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SUMMARY

The background work on the dynamics and control of
the Supercritical Water Reactor described in ORNL-1177 is
summarized here with emphasis on the determination of the
self or inherent stability of the machine. Variations in
weter density are found to provide a substantial amount of
self regulation, and the reactor appears quite amenable to

control under steady conditions.

The use of a fluid which undergoes a six-fold ex-
pansion in passing through the reactor for both moderating
and cooling makes necessary a more elaborate treatment of
the hydrodynamic behavior of this fluid than is usual.,

The equations of motion of the system are derived and

simplified by linearization, thus limiting the validity of

Se

the results to the case of small departures from equilibrium.

The resulting partial differential equations are then trans-
formed by a variational procedure into a system of first
order, ordinary differential equations. The time responses
to some disturbances of interest are then determined. Eight
major reactor periods, all stable, have been found. Their
values are: 5.l min., 21.9 sec., 1.60 sec., 0.646 sec.,

0.110 sec., 0,0189 sec., 0,0087 sec., and 0.0045 sec.




.

The variational method devised for this particular
problem should be of general interest in the field of re-

actor control.




Introduction

The work described in this report was carried out as
part of the feasibllity study (ORNL-1177) of a supercriti-
cal water reactor (SCWR) for use in muclear propulsion of
aircraft. The object of thilis work was to study the dyna-
mic behavior of a particular design of supercritical water
reactor. Numerical results are presented in Appendix I.

The baslc reactor conflguration considered herein is
described in the next section. Also in that section, the
idealizations of the actual physical system which were
made for computational reasons, are discussed. In Section
2 the equations describing the ideallized system are deriv-
ed. The intricate and strong interaction of the flow and
fission aspects of the SCWR will be seen by a consildera-
tion of these eguations.

It is because of the complex and strong interaction
of fission and water systems that the calculations report-
ed herein are more tedious and complicated than normal in
the reactor fleld. These computations are des@ribed in
Sections 3 through 5 below. The mathematical processes

used in these sectlons are of general applicability, even

o



though they are described in respect to the specific prob-
lem of the SCWR.

Section 6 1s concerned with consideration of a simpler
reactor model so as to obtain insight into the behavior of
the various components of the SCWR and so as to compute the

effects of some design changes on the dynamics of SCWR.



Section 1. DESCRIPTION OF BASIC SYSTEM

The SCWR under consideration herein is a reactor with
uranium-bearing stainless steel fuel elements (ORNL-1177,
page 39) cooled, moderated, and reflected with water at
super-critical pressures. The water enters the reactor at
a temperature below critical and leaves with a temperature
above critical. The relevant operating characteristics of
the reactor are glven in Appendixes II and III.

Water entering the reactor is split into two streams -
one to the moderator region and the other directly to the
fuel elements, which are immersed in the moderating water.
The relative proportion of water entering these streams 1is
adjustable so as to obtain shim control. The water which
passes through the moderating reglon is mixed with the.
stream flowing directly to the fuel elements at the entrance
to the fuel elements. Thus, all water leaving the reactor
first flows through the fuel elements.

The fuel elements are all the same and are uniform a-
long their length. These elements are distributed with cyl-

indrical symmetry in such a manner as to cause each element

:‘~
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to generate nearly the same power.

The water entering the reactor comes via a pump from
the condensers, passes through the thermal shield before en-
tering the reactor, and finally exits into a steam turbine.

The system described above is idealized in several
ways -- for the neutronics, for the flow, and for the extern-
al  system. The inlet to the reactor is taken to be a con-
stant pressure, constant temperature source of water. The
outlet is considered to be a constant pressure receiver.

In studying the water flow through the reactor, the
case in which all the water flows first through the moderat-
ing region and then into the fuel tubes 1is considered. The
pressure in the moderating region is assumed constant (equal
to the inlet pressure). The validity of this approximation
is discussed in ORNL-1177, page 101). 1In addition, the water
in the moderating region is assumed well stirred, so that it
has uniform properties and so that the water leaving the mod-
erating region has the same properties as the water therein.

The fuel tubes are all assumed to have identical longi-
tudinal power distributions, so that one may consider the
flow and thermodynamic characteristics of the cooling streams

to be the same for all streams. In effect, the group of all

~mteiile
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cooling streams is considered as a single entity. This ideal-
ized flow system is pictured schematically in Figure 1.

In studying the neutronics of the reactor, the two-group
diffusion theory approximation is used. This is a relatively
accurate approximation for dynamic considerations in a water
moderated reactor. Two groups of delayed neutrons are consid-
ered. The fuel elements are considered to be distributed rather
than discrete. The distribution in the radial direction (per-
pendicular to the axis of rotational symmetry of the system) is
so chosen that the power density per unit uranium mass is uni-

#

’a:rm in the radial direction.* This implies that the therma

utron flux is constant in the radial direction. No end r
flectors are considered, so that the flux varies sinusoidally

in the longitudinal direction, vanishing at the extrapolated

* In actuality the core is heterogeneous due to the discrete-
ness of the fuel elements, and the degree of heterogeneity var-
ies with distance from the core axis. The main effect of this
coarseness of structure on the dynamics of the reactor occurs
when the fuel elements are further apart than about one diffu-
sion length of thermal neutrons in the moderator. For then the
moderator absorbs an important fraction of moderated neutrons
over and above what it would absorb in a homogeneous core, be-
fore they diffuse into the fuel element. An increase in power
causes a decrease in moderator water density and an increase in
its temperature. Both of these effects tend to increase the
thermal diffusion length and permit more neutron absorptions by
fuel elements, thus increasing the reactivity. This unstabiliz-
ing effect of coarseness is not included in this report. Calcu-
lations indicate that the magnitude of this effect is about 1/5
as large as the concomitant stabilizing density change.

A
slaumingip
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end points of the fuel elements. The displacement of water
by fuel elements 1s taken into account only by using the
correct average density for the water. The outer boundary
of the reflector is assumed to be a cylinder, The relevant
steady dtate neutron data 1s given in Appendix II.

Further considerations are necessary relative to the
transfer of the heat liberated in the fission process to the
cooling and moderating water. Most of the heat of fission
appears directly in the fuel elements as arising from kinetic
energy of figslion fragments and also of beta decay particles.
In addition, some gamma heéating appears directly in the fuel
elements. In considering the dynamlcs, the iron is assumed
to be cooled only by the cooling water.

The remainder of the gamma ray heating and all of the
kinetic energy lost by neutrons slowing down is assumed to
heat the moderating water..

In evaluating the effect of water density and tempera-
ture changes on the neutron behavior of the reactor, average
water densities and temperatures are used as 1f uniform

throughout the reactor.
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Section 2, DERIVATION OF EQUATIONS

The conservation equations for thermal neutrons and de-
layed neutron emitters are given below, with the approxima-
tion that time taken for fission or delayed neutrons to slow
down may be neglected compared to the thermal lifetime. In
addition, since this is a two=-group theory, the difference
in slowing down distributions of delayed and fission neutrons

is neglected. %Then with the assumed uniform density water

and the variable density fuel the equations are given by:

an
— = Kf[(l-B)Wyn +Z;Xici]m (y+wX)n
at 1
ac,
i
-a—-;—=~>\lci+Bi77yny 1=192

where <{; = - ag VF + 1

(~aZy” + Lkg(r,r') = 8(z-r')
These equations are subject to the boundary conditions that

n(r) vanishes at the extrapolated boundary and that K.(r,r")

(2.1)

(2.21)
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vanishes when r(or pr') refers to the extrapolated boundaries.

The symbols used are defined below.

Xz

t

of

-—
=

fl

position vector,

time,

no. of thermal neutrons per unit volume,

no. of 1'th delayed neutron emitters per unit volume,

fraction of fission neutrons which come from the 1i'th
delayed neutron emitter,

put: I
reciprocal mean 1life of the 1'th delayed neutron emitter,

no. of neutrons resulting from the absorptions of one
neutron by fuel (steel-uranium mixture),

reciprocal mean life of a thermal neutron for absorption
by fuel,

reciprocal mean life of a thermal neutron for absorption
by water,

thermal diffusion length in the water,

slowing down length in the reactor.

these quantities, n, Cys and y vary with position; the re-

mainder are independent of r.

In equation (1), the expression (1-~f)nyn +z§kici

represents the instantaneous source density of fast neutrons,

"R
-
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both prompt and delayed. Thus Kff(l-s)nyn~+§Fkic§ represents
the slow neutron source density. The term (y+mm%)n represents
the slow neutron sink density by both absorption in fuel and
water and by leakage. Similarly in equation (2), Ajey 1s the
loss density of delayed neutron emitters by decay and Biwyn is

the source density via fission.
135

The conservation equation for Xe is
X (2.3)
— =TI+ bn = (A_ + nve. ) X
at X X
where
X = atomic density of Xe,

source density of Xe atoms via decay of 1155,

I

I
bn = source density of Xe atoms directly from fission,
A, = reclprocal mean decay time of Xe,

vo_ = product of neutron velocity and Xe absorption cross section
averaged over the thermal neutron spectrum.

