) 

-G . -u. 
Since / p i l  may be large, the entire error P 
case and by the choice of  b j - ,  

(3.7.12) b2!-l = b i - l  i f  p i  < 0 and uz' = 2. i f  p i  2 0 . 
In the first case 

' 9  or /3 
in the second case. Moreover, it i s  convenient to let 

'[ must be absorbed by the choice o f  u2r in the f i rst  

- 

p i - s ,  < p-s-l 
(3.7.13) \pp ' [pB" (b ;  .,. 1 ) 2  - 4 i c 1 1 R i - 2 \  < \ p  = I 

by (3.3.9). Similarly, i f  p i  2 0, 

(3.7.14) 

by (3.3.6) and (3.3,7). When p i  < 0, (3*7.11) w i l l  therefore be val id if when p i  < 0 we choose a2:so that 

the terms p i  m i - l  and I;' ' (az: - il)Gii-l differ by the amount of the error terms, which are now bownded by 
/ :  2 / > I \  + I-;-'-'. Similarly, when pi 2 0, w e  are to choose so that Si - l  i s  different from 

i !  '"'(6;- 1 ) 2 % i - 2  by an amount not greater than f i  Replacing F i  by 0 ' ( Z i  - jl) when 

ui 2 0 and Ly /.l'z[(Zi - p) - Ojl-"], with 101 < 1, when ui = -1 and replacingFii_l by p ( b i - - , ) 2 p l u s  

on error term less  than Pms, we know that 

a _ _  
-cr . 

i: ,- . -0 .  a .  ' \ [I + P - ' - l .  

fli-1 - 

U .  -u . 
p 21u;- dil I rni- , j  5 p ' I T ) /  + /3--"-' i f  p i  < 0 , 

/&-I i ( 6 ; - l ) 2  - ( Z i J 2 \  2 p-O'lli + p - s - 1  i f p i  >, 0 . 
(3.7.15) 

Using oi >, -1, I'Ti- , l  2 p- ' ,  oi 2 -1, pi-' 2 0, and IZi121 2 p" ' ,  the required alteration o f  Ziand 
D i - l  i s  to 
- 

(3.7.16) 

or 

where 

for p i  < 0 

for p i  2 0 , 

(3.7.17) 

or 

(3.7.18) l&J < P - 4 - 1  ( E X  + JL1-Sf l  + p - s - 9  . 
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- 
Taking cy ~ f l  $-‘, the alterations in  S required to make the calculated sequence of signs o f  the 

minors exact satisfy: 

and, when 

Looking back at the source of the large error bound for 13 = 10, we see that it i s  basicallydue to the 

crudeness of scal ing by powers of  10. Thus, in (3.7.17), the factor p2 in the r ight  member could be re- 

placed by p except when ai = -1, and i t  i s  clear that the right shift to form pi from Zi - 7; i s  wasteful in 

that a quantity lying Letween one and two has been scaled by dividing it by f 3  = 10 rather than by 2. If 
th is r ight shi f t  were performed with round off, the term (p - 1)p- ’- in (3.7.10) i s  reduced to @-’, and 

th is  implies that 

(3.7.21) 171~1 < @’re, + ( 1  c $3 + p ” ) ~ ‘ ” ]  and 1Ci-,1 < P [ E ~  4 ( 1  + kf3 + /3”’)/3’’1 , 
or, for p = 10, 

(3.7.22) I l l i [  i 6606” and < 666” . 
The improvement in accuracy which i s  suggested by th is  improvement in error bound may well Le illusory, 

since we have to  compute the sequence of signs for various values of Ti and, while some characteristic 

values could be misplaced by an error i n  the signs of  the r 3 j i  for one z, it i s  unl ikely that the same error 

would be repeated for different values of  T;. It therefore seems l ike ly  that the entire computing process 

we have detailed in  th is  chapter is unnecessarilyaccurate and that in  particular the rather time-consuming 

scaling might be relaxed. For example, i n  a binary nnochine, three binary digits might Le treated a s  a 

unit and f 3  thus effectively made equal to eight. 

When a zero occurs in the sequence of values of Ei,the above considerations require re-examination. 

Thus the computation of Tiil by (3.5.6) gives the exactly correct value p ’(Z1 - jl), except when a ,  = -1, 
and then altering 2, by less than p’” w i l l  make /3 ‘7;, the value of  the ( 1 , l )  element o f  5’- 21. This 

is less than the change permitted by (3.7.17), which therefore continues to apply. The same conclusion 

holds for the required change in Gi whenever (3.5.6) i s  used to calculate Zi, since the rescaling i s  by 

lii-,l-’ and, by (3.5.2), 

(3,7.23) 

a 

-a 

- - 
l/j-,l-’ii = Q i  - f l ’  

The proper rescaling of fi, for use i n  the computation of .the correspondingly scaled f i + ,  would be 

Since +1 i s  not digital, f ( 1  - F ” ” )  i s  used instead. 

one o f  the terms used to calculate Zi+,. 
This  introduces a new error of less than p‘” in  

I t  i s  not necessary to increase the error bounds given, since 
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in est imat ing the term in question we overestimated \Zi-’\-’ or / i i j i - , \ - l  as /3, whereas w e  could now 

use the smaller bound ( 1  - [j-”)”” for t h i s  factor, 
Finally, inspection o f  the rules (3.5.8) and (3.5.10) shows t h d  i n  a11 cases the bounds (3.7.17) and 

(3.7.18) w i l l  hold. 

3.8 BOUNDS F O R  ( b (  - bil 
- 

Before determining the effect on the characteristic values of S o f  i t s  alteration to S‘, we need to 

obtain a bound for Ib’ - b,/ from the bound for I(bzf-1)2 - ( b i - l ) 2 \  given in (3.7.18). It w i l l  be essent ia l  

to use t h e  fact that (b i  - 1) has been scaled to 

- - 
.-. 

(3.8.1) 

(3.8.2) 

(3.8.3) x 2  - y 2  = z 

42-1 - -- @ 4 - 1  (b i -1)2  2 p-’ * 
- 

Setting 
4 - 1  x 2  x B B i - l ( b :  2 - 1  )’, y’ = ~ p i - ’ ( b i - 1 ) 2 1  and li __ 1 

for nonnegative x and yI we have 

and hence 

(3.8.4) x 2 (y2 - lzl)1/’ -- y(1 - jzly-2)1/2 2 y(1 -. l z l / 31 /2  

p-s-1) 

Since /j2-, 2 0, (3.7.18) gives 

(3.8*5) I 4 P  = P l - r q - ,  KZ-1l < B ’ - 2 P z -  1 ( E x  t p-s+’ 

=( @(EX t p-s+’ b p - 1 )  . 
By overestimating 1.16 under the assumptions cXPS 

_< - 0.01 11 so that x => ~(0.9889) ’I2 2 - 0.994~.  This rough estimate of x now yields 
1, 2 5 2 10, and /3-” ’[ZIP 5 (1  10 + I)/?-“ 

(3.8.6) 
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- 
3.9 ERROR BOUNDS F O R  THE C A L C U L A T E D  C H A R A C T E R I S T I C  V A L U E S  OF S 

The number P(ii) of changes of sign in the digital sequence 1 - p-“, E,, E2/  , . , I //in I i s  now known 

to  be exactly the number o f  characteristic values of S’which are 2j7. Also, 

0 

72 
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0 
0 

0 

0 

T3 

(3.9.1) 5” - S = , % E ,  

r. 1 - 1  0 

0 7 , - 1  

with 

(3.9.2) 

for i =- 1, 2, . . . , n as follows from (3.7.17) and (3.8.8). 

L e t  X be a characteristic value of the error matrix E and let  x be a corresponding vector normalized 

so that i t s  component o f  maximum numerical value i s  -1-1, say x. = - t l .  Then the zth of  the equations 

13x ::- Xx yields 

(3.9.3) 1x1 s IT.-,\ -1- lB;I -1. 171 * 

Hence, using the maximum values of  I T  

( 3.9.4) 

Since t h i s  inequality holds for each characteristic value o f  E, it holds for one of  maximum numerical 

value. Using the form of Lidskir ’s theorern stated in Corollary 2.1.2, we have the  following theorern. 

i- 1 7 / i l  and of [;I from (3.9.2), I -  I I  

< ( p 2  t 0.502/3’/2) (tXp” + /3 t /3-’)p-” , 

- 
’ THEOREM 3.9. if P(ji)  is the nirmber 01 changes of s z g n  z i ~  tbe scquence I - /3-’, ?E,, E2, , , . - 

computed from S und 7 h y  the ru le s  (3.5.61, (3.5.8), (3.5. I O ) ,  (?. G.L), (3.6.?), and (3.6.4), then ui least  

P@) chnrurteristrc values o/‘ S m e  e ~ 7 U L “ l  to or greater than p - A2A, ur2d at least n - I’(jZ) churacterlTfzc 

values of Y arc cqual t o  or l e s s  than ’3; + i,h, wherP 

- 
I 
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Whether or not one w i l l  accept as a maxirrium possible error 1077 units in the l a s t  significant figure 

(for n decimal machine) wil l, of course, depend on the circumstances of the problem. For matrices of 

order 20, Table 3 of 52.13 shows that the bound for the error i n  the second stage of the problem i s  about 

one fourth of  the minimum error bound obtained for the f i rs t  stage. Ivloreover, it i s  str iking that :\,A does 

not depend on the order of tile matrix so that once a matrix has been reduced to Jacobi form the size o f  

the matrix which can be treated i s  not l imited by round-off error. It i s  clear that scaling by powers of 2 
rather than by powers of 10 would reduce the error bound for a decimal machine to a figure comparable 

to that obtained for a binary one. k e  refrain f r o m  carrying through the details, since i t  seems of greater 

interest to contrast the efficiency (at least for the obtaining of error bounds) of binary scaling wi th that 

of decimal scaling. 

