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ION 

ABSTRACT 

The several  shielding research f a c i l i t i e s  are de- 

scribed and the use of t h e i r  data by comparison between 

experimental geometry, power, e t c . ,  with the design 

s i tua t ion  i s  explained. 

s t rengths  are calculated.  

allowing f o r  small amounts of d i f f e ren t  sh ie ld  mater ia ls .  

A simple method f o r  estimating fast neutron dose 

Relative e f f ec t ive  source 

A simple method i s  shown f o r  

J 

from t h e r m 1  f l u x  i n  water i s  derived. 

The b io logica l  effect iveness  of the several  radia-  

t ions  encountered i n  reactor  shielding i s  l i s t e d .  

P 

73 



(25 -26 I COMPARISON METHOD OF SHIELD DESTP?' 

Introduct ion 

There are two commonly used methods of designing reactor  sh ie lds .  The 

present sect ion i s  devoted t o  the so-called "comparison method; i n  which 

the  data  of a fu l l - sca l e  experiment a re  transformed by the methods i n  the 

previous sect ion t o  the geometry of the reac tor  t o  be shielded so that a d i -  

r e c t  comparison i n  dose f o r  a given power l e v e l  i s  avai lable .  

e r a l l y  considered the most r e l i a b l e  method of design, but of course it has 

This i s  gen- 

the  drawback t h a t  i n  many eases there  are no experiments which can be t rans-  

formed t o  the desired s i tua t ion ,  so t h a t  a new experiment i s  required.  This 

eventually should become less and less common, however, as more sh ie lds  are 

measured. 

The second method o f  sh ie ld  design, which w i l l  be the subject  of a 

subsegwtit section, i s  based on calculat ions of a water shield,  i n  which neu- 

t ron  co l l i s ions  are t r ea t ed  as absorptions, with the exception that a bui ld-  

up fac tor  i s  later applied t o  account f o r  the sca t te red  component. 

ray  at tenuat ion i s  calculated on the bas i s  of a s implif ied picture  which 

Gamma- 

k i d s  to a linear bui-ldup factor. The secondary gama r<ijrs are necessar i ly  

t r ea t ed  by a more labopious method. 

The neutron cross sect ions t o  be used are obtained from the shielding 

experiments themselves, o f ten  the same experiments t h a t  are used f o r  the  com- 

parison method. The d i r e c t  calculat ion method i s  somewhat more f lex ib le ,  bu t  

a l so  probably less r e l i a b l e .  The uncertaint ies  in buildup f ac to r  and second- 

my gamma pro&uction are for tunately not always small. 

Description of Experimental F a c i l i t i e s  

Since the "comparison method" requires  a f a i r l y  complete knowledge of 

the experiments which are used, it is appropriate t h a t t h e  several  f a c i l i t i e s  

be described here. 74 
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(27-29) 

ing progpam has been based, 

7-%t concrete sh ie ld  of the OEbk R i d g e  graphite reac tor .  

t e s t ed  were inserted i n  t h i s  hole, considerable care being taken t o  insure a 

close fit, The sowee vas the reac tor  i t se l f ,  except t h a t  i n  one experiment 

an a r r ay  of uranium slugs vas fss tenea t o  the inner sample Pace t o  insure a 

known source spectrum, E ~ - p r % ~ ~ e n t ~  were confined to coaaeretes WC, BqC, Fe, 

This is the oldes t  f a c i l i t y  on which a shield-  

It ~onsists of a 2 - f t .  square hole through the 

Materials t o  be 

(30) 

Pbb and the Manford irs~-masonite sPd%eld. 

Paa general the samples were %SO wrrowb owing 

hole, so t h a t  r ad ia t ion  mixed eonsfderably between 

t~ the small s i ze  of the 

the sample and the s u r -  

rowding  concrete. 

i n t e rp re t a t ion  of  much of the data. 

A s  a result there was considerable uncertainty i n  the 

There was 8 notable exception i n  the 

case of ordinary concrete, which matched the swrougadiHag sh ie ld  so w e l l  t h a t  

the mixing had little effect, 

even throw@ no adequate theory has been devised f o r  understanding it, 

%bae d a t a  for t h i s  test  (3'1 i s  still useful,  

o m  Lid T~XAC.  '33'  his %acili$y, which mkes use of ma supersedes 

the core hole, faas served as the work-home of the AEC shielding program 

since i t s  completion near the end sf 2949- ~ t s  sc~mce i s  a c i r cu la r  p l a t e  of 

na tu ra l  u~aniugla (made up of X-PO slugs) place& over %he outer  end of the core 

hole, 

causing %issiows t o  take place,  

then enter a large %a& of water, in which %he sh ie ld  t o  be t e s t ed  i s  inser ted.  