According to the basic idealised flow system pictured in
Figure 1, water of constant temperature and density enters the
moderating chamber, 1s heated, well stirred, and passes out intc

identical cooling streams each having a flow area A/v. The con-

YRR
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] bR
e
t
po)

servation of mass in the moderating chamber requires that

.
o=

dp
m
2.4
V— = A[g,~g(0)] (2.4)
dt
where
V = volume of moderating chamber,

P, = average density of moderating water,

mass flow density at the inlet of the fuel tube,

66]
—
O
~
i

Ag. = total mass flow into moderating chamber.

The energy conservatlon equation for the moderating re-

gion can be written as

d d
V—(pul)=VvVv—(ph) (2.5)
gt mm g mm
= q, + Algh, - g(0)n ]
where
w = average specific (per unit mass) internal energy

of the moderating water,
h_ = specific enthalpy of the water entering the mod-
erating region,

h = average specific enthalpy of the moderating water,

Py = pmhm"po’
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pressure of the moderating water; assumed constant,

S
(o]
]

i

total power into the moderating water, coming from
neutron heating, y-ray heating, and conduction heat-

ing-discussed below.

By the assumption of good mixing in the moderating re-
gion,pm, U and hm are the uniform values of density, energy,
and enthalpy throughout the moderator, except for a small re-
gion at the inlet.

For the cooling streams, the equations for conservation

of mass, momentum, and energy, are now written:

ap ag
at 3%

ap B m 3 g 8 g
R
37 p \at p azl\p
) g 3 3 g 3 H
at p a8z at p 3z A
where p, g, p, h are the density, mass flow density, pressure

and specific enthalpy of the water in the cooling stream.

T = temperature of the water,

® = temperature of the steel (cooling stream wall),
Be™
€ - the friction pressure drop per unlt length,
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R A

H=gMF(s + T).

Here H is the total heat transfer coefficlent per unit length
along the coolant stream direction. In the derivation of

Eq. 2.8 explicit use is made of the previously mentioned assump-
tion that all heat entering the coollng streams comes from the

steel.
3 g a
In equations (2.7) and (2.8) the expression — + — —
at p 8z

is simply the total time derivative d i.e. the rate of change

— D

dt
of a property of the fluid as it moves along. Equation (2.8)

can be derlved by starting with

du H d 1
B () = o pl 2 (2.9)
dt Ap dt p

where the second term on the right is the flow power. Using

d 1 dp 14d
now, h = u + p/p, and replacing p— — by — — = - — ,

dt p dt p p dt
equation (2.8) results.

Connecting the moderator equations with the coolant equa-

tions are the conditions

| Py = P(O) | (2.10)

1
p, = p(0) + > £2(0)/p(0) (2.11)
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Equation (2.11) gives the pressure change according to
Bernoulli's equation. In equation (2.10), the adiabatic ex-
pansion of the water across the interface 1s neglected.
Further, there exists at the exit end of the coolant stream
the boundary condition of a constant pressure (pl) region

of large extent into which the coolant flows.

g2(L)

2p(L) i

p(L) + Py

In the equation for the steel temperature @ the small

drop in temperature within the fuel element from/center to

wall 18 neglected since the major heat block arises from the

. ad
steel to water film drop. Thus C — = qr - (6-T)H
at
where
ar = the total power into all of the steel per unit
length along the coolant flow direction.
C = the total heat capacity of the steel per unit

length along the coolant stream.

The interaction between the neutronics and the flow is
now discussed. PFirst 1s considered the effect of the neutron-
d¢s on the flow (computations of q, and qI). The effect of

the flow on the neutronics is treated later.

(2.12)

(2.13)
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The moderating water is heated by neutrons, gamma rays,
conduction of heat from the fuel tubes, and conduction of
heat from the pressure shell and thermal shield. The heat
transmitted to moderator via neutrons and much of the heat
transmitted to the moderator via gamma rays appears in the
moderator almost immediately (times less than or of the order
of the neutron lifetime). This is also true of the capture
gammas. The remainder of the gamma ray heating, (which comes
from gammas emitted by the fisslon products), the conduction
heating from fuel tubes, and the heat from pressure shell:and
thermal shield, appears only at times long compared wlth the
neutron lifetime. 1In the computations described below, the
stablilizing influence of the delayed-moderator heating is
neglected. Quantitatively, thls neglect influences the behhv-
ior of the reactor in the first second after a disturbance
very slightly, whereas it underestimates the eventual stabil-
izing influence of the moderator on the reactor.

The iron is heated by the kinetic energy of the fission
fragments and that portion of the prompt gammas, delayed
gammas, and capture gammas, which are absorbed in the iron.
In studying the dynamics, the changes in delayed gamma heating

are neglected.

s

mm ‘



Because of the assumption of a well stirred moderator,
all that i1s needed is the total heat into the moderator. For
the heat into the iron, it 1is necessary to know not only the
total amount butralso the distribution. The distribution of
direct fission heating is easily computed. A computation of
the gamma heating distribution is somewhat more difficult.
Since this gamma heating is a small fraction of the total
heating, for convenience it was taken as uniformly distributed
in the iron. Appendix IV contains all gamma heating and neu-
tron results.

C In accordance with the above remarks we have

£y

q = qm(P) + qm(d) (2.14)

qm(p)g 4, /ndx (2.15)
where qm(p) is the prompt heating of the moderator and 1is
proportional to the total power as 1s evidenced by equation
(2.15).

Further
{2.16)

ap = |0 + q,/ndr




where qqn is the direct fission heat*, being proportional to
the local power, and qzjndg is the gamma heating (assumed prompt).
The effects of the flow system on the neutron system is im~
plicitly contained in equations (2.1) and (2.2) where the para-
meters », y, w, ag and ap are functions of the temperature and
density of the water. In the pvaluation of these parameters, a
single average water density and a single average water tempera-
ture for moderating and cooling water is used. In addition, the

thermal neutrons are characterized by a temperature equal to the

average water temperature, In accordance with these remarks we

write:
vZy
n= T’O , - (2017)
vEg + V&g + vo, X
y o= Vit vEp t o, X (2.18)
where :
N, = number of fission neutrons resulting from the ab-

sorption of one neutron in uranium,

product of neutron velocity and absorption cross-

e

section of uranium per unit volume, averaged over
the thermal neutron spectrum,

*In the product qyn, the factor n is to be viewed as a function
of z only. This is legitimate because n is radially flat in

the core. L&
SR sy
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viﬁ = same for iron,
vch = same for xenon.
= (3 0 2.1
w = (p/p,) vE2 (2.19)
2 _ 2 04,2
ag = (p,/P)° (a) (2.20)
2 _ — 2 ([ 012 2.21
Qf = (PO/P) (Qf) ( ¢ )
where
5 = gverage mass denslity of all water in the reactor
(moderator and fuel-tube water),
v{;?j = product of neutron velocity and water absorp-
tion cross-section per unit volume, averaged over
the thermal neutron spectrum, when the water den-
sity isf%, and is a function of the neutron temp-
eraturelf,
ag = thermal diffusion length of neutrons in water of

density poand is a function of the neutron temp-

ature T,
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ag = fast diffuston length in water of density p_,

and 1s practically independent of neutron

—

temperature T.

The average water density p is given by

L
PV * AJQ pdz
p = (2.22)
V + AL

and the neutron temperature is taken as the average temp-

erature of the water.

L
memV + AL pTd%

T = (2.23)
L_ . :
V+ A d
Pm ‘é P %v

R T oS
L%
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Section 3. THE LINEARIZED SYSTEM

The equations of motion of the system as presented in
the preceding section are non-linear partial differential
equations. The only general method of solution is one of
numerical integration. Such a process 1is not Jjustified for
the problem under consideration. Rather, if considerations
are limited to only small departures of the system from its
steady state (equilibrium) configuratioh, a much easier
mathematical problem results. This 1s the solution of 1lin-
earized equations.

It should be pointed out that stabillity of the system
under small oscillations as considered here 18 a necessary
condition for the stability of the system. On the other
hand, such stability under small oscillations 1s not suffic-
ient to assure stability of the system, gince the possibility
of large unstable oscillations characteristic of non-linear
systems is not ruled out. Such large osclllations which can
exist withlin a system stable for small oscillations are more
appropriately part of the study of possible accidents than
part of the study of stability and reactor dynamics. At any

rate, this type of difficulty is not considered further in
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this report.