A second bound for the error can be obtained from the norin of the matrix E, since by (2.1.6) t i le 

ciinracteristic values o f  S’and 5, XzTand Xi, respectively, can be ordered so that 

(3.9.7) 

Fiom 

(A’ .- A j ) 2  5 i v 2 ( E )  . 
n 

( 3.9.8) N 2 ( f 3  = ( q 1 ) 2  + [ ( J l i ) 2  + J 2 1 ,  
i = 2  

1 ~ , 1  < fi‘^” and (3.9.2), we get 

(3.9.9) N 2 ( E )  < ( / 1 - ” ) 2  + (n - 1) /?4(€,/3’ + /3 i -  p - ’ ) 2 ( p - s ) 2  , 

since one easi ly shows that the maximum o f  

simpli fying trie formula by using the same upper bound for ( q l l  as for the other vi, 
t 2(5 - , )2  i s  obtained for the case ;-l = 0. Hence, 

(3.3.10) !Y(If)  < n 1 / 2 p 2 ( t x p S  t /3 + p- ’ )p - “  . 
Taking F ~ I J ’  = 5 ,  os usual, 

(3.?.11) tf’(13) < 1 2 ~ 2 ’ / ~ 2 - ”  for /3 = 2 and <V(E)  < 1060n’/2 IO-’ for /3 = 10 . 
- 

3.10 SCALING R E Q U I R E M E N T  F O R  S 
- 

The only normalization we have required so far in  th is chapter i s  that the elements of  S be digital.  

In the actual computation of the characteristic values, we need to know a value of  12 2 mox ; A 2 / .  Two 

possibi l i t ies for ,4 are the maximum of l b 2 - , l  t 1Z21 + lb,l und the norm of the matrix 5. The formes i s  

easily calculated and I S  certainly s3. Since it would be quite inconvenient to use a value of ,4 greater 

than one, we shall suppose that either 

(3.10.1) 1b2-11 + F I  + P I  5 1 f o r 1  = 1,2 ,  . . .  , n ,  

with b o  = 0 = hn,  or that 

- - - 

- - 
- - 

(3.10.2) 

- 
The latter condition w i l l  be automatically fu l f i l led i f  S has been obtained by the reduction to Jecobi 

form of a matrix normalized as i s  required in  3216. Then we can take A = + 1. 
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3.11 TIME E S T I M A T E S  

Counting two multiplications for a single use of the recursion formula to calculate iiii and allowing 

a third multiplication time to perform the scaling operations which may be required, 371 multiplication 

times are required for the computation of each sequence of  Gii. By (1.4.10)l no more than 1 + n L  
repetitions of the sequence wil l  be needed, where L i s  the least  integer 1 - log2(A/6) and S i s  the length 

of  the interval into which the machine i s  required to place each characteristic value. 

Taking A = 1, appropriate values of 6 for a 39-place binary machine (such os the ORACLE) would 

be 6 = 2-*O, 2-30, or 2-351 and for an 11-place decimal machine, they would be S = or lo-*. 

Allowing a mill isecond for each multiplication time to cover additions and logical operations, as i s  

roughly appropriate when the true multiplication time i s  about a hal f  millisecond, we get Table 7. 

T A B L E  7. TIME IN SECONDS FOR THE COMPUTATION TO A N  ACCURACY 6 OF THE n CHARACTERISTIC 
VALUES OF A MATRIX GIVEN IN NORMALIZED JACOB1 FORM: 3 z ( l  + nL,) 

Added in proof January 15, 1954. 

The method discussed in  this report i s  now in  use on the UNIVAC at  the AEC Computing Faci l i ty  of 

New Yo& University, The codes were written by J. H. Alexander and W. Miranker. As a test, the char- 

acteristic values of a symmetric circulant of order 32 und without zero components, but with multiple 

roots, were found. The maximum error in  any root was 18 units in the last  (eleventh) decimal place. The 

errors in Chl and X(hz )2  were 2.10-” and _< - 21.10‘”‘, respectively. 

The existing codes for the UNIVAC w i l l  also calculate characteristic vectors but it i s  clear that they 

w i l l  fai l  for problems for which some of the gi of the Jacobi form are “smail.” Another method of f inding 

the characteristic vectors, when the Jacobi form and i t s  characteristic values are known, has beende- 

vised and i s  now under study. 
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Appendix 1 
BOUNDS FOR THE NORM OF A SUM OF TWO MATRICES IN TERMS OF 

THEIR CHARACTER1 STIC VALUES 

Since the characteristic values of -T’A7’, for T orthogonal, are the negatives of the characteristic 

values of  A, the result of (2.1.6) w i l l  be established i f  we prove the fol lowing somewhat stronger theorem. 

THEOREM A l .  I f  A and R are real synimetrir matrices  with characteristic values ai and b ,  

i = I, . . . , n, respectively, and if C = A + 13, then 

where the minimum and maximum refer tcs the n! perrnututions n(i) of i, 2, . . . , n. 

Proof of the Theorem. Writing A 7 T,’AoTo and 13 7 Ui BoU, for To and U, orthogonal, 

A, = l ld iag (a , ,  a? a . . , l z n ) \ l  and R ,  = jldiag (b , ,  b,, . . . , bn)ll , 
N2(C) is  one of the values assumed by the function 

(A1.2) N2(T’AoT t U’BoU) = N 2 r T ’ ( A o  + V’NoV)T] = N 2 ( A o  + V’RoV) , 
where T and U are allowed to  vary independently over the manifold of all  orthogonal matrices so that 

V = UT-’ i s  also an arbitrary orthogonal matrix. Hence, iv2(C) l i es  between the minimum and maximum 

values o f  

n 
(A1.3) N 2 ( A 0  + V’BoV) = N2(A0) + N 2 ( V ’ B O V )  -t ( A o ) i j ( V ’ B o V ) i j  

i , j = l  

n 

= N 2 ( r r . * )  + N*(H0) t (Y’BoV)ii  , 
i = l  

since the norm i s  unchanged under an orthogonal congruence and A. i s  diagonal. 

Grouping together the equal characteristic values of A, we may write A, as a direct 5um i n  the form 

(A1.4) 

where u i f  a i  for a, f /3, and Z R , =  R .  We now proceed to  show that i f  V’B,V i s  not a direct s u m  of  the 

same form as A, then N 2 ( A 0  i- V’B,V) does not have ai1 extreme value. L e t  the ( i , ~ )  element of V’BoV 

be different from zero where the zth row i s  a row of the matrix of order n,and j refers to np for  a f 6. 
Then we consider N 2 ( A o  + W’BoW), where W = VR . and R . .  i s  the rotation (1.3.1) affecting only the 

ith and j th  rows and columns. The only terms in the las t  member of (A1.3) which are changed when V i s  

replaced by W are 

11 ‘ 1  

(A1.5) aa(V’B,V)ii + a p’B*v)lf 



and, for VI, th is  becomes, by (1.3.7) and (1.3,8), 

(A1.6) 

where ( V ’ B , V ) ~ ~  = k p q .  Hence, 

(A1.7) 

For 8 = 0, this reduces to 2(a, - a p ) k i j  which i s  different from zero, since we assumed kii  f 0 with 

a f p so that a a  f ap0 It follows that N2(A,  + U ” H O W )  cannot have a maximum or minimum value for 

w = v. 

( a ,  cos2 8 + a s in2  8)ki i  + ( a ,  s i n 2  0 4- u B P cos2 @ k j j  + (sin 28) (a, - a p ) k j j  , 

n 
d e  
- [ N 2 ( A ,  + w’AOW)I = ( a ,  - u a ) [ ( k i i  - k i j )  s in  28 + 2kii cos 281 . 

Assuming now that A ,  i s  written QS a direct sum, as in (A1.4), and that V’B,V decomposes into a 

direct sum in the same way, if R = 2: @I R ,  i s  a direct sum of rotation matrices of sizes n,l, 

and, for a suitable choice of the R,, V’B,V can be replaced by the diagonal matrix R”(V’BOV)R without 

changing the value of the norm function, the extreme values of which are being sought. It follows that 

the maximum and minimum values of  N 2 ( T ’ A o T  + U’BoU)  are attained for one of  the n! numbers 

N2(Ao + P‘BoP), where P i s  a permutation matrix, and the theorem follows. 
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Appendix 2 

MEANING OF THE SYMBOLS USED IN THE MNEMONK CODES 

A full account of the symbolism o f  either mnemonic or machine coding for the ORACLE would involve 

a great many details of the construction and operation of the machine and would be so long as to be 

quite inappropriate here. This information can be obtained from memorandums issued by the Mathematics 

Panel of the Ook Ridge National Laboratory. The following discussion presupposes familiarity with the 

general mode of operation of an automatically sequenced high-speed digital computer and i s  l imited to 

those features of the notation believed necessary to an understanding o f  the codes in  the following 

appendix. 