"he f a c i l i t y  receives its name from the f a c t  t h a t  the tanks f i t s  a s  a l i d  over 

'Therm1 neutrons f m m  the graphite reaator impinge 08 t h i s  uranium, 

glae fast neutrons and gaar&lasrs so  produced 
I 

Measwellaenta are made i n  the L i d  Tank with a var ie ty  of" instruments i n  

.the water behind the various sh ie lds .  

in t ha t ' t he  instruments must be made waterpioof, t h i s  dissad-aatage i s  easily 

Although t h i s  i s  scrgnewhat fnconvenient 

75 
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overcome and i s  far outweighed by the advantages, among which are the f o l -  

c lowing: 

1) The background counts, due t o  p i l e  leakage) e t c .  are considerably 

reduced by the water, so t h a t  very low i n t e n s i t i e s  can be measured a t  the 

outside of the sh ie ld  samples. 

2) The at tenuat ion i n  water gives some indicat ion of the spectrum of 

rad ia t ion  penetrating the shield sample, 

3 )  Water i s  a very convenient integrator  of  fast-neutron flux, s ince 

it moderates quickly t o  the thermal energy region where measurements are 

much more e a s i l y  taken. 

4) Many shields  incorporate water as a dominant componentp espec ia l ly  

i n  the outer regions,  These are very e a s i l y  mocked-up i n  the L i d  Tank. 

The source power has been measured by observing the temperature as a 

function of time on opening and closing a boron shut te r .  

tained was 6 watts. 

e r a l  items such as source box walls, water tank wall (a  lead sheet i s  used 

The value so  ob-, 

The e f fec t ive  area i s  3970 cm2* It i s  covered by sev- 

where the rad ia t ion  en ters ) ,  the shut te r  assembly, e t c .  

duce a t o t a l  a t tenuat ion of fast  neutrons of  about 5/3, so tha t  the measured 

These items in t ro -  

source strength must be reduced by a f ac to r  of 0.6. 

Lid Tank i s  t h i s  large neutron leakage factor ,  which not only means good 

One advantage of the 

in t ens i ty  f o r  measurements, but  a l so  implies r e l a t i v e l y  l i t t l e  uncertainty 

i n  source s t rength ( the  fac tor  cannot exceed i, and cannot be much less than 

the measured 0.6) e 

ORNL Bulk Shielding Facil i ty.(34-35) This is the f i rs t  f a c i l i t y  i n  

which a reactor  has been used primarily f o r  shieldjng research. 

f o r  such a f a c i l i t y  became evident when the in t ens i ty  i n  the Lid Tank proved 

too  low fo r  fast-neutron dose measurements a t  f u l l  shield thicknesses, 

The need 

06-37)  

78 



Figure 17 shows the general layout of the f a c i l i t y ,  and i n  Figure 18 i t s  

use i n  the measurement of a shield i s  i l l u s t r a t e d .  The equipment comprises 
h 

primarily a small low-power MTR-type reac tor  suspended i n  a large pool of 

water. The water a c t s  as coolant, moderator, re f lec tor ,  and shield.  The 

shields  are inser ted  next to,  underneath, o r  around the reactor .  Where 

possible the water of the pool serves as p a r t  of the mockup. Thus measure- 

ments i n  the water of the pool give data on al l -water  reactor  sh ie ld .  

Although the Bulk Shielding F a c i l i t y  lacks the s implici ty  of the Lid 

Tank, it nevertheless o f f e r s  many advantages, t o  w i t :  

1) A t  10-kw power it j u s t  provides su f f i c i en t  i n t ens i ty  for. spectro- 

scopic s tudies  behind f u l l  thickness a i r c r a f t  reactor  shields .  

which could be achieved with minor modifications, the s i tua t ion  would be 

even be tte+. 

2) 

layers, obviating the geometry transformations t h a t  are used i n  applying Lid 

Tank s lab-shield measurements t o  small reactors .  

A t  100 kw, 

I t  makes possible the measuring of  shields  with curvature i n  the 

3 )  It  i s  operable over a wide range of powers, so t h a t  the same de- 

tec tor  can be used throughout large at tenuat ions.  

The advantage of low background, due t o  the f a c t  t ha t  the measure- 4) 

ments a re  taken within the water, i s  even more pronounced in t h i s  ease, since 

there i s  so much more water -- 17 f t  from reactor  top t o  pool  surface.  

BNL Shielding F a c i l i t y .  (38) This f a c i l i t y  cons is t s  of' a uranium source 

plate ,  i r r ad ia t ed  by slow neutrons from the Brookhaven reac tor  and mounted 

j u s t  below a large tank of water which extends not only through the e n t i r e  

5-ft  sh ie ld  thickness, but 7 - f t  above as w e l l .  Although t h i s  f a c i l i t y  has 

not been put t o  much use a t  the time of t h i s  writing, it nevertheless o f f e r s  

some unique advantages over the ORML f a c i l i t i e s :  
* Operation a t  100 kw. was approved July,  1952 and operation a t  t h a t  powey 

l eve l  has proved sa t i s fac tory .  
a9 
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1) 

750 watts, a f ac to r  of about lo* over the Lid Tank. 

2) 

avai lable .  

The power bevel o r  the la rges t  source pla te  ( there  are three) i s  about 

It o f fe r s  a unique v a r i a b i l i t y  i n  t h a t  three sizes of source p la te  are 

This should be very useful  i n  checking geometric e f fec ts ,  as 

w e l l  as affording d i f fe ren t  e f fec t ive  source s t rengths ,  

I n  addition, of course, it matches many of the advantages of the ORNL 

f a c i l i t f e s ,  which have been mentioned already. 