Such linearized equations arise from the equations of
Section 2 by the followlng procedure. Each variable x occur-
ing in the equations, except the position and time, is ex-
pressed as the sum of its equilibrium or steady state value
x° and its departure from this equilibrium value, x'. Each
term in the egquation being linear}zed i1s expanded in a Taylor
series in the various quantities x'. In such expansions, the
constant and linear terms are considered, all other terms be-

ing neglected. The constant terms by themselves give rise to

ghe conditions for an equilibrium configuration. The linear

_ferms then describe the small oscillations about equilibrium.
%he higher order terms which ave neglected are important for
large oscillations.

A few illustrative examples of the linearization pro-

cess are given in Table 3.1.



Unlinearized

f(x,t)

£(x,y.t)

i;f(x,y,t) é% g(x,y,%)

2

o—
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TABLE 3.1

Examples Of The Linearization Process

Steady State First Order
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Before writing down the linearized equations as obtained from
the non-linearized equations of Section22, it is useful to in-
dicate explicitly the basic variables and how such gquantities
as?,y,w, etc. are related to them. In this manner, the var-
jous partial derivatives arising 1in the linearization process
are made specific.

The fundamental variables are r, the position in the re-
actor (or z, the position along a fuel tube) and t, the time.
The basic thermodynamic variables are pm(t), p(z,t), plz,t),
and #(z,t); while n(r,t) is the basic neutron variable.. Other
quantities will be considered as functlons of these variables
either directly or indirectly as tabulated below, where the
quantity in gquestion is an explicit function of the variables

or quantitles inside the parentheses.

T(p) (this neglects small effect of
pressure changes)

T.(pp)

T(pysp) 5 hip,p)
*7y(T) h(pp)

*y(X,r)

*w(p)

a,(7) Kelop)

a (p,T) Ly lag)

% This assumes ov independent of temperature. For our oper-
ating point, it is approximately true for xenon,

C
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The linearized equations are now written.

an'/at = [Kf(l-B)’);y -y - wgrs]on' +Zi Xleoci'- (yxn)OX'

. ¥
+{ K 5 {l-B) NGp— = W—X.N ~ WX.. 0_—n] --—-£———-
:, fﬁi, 1y fp ps sa_ " sp Vm + AL

+ [Kfuf(l-B)qynafa - woxgn (3.1)

A
L
v

Vm+AL

afl(a1/ap)p 'dz\?}

o
a_m) | —
sT -
s L !
VP * A_/(; pdz ¢

- (w‘rsa

ToPuVm * AfOLTpdz
_IV'p + Aprdz]2
mFm o

aci’/at = - Ajegt o+ ()\i‘ci/n)o n' (3.21)

ax'/at = (b - vcxx)on' - (A, +n 75;{)0)(7 (3.3)



Equations (2.4) and (2.5) give

v apm'/at = A[go' - g'(0)]
)
v (hm+ hmpmpm) apmv/at

=_/qn°n'dr —[g(O)hmp ]Opm'
m

0
+ A[h g ' - h °g'(0)]
which may be combined to eliminate go' thus obtaining

opy' £ 86 = VI[(h - n_ + pmhmpm)ol—l{/qnon'dr (3.4)

- Alg(O)n, 1%," + Alhy = h )%gr(0)}
m

From Eq. (2.6)

ap'/at = - ag'/az
(3.5)

31-
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From Eqs. (2.7) and (3.5)
2g' /ot = (Bgm/p’z)%' + (gz/fz)oap'/az

- (me'lgm"l + 2gap +/az)%%"

- (g/p )°sg'/5z ~ ap'/az

From Eqs., (2.8) and (3.5)
(Phy-1)%p! /ot
= 34T /8 - (a/p®)op/oz]%

- g°(a/52) (0f%p")
“"1 @ 1
+ (p Tap/az + Jg/A - ah/a3z) g

+ (pﬂ))oag'/éz + f@?/ﬁ)ooﬁ s

where terms on the right containing p' as a factor have
been omitt@ddafﬁ@rvé$amination disclosed their unimport-
ance, The new symbol J is defined as

J(g,ﬁaT) = (5“' T)H(g30+ T)

(3.6)

(3.7)

(3.8)



From Eq. (2.13) there results*

:,ﬂ(}aﬂ'/at = q&n' +/an'dT - (JTTP)OP'

(3.9)
- J %t - 3.9
Iy 8 Js
It is also necessary to linearize the boundary condi-
tions as expressed in Egs. (2,10) - (2.12). This yields
pp' = p'(0) (3.10)

0 = p'(0) +[g(0)/p(0)1%"(0) - 1/2[2(0)/p%(0)] ®p'(0)
(3.11)

0 = p"(L) +[g(L)/p (1) %" (1) - 1/2[£2(L)/p3(L)] % (L)
(3.12)

In the above equations the notation f_ = d3f/dx has

been used. e.g. Kfaf = aKf/aaf.

* In equation (3.9), the quantity n' in the product g,n’
18 to be regarded as the radial value of n'(r,z) and is
thus a function of z only. Such a treatment is required
for a managable calculation, and maintains the identical
treatment of the many fuel tubes,

e

33.
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Section 4. THE VARIATIONAL PRINCIPLE AND THE ADJOINT EQUATIONS

The linearized partial differential equations derived
above can be attacked by a study of the normal modes. It
is to be remembered that a normal mode is a solution of the
equations of motion, having the correct boundary conditions,
for which all dependent variables (n, c;, X, p, etc.), say
f, have the time dependence éé?. For such a normal mode, the
operator'g% is equivalent to multiplication by A. Further,
as long as coefficlents in the equatlons do not explicitly
contain the time, any solutions may be expanded 1n a serles
of normal modes with time independent coefficlents.

If in equations (3.1)-(3.9), a/at is replaced by A
there results a set of equations which together with the
boundary conditions will have a solution only for certaln
values of thé reciprocal period A. If the real part of A
is negative for all roots, the system 1s stable. In the
work below, the emphasils ceﬁters on finding the values of A.

A variational principle 1s a good way to obtain approx-
imate elgenvalues in complex préblems. Below, a varlational
principle for A is constructed and the %'s evaluated by choos-
ing suiltable trial functions. (Unfortupately the variational

principle of Rayleigh cannot be used, since the problem under

A
. SN
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consideration does not have self adjoint equations of motion).
Let N, Ci’ X, Rm,R,P, G, ®, be functions such that the ex-

pression
A (fNndt + ZifCicid'r +/Xxdt + R p + fRpdr

+ fPpdt + fGgdt + f@edT)
(4ol)

= IN[K(1-B)yy - v - wxs]on’ dt

+ ):'i)‘i fNKfoci' dr -fN(yxn)ox' drt
+ fN{[Kfaf(l-B)')]ynafE - w—p-:cs - w"%asasﬁ] ppm

m 10
- wxsasasrf Tpm} dT Py’
0 —
ffN[Kfaf(l-B)ﬁynafH - Wn - W*Eas“sﬁl drfppp' dv
o
.jN(wxsasasT-) d'rj’l"ppv dr
0
+:i(>‘ici/n) JCintdr =LA fCycy' dr
+fX(b-Tr?);x)°n'd1: -fX()\X-mVB;)Ox'dT

o1-1 o o
+ [V(hm"howmh ) ] Rm{fqn n'dv + A(hc»"hm) g'(0)

mpm

- A[g(O)hmpm] Opmv‘}




36. '1|

- fRag'/az dv +/G(Bg™/p?) p dr +_[G(g2/p2)°ap'/az dr

- [G(mB -lgm'l + Zgapﬂl/az)og'dr
Y
- [G(g/p)Csg'/az dr - [fGap'/az dt

+ [P[(37T /& = gp™%sp/52)/(ph -1)] %" ar

- JPle/(ph,-1)] ®a(h %p1) /o2 dv

+ [p[(p™Ltop/az + 3 /A - ah/az)/(phpwl)]og' dr
+ [Plph /(ph =1)]° ag'/az ar

+ [P 471, /(ph -1)]%6" dr +/8q)/C nr*dr

+ f(8/c)dr fqntdr - j@(JTTp/C)O p! dt

- f@(JgO/C)g' dr - f6({J,°/cle dr

has the property that the first variation, &\, of A vanishes
for arbitrary variations, consistent withtthe boundary condi=-
tions, of the dependent variables n, ¢;y ebc. about their
correct values and also for arbitrary variations consistent
with the boundary conditions of the adjoint variables N, Ci’
etc. about their correct values, This latter re-uirement is

*See footnote on Page 33.




37,

essentially automatic from the manner of construction of (4.1).
Consideration of variations én' of n' etc. will give the requir-
ed equations to be satisfied by the adjoint variables, together
with the necessary boundary conditions. In the following eval-
uation of 8\ for variations én', éci', etc., proper account of
the boundary conditions (3,10) - (3.12) is included. Also, all

!
derivatives of én', éc,

i » etc., are eliminated by partial inte-

gration, There results

SA(/Nn'dT + seee. + [0 dT)
= fon{-AN + [(1-B)yyK, - y - £ w]°N (4.18)

o ——_ 10
+ Zﬁ(kici/n) C; + (b=-vo x)" X

+ [V(ny=hy 1°] a0, + (qp/C) ©

* Py mp .