The arithmetic unit of the ORACLE contains two registers, coiled the accumulator (=A or Acc) and 

the Q register. Addition and subtraction orders permit a l l  eight combinations of holding or clearing the 

accumulator before adding to or subtracting from i t  either the number or the magnitude af the number in  

the indicated memory location. The symbols are: 

H 
Hm 
H- 
H-m a = hold the content of A and add to  it the negative of the magnitude of the number at u. 

a = hold the content of A and add to it the number at a, 

a = hold the content of A and add to it the magnitude of the number at a,  

a = hold the content of A and add to it the negative of the number at a, 

The orders C, Cm, C-, and C-m are obtained by replacing the word “hold” by “clear.” 

Mult ipl icat ion involves both the number previously stored in Q and the number stored at the address 

indicated in the M or Mr order. The M order gives the correct %-place product i n  A and Q, but the port 

in  Q uses the sign digit  position of Q for the (s i- 1) digi t  of the product, Where the complete 2sploce 

product i s  used in  the sequel, the A and Q registers are treated as a single (2s + 1)-place register and, 

after suitabie shift ing to scale the product, ohly the part in  A i s  f inal ly stored. Under Mr, the rounded 

product is at once available in  A. 
The only division order we use is denoted by D. It produces the quotient of the number in A by the 

number at the given address and positions the quotient in  Q (not in A) in a form suitable for immediate 

storage. 

The multiplication and division orders used are: 

M a = produce the 2s-place product of the number i n  Q by the number at oddeess a, 

Mr a = multiply, and round to s places, the number in  Q by the number at a, 

D a = divide the number in A by the number at address Q (quotient i s  in Q). 
The ORACLE has an elaborate set of shif t  orders of which only three are of interest here. The r ight  

shift orders are: 

R -p = produce in A 2-f‘ (contents of A) and drop ull places after the f i rs t  S. (Note: the sign i s  

alwaysunchangedunder an R order, so even R -40- applied to a negative number gives -2-39 
and not zero.) 

Rq -p* = regarding A and Q as an extended (2s + I)-place register AQ, produce 2‘f’(contents ofAQ), 
drop the last p ploces, and record in AQ. 
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For the left-shift order L, i t  becomes important to note that the accumulator A actually has 41 toggles: 

one toggle, A - l ,  used in  detecting overflow, one sign d ig i t  toggle, A,, and 39 “place” toggles A, 
i = 1, . . . , 39. I f  the in i t ia l  contents of these are [a-,aO a ,  . . , with ai = 0 or 1, 

L -p- = produce in A [a,-, up . . . a39 0 0 .  . . 01 
Thus L may well  alter the sign of the number in  A. Indeed, b -2- applied to  -1 in  A gives zero in A. 
We shall use L in two essentially dist inct ways: to shi f t  addresses and as o device for scaling a number 

by a power of 2. The order L -20- shif ts the address of  a right order into position for substitution as the 

address of a le f t  order. When w e  use L for scaling, we w i l l  have = a, (which i s  always true i f  A 
i s  f i l led directly from the memory by a “clear” order), and L -p- w i l l  produce the number 2P(contents o f  

A) as the new number in A as long as a_, = a,, continues to br: true. When a _ ,  f %, we detect th is  

situation by tl ie “setting of the overflow toggle,” order R -1-, and obtain a scaled number beginning with 

either a,, = 0, al = 1 or with a1 = 1, aO = 0, Since the content o f  A i s  interpreted as 

39 

--ao + ui.2-i , 
i = l  

a number in  A w i l l  be 2 - $when a. = 0, a,  = 1 and w i l l  be - -&when a. = 1, a, = 0. 
The transfer orders may be unconditional, conditional on the sign o f  the number in the accumulator 

(+ i f  >, 0 or - i f  < 0), or conditional on the setting of the overflow toggle  (y = yes or n L= no) and may ca l l  

for the execution of either the right or lef t  order of the indicated address (r or 4). The right orders are: 

Tr  a = execute next the right order at address a, 

T+r a = i f  the number in  A i s  2 0, execute etc., 

T-r a = i f  the number in  A i s  < 0, execute etc., 

Tnr a = i f  the overflow toggle has not been set, execute etc., 

Tyr a = i f  the overflow toggle has been set, execute etc. 

The lef t  orders are obtained by replacing r by and right by left. There i s  also a stall order: 

NTr  - = proceed to the next order in sequence (right precedes left). 

The address of  such a “no transfer” order i s  irrelevant and i s  generally so indicated in the fol lowing 

codes. If the condition of a conditional transfer order i s  not satisfied, the machine of course proceeds to 

execute the next order in  sequence. 

There are 16 substitution orders from A to the memory and a similar set from Q. Denoting the ten 

by I l l ,  and a3,, a31 . . . a39 bylV,  

Oda a = replace part I1 at memory position a by part I I  of the accumulator and part IV  at a by part 

toggles a ,  al . . . a9  by I, a10 a , ]  . . . a19 by 11, a20 a2 ,  . . . 
IV of the accumulator. 

Similarly, OOOa a uses only part I V  of the accumulator (which retains i ts  in i t ia l  value), while ~ ~ a a  a 

substitutes the entire contents of A (except that toggle A _ ,  i s  never involved i n  tl ie substitutions) into 

the memory at address a ,  

The substitutions from Q are denoted similarly, with q replacing a, To put the number a t  Q into 

position a ,  the order is qQqq a. To bring the number at a info Q the order i s  Q a. 

The command pari of an order i s  always denoted in  machine code by two sexodecimal symbols and 

the address by three, whereas I, 11, Ill, and IV  are each ten binary symbols which equal two andone-half 

sexadecimal symbols. 7 h i s  would appear to make it d i f f icu l t  to modify the code by substitution orders, 
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and, indeed, complications do arise when the machine operates with i t s  fu l l  2048-word memory or with a 

testing feature called “breakpoint.” In the following codes, neither o f  these i s  done; so the in i t ia l  

symbol of an address i s  always 0, 1, 2, or 3, and hence rto more than ten binary places are ever required 

to  specify an address. The symbols I, 11, Ill, IV  may therefore, for present purposes, be understood to 

denote command of  le f t  order, address of left  order, command of right order, and address of  right order, 

respective I y , 
The notation of the following mnemonic codes i s  intended to make possible the reading of the code 

with as l i t t l e  thought of the machine as i s  consistent with the requirement that the translation into ma- 

chine code shall be essentially routine. (It i s  more than routine i f  the storage i s  consolidated, that is, 

i f  in the assignment of storage a single memory location i s  used to store different quantities at  different 

times.) We therefore write “H V I y y  and understand it to mean “add the number V ,  to the number in  the 

accumulator.” Since, in  the code of  Appendix 3, V ,  i s  assigned memory position 100 (= 256, decimal) 

and H i s  20 in machine code, th is order becomes 20 100 and i s  inserted i n  the memory as the half word 

0010 0000 0001 0000 0000. Similarly, “RQCLQ. T5” i s  read “substitute (the number in the) accumulator for 

T5” and i s  translated into sexadecimal “5F 12F” or binary 0101 1 1 1 1  OOO1 0010 1111. When it becomes 

necessary to refer expl ic i t ly  to  the memory position at which a number is stored, we write M( ); thus, 

M(V,) = 100 and M(T,) = 12F. 

For several purposes, and i n  particular for treating integral variables such as counting indices, it i s  

convenient to introduce the notation: 

*,$ = k 2’”, ,$* = k 2-39  a n d  *k* = k 2’19 + k 2 - 3 9  , 

Sometimes, for convenience i n  substitution, addresses are stored as *M( 
a , ,  is stored at  1A0, M ( t ,  ,) = 1AO and *M(Zl ,)* i s  OOlAO 001A0, 

)*. Thus, since, i n  Appendix 3, 
- 

If an address is supplied elsewhere in  the code, we normally indicate th is irrelevance by a dash and 

understand zeros to be supplied in  the in i t ia l  code. 
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Appendix 3 
FLOW DIAGRAM, MEMORY CHART, AND CODE FOR THE REDUCTION OF A 

REAL SYMMETRIC MATRIX TO JACOB! FORM 

The following code i s  designed to  be self-restoring in the sense that i t need not be reinserted into 

the memory before a second problem i s  solved, A l l  that i s  necessary i s  that the new matrix elements 

be read in, beginning at 1A0, the order of the matrix be inserted in  Q in the form *n* (= n 2-19 + n 2-3 9) ,  

and the control be started at 005. If a fast input were available, th is  feature could be sacrif iced and 

the code substantially shortened. 

A part of the f low diagram refers to  tests which are essentially for malfunction of the machine, since 

they are not otherwise required. In patticulor, the (approximate) constancy of the norm could be tested 

only at the beginning and the end rather than after each plane rotation, as i n  the present code, with a 

saving of about one-half the present computation time. The total time, however, is  about 8 minutes for 
a matrix of order 32, which i s  as large as the present code w i l l  handle. 