Comparison of Source Strengths 

I n  order t o  compare the source which i s  used i n  a shielding experiment 

with t h a t  of an ac tua l  reactor,  it i s  necessary t o  make some s o r t  of es t i -  

mate of the self-absorption in the  two eases.  

rad ia t ion  which leaks does so from the region near i t s  periphery, so t h a t  

Fortunately most of" the  

it is qui te  adequate t o  calculate  leakages using simple exponential attenu- 

a t ion ,  The care re laxat ion length can be e i t h e r  the mean free path o r  some 

bet ter  estimate based OD comparison of cross sections and measured relaxat ion 

lengths ,  

scribed the la t te r .  

The sect ion on ef fec t ive  removal cross sections, vide i n f r a I  de- 

For the present a core relaxat ion length, A,, w i l l  be 

used fo r  the at tenuat ion i n  the react ive volume without specifying i t s  origin.  

It w i l l  be shown that  t o  adequate accuracy the volume-distributed source 

can be replaced by a surface-dis t r ibuted source which w i l l  give the same 

attenuated dose at the shield ex te r io r .  The re la t ionship  between the volume 

and surface source st rengths  w i l l  a lso  be derived f o r  two common power d i s -  

t r ibu t ions  

Consider a small. vo lmeB dv, of the reactor,  the sate of power d i s s i -  

pation therein being p(x,y, z)dv. The t o t a l  of contributions of elements 

such as t h i s  t o  the  dose a t  some sbsermt ion  point outside the sh ie ld  i s  
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According t o  the assumption of  simple exponential a t tenuat ion i n  the  

core, the  dose read a t  P w i l l  be 

where A i s  a constant conversion fac tor  from power release t o  dose rate a t  

u n i t  distance shield and the function g(R) i s  defined i n  terms of the  point-  

to-point kernel G(R) as follows: 

I t  i s  a l s o  seen from the f igure  that  

dv = ds, cos0 d1?~(27 (79' 

where 6 i s  the angle of r0 with the normal t o  the  surface and ds, i s  the 

element of core surface.  A simplification, that of replacing cos8 by unity, 

i s  j u s t i f i e d  on the basis t h a t  fo r  regions of large 0 the  distance ro i s  so 

increased t h a t  the cont r ibu t ion  t o  the dose will be small. 
a3 



i 
The foregoing s implif icat ions r e s u l t  i n  the following: 

The upper l i m i t  f o r  rv i s  takenas ' i n f i n i t y  f o r  simplicity.  If the core 

diameter i s  la rger  than 2Xc, then t h i s  w i l l  introduce an e r ro r  no grea te r  

than about lo$. This condition i s  usually w e l l  f u l f i l l e d .  I f  it i s  not, 

then a method derived i n  connection with the "fast e f f ec t "  i s  applicable.  (39-41) 

I n  reactops which are used f o r  power production it i s  usual ly  desirable  

t o  keep the heat release density, p,corastaaat over the volume. For t h i s  case 

the second in t eg ra l  i s  e a s i l y  evaluated. For 

p ( rv )  = po = constant, 

G ( r 0 )  ds, (791, s d Dp = const. = h c p , ~  

S C  
I n  other words, f o r  constant power density i n  the core the equivalent surface 

source s t rength i s  simply hcpo watts/cm , and 2 

I t  might be noted a t  t h i s  point t ha t  Eq. (80) i s  a t  variance with the 

famil iar  r e s u l t  f o r  leakage from the surface of a radioactive self-absorbing 

semi-infinite volume source) t o  wit N0k/4 par t i c l e s  per unit source 

area per unit time, where No i s  the a c t i v i t y  per unit volume. 

l i es  i n  two places .  

which would read N0X/2, which i s  not the leakage a t  a l l .  

ence arose from the neglect of the cosine f ac to r  i n  Eq. (23). 

The difference 

I n  the present discussion a mil l igoat  detector  i s  used, 

The second d i f f e r -  - 
This means t h a t  

e4 Eq. (80) describes a source which i s  i so t ropic  but  matched t o  the ac tua l  



cosine source i n  the normal direct ion.  This makes only negl igible  e r ro r  fo r  

th ick  shields  e 

FOP the ease in which the power can be represented as a constant p lus  

a eosine function the equivalence i s  again e a s i l y  derived i f  the core diame- 

ter i s  large compared t o  A,: 

where a i s  the core half-width. 

Equation (81) can be approximated near the core surface, using the  argu- 

ment t o  replace the s ine by the  following expression: 

For t h i s  case, Eq. (78) becomes 

The source s t rengths  represented by Eqs. (80) and (85) are appropriate 

fo r  use with the transformations i n  the previous section. 

The evaluation of A i s  f o r t m a t e l y  not necessary i n  the pure comparison 

method, fo r  A is of course not a function of geometry and hence i s  the same 

f o r  experiment as f o r  the design reactor .  

85  



Example: 1) Neutron Shielding by Comparison w i t h  BSR 

Leakage calculat ions are i l l u s t r a t e d  by the following example: 

Reac t o r  

Shape: Spherical, radius 60 cm. 