+ g, [(8/C)dT} + T Séc, (-ACs+A KON - A C)dT
+_f6x[fXX—(an)°N - (A +n VGX)OX]dr

+ 6pm{-kRm+[N [(Kfaf(l-B)nyna - - w—a%

- o
- W, asﬁ) Pom ~ w*%asasT Toml 97

-[V(h-h + p b )°]7F Algl0)hy, 1Ry )

mpm

a4
y
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sy,

+ Jop{-AR + EE.fN[Kfaf(l~B)nynaf5 - Wpx,

+

- Adp(O

+ 6g(0)[V(h ~h_+ p h

+

+ Adg(L)

- Asg(0)

o = ' o
wz;as 55] dtv - Tpr(wagasasT) dr

+

(Bgm/pz)oG - a[(gz/pz)oG]/az

+

[(JTTP/A - gp"zap/GZ)/(php-l)]0 P

+

h, ° a[Pg®/( (ph -1) )°] /az =~ JTTp/C)OQ}dr

asp(L)[(£%/p%)% - Ph %%/ (ph -1)°] 1

P
0)[(£%/6%)% - P n 8%/ (ph -1)9,_,

o -1 o)
momp ") A(ho”hm) R

J6g{~AG + sR/3z - (mBgm"l/p + 2gap"1/az)O

+ 8[(g/p)°6]/oz - a[( ph,) )°/( (ph, =1)° P /a2
+[(p7lep/oz + Jg/a - ah/GZ)/(phpwl)]o P

- (Jg/c)® @}dr

{[phy/(pn -1)]° P = (g/p)° G - R}

{{pny/(pn -1)]° P - (g/p)® ¢ - R}, _,

. g

(L.18)

cont'd.
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i

(4.18)
cont'd,

+ Sop(-AP + aG/az)dr - Aép(L)G(L) + A&p(0)G(0)

+ [5o4-20 +[A‘14V«php-1)]°P - (3,/c)° 8}dr

This mammoth expression gives directly the equations
satisfied by the adjoint variables as follows from the re-
marks that 6\ must vanish for arbitrary én, 601, Sp, ... etc.,
subject to the boundary conditions. The boundary conditions
restrict the variations 6&p(o), ép(o), 8gl(o), &p(L), &p(L),
8g(L). In fact it is seen from (3.10) that &p(o) = 8P o

The equations for the adjoint functions are now written.

AN =[(l-B)7ny -y -a%w]oN +JZ%(xici/n)°ci

(4a2)
+{b*~§3;x}°x +[v‘lqn/b§m-hho + pmhmpm)]o R,
+ (qy/C) ® + (q,/C)/@ dv
ACy = A KON - AjC, (.30
AX = - (y,n)° N - (A_+ 0¥0,)° X (bok)

The R equation (4.5) involves the boundary conditions

- -
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and is discussed below.

AR = - Bbe[K (l-ﬁ)yynafa - W (L.6)

fas p s

- wa%asasalodr - Tpr[wa%asasTledt
+ (Bgm/pz)oG - a[(gz/pz)oG]/az

*‘&JTTP/A - gpuzap/az)/(phﬁ - e

" hpoa{[g/ ph ml)] °p} /a2 - (357,/0)°

AG = aR/az = (mBgm'lgf-p + Zgap"’l/az)o G (La7)
+ 3 [(g/p) °6] /o2 +[ (¢ p/az + Jg/A - sh/az)/(ph ~l)]
- a{[php/(phpwl)]c’?}/az - (3g°%/c) @

AP = 3G/sz {(4+8)

A0 = A”l[da/Xphpul)]OP - (4,/0)° @ (1e9)

The remaining tarms including those of (L4.5) are bound-

ary terms and result in the following type of equation.




1.
4

0= &' {2\ R o+ oo ‘}l + 69'(0){ }2

+ 6g'(0){ }3 + 6p'(0){ }4 + ép?(L){ }5

+ 6g"(L){ L + sp' (L){ }7

If all the &'s appearing here were independent, each { }
would have to vanish and seven equations would result.
Because of the three boundary conditions (3.10, 3.11,
3.12), however, only four equations result. The just

mentioned boundary conditions give

&p'(0) = &',
sp'(0) = 1/2[2(0)/p%(0)]%8p",, ~[£(0)/p(0)]°8g' (0)
sp(L) = 1/2[2(1)/pR(1)] %8 (L) -[&(L)/p(L)] %8 (L)

which when substituted in the preceding equation results in

0 - w{{ bk (&-—5—-)- o}

p

, 6g,(o>{( ) (?T(%){ }u};

2
ol ) {5

P
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Each of these{ } may now be set equal to zero.

a, b, ¢, d
The equation { }, = O is written as equation (4.5). The other

three give the remaining adjoint boundary conditions.

hRm =_[N{1Kfaf(l-ﬁ)nynaf— - W= - W2« —] 1)

P T V% sa %7 1 Pom
a pm} dv (4o5)
i+ 5 o 5
+ A{[hpg/(php-l)]o P - %(gz/pz)o G}Z=
o ={v[(n-n)/(n -n_ + pmhmpm)]o R (1.10)
+ R - [php/(php-l)]" P}ch_
0 = {2e%/p?)% ~[n,e/(pn -1)]° P}m (4.21)
0 {[ph /ph-1)]° P - R} (4o12)

DLl Y
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Section 5, Trial Functions and the Matrix

In the preceding section it has been shown how to sel-
e¢t adjoint variables such that (4.1) is a stationary express-
ion for A. This means that the error in A as détermined from
(4o1) varies as the product of the errors in the dependent
variables and the adjoint variables, Thus one method of ob-
taining an estimate of A is to guess at values for the depend-
ent and adjoint variables. The method of making such a guess
as used in this work is discussed in this section,

If the reactor is imagined to operate slightly away from
its equilibrium configuration because of some sort of weak dis-
turbance, the power is expected to change in magnitude but
hardly at all in shape. That is, it is expected that the neu-
tron density is simply multiplied by a position independent
factor. This behavior of a reactor follows from the relative-
ly weak coupling of power and reactivity, considered together
with the strong damping of the other possible space distribu-
tions of neutrons,

The above considerations indicate that the neutron flux

o .
gy 1e€ey

variation, n', will have the same form as the flux, n
n' = c¢(t)n® for some space independent coefficient c(t). Sim-

ilarly N = C(t)N® where N° is the adjoint neutron flux. The

u@wwwél.i!2i=='..l.!!!!
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adjoint flux has not been discussed in the above, but clearly

it exists since the neutron equations are linear in the varia-
bles n and c;. Thus the equation for n® from (2.1) and (2.2)

is

0 = (Kfﬂy)ono - (y+w&%)°no

whence

0 = (7yKp)ON® = (y+weg)ON° (5.1)

This may be compared with (4.2) and (4.3) in the case where
A = O and all variables but N and Ci are set equal to zero,

A solution of (5.1) is given by

&N° = y°n° (5.2)

The remaining trial functions may now be obtained as
follows. Ignore the An' and the AN equations and use
nf = no, N = N° in the remaining equations to find the de-
pehdent and adjoint variables. Once all the variables are
determined in such a manner, equation (4.l) results in a
value for A,

This procedure may be interpreted as follows. For
slow changes in N and n the other variables will at any
instant of time have nearly the equilibrium values they
would attain if n' and N suddenly became constant. It is

these equilibrium values that are computed. Thus the pro-



cedure outlined should give the longest reactor period.

This sort of approach is analogous to the well known
Rayleigh variational principle. It can be modified in a
manner similar to that applied by Ritz to the Rayleigh
principle. That is, trial functions are used which depend
on a set of parameters and then the resultant A, calculated
from (l.1) is made stationary with respect to the parameters.
This procedure gives as many roots A as there are parameters,
each root corresponding to & normal mode. If the form of the
trial functions is wisely chosen then the resulting normal
modes can adequately represent the time behavior of the sys-
tem,

One caution is necessary in the formation of a para-
meter-dependent set of trial functions; namely, the boundary
conditions must be satisfied for all values of the parameters.
This problem enters especially in the treatment of the hydro-
dynamics of the systémo

In opder to take separate account (in the trial func-
tions) of the effects of heating of the moderating water and
the heating of the fuel tube, the following two sets of func-
tions are defined, and are called Mode I solutions and Mode II

solutions of the linearized equations.

'_‘
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Mode I (heating of the fuel tube only)

(l)’ p(l) (1) (1)

, 877, @ satisfy equations (3.4) to

P
(3.12) with n' = n° equation (3.9) and n' = 0 in equation
(3.4). Similarly Rm(l), R(l), P(l), G(l), all) satisfy
Eqs. (4e5) to (4.12) with N=N° in Eq., (4.6) and N=0 in Eq.

(4o5).