The limitation n =< 32 permits the precomputation and storage of the addresses of the elements i n  

These are calculated in  advance of the two columns, the I ,  and J 2  columns, affected by the rotation. 

the manipulations involved i n  the actual rotation and are stored for convenience i n  the form *M ii 

beginning at 160 for the J ,  column and, similarly, beginning at 180 far the J~ column. The addresses of 

the 1 ,  column thus need not be recomputed every time J z  i s  increased by one. By sacrif icing th is 

feature, which allocates 2n storage positions, consolidating other storage, and simplifying the code by 

dropping the self-preparatory feature, matrices of order n 5 - 40 could probably be treated. It would 

also be desirable t o  include the calculation of the product of the "plane" rotation matrices, but then 

one could have only n 2 23 (about), since $n(n t 1) -t n2 spaces are required for the original matrix and 

i ts transforming orthogonal matrix. 

* 
( %) ' 
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REDUCTlON O F  A R E A L  SYMMETRIC MATRIX T O  JACQSI  FORM 

Ir_l 

L E F T  ORDER 
l_l_.._ 

I 

FF 

00 

40 

00 

80 

Start’qqqq 

w 
H- 

C 

oaoo 
M 
oqco 

c 
H 

C 

c 
OODO 

m 

OOan 

0’702 

C 

OUDO 

C 

C 

I__-. 
I I  

FFF 

00 1 

000 

000 

00 0 

*R* 

*R* 

*1* 

*n* 

‘ In 

A I -  

% I 

A l n  

Ann 

S l  

*R* 

*1* 

052 

068 

s, 
A1n 

s*  

0 

A I  1 

Mnemonic Code 

RIGHT ORDER 
I l l  

FF 

00 

00 

00 

00 

TC 

OODa 

OaOa 

H 

Q 

Rq 

OOOU 

n- 
Oaod 

OaOa 

OaOa 

C 

C 

C 

OaDa 

OaOa 

T.Z 

aana. 

T t  

IV 

F F F  

001 

000 

000 

000 

017 

A I ’  

A n n  

*1* 

-2- 

A I n  

* 1 *  

*]I*  

s3 

Z’ 

2 3  

A I ’  

061 

s 5  

040 

‘In 

006 

STORAGE 
\SS IGNMENT 

000 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

R 

C 

D 

E 

F 

01 0 

1 

2 

_---- 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

D 

E 

F 

__p 

BOX 
EXPLANATION 

-1 * 

‘1* 
L-1 

) 

-1 

inter with *R* in Q and store (at 110) 

4, = [001A001AOI 
= *M(;i, 

i 1 2  = *M(z,,j* 
inn - *M(Znn)“ 

i ln  = *M(Z,,)* 
= *(1AO + &n(n + 1) - 1)* 

jct ] I  = 1 

- 
5 3 = Q, znn, Mr, ann 

jl = C, Znn, H, T I  

Z, -*052 restores ”first time only” 

stwoge of trace in R, 

Z, --*068 similorly for (norm)’ .* R3 

j 7 = Q , Z  1 2 ’ & 1 3 ’  - 
S 5  = Q, aln ,  Mr, z l n  
S, = Q, z,n, Pq, 000 

Correction a t  017 clears A l n  so OOD will 

calculate AIn correctly 
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Note: in complex expressions Z,, i s  written (P, Q) 

L E F T  ORDER 
II 

* I I  

*2*  

069 

027 

072 

079 

07 F 

07 I 

07C 

072 

* 1 2 *  

* I ] *  

* 1 *  

* 1 *  

"32* 

T8 

'6 

' 6  

035 

y4 

x 4  

039 

y5 

x5 

* J  I *  

*IT* 

v2 

RIGHT ORDER 
Ill 

H 

0,fiO 

H 

0001 

O d O  

ooo<: 
OOOa 

c 
O ' d O  

O O O a  

OOOU~ 

H 

cmm 

H 

rmw 

m L l  

OD0 

moa 
C 

C 

NTr 

oooa 
C 

C 

N Tr 

OOOa 

c 
T i  

H 

Of& 

H- 

- 
IV 

D, 
024 

*32* 

OBA 

070 

073 

07C 

079 

07 E 

074 

0, 

T, 

Dl 

T9 

T I 0  

03 1 

032 

T9 

036 

T, 0 

03A 

070 

*1*  

* 1 2 *  

* 1 *  

STORAGE 
ASSIGNMENT 

02 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

8 

C 

V 

E 

F 

030 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

D 

E 

F 

040 

1 

2 

BOX - 
L 

20 

- 

40 

EXPLANATION 

II =address  at which M(], - 1, 11)  i s  

stored in  both I I  and I V  

IV = address at which M(J, - 1, 12) i s  

stored i n  both I I  and IV 
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L E F T  ORDER 
I 

OOOa 

OOOU 

C 

@ 'C 

Oda 

(3 

C 

OOOU 

c 

c 
C 

mxna 

11- 

C 

on00 

C 

C 

C 

naaa 

r + i  
C 

naaa 

Q 
H 

C 

113 
1i 

r.u' 
C 

0 rOa 

Q 

H 

c 
P +r 

I-I 

TC 

II 

V I  

OF3 

045 

* 1 2 *  

* 1 2 *  

26 

* I  ,* 

V I  

04 R 

0 

a l  1 
- 

T I  

SI 

04D 

04D 

TI 

T I  

R 4  

NT 

057 

0 

s2  

52 

- 
a l  1 

059 

05 F 

* 1 *  

059 

s3 

061 

s 4  

06 1 

066 

*1* 

06 1 

RIGHT ORDER 
Ill 

C 

N Tr 

T t  

H 

OOOa 

OOOU 

H- 

N Tr 

TX 

anaa 

H 

C 

T. 1 

H 

T t  

m 

mLJI1Z 

H- 

C-rn 

r t  
N Tr 

avvz 

Mr 

WDD. 

H- 

C 

Oda 

NTr 

H 

NTr 

Mr 

naaz 

H- 

C 

OaOa 

C 

IV  

z5 

OEO-Add. Sub. 

*1* 

"2 

OF3 

*1* 

OEO-Add. Sub. 

TI 

TI 

04D 

052 

* l *  

04D 

R2 

R2 

R4 

052 

3E0 .+Stop 

s 4  

s 2  

s3 

- 
a l l  

059 

059 

*1* 

5 4  

s 5  

061 

061 

s4 

STORAGE 
4SS I GNME N'r 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

n 
E 

F 

050 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 
D 

E 

F 

06 0 

1 

2 

3 

4 

5 

6 

BOX 
_I 

L - 

46 

4 c  

4D 

50 

52 

57 

59 

5F 

61 

- 
R - 

56 

5c 

54 

56 

EXPLANATION 

V I  = i*, z = 1, - 1 in i t io l ly  

2, = 0, 0, 0, M(C,) 

V I  = i * ,  i = ]I - 1 in i t ia l ly  

3 - T ,  

4dd ZIi to 'TI 

Test for i = n 

5 ... (- 2 

i + l - i  

1 - -I H, T,  

TI = trace-R2 f irst t ime 

'4T = [40000 400001 

-052 destroys 052 

Fractional part of trace exactly constant 

3-5, and S4 

4dd Zzz x Zzz to 5, 

Test for z = n 

3, = Q, Znn,  hk, Z n n  

' + l - i  

5, + * 1 *  7 Q, z,,, Mr, Z l 2  

II and IV  = Z i J ,  I < 1 

4dd Zil, x Zz, to  S4 

5, = Q, z ln ,  Mr,  Z l n  

Aext Zii in  061 

a2 



L E F T  ORDER 
I I1 

-1- 

s.4 

s, 

NT 

04 D 

061 

R 3  
I 

e 

02 0 

079 

Y 
- 
I 

X 

- 
X 

w 2  

096 

T, 
082 

T2 

084 

‘N, 

2 1 /2/2 

096 

sin 

2”2/2 

2’/2/2 

09C 
- 
z 

-1- 

cos 

RIGHT ORDER 

H 

r1ciur1 

o o m  

C l i l f I I L  

c 
C 

LmLLcL 

H - m  

T t  

T -.z 
T tf, 

t i  - m 

C 

C 

C 

4944 

om00 

TC, 

H- 

C-rn 

NTr 

H 

C - m  

C 

4999 

O d O  

TX 

m u r L  

T 4  

m2 

cuxm 

NTr 

Mr 

aacm 

T + r  

~ I _  

IV 

s 2  

R3 
068 

059 

57 

s 4  

R5 

R 5  

3E 1 -t stop 

072 

OD2- @ 

7 
- z 
095 

087 

T2 

T 2 

- z 
095 

087 

C 0 5  

09C 

cos  

s in 

- 
z 

cos 

097 

-- 
STORAGE 

4SSIGhlMENT 

7 

8 

9 

A 

t3 

c 
D 

E 

F 

070 

1 

2 

3 

4 

5 

6 

7 

8 

P 

A 

B 

C 

D 

E 

F 

080 

1 

2 

3 

4 

5 

6 

I 

8 

9 

BOX __ 
L - 

70 

71 

72 

79 

7 c  

82 

84 

87 

EX PLAN AT1 ON 

5, + 2 + 5, = (norm)’ to R3 f irst time 

only 

Destroys 2nd order 068 

S, = Q, a, 

S, = Q, ZilZ, Mr, 2,’ 

Mr, 2 ,  

- I(norm)2 - (init ial  norm)*/ -+ R,; i f  

R, < 0, stop at 3E1 

21’2/2: [5A827999FDl 

cos (3 = sin H = 2’/2/2 

(? x F) 4. 2 T: 7 

Avoid overflow ot 08C i f  T = 0 
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LEFT ORDER 
I 

Ciil 

a%ivz 

Dr 

C- 

,mm 

0 

C 

R 

H 

C 

T t  

aaaa 

iM r 

T-i, 

O a o O  

OOOa 

/IAm 

C- 

C 

Mr 

c 
Mr 

H- 

Clil 

Q 

uaua 

M i  

c 1 * m  

Mr 

Q 

H 

Q 

1%uz7. 