Power : 
m p ( r >  = 100 + 127 cos 2a' , watts/cm3 a 

(This corresponds t o  about lo8 watts t o t a l  and i s  adjusted 

so tha t  peak power density i s  Just  twice the average.) 

hc = 10 em 

Shield 

water 

E xper iment 

Data: Bulk Shielding F a c i l i t y  data, Fig. 20. 

Reactor f o r  experiment: 

Shape: 

Power: Fig. 19 data i s  normalized t o  1 watt. 

Power density:  

rectangular parallelepiped, 24 x 15 x 15 i n .  

t o  be assumed constant over volume 

and equal t o  1.13 x 10-5 watts/cm3 

a t  one w a t t  power leve l .  

Relaxation length i n  BSR core = 9.7 cm. 

It i s  required t o  f ind  the thickness of water which w i l l  be necessary 

t o  reduce %he fast-neutron dose a t  50 f t  from reac tor  center t o  1/4 R / h r ,  

which i s  equivalent t o  1/40 rep/hr,  

Treatment of the BSF reac tor  requires  eitherconsiderable computation 

or, f o r  reasonable accuracy, ca re fu l  appl icat ion of approximations. We shall  

indulge i n  the la t ter .  

8 6  
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L e t  us choose as a hypothesis t h a t  w e  can neglect the lateral  extent  of 

the reactor,  taking account only of self absorption due t o  i t s  depth along 

the reactor-detector ax is .  A t ,  say, 120 cm separation between detector and 

the nearest  reactor  face, what i s  the distance t o  the corner of  the reactor,  

f o r  which OUT approximation i s  worst? The distance i s  given by 

L =  = 125 em. 

This means t h a t  the rad ia t ion  from t h i s  corner must t r a v e l  through an ex t r a  

5 cm of water and thereby w i l l .  be reduced i n  in t ens i ty  by a fac to r  of about 

1.7. This i s  too much, and w e  therefore look f o r  the  next approximation. 

Suppose the contribution of each element of reactor  face i s  reduced ex- 

ponentially with the distance ID. excess 'of zg the basic  distance (120 cm) . 
(It i s  permissible t o  neglect the added geometric a t tenuatfon.)  The inten-  

s i t y  i s ' t h e n  as follows (see Fig. 2 1 ) :  

j J -$&.2 + x2 + y2 - .] 
P ( z >  = kaG(z) e r;: dxdy 

x=o y=o 

Here h Can be taken f r o n  Fig. 20 i n  the region of 120 t o  140 cm. 

of the f a c t  that z > 7  x, y, it i s  easy t o  show t h a t  

Making use 

where 4 ab i s  the face areas Q i s  the swf8ce strength, A is the  usual con- 

s t a n t  t o  convert from power release t o  dose rate a t  un i t  distance, and G ( z )  i s  

the usuizl point-to-point kernel e The fac tor  (1 - a*) indicated the 
88 



CT: 
tn 
rn 

/ 
x

/
 

\ -89- 

LL 
cn 
rn L
 
0
 

LL 



reduction i n  in t ens i ty  a t  z due t o  the f a c t  t h a t  pa r t s  of the reactor  surface 

are f a r the r  than z from the detector .  This fac tor  becomes, f o r  the case i n  

point, about 0.80 and does not change appreciably i n  the range of i n t e r e s t .  

If w e  now use Eq. (80) f o r  the BSR, u = Ahgs~ PBSR, and Eq. (86) gives 

the following expression : 

Since D(z) i s  av3i lab le  from Fig.  20, w e  are now ready t o  make use of t h i s  

data i n  designing the sh ie ld .  A s  was mentioned before, A need not be evalu- 

ated, as it i s  the same f o r  the BSR and the reactor  fo r  which w e  are design- 

ing a sh ie ld .  

From Eq. (85) w e  f i nd  the equivalent surface s t rength of the reac tor  i n  

question. From the specif icat ions,  

p ( r >  = 100 + 127 cos E watts/cm 3 
2a 

‘equiv. . 100 + . 127 &) = 1332 A . 

F’rom Eq.  (33),(22),  and the above, 

(88) D(z)  zdz . J .  60 . 271- (1332)(4.9) 
Z 

?rFi 

The in t eg ra l  i s  evaluated approximately by d i r e c t  integrat ion,  after f i t t i n g  

D(z) i n  the region of interest  (z*zo) by an exponential: 



- ( z  - zo)/h 
D(z) = D(z0)  e (89) 

For the required condition of f, rep/hr a t  50 ft, w e  must have, by 
40 

the inverse square l a w ,  

x 30.5 1 
60 + z ~ ~ ( 6 0  + Z, 6c) = 

The required value of z, the shield thickness, i s  then determined by solu- 

t i o n  of the following equation: 

h i s  of course specif ied by the requirement t h a t  Eq. (89) f i t  %he data  i n  

Fig.  20. Z i s  found, by t r i a l  and er ror ,  t o  be 144 cm. 