Mode II (heating of moderator water only)
The variables are indicated with a superscript as
o ; and are defined as are the Mode I functions except
n' = 0 in Eg. (3.9) nt' = n® in Eq. (3.4)
N =0 in Eq. (4.6) N = N® in Eq. (4.5)
The trial functions are given in Appendix V.
In accordance with these remarks, the trial functions

are taken to be:

nt = ulnO Nt = UlNO
_ o _ 0O
cl'— u,Cq Cl'— U2Kf N
_ o) _ 0y, 0
02’ u302 C,t= UBKf N
_ 61 ( _ o *
x?! = uhx X1 U4N
_ (1) (2) _uop (1) (2)
pm'_ UgPp F UgPp Rm" USRm * U6Rm
(1) (2) (1) 6,(2)
? e =
p Ugp + ugp R USR + UR
g?: u g(l) + 1u g(2) G = U G(l) + U6G(2)
5 6 5
p'= u5p(l) + uép(z) P = USPil) + U6P(2)
1 2 . (2
g'= u7ﬁ( )4 ug ' 2! o = U79(l) + ug0'?l
. “":"f‘l“‘*' L= 0
*This uses the facts th#*8%y = vo_ and that n Vo, >> Ao

X
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When these trial functions are inserted into Equa~

tion (4.1) there results an expression of the form

The condition that A be stationary for variation of the Ui

leads to
)\, M. . = .M.. . °
[:;]mljuJ 25 1595 (5.3)
In order that this equation be solvable for the uj, the de-
terminant equation
IM = aml = 0 (5.0)

must be satisfied. Equation (5.4) gives eight roots A,
Equation (5.3) then determines the ratios among the uj for
each normal mode in termsof the A for that mode. Results
concerning the matrices M and m are given in Appendix VI,
Finding the roots of Equation (5.4) is a standard
but not trivial problem. Several approaches were used in-
cluding straight forward expansion of the determinant.
Appendix I presents the values of the roots along
with results of reactor response to reactivity changes as
comput ed by use of these roots and of their corresponding
normal modes. Also given in Appendix I are further results

based on a simplified reactor model discussed in the next

section.



Section 6. SIMPLER MODELS

The reactor dynamics calculations discussed above are
tedious and time consuming to perform, It would be desirable

to use the results of this analysis to construct a simplified
(and necessarily crude) model to be used to extend the cal-
culations of the transient behavior of the reactor to include
consideration of step changes in flow rate, in water tempera-
ture at the Inlet to the moderator region, in water tempera-
ture at the inlet to the fuel elements, in the moderator-
coolant apportioning valve setting. The model can also be
used to investigate the effect of boundary conditions differ-
ent from those employed above. The remainder of this section
will be devoted to devising such a useful model,

The reactor is considered to be comprised of six sys-
tems: (1) fission, (2) and (3) delayed neutron emitters,
(l4) moderating water, (5) cooling water, and (6) heat trans-
fer steel. Since the model is to be used for the calculation
of dynamic effects over short periods of time, the long time
effects such as xenon burnout will be neglected,

The complex fuel element system is treated as a system
with only two degrees of freedom, the varilables being the max-

imum fluid temperature and the corresponding fiuid temperature,

. |‘|!!~.)f
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Section 6,1 THE EQUATIONS OF MOTION

It is convenient to take as variables n, Cys Co» T, and

fys defined previously, plus

T; = maximum wall (steel) temperature

and

T = fluid temperature at position where the

wall temperature is a maximum.
The equations for the neutron density and concentrations

of delayed neutron emitters can be written:

an/at = [R(p_,t)(1-)-1] n/t +Zihse, (6.1)

aci/at = = hjeq ¥ ain/J; (6.21)

where { is the neutron lifetime against absorption and R is
the reactivity, a function of p and T. Its equilibrium
value is unity.

Linearization of equation 6.1 yields

an'/at = - pn' /4 + n°R' /4 #un® Tihey!

or
1 on' 1 n! - ci* )
=l e D (6.3
n°at 4 n® 171 ¢,®
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where R'(1-B) has been epproximated by R' and hicio has
been replaced by Bino/ﬁ. Equations 6.2i are linearized

exactly as before to obtain:

1 o cyf cy! n'
Xi ot ci c1 n

The change in reactivity can be written
R' = (3R/3p Jp,' + (3R/ST) T'

It is convenient to express R' in units of B (i.e. dollars)

and to define dimensionless quanfities

— (fh')l oR
Agn = 3 3Pm

and
(T‘)1 oR

b =~ &

Here (x')l means the equilibrium value of x' for a unit
fractional power change (n' = n®), all other variables in
equations 6.1 = 6,41 plus the flow rate being kept constant,.

In terms of these quantities,

R'/B (dollars) = Ap, p.'/(p '), + ApTV/(T1)4

v, S

s
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The quantity Ax has the following meaning. If the power is
increased to a new steady value and all variables except x
are held constant,th‘enﬁ.x times the fractional power change
is the change in reactivity expressed in dollars due to

system x. Equation 6.3 can now be written

£4 n n! pm' T ﬁic'
————3+—5=Apm——~j—-—-+AT +Zi——5 (6.5)
B dt n n (pp*) (') g c

Pm' 71 1 i

The determination of the quantities 4/8, Ap s and A
will be discussed in section 6.2.

The heat balance equation in the moderating region

can be written
Mdhm/dt = g, - Ag(h -h ) (6.6)

where M is the mass of moderating water and d the power

supplied to it. When this equation is linearized it yields

?
T .d...... pm‘ + pm' =i-£+pm

(6.7)

Where we have used the relation

och
ht = = 1
mo 3 Pm
Py
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and have placed# qm'/§m° = n'/n°, /;,in is the change in
water density at the inlet to the moderatorregion., If
either the neutron density, the flow rate, or inlet water
density (or all three of them) were suddenly changed to
new steady values,ph' would approach some equilibrium value.
After a time T it would differ from this equilibrium value
by less than a factor l/e. This time is taken here to be the
transit time of fluid through the moderating region.

The equation relating the wall temperature T; to the
fluid temperature T, the flow rate g, and the power supplied
to the walls d1 is:

d -
C; g Tp = ap - 8R(T; + T) [TI - TJ

Here C, is the heat capacity of the iron walls and, as be-

I
fore, gF is the heat transfer coefficient and is a function

of T. + To This equation is somewhat complicated and we

I
shall carry out its linearization in detail., As a first step

we obtain:

# In this simple model no attempt is made to distinguish be-
tween prompt and delayed moderator heating. It is all
taken to be prompte.

e -
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at I ‘go TIo_To F°
Now
oF oF ar
prdl _.._.._Tlv +—_— P = — (T:'[""'T')
oT; oT d(TI+T)
We define
1 agF
F° d(T+T,)
to be
a
o o ;
TI - T

Thenthe above equation becomes, upon dividing by gOFO,

c /
I 4
— Tt = (T ° . TO)(qI'/qIo - g'/go)nTI'(l—a)+T'(l+a)

80?0 at I I

Placing qI'/qIO = n'/n® one obtains the equation

s . N
e N iy ppL PN - (6.8)

gOFO dt 1 l-a n g l-a

From the steady state data CI/gOFO is found to equal

«09 sec, and TIo -0 = ASOO F. a is determined from some

,
“O&m‘.puu&a-'-;====F!
SO SnEE——
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of the known results of the calculation in the previous sec-
tions. If a 1% increase in power into the fuel tubes

‘n'/no = ,01) at constant flow rate (g'/g = 0) occurs, then
equations 3.5 - 3.9 show that the maximum iron temperature
is changed by 10° # and the fluid temperature at the place
where T;' is a maximum is changed by 2.5° F. When these
values are used in equation 6.8, a is found to be very

nearly 1/ Equation 6.8 then becomes

-
3

¢ 58l 2 & 2 (669)
o012 — T_¢ + T_1 = — = ]| 4+ — T o9
dt I I no go 3

It will be noticed that all of the linearized equa-

tions are of the form

Tdx/dt + x = forcing terms L)

The forcing terms contain those variables that directly in-
fluence the value of x., The equation for T! will then be

of the forms

TdT? /AT + Tt = €T ' + 4 T, .

#g' does not enter this equation for the following reason.,
Ifi;pe flow rate is decreased by, say 1% thi;fluid will re-
paln in the fuel element andnhe‘hcatedfforyJiq%qn er Lime .
f;wevir}“théjhggféérﬁﬁSféﬁ“épéﬁfi%iént; s%&iﬁggtlgppégéggé“
onal to.g and “Will be reéduced I%. .The result. s, that. the
flﬁia“ﬁémperﬁ%ﬁ%éﬁﬁill*béWﬁﬁcﬁahgéd.t? B gﬁﬁﬁ*%**§h
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where Tin is the inlet temperature to the fuel element. From

the results mentioned above for TI' and T', €is readily found

to equal Zigo = 1/, The time constant T is arbitrarily
taken to equal the transit time of the fluid through the fuel
element, viz.,, 0.1 sec. The constants a and € have been
unambiguously assigned values so that this simple model gives
the same equilibrium values of T! and TI', following a power
change, as the detailed calculation., However, y can be
chosen in at least two ways. It can be chosen so that a
change in inlet water temperature Tin produces the correct
change in T, or it can be selected so that the effect of a
change in Tin on the reactivity is given properly. This
latter choice was made and it will be shown that this leads
to placing ¥ equal to 5/8.