Mr 

mniz 

Mi 

II _____.. 

cos 

cos 

cos  

-1 

x 2  

x 2  

x 3  

-1- 

-1 * 

x 2  

08 E 

- 
z 

09C 

09A 

098 

- 
z 

cos  

cos 

sin 

s in 

2-1 

z7 

FZ I 
x 5  

F, I 

x 5  

p ,  , 

T5 

“ 1  

T5 

x.4 

cos 

sin 

cos 

- 

RIGHT ORDER STORAGE 
WiIGNMENT 

A 

8 

C 

D 

E 

F 

090 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

R 

C 

D 

E 

F 

OAO 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

8 

c 
D 

BOX - 
L 

$A 

I €  

?3 

?C 

42 

EXPLANAT ION 

2 - 1  + (2-1 f 7 )  = v to X I  

1 - 1*) to X 2 :  stores Cl = approximation 

to  ,1/2 

-v + zz - x 3  

f [(-u + FI )  +“,I + 2 < 1*, go t o  094 

Nith Ci - [(-?, + 5) + c ] + 2 = C .  , + I  in 

accvmvlator go to 08E 

I 1  from 080 or 077 

IV from 081 or 078 

substitute -1 for cos 0 or sin 0 ond -Z 

for sin 8 or cos 0 

Test (cos 0)’ + (sin u ) ~  : 1 
4void overflow error by forming 

cos x (cos + 2) + etc. 

Test cotnpleted at 14B 

Returns to  OA2 
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L E F T  ORDER 

Q 
H- 

w 
C I c Z L J  

d r  

cl1ixna 

Mr 

Q 
H 

C 

H- 

C 

0 9 0  

o<ao 
C 

C 

Q 
m-a 

Mr 

rlifiJ,il. 

Mi- 

Q 

H- 

C 

0 4 0  

H 

C 

2 

C 

H- 

c 
C 

C 

C 

C 

I I  

RIGHT ORDER 
I l l  

iMr 

ncraa 

Mr 

Q 
H- 

Q 

gxwa 

ivlr 

aaaa 

H 

D A m .  

ouoo 

C 

OOOa 

c m  

a7au. 

Mr 

Q 

H 

Q 
ffimm 

Mr 

mlLm 

H 

C 

ooou 

0,rOo 

000’2 

H- 

T-9, 

0000 

OOOG 

ooo<r. 
I7UDLx. 

U2.l 

IV 

-- 
STORAGE 

4SSIGNidENl 

E 

F 

OB0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

D 

E 

F 

oco 
1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

9 

c 

D 

E 

F 

OD0 

BOX - 
L - 

BS 

3C 

EXPLANATION 

; i i j = - ( l l , l l ) x s i n e + ( l , ,  J 2 ) x c o s  0 

OB9 sets I1 = ( 2 ,  I I )  

OBB sets I I  = (i, 12) 

Y, = ( I ,  1 1 )  A cos 0 i (i, 12) x s i n  6 

Store new (i, I T )  

Y, = -(z, I , )  x s i n  0 + (i, 12) x cos 0 

Store new ( E ,  j z )  

! + 1 . - z  

If z < 12 return to  OB9 

‘ J , *  11) -+ IV  of OCF 

J 2 )  -+ IV  of OD0 

‘ I 2 >  J 2 )  - I V  o f  OD1 

;tote new (correct) (I j 

itore new (correct) ( I I ,  J ? )  
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L E F T  ORDER 
I 

C 

@ - C  

( p T - 4  

m4 - t  
H- 

Q 

C 

T J i  

H 

T t  

C 

TC 

Q 

00 

00 

H 

C 

W X m  

Ll iJDLl  

C 

m 

aarvL 

H 

H- 

Q 

Rs 

c 
c 
a5nn 

(3 

cD1cIo. 

H 

0000. 

L 

m 

ti 

C 

I I  

T7 

*12*  

046 

*n* 

040 

" I  1 

OD6 

OD6 

*1* 

OD6 

ODD 

3FE 

" 1 1  

000 

000 

*1* 

0 

- 

- 

v 4  

V6 

VI 

v 3  

v 4  

*n* 

* 

5 

-2- 

v 3  

v 5  

v 2  

v 5  

" 5  

" 5  

V I  

v 5  

1 

- 
-1 * 

-20- 

RIGHT ORDER 
Ill 

anaa 

H- 

C 

H 

NTr 

pq 

I-1- 

C 

OaM) 

NTr 

oaaa 

NTr 

Ps 
00 

00 

oaoo 
aaDa 

acaz 

NTr 

I-{-- 

Cm 

C 

H - m  

OOOa 

M 

000s 

T+.e 

H 

Tr 

H 

C 

H 

C 

w 
C 

OOOU 

I?cuw 

* *  

*]I*  

*1* 

S8 

OD6 

OD6 

OD6 

000 

000 

OFC 

v 3  

v 5  

v 2  

v 3  

v 4  

v 5  

v 4  

v 5  

v 5  

*n* 

OEE 

OE F 

v 5  

AI 1 

v 5  

v 5  

v 5  

OF5 

STORAGE 
4SSIGNMENT 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

0 

E 

F 

OEO 

1 

2 

3 

4 

5 

6 

7 

a 
9 

A 

B 

C 

D 

E 

F 

OF0 

1 

2 

3 

4 

5 

BOX 
..... 

L 
...__ 

D2 

DE 

EO 

E l  

EC 

EE 

EX PLANAT I ON 

Store new (correct) (I2, J 2 )  

f j 2  < n 90 to  j2 + 1 - j 2  at @ ; if 
I l  < 72 - 1, go to I I  + 1 ' I I  at @ 

Punch mutrix elements Z l l  to  Z l n  (a l l )  

j8 = Q, Zln, Pq, 0 

To next matrix element 

?estwe TI at OD6 

End of prohtem: control counter shows 

3FF 

4ddress subroutine 

Enter: I I  of accumulator contains 045 

or 048 

3--*V3, V4, V5, und v6 

V ,  = it, V2 = I*  = I , *  or 12* 

v3 = ( 1  - ])* 

v4 = 1 2  - I ] *  

v5 = (272 - Ji - I )  + 1)" 

V5 = * M ( i ,  ])* 

IV  = M(Cl) or M(C,) 

C, = [OOlSF 0015Fl 

C, = [OO17F 0017Fl 
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L.EFT ORDER 
I 

NTr 

c 

C- 

T i-!, 

n- 
T I  

T 4  

00 

00 

00 

00 

(10 

00 

GO 

05 

00 

00 

00 

00 

00 

40 

24 

00 

00 

24 

00 

00 

00 

OD 

0 0 

60 

00 

60 

II 

* ? I *  

v' 
OFC 

-.I * 

OEl 

000 

000 

000 

000 

000 

000 

000 

1AO 

000 

GOO 

000 

15F 

17F 

000 

000 

000 

000 

1 OF 

000 

000 

000 

000 

000 

GOO 

000 

000 

~~ 

RIGHT ORDER 
_I__- 

Ill 

N Tr 

0003. 