It i s  of ten  convenient t o  have a short-cut method, not necessar i ly  very 

accurate, t o  check the  results of the long calculat ion above. Such a method 

i n  t h i s  case would be t o  neglect the d i spa r i ty  i n  reactor  shapes and rela- 

t i v e  core absorption, comparing direCtly on the  basis of power densi ty  near 

the periphery. We i l l u s t r a t e  t h i s  procedure by repeating the above problem: 

1 13 x 10-5 watts/cm3 50 x 30.5 (91) ( z + 6 0  
= .025 rep/hr . 

100 w a t  ts/cm3 D (  exp t . 

Equation (91) says t h a t  the dose a t  the edge of  the sh ie ld  i n  the ex- 

periment should be equal t o  t h a t  allowed in the crew compartment 

(.025 rep/hr),  corrected f o r  the r e l a t i v e  spec i f ic  powers of the two re- 

ac tors  1-13 x wat>s/cm3 , and corrected f o r  the f a c t  t h a t  the crew 
100 watt s / c d  



i s  50 f t ,  away Eq. (91) i s  solved by z = 142 cm, not  a bad 

estimate considering how easibjr it was obtained, 

(25 1 Example: 2; Neutron Skieldine by Gomparfwn' with Lid 'Pank D a t a  

Since a great deal of shieiding information has or iginated i n  the ORHL 

Lid Tank, and since considerably nore is expected both from t h i s  and the  

similar Brookhaven f a c i l i t y ,  it i s  prof i tab le  t o  study the conversion of 

t h i s  data to  a per t inent  design. The procedure i s  i l l u s t r a t e d  by the  f o l -  

lowing example : 

Reae tor 

Shape: cy l indr ica l ,  height = 100 cm, 

radius = 50 em9 

Power density:  constant radially, 

pgy) = 30 + 60 cos (nyJ2a) wst,ts/cm3; 

y is distance from median plane with C Q F ~  

ends at y = -+ a. - 
4bc - 10 cD1 

Allowed dose: .a25 rep/& at J.OOO ft, from reactor.  

Shield 

Water w i t h  1/2$ B by vt. 

Lid Tank 

Data: see Fig. 22 

Power: 6 w a t t s  total. 

Se?f-sh iekding  fLtctoP: 0 . 0 "  

Source shape circular disc  a 

Size :  rad ius  = 14" = 33.6 cm, 

area = 3970 cn? 



It i s  required t o  specify how much shielding i s  required f o r  the base 

of the reac tor .  By comparison, we can write down the following: 

100 x 30.5 2 6 x 0.6/3970 watts/cm2 h ( ~ ~ 3 5 . 6 )  rep/hr 
50 x 10 + (10)*L060 h(z,>O) 

= .025 x (  ) X 
z + 50 

2x50 
%.T. (4  

where the f ac to r s  on the  r i g h t  ape, i n  order:  

The allowed dose i n  the design s i tua t ion .  

The correct ion f o r  reactor-crew separation. 

This i s  not  exact since of course the reac tor  i s  not a sphere 

so the inverse square law i s  not  d i r e c t l y  applicable.  

e r r o r  involved i s ,  however, not very much. 

The r a t i o  o f  surface source strengths,  the numerator being 

t h a t  of the Lid Tank as shielded by i t s  s t ructure ,  the  de- 

nominator being obtained d i r e c t l y  from (85) * 

Hurwitz correct ions f o r  d i sc  sources of" the  indicated r a d i i .  

Each f ac to r  cor rec ts  t o  an i n f i n i t e l y  Large d isc  so t h a t  the 

two are then d i r e c t l y  comparable. 

The 

Solution of Eq. (93) using Fig. 22 y ie lds  a sh ie ld  thickness 0f about 

88 cm. 

 gam^ Shielding by Comparison Method. The appl icat ion of  the comparf- 

son method t o  the  design of shielding f o r  gamma rays i s  somewhat more com- 

p l i ca t ed  because of the secondary production within the shield.  

For the gammas which are produced within the reac tor  the methods of 

the preceding,section apply, provided, of course %hat the re laxa t ion  lengths 

are not too long. 
f 

This s i tua t ion  does not arise very often,  so we w i l l  not  

treat it here. Suff ice  it t o  say t h a t  an upper l i m i t  t o  source s t rength  cam 
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Fi9.22 F a s t  Neutron Dose in Borated  Water ( H I  B by w t . ) .  OWL L i d  Tank data 
p .  132. of Blizard, Clifford e t  a 2 .  from Fhysics Division quarterly report  OWL-919, 

Data normalized t.o 6 watts power. 
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be had by ignoring the s e l f  absorption completely, and, i f  t h i s  i s  not ade- 

quate, then the methods of Murray (40’ and o thers  (39) , (41) can be resor ted  t o .  

I n  case the gammas are produced primarily i n  the shield,  then the rela- 

t i v e  source s t rengths  a re  Just  the same f o r  neutrons and gammas, and the 

core re laxat ion lengths f o r  neutrons are t o  be used fo r  comparing Qamma 

i n t e n s i t i e s .  