The last two equations can be written in terms of the
equilibrium values (T')l, (TI‘)1 following a unit fractional

power change with all quantities but these two held constant.

d Pt Tt n' g T
0,12 — — L+ I — - =+ -2 (6.10)
dt (TI')1 (TI’)l 12 \n g 12 (T')1
d T il T ! 5T, 1
0,10 — + = I (6.,11)
ds (T’)l (T')1 (TI')1 8 (T')l

“o— |
) . A
tﬁuﬁﬂu!lnm!,iiIiEEZE



Section 6.2 THE DETERMINATION OF NEUTRON LIFETIME

AND REACTIVITY PARAMETERS

The variatlonal technique described previously was

designed specifically to yield the inverse periods
1l dn¢

—_——— = Ai’ with which the pile moves from its equilibri-
n' dt

um position. Equation 6.1 shows that the reactivity R,

and hence the coefficient Agm and AT’ is related to the
quantity 1/n dn'/dt. In linearized form this is 1/a° dn'/dt
and will be called® . The effects of the fuel element and
moderator systems on ® can be found more directly than their
effects on the reactivity. Equation 6.5 can be used to re-
late changes in R to the coefficients AT and Ap_ o For the
purpose of this calculation delayed neutrons are unimport-
ant and all neutrons will be takenras prompt by placing B

and the Bi equal to zero., In the limiting case equation

6,5 takes the rforms:

1 dn? B § T .
S U SO T

% The coefficients Ap, and Ay were defined containing a
factor of 1/B, hence B times them is non=-zerc in the
limiting case where P approaches zeroc,

a4
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If it is recalled that the quantity A in equation
5.3 is equivalent to the operator %ﬁ , then this equation

can be written

ol
e Moo =7 W = M. ..
Ly myy qe ¥y T LyMighy
n!
From the definition of Uy = -5 and from examination of the
n

matrix m in Appendix VI, it is clear upon comparison with
equation 6.3 that matrix element M,, is equal to - 8/ .

Appendix VI then shows that:

-1
B/f = 161.5 S°¢

Hence if the effect of the moderator system on X 1s known

following a unit fractional power change (p,' = (pm')l),

T
similarly from a knowledge of the fuel element effect on

then the knowledge of B/{ yields Ap o A, 1s determined
m

® ., The determination of these effects will now be carried
out .
Neglecting delayed neutrons, which are unimportant

for their calculation, the equation for the neutron density

becomes

on
— =xn = Kqyn - (y * W, )n
ot

Multiplying this equation by the adjoint neutron function N
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and integrating over all space yields an equation for &

which is invariant to changes in n and N. This is
X/Nndv = /‘N{Kfmrn - (y-l-W.Zj's)n} av

It is desired to find the effect of the moderating and
cooling water properties on # . This means that changes
in Kf, w and % will be examined. The parameters that
these quantities depend upon were given in Section 3.

The value of ® for the steady state conditions is,
of course, zero, The change in X for changes in water

properties is then glven Dby

$%/NndT = #/NndT = /N{6Kyn - (6w, +woZg)n} av

dK, da dw dZ da o
=p! fNo{—i%nYn - — ntw —= —£ n} av
da, dp d da_ dp

_mo{ s T I
+ T w—— —=nl 4t
dasd'ff

The first term gives the effect of the average density on
the inverse pile period, andnthe second the effect of the
average temperature. The integrals can be evaluated from

knowledgediof the steady state functions and yield for X



p was defined in Section 2 as

L
Pr'm * % pdz

p = )
v+ A

5"/5'0 can be broken up into two parts, a moderator and a

fuel element part:

L
. Tata N
— " o L o o Lo

p° vam+%pdz pme-O-A/épdz

For a unit fractional power change (n' = n°) and a
constant flow rate (g' = 0) equation 3.4 can be solved for
the equilibrium value of p ' [i,e, (pm‘)l]. Similarly equa-
tions 3.7 and 3.9 can be solved for the equilibrium value

of p'(z) for constant flow rate (g' = 0) and the boundary
condition p1(0) = 0, for a unit fractional power change.

In this way the contribution of the moderator and coolant

water density to ¥ for n' = n°® can be obtained.

" (o
e

59.
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Using equation 6,12 and the value for B/4 we obtain

= -3 - 2,7 dollars/unit fractional power change

A
pm 16105
= - ...].'.g.’;‘. = o 008 L] ’n " " "
T 161.5

From a knowledge of p ' and p'(z), T' can be computed. In

the same manner as above the reactivity effect due solely to
the water temperature can be calculated. This yields a value
of +0,12 g/unit fract. power change. This gives a preliminary
table of reactivity coefficients® as follows:

PRELIMINARY REACTIVITY COEFFICIENTS

TABLE 6,1
Source Reactivity Coefficient, (g)
Moderator density =2,7
Coolant density =0,8
Average temperature +0,.12

# For the slow variations discussed in ORNL=1177 it is necess-
ary to know the xenon power coefficient of reactivity. ¥y is
a function of the atomic density of xenon atoms x butpy is
not. Hence the effect of Xe on ® is determined from.

X?
R /Nn 4T = - /N° %% xn%aT = - ~3_/N° %% x°n° a4t
. X -

Its reactivity coefficient is found to be +3.8 dollars per
unit fractional power change.
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The coolant density coefficient was calculated assum-
ing that the coolant water affects the reactivity only through
the average water density E, Actually the fuel elements are
clustered together at the center of the core and would be ex-
pected to have a greater effect, For this reason the coolant
reactivity coefficlent is arbitrarily altered from -0.8 to
-1l.2 dollars, The average temperature coefficlent was comput -
ed assuming VEX was Independent of temperature., Reference to
figure 13 in ORNL-1177 shows that at worst this effect could
increase the temperature coefficient from 0,12 to 0.20, To
be conservative the latter value will be used. The final

power coefficient of reactivity are then:

POWER COEFFICIENTS OF REACTIVITY

TABLE 6.2
Source Reactivity Coefficient, (g)
Moderator density =27
Coolant density =1.2
Average temperature +0,20

The temperature coefficient is not divided into a fuel
tube and moderator portion because its effect is small and
nearly all of it is due to the moderator water. This modera-

tor temperature effect is treated separately here from the

w “ Lo




62, !llll!
M"ﬁ‘—‘w .

i oo s SRS gy Yk

density effect because it is unstabilizing and it could con-
celvably act sufficiently faster than the stabilizing density
effect to cause trouble. This would be the case, for example,
if for some reason it was exceedingly difficult to reduce the
amount of water in the reactor in a short time. Then an in-
crease in power would cause an increase in temperature and a
build up of pressure which might not be followed by a stabil-
izing decresase in density for a time long enough to allow the
pile power to reach a dangerous level. The pile period which
would result if there were only delayed neutrons to hold down
the tendency of the power to run away because of the unstabil-
izing temperature effect has been calculated to be about 33

seconds, It 1s estimated that the density change will follow

the temperature change within tens of milliseconds., Therefore,
in what follows no distinetion will be made between the mod-
erator density and temperature effects and a combined coeffi-
cient of =2.5 dollars per unit fractional power change will
be used.

Finally the parameter & in the equation for T' must
be estimated. ¢ determines the effect of changing the water
temperature at the inlet to the fuel element., If at constant
power (n' = 0) and constant flow rate (g' = 0) the temperature

at the Inlet to the fuel tube is changed, the enthalpy along

i soradt

B H M
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the entire length of the fuel tube will be changed by &

fixed amount, independent of position. By use of eqﬁations
3.7 and 3.9 the equilibrium value of ,(z) has been calculat-
ed for a temperature increase of 1°F at the inlet to the

fueli tube, subject to the above conditions. This temperature
causes a 9.25X10-3 percent decrease in the average density

P. Hence the reactivity effect is calculated to be:

- 5080(9,25x10‘5) = - 0,003 dollars
131 5 161.5 ° op

For the same reason as before we increase this fuel tube
coefficient and round it off to -,005 dollars/°F. From the
equations for Ti and T!' we find the equilibrium value of T!
for a one degree increase in T, to be (cf. Section 6,.1)

T = L TL + ¢ = > T
L 1 1z
o= 12

The change in reactivity due to this change in T!

12y _ 12y (-1.20) _ -
Aq 7TTT¥I = 221 Lo5e22) = - 0,008y = - 0,005 dollars

250°F]

is

[(T')l

Therefore ¥ is approximately 5/8.