H 

C 

ooou 

NTr 

NTr 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

40 

20 

00 

00 

5F 

00 

00 

00 

00 

00 

3D 

00 

3D 

I_ 

IV  

v, 
V1 

V l  

VI 

OM 

000 

000 

000 

000 

000 

000 

1AO 

000 

000 

000 

15F 

17F 

000 

1 OF 

000 

000 

112 

000 

000 

000 

000 

000 

000 

000 

000 

STORAGE 
ASSIGNMENT 

6 

7 

8 

9 

A 

B 

C 

D 

E 

F 

100 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

0 

c 
D 

E 

F 

110 

1 

2 

3 

4 

5 

6 

7 

8 

9 

BOX 
R 
- EXPLANAT ION 

*M(i, I)** 15F + z i f  1, 

--17F + z if l2 

If z 2 n, go to OFC 

L,+ 1 - - p i  

3EO prepares II for exit to 046 or 04C 

z, 
4, = *M('iI,)* 

A I * ;  at  006: M(Z12)- I I  and I V  

Anrr; at 007: M(Z,l',) - 1 1  and IV  

A I R ,  at 002: M(ZIn)-+l l  and IV 

C I ;  15F M(*M(I, J l ) * )  - 1 

C,; 17F - M("M( 1, 12)*) - 1 

NT - NTr, 0, NTr, 0 

5,; at 010: M(Znn) + I I  

TI: current value of trace 

*n*: from Q at start 

2, - c, I-, , IXJrJJL,  R, 

R,: stores i n i t i a l  trace 

*I,* 
* 1 2 *  

R4 

s, 
S,; at 00F: M(Znn)-+II and I V  

S4: stares current (norni)2 

S,; at 014: M(Z1,!) .+ II and IV  

a7 

. .......................... . . . - 



LEFT ORDER 
~ 

I 

60 

60 

00 
* 

00 

00 

00 

00 

00 

00 

00 

00 

00 

5A 

00 

00 

00 

FF 

00 

00 

00 

00 

00 

00 
* 

00 

00 

00 

00 

00 

00 

60 

00 

00 

00 

00 

I I  

1 A0 

000 

000 
* 

000 

000 

000 

000 

000 

000 

120 

11F 

000 

827 

000 

000 

000 

FFF 

000 

000 

000 

000 

000 

000 
* 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

RIGHT ORDER 
Ill 

3D 

3D 

00 
* 

00 

00 

00 

00 

00 

00 

00 

00 

00 

99 

00 

00 

00 

FF 

00 

00 

00 

00 

00 

00 
* 

00 

00 

00 

00 

5F 

00 

8C 

00 

00 

00 

00 

____ 
IV ____ 

1 A0 

000 

000 
* 

000 

000 

000 

000 

000 

000 

11F 

120 

000 

9FD 

000 

000 

000 

FFE 

000 

000 

000 

000 

000 

000 
* 

000 

000 

000 

000 

11c 

000 

000 

000 

000 

000 

000 

STORAGE 
E S I  GNMENT 

A 

B 

C 

D 

E 

F 

120 

1 

2 

3 

4 

5 

6 

7 

- .. .. ._ 

a 
9 

A 

0 

C 

D 

E 

F 

130 

1 

2 

3 

4 

5 

6 

7 

a 
9 

A 

€3 

C 

D 

aox 
EXPLANATION 

i, = Q, 1A0, Mr, 1AO 

$; at 013: M(Z,,) -* / I  ond IV 

z,: stores in i t ia l  (norm)2 

T = (norm), tolerance 

i,; stores S, - R, 

.os 

sin 

Y 

x 

N ,  = 0, M(sin), 0, M(cos) 

YV, = 0, M(cos), 0, M(sin) 

r2 

X l  

x2 

x, 

x, = ( I l ,  11) 

x, = ( I I#  1,) 

x, = (12' 1 2 )  

Digi ta l  opproxi mot i on: 2 1'2/2 

-2 * 

T, 7 correct new ( I l ,  1 1 )  

T, = correct new (1 ,, J 2 )  
T, = correct new (J2, 1,) 

el =tolerance in box 9C 

- 
P i i  

Fz, 
4L.l 

41 I 

- 

Z, 0, 0, mm, R, 



LEFT OKDER 
I 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

H- 

Tt, 

I I  

000 

000 

GO2 

160 

180 

020 

000 

000 

000 

000 

000 

000 

GOO 

' 1  

OA2 

I 

RIGHT ORDER 

Ill 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

J 

NTr 

I V  

000 

000 

002 

160 

1 80 

020 

000 

000 

000 

000 

105 

1 oc 
000 

3E2 

STORAGE 
ASSIGNMENT 

E 

F 

140 

1 

2 

3 

4 

5 

6 

7 

El 

9 

A 

€5 

c 

BOX 
EX PLANA T ION 

(Storage D - F irrelevant) 
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UNCLASSIFIED 
OWG. 22003 

r----- 
I Enter with n I 
I in Q register I- 

* *T 
L-----J 

Restore chonges mode in previous 

use of code ond adopt it to  
matrix o f  order n .  

M(Zi(,) = 1AO + n ,  

M(Znn) = 1AO i n 
M(F,n) = {AO + '/Zh(n + I )  - i 
Set J, = i in *J,* storage 

Adapt S,. Sg, S5, S7, and S8 
t o  n ;  restore 052,  068 from Z,, Z3 

1' 

c c  

* ( J ,  + I ) *  4 *J'* 

* (J ,  + 1 ) "  - *J2* 

(J, + i)* + v2 
J,* - v, 
i O B +  IV of OF3  to 

prepare oddress subroutine to 
store os J, column oddresses 

From 
Box 03 

-J L2, -_-_--- From J2 Box +-----A f 6  

I EO 
I Calculate addresses of - elements in J2 column 

I EO *(J2 + { ) *  + *J2* O2 

I '  (J2 + i)* + v2 
I Calculate addresses of COC -j IV of OF3 to  prepare 

elements in J, column and 
address subroutine t o  store 

store (cf., address sub- 
os J2 column oddresses 

routine) subroutine) 
ACC = C, 048, T1, OEO 

/ 
ond store (cf., oddress -- 

, 

/-- - 

I Acc = C, 045, TI, OEO 

First time only; 
Clear T, 

t o  zero 
i = i initiolly 
i A n ?  

5 2  4c I P D  

Tronsfer 3E i  = STOP 

I I 

1 Test for exact constoncv of tfroctional Dort o f )  troce I 

70 

I T I 

Yes - I -  I 1 I 

S2 + V2S4 = (Norm)2 + S4 
First time only: 

(Norm)2 -+ R~ 

Restore initial conditions in 
boxes 59, 4D, and 6i 

e - IS4-R3 /  O ?  
I - 

Yes 

I Test f o r  opproximote constancy of (norm) 2 I 

cos 8 = sin 8 ' ( J , - { , J 2 ) + O '  = '/2K 

0 

Find * M ( ( J ,  - i I J, ))* at  160 + JI - 2 
[Denote 6ppp by (P, Q)] 

ond store M(IJ, - f, J, )) o t  I1 of 
070, 072, 0 7 F  and ot  IV of 073, 079,07C 
Find * M ( ( J ,  - 1, J2))* O t  480 + J, - 2 
and store M ( ( J ,  - 1 ,  J2)) at I1 of 071, 079, 
07C ond a t  IV of 072, 074,  G7E 
Find * M ( ( J 2 ,  J2))* at 180 + J2- i ond 
store a t  Y6; store ( J 2 ,  J2i o t  X6 
Using t60 + Jt - i: * M ( I J , ,  J,))* -+ Y4 
ond (J,.  J,) +- X4. Using 180 + J,- 4 :  
*M([J , ,  J2))* 4 Y5 ond Id,, J2) + X5 

cos 8 = -sin 8 cos 8 = - i, sin 8 = -7 if through 7E 
4 X2 - X 3  + ACC -0 Y = 'I2m LT_J 

7E 

2-' + (2-' +T) =v t o  XI F= (J, -i, J2) + iJ,-!, J,, 87 79 Yes 7 c  Yes 
Square root in box 08E is 

72 
No Yes 

94 8 E  No 
Acc + X2 

Reduct ion of a Real Symmetric Matrix io  Jocobi Form. 

(p>l-I l i~ ,  ---fl-j (J ,  - 4, J ~ )  = (-H (J , - I , J2)=  -(J,- i ,J,)? 

No 

91 

4 [(-v - X,) + x2] - 2  
cos 8:  pur cos in 095, 
sin in 096 

= x 3  x 3 <  i*? z @ X2 +- sin or cos 

4 - i* 4 Acc 

73 V 
(J,- i ,J, ,=J;  ( J , - 1 , J 2 ) = T , 7 + T = i  - 
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UNCLASSIFIED 
DWG. 22231 

000 

20 

40 

60 
6 0  

P O  

co  
EO 

100 

2 0  

40 

6 0  

80 

c o  
EO 

20c 

2c 

4c 
6C 
8C 

A (  

C (  

E( 

3 0 (  

2 (  

4(  

61 

81 

n 
C 

E 

' I F  

3F 

5F  

7F 

9 F  

EF 

DF 

FF 

\ I F  

3 F  

5F 

7F  

9F 

E F  

DF 

F F  

21 F 

3 F  

5 F  

7 F  

9 F  

6 F  

DF 

FF 

31F 

3F 

5F  

7F 

9 F  

EF 

DF 

FF 

Reduction of a Real  Symmetric Matrix to Jacobi Form - Memory Chart. 
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Appendix 4 

FLOW DIAGRAM AND CODE FOR THE CALCULATION OF THE CHARACTERlSTlC VALUES 
OF A REAL SYMMETRIC MATRIX GIVEN IN JACOBl FORM 

The mnemonic code which follows i s  included for completeness and to give a detailed development of 

the f low diagram. While it is believed to be a workable code which translates the theory of Chapter 3 
into practical form, errors found on machine testing were corrected wherever memory space WQS available, 

and the resultant organization of the memory i s  somewhat chaotic. A tedious but straightforward re- 

writing would correct th is  and also make the code apdicable to matrices of order as high as 138 (about), 