For the Huswitz t r a n s f o r m t i o n  i n  the ease of secondary gammas the  

gamma and not the neutron relaxat ion lengths are t o  be used s ince these de- 

termine the behavior a t  large dis tances ,  

Comparison of Different  Materials 

Although it i s  of course safest t o  perform an experiment on as exact  a 

mockup as can be b u i l t ,  nevertheless t h i s  procedure i s  not of ten pract icable ,  

so that subs t i tu t ions  must be accepted. A s  a consequence it i s  important t o  

know the  e f f e c t  of replacing one material with another i n  a sh ie ld .  

cannot always be predicted with assurance, but there  are ce r t a in  s i t ua t ions  

i n  which we can do so with confidence. We s h a l l  now explore a few of these.  

This 

The Effect ive Neutron Removal Cross Section. Consider a water shield.  

Col l is ions of fas t  neutrons on hydrogen r e s u l t  i n  energy degradation with 

consequent increased probabi l i ty  per u n i t  path length f o r  the next co l l i s ion .  

This is of course due t o  the increase i n  hydrogen cross seetiom with decrease 

i n  neutron energy. A s  a consequence, as has been mentioned before, c o l l i s i o n  

with hydrogen i s  tantamount t o  removal from the  penetrating beam, This i s  

not t o  say t h a t  there  i s  not some b io logica l  e f f e c t  due t o  the presence of 

these degraded neutrons, r e q u i r i n g  the use of a buildup f ac to r .  This i s  

indeed the  case, but  the f ac to r  i s  not  l a rge ,  

Col l is ions with oxygen are not, on the other  hand, near ly  so l i k e l y  t o  

r e s u l t  i n  removal of the neutron, There are two reasons f o r  t h i s ,  F i r s t l y  
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the energy i s  not degraded very much unless the co l l i s ion  i s  ine l a s t i c ,  and 

secondly the e l a s t i c  scat ter ing,  which might be expected t o  de f l ec t  the neu- 

t ron  in to  a d i rec t ion  i n  which i t s  chances of penetration were small, i s  

mostly i n  the forward direct ion,  giving r ise  t o  a smaller removal e f f e c t ,  

Nevertheless, it i s  possible t o  calculate  with reasonable accuracy the pene- 

t r a t i o n  of a water sh ie ld  on the bas i s  of simple exponential a t tenuat ion 

using the t o t a l  cross  sec t ion  of hydrogen and some e f f ec t ive  removal cross  

sect ion f o r  oxygen'42!. 

cated above. 

A small buildup f ac to r  must a l so  be used, as ind i -  

Likewise other  materials which are introduced i n t o  a water sh ie ld  a l so  

exhib i t  e f f ec t ive  removal cross sect ions,  Some of these have already been 

tabulated on page 28. It i s  possible, by inference from nuclear r a d i i  t o  

estimate the e f f ec t ive  removal cross sect ions of many elements other  than 

those which have been measured. This process has been discussed i n  some de- 

t a i l  by Blizard and Welton, (I6) and the method has been applied i n  the prepa- 

r a t ion  of the Report of the Shieldina Board ( 4 3 ) e  

which e f f ec t ive  removal cross sect ion and nuclear r a d i i  have both been mea- 

sured i s  s t f l l , b w e v e r ,  qu i te  small. A s  a consequence no tab le  uch as t h a t  

i n  the Shielding Board Report i s  prepared fo r  the present t e x t .  

the time a new ed i t ion  i s  turned out  t h i s  w i l l  be possibl& 

The number of cases i n  

Perhaps bJ 

The removal cross  sect ions on page28 are t o  be used f o r  fas t  neutron 

removal i n  a sh ie ld  which has adequate hydrogen t o  keep the dose from lower 

energy neutrons from being excessive,  J u s t  how much hydrogen t h i s  is, has 

never been properly determined, but  concretes which are only 10% water by 

weight seem t o  be adequately so endowed. O f  course oxygen, which makes up a 

large p a r t  of a l l  ordinary concretes, i s  something of a moderator i n  i t s  own 

r igh t ,  so t h i s  105 f igure  may not be too suprising. It has been demonstrated 
<o be 1.54 b o  36 



. 

t h a t  a pure i ron  sh ie ld  w i l l  not workp (44) f o r  the reason t h a t  intermediate 

energy neutrons, too low f o r  i n e l a s t i c  sca t te r ing  and too high f o r  capture, 

are not appreciably attenuated and give large neutron currents .  Even were 

these not themselves important b io logica l ly  (they could, f o r  example, be 

attenuated quickly by a l i t t l e  water), they would cons t i tu te  a rather exces- 

s ive source ofsecmdary gammas a t  the outside of the i ron.  This last  point  

i s  one of the most important points  i n  a l l  mobile sh i e ld  design work, and it 

cons t i tu tes  one of the  commonest nemeses of the  inexperienced. 

Gampa-ray Shielding with No Secondary .Froduction, Often a layer  of 

gamma-ray shielding i s  introduced i n  a region of low neutron f lux  but  high 

outward-bound gamma-ray f lux.  A s  a consequence the gamma rays produced by 

neutron capture o r  i n e l a s t i c  sca t te r ing  within the layer  are negligible,  and 

the gamma-ray shielding materials considered f o r  t h i s  layer  can be compared 

on the basis of the t o t a l  gamma ray cross sect ions which appear i n  Figs.  2 

and 3.  The photon energy a t  which the comparison i s  t o  be made depends on 

the  source and the sh ie ld .  If appreciable lead has been used, and i f  the 

source contains neutrons, then the appropriate energy i s  about 3 MeV, the  

minimum i n  the lead cross  sect ion curve, since the presence of neutrons usu- 

a l l y  assures a spread i n  energy of gammas up t o  about 'j' or  8 Mev. 