The equations of motion are summarized below.

d n! nt /%li Tt
00,0063 — - + - = = 245 ——— = 1,20 (6.5a)
dt n n (ﬂm')l (T')l
£ Wavpbys 01 %'
+ 085 —=5 + 0.535 =5 * °R
N R ek 2
)

b, K ]
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Where 6R is the reactivity (in dollars) externally

imposed on the reactor (e.g. via a control rod).

1l 4d Ci' Ci' n!'
— — -——6 + -‘—-6 = —'B‘ (60)4.1)
xi at C1 Ci n
a /0 T /O" nt g' f 1in
2.3 ——— m + L e av e n : (607)

o P s
dt (fﬁ')l (fh‘)l n® g° (/h')l

@)

Recalling that (T '), = 1000° F and (T'); = 250° F:
d Tt T nt gt 5 Tt
0,12 — —2 -+ —L =L 4= (6.10)
dt (TI')l (’I’I')l 12 n g~ 112 (T’)l
4 T Tt Tt 5 T 1
0,10 — + =3I 47 _in ' (6,11)

dt (T'), (T')l (TI')l -8-(1")1

Ty i1s taken to be the time required to change com-

pletely the water in the moderator tank once and 1s about

2,3 secondso.

(R R
150 N W BB YL e ¢ 7
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Section 6.3 FLOW CHOKING

The equilibrium values of /&' and T', and hence their
effect on pile reactivity, depend upon the equilibrium value
of g'/g°. A particular case of interest is when g'/g°® de-
pends upon the fluid temperature T'. This occurs, for example,
when a constan{ pressure difference is malntained across the
fuel element or when the fluid exits into a device whose flow
resistance increases with temperature., Then an increase in
exit temperature will cause a decrease in flow rate. To approx-
imate this condition g'/g° will be taken proportional to
T'/(T')l. It is convenient to define a flow factor ¢ by the
fellowing relation between the equilibrium values of g' and
n',

g'/g® = = ¢ n'/n° (6.13)

When T, ' is zero, the equilibrium value of T'/(T1), is

(l+c)£% (cf. equ. 6,10 and 6.11). During the transient then
n
g'/g° will be taken equal to

T'
g'/go = = 1“?‘0 (Tt)l (6011{)

In most cases T' follows changes in n much more rapidly than

| SRy
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does pm'. Consequently little error is introduced by using

6.13 in the equation for p, instead of 6.1l Equations 6.7,

2

6,10 now become

d g 1 n? H
2.3 — Pm + Pm = — (1+c) +‘__£Eg_ (6.15a)
dt (pm')l _(pm')l n (Pm1)1
a T, T, 7 nt 5 v ¢
0,12 — + = ——t — [1+1°L;-—-—- (6.15b)
dt (TI')l (TI%)1 12 n 12 (T')l 1l+c

The detailed calculation which was carried out with
constant pressure boundary conditions exhibited a flow factor
¢ of about 5. Figure 2 shows the results the calculation of
the power change following a step change in reactivity using
the simple modelst for flow factors of O and 5, On this same
figure the result of the detailed calculation also appears,
The effect of the flow variation is quite apparent. It is
also obvious that the simple model underestimates the time
required for the transient to die away. This probably indi—'
cates that either or both of the response times used in the
T-' and T' equations are too short,

I

% Only one delay group was employed in this calculation so
the results are only meaningful for times up to about two
seconds or SO,
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The curves marked “detailed’’ are the

results of the variational calculation, The others are results obtained from the simple model of

Section 6 for two values of the *‘choking factor’’ c.
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L

Two other calculations using the simple model have
been carried out to date., These are the responses to changes
in moderator water inlet femperature and fuel tube water in-
let temperature.  'The plurpose of these calculations was to
estimate the iron temperature overshoot, if any, and the
equations were even more simplified. The moderator was as=-
sumed to be connected to a separate flow circuit so that the
mass flow of moderator water was constant, Only one delay
group was used, Consideration of the boundary conditions
imposed on the reactor by the propulsive machinery indicates
that a flow factor of 1 is a reasonable value and this was
used. The results are shown in figures 3 and L. It is seen
that the wall temperatures at no time exceed those calculated

for the new equilibrium states of the reactor.
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was unity (c= 1),

choking factor

Responses to a 1°F Decrease in Moderator Inlet Temperature. [f

Results obtained from the simple model of Section 6.
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FRACTIONAL CHANGE IN POWER x 103

CHANGE IN MAX. WALL TEMP, °F
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Water. Results were obtained from the simple model of Section
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Section @;sr MODERATOR BY~-PASS VALVE

The detailed calculation was cawfied out under the
assumption that the flow rate in the moderator and fuel
elements was the same, The same assumption has been made
in sections 6.1 and‘6°2 and the only calculations made with
the simpler model are subject to this hypothesis. For the
purpose of shim control the reactor was designed so that
the fraction of the total which passes through the moder-
ating chamber is variasble. By this means it is possible to
vary the moderator density without varying the density dis-

Eribution in the fuel tube appreciably. Thiés flow scheme

fs shown schematically in figure 5, i
f For the purpose of completeness the equations of w

the simple model will be extended to include the case when
£ is not equal to unity, In this case the time required

to change once completely the water in the moderating re-
gion will be 2%2 seconds instead of 2.3 seconds, as before,
The equilibrium value of Pm? will also be increased by the

factor 1/f. This leads to a modification of equation 6.7.

in
2°3d pl i 1 {n? gl 1
S W S LR (6,16)
rodt (pyt)y (pp')y £ \n0 g (pp'?y

Here, as before, (pm')l is the equilibrium value of p !
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for a unit fractional power change (n' = n°) with £ = 1,

i

other variables being held constant (g' = p ' % =0),
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APPENDIX I

The matrices M and m which determine the inverse
periods through the secular equation IM - lm, = 0 are
given in Appendix VI. The solution of this equation gives
the following values for the roots: =3.1l4 x 1O°3; -u°5xi5“2;
=642l x 10“1; =1e547; =9.087; =52.8; =11L.83 m223.sec'l°

The homogeneous equation (5.3) determines, except

for a normalizing factor, a set of u, corresponding to

j
each value of A. Each such set gives a normal mode when
inserted into the trial funection form on page 41, These
normal modes together with similarly obtained adjoint norm-
al modes are used in éolvingAtime behavior problems by stand-
ard procedures,

Figures 2 and 6 graph the time response of the neutron
density and maximum steel wall temperature obtained by such
detailed calculation for a step change in reactivity and for
a linear change in reactivity. Also plotted in Figure 2 are
the neutron responses to the same step change in reactivity
as computed according to the simple reactor models discussed
in Section 6., Figures L4 and 3 present the response of the
neutron density and maximum steel wall temperature folibwing

step changes in the water temperature at the inlet to the

fuel tube and the inlet to the moderating chamber.
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Responses to a Linear Reactivity Change Lasting Two Seconds.
Total change is one-cent. The results obtained are from the
variational calculation,
o 2 3 4 5 6 7 FIG. 6
12-TR-6



APPENDIX II

Steady State Neutron Data

The reactor is idealized to consist of a cylindri-
cal loaded core, radius 33,5 cm, actual height 75 cm and
surrounded on its lateral surface by a cylindrical water
reflector of outer radius 50 cm. In order to take into
account the actual reflection present at both end faces
of the core, an extrapolation length of 5.5 cm et each
end is taken, The neutron dengity along the cylinder éxis
is taken to vary like the sine of the distance and to van-

}

ish at the extrapolated end points. When the fuel is dis-

tributed according to Figure 7, the resultant reactor has

a thermal flux which is uniform throughout the core in the
radial direction. The core contains 20 kg of U(25), 310
kg of stainless steel distributed in the form of several
hundred identical fuel tubes., In computing the steady
state neutron distribution (and fuel distribution) the
water is taken to be at an effective density of .67 gm/cc,
and an effective temperature of 295° ¢,

The important two group constants are tabulated

below.
agrapis e’

r
— |



ARBITRARY UNITS

Ol

FUEL DENSITY,
™

Fuel Distributi
(gm/cm
50 cm.

sorption in @ fue) element.

3), The extrapolated core
The core radius W

L Prees i

vk

R

o

7.

on Yielding Flat Fi roportional to the fuel densify
the side reflector outer radius
1.47 neutrons produced per ab-

rizel, TID 2001,

ux Radially. The ordinate is P
yaken to be 86 cm.,
as calculated 1o be 33.5 cm for 1 =
For the theory of flot flux reactors see Goe

Fi6. 7
{2-TR-7
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TABLE II,.I

Nuclear Values:t

Value at
Room Temperature

Dependence on
Neutron Energy

—

Value at T1=2G20 G

Absorption
Cross Sections

cFe
625

Gwater

Diffusion
Lengths

a
8

Gp

Neutrons per
absorption in
fuel

5
U

Delayed neu-
tron Para-
meters

0.0258 cm2/gm

1,639 Cm2/gm
0.0227 cm2/gm

2.71 cm

5.0 cm

2010
147

0 .06l sec™t

0,602 sec™

0.)0Lx10™%

0.351x107%

congt,

const .

consto.

const.
const .
% B v ey

consto

const e

0,0186 cmz/gm

1,180 cmz/gm
0.0163 cma/gm

S eéé cm
7 eS cm

#These are the

values employed in the calculation and are in some
cases not the best data avallable at thile time,

p=0,66Tgm/cc
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APPENDIX III

Steady State Flow Data

The relevant steady state flow data for the design

point in question is given below.