Since the code was envisaged as being applied to the Jacobi matrix produced in the frrst stage o f  the 

problem, where the memory l imitations are much more severe, no attempt was mads to conserve memory 

space. The present storage assignments permit the code to be used i f  the order o f  the matrix i s  equal 

to or less than 89. This  number occurred because it was desired io test the theory on special numerical 

examples of the following easi ly proved theorem: Zf,  fur a synrnetrrc  trzatrzx ~n Jacubi form, all t h e  dzugonnl 

P I P m t r n t s  UTC eqrrnl, n = a, and nU thc ( 1 ,  i + L )  t l e m P n t s  are pqunl: I, = 6, then the roots uf  t b e  matrix iiw 
I 

An 

71 4- 1 
X = a +- 2h C O S  -, k 

The code of th is  appendix was used to  calculate the 16 roots of  a direct sum of CI matrix o f  th is  k ind 

of order 11 and one of order 5, with n = 0 and b = 2-*. The machine gave a l l  the answers correct to the 

required accuracy of nine decimal places in a computing time o f  no more than 1 or 2 minutes. The code, 

nevertheless, contained an error, now corrected at memory positions 06D and 2DA to ZDD, which wa5 

detected when the roots 

of  a Jacobi matrix o f  order 89 were calculated (requiring about 45 minutes). For 60 of  the result ing 

answers (including the f irst  11 and last  20), both the upper and lower bounds had exactly their theoretical 

values under the requirement 

and at least one of  the bounds was correct i n  11 other cases. It was not possible to test the code after 

the correction at  06D was made, since the ORACLE was then dismantled for shipment to Oak Ridge. 

However, i t  i s  now thought probable that the code i s  correct. (These details are mentioned b y  way o f  

caution to any coders who may regard a routine as fully checked when i t  does not give “obv iou~ ly ”  

incorrect answers in a problem for which the correct answers are unknown.) - - 
The orders at  300 to 309 are used to store the in i t ia l  values of  the lJi and L z ,  and theirlocations 

From 30A to 313, the orders refer solely 

Storage for the orders at  300 i o  313 i s  at 2CD to 2D9 and 320 to 324 contains 

could be reused after their computations have been performed. 

to  the above test problem. 

a load code; so f ive portions of a single tape w i l l  be stored automutically ut the proper positions. 
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CALCULATION O F  THE CHARACTERISTlC VALUES OF A REAL SYMMETRIC MATRIX GIVEN I N  JACOBI FORM 

I 

FF 

00 

40 

00 

80 

Start + C 

c-N 
nnnr, 

a m  

0 

L4Y 

,-m 

C- 

axm 

Q 

R 

C 

C 

@ -T+< 
11 

03DO 

0000 

ti 

R 

C 

oaoo 
OOOr 

@-c 
H- 

C 

R 

N 1-r 

I I  

FFF 

00 1 

000 

000 

000 

0 

b 

71 

....___ 

.- 

- 

@ I  

61 

T l  

s 2  

T2 

s 2  

- 

-1- 

-1* 

-1- 

006 

028 

*1* 

009 

009 

*1* 

~ 20- 

008 

008 

010 
- 
L' 1 

GI 

I 

e 
- 

-1- 

Mnemonic Code 

RIGHT __..__ 

1 1 1  

FF 

00 

00 

00 

00 

__._.___ 

w 

T--e 

C 

Tt 

M 

Tyx 

qaqq 

H 

C 

re 
mim 

O<Z%7. 

H- 

C 

oaoo 
R 

C 

oca0 

oooc 
1-1 

R 

T-P 

H- 

T - r  

H 

oacliz 

NTr 

RDER . ~ _ _  

IV 
.... 

'FF 

10 1 

300 

300 

I00 

'2 

109 

:78)* 

31 1 
- 

1 

30 F 

T2 

s, 
T l  
OOA 

Y 1  
- 

B1 

s3 

006 

006 

-20- 

007 

007 

OOF 

1* 

-20- 

005 
- 

L1 

023 
- 

1 
- 
CL 

-. 

STORAGE 
4SSIGNMENT 

000 

00 1 

002 

003 

004 

005 

006 

007 

008 

009 

OOA 

00 6 

ooc 
OOD 

OOE 

00 F 

010 

01 1 

012 

013 

014 

015 

016 

017 

018 

019 

01A 

019 

01c 

01D 

01E 

01 F 

e 
L 
- 
- 

2 

3 

4 

C 

c 

4: 

4. 

, - 
R 
.- 

7 

-~ .... __ .... ___. ... _-..___. 

EXPLANATION 

-1* 

1* 

I -  1 

1 

-1 

%ter code; re-enter from 01A 

f 6, f 0, go to box 4 

) * q L ,  (78)* ' P ,  
Jransfer to box 6 

'om zT exactly; left shift a l l  2 7  places; 

transfer on overflow; store both parts; 

count number of  lef t  shifts in S,; trans- 

fer to repeat shift 

Jndo last lef t  shift 

j2 not increased last time 

5, = C-m, bnml, T - {  009 
- 

( i  + 1) - i  

i f  - L7 < z, go to box 45;; >= 2* 

- 
Calculate next F as average of U and - 
5 

j i  = 0 coded for f irst use 
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L E F T  O R D E R  BOX 
T L R  

38 

39 

40 

36 

41 

18 

19 

20 

22 

23 

24 25 

24 25 

26 

27 

28 

29 

34 

C 

OaM) 

R 

T.Z 

R 

NTr 

on00 

R 

048 

048 

-1- 

m 2 -  2 

095 

-20- 

- 

048 

-1- 
- 
m . 

1 - 2  

._ 1 * 

0. 

1/. 
1 -  1 

2 -  1 
- 
m 

p;. 
059 

--1+ 1* 
- 

1 - 2  
m 

v L -  1 

9 0  

1-1*  

- 

._ 
, - 2  i / r  

r( 1 

07 1 

062 

063 

0 
- 
m .  

1 - 2  

(39)* 

(39)* 

(39)* 

STORAGE 
ASSIGNMEN 

044 

045 

046 

047 

048 

049 

04A 

04 B 

04C 

04D 

04 E 

04F 

050 

05 1 

052 

053 

054 

055 

056 

057 

058 

059 

05A 

05B 

05C 

05D 

05E 

05F 

060 

06 1 

062 

063 

064 

065 

066 

067 

___...__ 
EXPLANATION 

If r i  f 0, go to box 40 
- - E i e 2 ,  0 - Ei-l  

Scale r i  

095: 0 -* ul, 048 4 Acc, returns to 04Dr 

Transfer to rrl unless altered to a2 

by 06C 

Enter 051 from 043 

If i i i i - 2  < 0, go to box 20 

059r and O5Akused in both box 19 and 

box 20 

=* - vi- 1 

I f  F i - l  f 0, go to box 27 

(1 - 1*) - E i - 2  

F, -’ mi-, 

If m i m 2  < 0, go to box 29 

a. - v .  
1 1 - 1  

Substitution acts i n  both 12ox 28 and 
box 29 

Enter from 03A 

pi 2 0; substitute min Ip,, 391 in IV 
of 06A 
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oooa j :: 

BOX 
L R  

42 

56 

57 

58 

59 

60 

47 

48 

0600 I 0% 

8,9 

45 

H 

H- 

@-Ti, 
On00 

C 

0700 

C 

N Tr 

RIGHT ORDER 

* 1* 

s 5  

028 

03A 

TlO 

T8 

05C 

Ill 

Mr 

4 
R 

C 

C 

Tg 

H 

, l L l L m .  

ooou 

T - 1  

T - r  

H- 

Tr 

T + r  

H- 

C 

0-00 

H- 

C 

oooc 
o.;oo 
C 

oca0 

T l r  

C 

000,u 

0000 

O d O  

0010 

N Tr 

Ordo: 

OOOc 

oooc 
odlo 
H- 

C- 

I V  

s 4  

T l l  

B o  

2DA 

vi-1 

050 

075 

077 - c3 
- I *  

- 1 *  

0 3 A c  (g 
03A 

- 1 *  

040 

040 

068 

028 

028 

080 

a9 

06E 

040 

068 

0 28 

T3 
080 

09 1 

T3 

STORAGE 
ASS1 GNMENT 

068 

069 

06A 

06 6 

06C 

06 D 

06E 

06F 

070 

07 1 

072 

073 

074 

075 

076 

077 

078 

079 

07A 

07 B 

07C 

070 

07E 

07F 

080 

081 

082 

083 

084 

085 

086 

087 

088 

089 

08 A 

088 

E XP L AN AT1 ON 

Calculate r1 in box 34 

S4 = 0, 0, 0, 06E 

Prepare 050 to exi t  to n2 

At 2DA: exits to t o x  38 i f  no overflow, 

otherwise to n 2 

S, = 0, 0, 0, 054 

Restores n l  at 050 

If Is& < 0, go to box 59 

I f  ?F;2-1 i 0, go to box 8 

T7  i s  used to count P 

T - 0, 0, 0, M(L,) - 1 t P with P = 0 7 -  
restored at 020 

Boxes 8 and 9 coded together 

(2 + 1) -* i 

S, = C, M(Z,,) t 1, H-, M(ji) t 1 

I f  i -t 1 > n + 1, restore z = 1 

T, = ~OOlC2001C21,M([~,) = 1C3 

T,, = [0016A0016A1, M(?,) .= 168 

T == C, iil, H-, F 8 

- - 
T, = 0, r ! & ,  0, Lk 

- 
T, = 0, 0, 0, l zk  

E = 1 ini t ial ly 

( X .  t 1) + k a t  094 

(P - k)* -' Acc 

I V  contains Lk 
- 
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Note: In storage positions OAO to 069, digits not otherwise indicated are coded os  zero 

LEFT ORDER 
I 

t i  

C 

Tr 

H- 

N Tr 

%-all 

H- 

C 

OCddlc. 