For convenience w e  include here the l i s t  of gamma ray  absorption coef- 

f i c i en t s ,  o r  macroscopic cross sect ions which was used by the ANP Shielding 

Board and recorded i n  t he i r  repor t .  
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Table 8 Gamma-ray Shields 

c 

~~ 

Element o r  
Material 

Uranium 

Lead 

Gold 

Tungsten 

I ron  

Aluminum 

Sodium 

B4c 
Li th ium 

Water 

Be0 

Density, gm/cm3 

18.7 

11.3  

19.3 

19.3 

7.8 

2.4 

0.93 

2.5 

0.53 

1 .oo 

2.8 

Gamma Absorption 
Coefficient,  p, cm-1 

0.80 

0.45 

0 -75 

0 -75 

0.25 

0.085 

0 -033 

0.070 

0.014 

0.050 

0.85 

Gamma-ray Shielding with Secondary Production. Most high performance 

shields  w i l l  incorporate gamma shielding a t  a loca t ion  where the secondary 

gamma production i n  it i s  ce r t a in ly  not negl igible .  

troduction of an addi t iona l  source t o  be shielded, t h i s  would seem a t  f i r s t  

glance t o  be poor prac t ice .  

within a water shield,  the weight i s  less the c loser  it i s  crowded i n  toward 

the core. The weight-saving incentive i s  balanced by the decrease i n  effec- 

t iveness  due t o  secondary gamma production within the layer .  

the optimum locat ion i s  i n  a region where secondary production i s  important 

but  not overwhelming. We s h a l l  discuss t h i s  process i n  more d e t a i l  i n  con- 

nection with sh i e ld  optimization. 

Since t h i s  involves in -  

But fo r  a given thickness of  a layer  of lead 

A s  a consequence 

I n  some shields ,  usual ly  i n  connection w i t h  t he  optimization procedure, 

the e f f e c t  of  introducing lead i n t o  a water sh ie ld  has been measured. This 
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e f f e c t  can be expressed i n  terms of a "replacement length, " "1, " which i s  

measured as follows: A gamma ray  detector  is  located a t  the sh ie ld  ex te r io r  

and a reading, 

layer  of t ems 

A second gamma 

the relaxat ion 

The relaxat ion 

t i o n  of (94): 

r.., i s  taken. Then a t  a given locat ion within the shield a 

of gamma material, say lead, i s  introduced, replacing water. 

reading, E, i s  taken. 

length, as follows: 

Then rtkl l i s  defined, analogously w i t h  

length i s  perhaps easier t o  see from the following transforma- 

The 1 ' s  are functions of many variables,  such as posi t ion within the 

shield,  the t o t a l  sh ie ld  thickness, the source, and the composition of the 

shield throughout. 

mating the e f f e c t  of small lead addi t ions o r  removals on at tenuat ion.  

method i s  described i n  more detai l  i n  the Report of  the Shielding Board. 

Nevertheless they a r e  of ten  of considerable use i n  e s t i -  

The 
(22) 

Problems 6. 

It i s  desired t o  enhance the gamma at tenuat ion of a spherical  sh ie ld  

by a f ac to r  of 2 by the addi t ion of a layer  of lead.  

r a d i i  which are convenient the j s s  

follows : 

A t  the two 

are measured, w i th  results as 

1) a t  r1 = 90 ems, #e = 4 cms 

2) a t  r2 = 120 cms,,J!= 2 * 3  cms 

99 



How much lead (how thick)  should be added a t  rl? How much at r2? 

Which i s  bet ter  from the  weight standpoint? 

Estimation of Fast-Neutron Current from Thermal Flux i n  Water 

Since it is  much more d i f f i c u l t  t o  measure fast neutrons than thermal neu- 

t rons,  it is  of ten necessary t o  forego the  d i r e c t  measurement and t o  estimate 

the  b io logica l  dose due t o  fast neutrons from the  measured therma1:neutron f lux  

i n  a good moderator such as water. With instruments present ly  ava i lab le  t h i s  

procedure increases  the s e n s i t i v i t y  of measurement by about 10 , although t h e  4 

method i s  not as accurate as the  d i r e c t  measurement when in t ens i ty  i s  adequate. 

I n  the  submarine sh i e ld  a t tenuat ion  tests t h i s  process has been mandatory, s ince 

the  a t tenuat ions  are so grea t  t h a t  fast-neutron de tec tors  are incapable of meas- 

urdng d i r e c t l y  the  transmission of t he  sh i e ld  mockups. 