Total power = L00,000 kwe.
Total water flow rate = }j29.2 #/sec

(all through moderating chamber and then
into fuel tubes)

TABLE III.1

Steady State Flow Datsa

Moderating Exit From
Inlet Chamber Fuel Tubes
pressupe | PrtleT3 kg /om™ P +1.73 kg /om® - 352 kg/em®
(2l .6 psi) (2.6 psi) (5000 psi)
(o] O (e}
Tomp. 249 0c (2920 c) 527 Oc
(4,80°F) (558~ F) (980° 7)
0.768 gm/cc 0,768 gm/cc 0.128 gm/cc
Density (LT .9 #/ft°) (47.9 #/1t°) (7.96 #/£t>)

The variations of pressure and temperature of the fuel
tube water and the variations of the steel temperature along the

fuel tube direction are presented in Figures 8 and 9.

~ o
SR~ syl
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APPENDIX IV

The calculation of the ¥ ray heating is summarized

in the following table.
TARLE IV.1l

Gamma. Ray Heating

Total y- Fraction ab- Fraction Fraction
Energy of ray energy sorbed in absorbed absorbed

Individual per single core iron in core outside
Source vy=-ray(Mev) fission water of core
Prompt 5 5 1/3 1/3 1/3
Fission
Product L L 1/3 1/3 1/3
Capture:
U(25) 7 1.75 028 28 oy
Fe . 7 3.75 .28 28 oluly
H2O 2.2 0.62 030 030 040

In dddition to being heated by the gamma rays the water
receives the kinetic energy of the fission neutrons., This is esti-
mated to be 5 Mev/fission. The gamma ray plus neutron heating of
the water amounts to

5+[5(~ + lH-u(Q +1 T5( 028+ 1ty ) #3 . 75( o284 lly )+0,62( o304 uo)]
Mev/fission or 736% of the pile power., This is ,076{(400,000) =
30,400 kwe The conduction heating from the outside of the fuel

elements brings this up to a tot;¥'of 110,000 kw, B80% of this

E
L
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total 1s estimated to appear promptly, the remainder being delay-

ed several or more seconds,

The y- heat into the core iron is 4.7 Mev/fission. This

amounts to 9400 kw. Thus

qmo = 0,1 (total power)

and

n
qm(p) = qo/?dT = 0,08 = (total power)
n

considering!only the prompt variation of qy with n. Also

qu = 0,90 (total power)

of which the fractions 3602280609u00 = 0,975 is composed of di-

rect fission heat, and the fraction 0.025 of y-ray heat, most
of the latter being prompt. Thus

z+5 .,5cm

i
sin L+11l em

Iy B = 0.9(0.975)(total power) éisjnn2+ o

I+11 cm

.
i Gl i the oo b

do /hdt '9(0 025) (total power)

where L = 75 cm, the length of the fuel tubes.,

.,”4".“‘ md WM ;‘m* i



J(kh

8.,

APPENDIX V

The Trial Punctions

The functions in terms of which the trial functions are

determined are given here.

Neutrons n° = const sin ﬂQ%%5éicm) f(r)

where f(r) is flat over the core.

n° is a seclution of

(Kfnyno)o - (y+w.’s)° n° =0

) (z+5,5 cm)

_ i
N const sin T w(r)

and is a solution of

GQONO = yno
Delays: @iﬁoyno
c,® = e
T . T AL

where in the approximation of two delay groups,

@l,Ba,Kl,la are given in Table II.l.

Xenon

x° = .11 x 1010 298 y°
cnm

corresponding to

RS 4 Y g"!!!&‘
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-13 emS |
sec ’ "max

2

Vo, = 8.33 x 10 ° VoL = 176 x 1073 gec™?t

fission yield = 5.8 x 10 ° xenon atoms/fission

b = 1,71 x 1073 y°,

This expression for b results from the assumption that 5% of
the xenon is produced very quickly after fission, the remain-
ing 95% passing through the comparatively long lived iodine

intermediary. In the matrix, it is required to use the ftact

that
oy _ —
3% - Vg
Flow
Mode 1 and 2 solutions are presented in Figures 10,
11, 12, 13.

850
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86.
8000 1.6
Mode | Forward Solutions, The changes in pressure, specific
1 volume, and wall temperature are shown when additional heat is
F supplied to the fuel tube only. See Section 5. g{1)/g° = - 5,176,
7000 1.4
o Csai.
6000 .2
Tem
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4000 0.8
3000 ¥ 0.6
2000 b - - 0.4
1000 = 0.2
o 5
0 i 4 0
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Mode | Adjoint Solutions. Changes in the adjoint functions are shown when additional heat is
supplied to the fuel tube only, See Section 5. G(1) = 00470 sec. ft./#.
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Mode |l Adjoint Solutions. Changes in the adjoint functions are shown when additional heat is

supplied to the moderator water only. See Section 5. G(2) = 0163 sec. ft./ #.

+2000 T ; o e iEess gEEm : -.02
£ e ; + it
manewniy e . ! T (. I L
e o SiiazsrJaass
iR Qi A
H + \—iﬁ n H
R anam ; -
OT EL | .06
-2000p+ - S A -10
| ; s £
-4000 aees " "E.‘;>'7 : : ~ %H—; : -.14
Ttli . - : .. !
,‘~7L o
]
-6000 s : -8
it i
-8000 w22

i T
-10 000K et - - 2 —+-.26
s i
L ]
: T
-12,000 - o =30
. 5 ?ﬂ:ﬁ
-14,000 . : i i : -.34
-1.4 -1.0 -0.6 -0.2 ¢} 0.2 0.6 1.0 14
Longitudinal Distance from Center ,ft.
S F16.13
12-TR-13

R

v ”{ﬁ" -

B v TS ﬁW:&-‘f



90. &

APPENDIX VI

Matrix Elements

The matrix m is an almost diagonal matrix. It would
be diagonal except for the split of the thermodynamics into

two modes. The non-zero elements of m are
= /N°n®dr

= /¢, %K ON

myy =J/cy K °n°dr

= /x°N°dr

Tlely

ng = o (Hn (1) L fs(Vp g, [0 (g, , /00

msg = oy 2R 1) S (2)R(1)dz”'+fp(2)p(l)dzv N CALUARIET

mgs = p Hr (2) e Ma(2g, L fpLp(2)g, L fe(1)g(2)y,

ngg = p (2)n (2) ‘+fp<2)a<2’dz +[p(2)P(2)dz fe(Pel?ag
= [(Vg(1)y,
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Some of the elements of the matrix M are given below; as ex-

amples of the procedure outlined in Section V.

My, = /NO[KH(1-B)py-y-weg] “ndr

3K da ow oL da_\ dp
MlS =[, NO{(—~£(1—B)ﬂyn ——§ - — &g - W 2 _S
od o p ap da, Op Pm
3%, da_ aT 1°
I R }d,r ]pmm
oa  oT P
" oK da,. oW 3L da_)° -0
3a . 3p ap da  3p op

3L da_\o aT\o.
- [N° (w —2 2} ax (——) : p(l) dz
da, oT ap

My7 = Mg =0

=
-J
=

1
=
-
O
—
3
O
joN

N
<

;@
O ——
=

0,

N
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“ When all matrix elements argvevalgatéd;wfﬂéitesgiﬁgis:

inbo o, {0 ), bhid resuly
m
1 0 0 0 0 0 0 0
0 1858 0 0 0 0 0 0
0 0 124.7 0 0 0 0 0
0 0 0 1.6 x 10° O 0 0 0
0 0 0 0 =181 -483.8 0 0
0 0 0 0  -7808 -2102 0 0
0 0 0 0 0 0  =732.9 =81.77
0 0 0 0 0 0 =1590  =176.3
M
=161.5 86,4 T5.1 612 -3148 =-702.8 0 0
86. =86l 0 0 0 0 0 ¢
75.1 0 =75.1 0 0 0 0 0
612 0 0 -612 0 0 0 0
=129.6 0 0 0 10967“'1uu2,_ -10967 -1312
=571 0 0 0 2340 3335 23440 -2761
=1015,3 0 0 O wmivw=9952 =1312 10,967 1312
-2146 0 0 ooy ~20gRlss2T61 23,440 2761