C 

C 

C 

C 

00 

Q 

P 

(2 

P 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

7F 

00 

00 

00 

27 

100 

II  

- 
P 

P 

09 1 

- 

T5 

T4 

T4 

0 

048 

0 

030 

000 

n* 

218 

n* 

271 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

000 

F F F  

000 

000 

000 
* 

__ .................... 
RIGHT ORDER 

I l l  

I 

I - r  

G d X l  

C 

T + r  

C 

C 

T i  

H 

T.F 

Cxua 

Tr 

CJLm. 

Tr 

00 

N I r  

T< 

NTr 

T t  

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

FF 

00 

00 

00 

46 

I V  

19 1 

1 

)9 1 

1 

r4 

)1B- @ 
t l *  

387 

7 

34D 

I 

I34 

300 

39c 

3FE 

300 

300 

300 

300 

000 

300 

300 

027 

04D 

000 

000 

000 

F F F  

273 

000 

009 

STORAGE 
ASS1 GNM EN T 

08C 

080 

08 E 

08 F 

090 

09 1 

092 

093 

094 

095 

096 

097 

098 

099 

09A 

09 B 

09C 

09D 

09E 

09 F 

OAO 

OAl 

OA2 

OA3 

0 A4 

OA5 

OA6 

OA7 

OA8 

OA9 

OAA 

OAB 

OAC 

OAD 

OAE 

B _. 

-.. 

io 

i4  

- 
R 

52 

53 

51 

EX PLAN AT1 ON 
- 

- 
I V  contains Lk 

- 
II contains L'. 

- 
II contains l'k 

T, = 0, b'n, 0, Lf,, 

:k + 1 ) - i  

Transfer to next comparison 

Correction at 04D; clear ui in case 

- 

u = -1* b efore 

Correction ut  034; clear ?, in case 

ai = -1* before 

n* stored at 203 

Punch the TI uooer bounds 

Punch the r2 lower bounds 

3FE contains 0; control counter shows 

3FF at end of Droblem 

p ,  

a. 

U .  

v .  
1 -  1 

rl 

(39)* 

(78)* 
- 
II 

Pi 
- 

ini t ia l ly  0 
- 
mi-,: in i t ia l ly  1 - 1* 

z 2 2-% governs accurocy 

SI 

s* 
S,: I1 i s  112 + (n - 1) 



L E F T  
I 

00 

00 

24 

00 

M 

00 

00 

00 

00 

00 

24 

00 

000 

000 
* 

000 

000 

000 

000 
* 

000 

000 
* 

000 

R I G H l  

Ill 

00 

00 

22 

00 

00 

00 

00 

00 

00 

00 

22 

00 

CONTENTS 

RDER -- 
IY 

XE 

354 

* 

000 

000 

000 

000 
* 

000 

273 

OA8 

000 

STORAGE 
4SSI GNMENT 

CELLNUMBER 

ORA 

009 t II 

009 t 059 = 112 

113 

112 + ( n  - 1) 

OAF 

000 

061 

002 

003 

OEM 

OB5 

0 E36 

0 07 

0 08 

OB9 

OBA 

0 
L 
I 

- 
EXPLANATION 

-~ 

S,: address of  r2 exi t  

S6: address of r l  ex i t  

S,: II is 21A + g, I!/ i s  273 A 7) 

T l  

T2 

T3 

T, 

T6 

T 5 :  I I  1s 21A t n, I V  IS 273 r r~ 

T 7  

S,: II i s  069 -e ( n  + 1 )  

Motrix elements begin 

EXPLANATION 

F i rs t  diagonal eleverit of matrix 

Las t  diagonal element of ,iiatrix 

89 (decimal) = 059 (sexadecimal)l 

F i rs t  off-di ogonol element 

L o s t  off-diagonal element 

[lit the code, i s  understood as 16A, the  ocldress i s  always increased by one before I t  i s  usedl 

168 Scaled (;,I’ - 
91 

?TI--1 116A + (I’ - 1) ScuIeJ 1)2 
I 

[ In  the code, P o  i s  understood u s  1C2; the oddress i s  olwoys incrensed by crie before It i s  usedl 

PI 1 C3 Scaling exConent of (2;,12 

@n- 1 

lJ 1 

l i l i  

1c2 + !n - 1) 

21B First upper bound 

21A t n L a s t  upper bound 

274 F i rs t  lower bound 

273 -I 71 Lust lower hound 

Scaling exponent of 
- 

- 
- 

1 - 
,1 

[n 5 89 f 2cc1 

10 1 



LEFT 

I 
_II_ 

00 

7F 

80 

00 

00 

24 

00 

24 

24 

* 

24 
* 

24 

4F 

14 

7F 

24 

00 

00 

C 

C 

T 4  

ti 

T t  

C 

C 

T + i  

H 

T f  

C 

C 

7 i-4 

H 

T; 

C 

C 

?DER 
1 1  

1 c 2  

F F F  

000 

16A 

000 

OBA 

000 

2C F 

2CE 
* 

2D6 
* 

2D8 

2D B 

00 1 

OA3 

000 

000 

000 

- 1 + 1 *  

300 

305 

*1*  

300 

1 - 1 *  

305 

30A 

* 1* 

305 

T I 5  

30A 

30F 

*1* 

30A 

-117 

30F 

RICH1 
l_l_ ..... __.. 

Ill 

00 

F F  

00 

00 

00 

22 

00 

5F 

5F 
* 

5F 

5F 

43 

5F 

5F 

41 

00 

00 

ac.x7 

H- 

C 

OOOa 

N Tr 

axla 

H- 

C 

OOOn 

NTr 

c;L(L7 

H- 

C 

0001 

N Tr 

anau 

H- 

1RDER 
I V  

1 c 2  

F F F  

00 1 

16A 

000 

OA7 
* 
* 
* 

* 

* 
* 

16A 

044 

OAA 

OAA 

06 E 

000 

000 
- 
L1 

TI, 
300 

300 

-_ 
" 1  

T I 4  
305 

305 

I 

I16 

30A 

30A 

5, 

TIE 

STORAGE 
ASS1 GNM ENT 

2CD 

2 c  E 

2 c  F 

2D0 

2D 1 

2D2 

2D3 

204 

2D5 

206 

2D7 

2D8 

2D3 

2DA 

2DB 

2DC 

2DD 

2D E 

2D F 

300 

30 1 

302 

303 

304 

305 

306 

307 

308 

309 

30A 

308 

30C 

30D 

30E 

30F 

310 

EXPLAN AT1 ON 

T,; 1C2 = M(PI) - 1 = M(Po) 

1 - 1* 

-1 i 1* 

T l 0 ;  16A = M(4,) - 1 = M(l jo )  

T l ,  
'I, = c, z i , ,  ti-, ji 

.TI, = c, -1 -t 1*, 'ami& Ln 

TI2: contains n' 
- 

- 
T,, -- C, 1 - I*, ilaa.2, U n  

T15: contoins 2 = Zi for test 

TI, = C, TI,, a"-, a n  

TI,: contains b = g .  for test 

TIE = c, TI,, am,Fn-, 

Correction i f  p i  2 0 and r z  overflows, gu 

- 
- 

to 7rz 

( 7 r 2  completed at C6E) 

7 = - 1 * - A c c  

- - 
Stores U 2  = 1 - 1*, L i  = - 1  t 1* 

30A -+ 313 refer to test problem 

T I ,  = volue of  iii for test 

TI, = C, TI,, mum, Zn 

- 
T,, = value of b i  for test 

T,, = C, TI,, ma,ii-l 
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LEFT ORDER 
I II 

T + f  003 

H * 1* 

T$ 30F 

RIGHT ORDER STORAGE 
Ill I V  ASSIGNMENT 

C 30F 311 

ooou 30F 312 

N Tr 313 

320 

321 

322 

323 

324 

Ld 

L d  

Ld 

Ld 

Ld 

EXPLANATION 

000 TC 321 

OA5 T t  322 

2CD T$ 323 

300 T t  324 

30A T,t 003 

Transfer to 003 = stop 

For test: jZil + 213,1 .: 1 

Ld = load to double space; must  be fol- 
lowed by a transfer order 

Transfer to 003 = stop 
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a, 
c
 

c
 
3
 

.- e +
 
3
 

0
 

+
 

._ 
a
 II 

V
 0
 

x 
.- 

c 
0

 

0
 

Y
 

yr 
pr 

m
 

t 
V

 
t
 

ta 
.- Y
 

0
 

r c 

4
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- Id 

+- 
I 

X
I
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