There is another important reason f o r  making use of t he  thermal-neutron 

measurements, even i n  case the  fast de tec tor  can also be used. The e l ec t ron ic s  

of the  fast-neutron recoil-proton dosimeter (45' are such that a def in i t e  cutoff 

i n  s e n s i t i v i t y  must be used i n  order to,discriminate aga ins t  gamma rays.  As a 

consequence, the instrument is  b l ind  t o  neutrons below the  cutoff energy, which 

may be as high' as 8 f e w  hundred k i lovol t s .  

ind ica tes  t o t a l  neutron cur ren t  regardless  of energy. 

On the  other  hand the thermal f l u x  

Even though it i s  pos- 

sible t o  argue t h a t  neutrons below t h i s  cutoff energy w i l l  not contr ibute  ap- 

preciably t o  the  dose i n  most cases, it i s  nevertheless comforting t o  have a t  

hand a technique which, i n  s p i t e  of i t s  other  l imi ta t ions ,  does not possess 

t h i s  b l ind  spot .  Furthermore it is  possible t o  conceive s i t u a t i o n s  i n  which 

t h i s  low-energy component could be important, e.g. behind coolant duc ts  o r  with 

a l a rge  delayed neutron (low-energy) source. For these reasons it is  c l ea r  that 

the estimation of fast-neutron current  from thermal f lux  i n  water ( o r  other  

highly hydrogenous media} w i l l  be important f o r  some time. 
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Suppose a current  of fas t  neutrons, of s t rength I(z) cm-* sec'l i s  

t rave l ing  through water i n  the d i rec t ion  o f  increasing z. 

hand i s :  

ren t?  The neutrons a re  removed from the fast  beam by co l l i s ions  with the 

water atoms, slowed down i n  the  water by many e l a s t i c  co l l i s ions ,  and are 

absorbed as thermal neutrons by the hydrogen. 

The question a t  

What thermal f lux  w i l l  be observed as a r e s u l t  of t h i s  fast  cur- 

,Diffusion a t  thermal energy 

before absorption i s  taken account of separately by a s l i g h t  adjustment of 

the slowing down length.  

The rate of  removal from the fast  beam i s  e a s i l y  calculated,  since 

t h i s  i s  j u s t  the negative der ivat ive of  I(z) with respect  t o  z. These "re- 

moved" neutrons are then assumed t o  form a source for  the slowing down pro- 

cess, which wi l lbe  Ixkn to  be Gaussian. These slowed-down neutrons const i -  

t u t e  the source f o r  the thermal flux, which source must equal, under equi- 

l ibrium conditions, the rate o f  thermal absorptions.  

The foregoing process i s  represented by the following equation: 

z=o 

where q ( z '  - z )  i s  the probabi l i ty  t h a t  a fast neutron released a t  z w i t h  

a r b i t r a r y  i n i t i a l  d i rec t ion  w i l l  a r r i v e  a t  thermal energy a t  2'. 

course a function of the i n i t i a l  energy as w e l l  as the propert ies  of the 

moderator. If Gaussian slowing down i s  assumed, then 

q i s  of 



where /r* i s  the Fermi age f o r  slowing down i n  water. 

d i f f e ren t  energies i n  a repor t  by N. D i s m u k e .  

This can be found f o r  
(461 

I n  order t o  in tegra te  the expression on the r i g h t  of ($), it i s  neces- 

sary t o  make some assumption concerning the form of I ( z ) .  This i s  done by 

assuming exponential behavior i n  the region of i n t e r e s t .  Thus the t rue  I(z) 

i s  approximated i n  the region near z '  as follows: 

- ( z  - z ' ) / h  
I ( Z )  = ~ ( z * ) e  9 

where h ,  the relaxat ion length, i s  t o  be determined. 

L e t  
z - 2 '  - - u, 
fl L 

= ( u  + p)2 - p2 , ( 2  - z1)2 + z - z' 
4 7  h 

where 
z - z '  
x 2up = 

The in t eg ra l  i s  j u s t  the e r r o r  i n t e g r a l  which i s  tabulated i n  many standard 

t e x t s .  It i s  made up of two par t s ,  as follows. 
( 47-48 ) 

7 0 

2 
e dx 

-X ii 
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L 

z '  
A -1m ' where E(m) i s  the  tabulated function and m stands f o r  the l i m i t  

Usually t h i s  l i m i t  i s  a large negative numberj t h a t  is, the source i s  far 

from the point  of measurement so that z '  i s  large.  As a consequence, the 

tabulated function i s  very nearly uni ty  and the whole integral  i n  (101) i s  

j u s t  equal t o  $-T . Thus 
7p 

&$th ( z ' )  = ' e  I(z' 1 (104) 

The exponential term represents the at tenuat ion to  be expected i n  a d i s -  

tance 7'/A, so t h a t  (105) can be wr i t ten  as follows: 

The quant i ty  r / A  i s  referred t o  as the "displacement" between thermal and 

f a s t  flux, It should be noted, however, t h a t  it i s  not the distance i n  

water between places of equal thermal and fast fluxes, but  ra ther  it i s  the 

- 

distance between places of equal removal rates f o r  the fast  and thermal neutrons. 

Although (103) looks very pat,  it i s  i n  e f f e c t  not very accurate, nor i s  

it immediately useful  

The choice of A i s  not d i f f i c u l t ,  since it i s  c l ea r  t h a t  i f  h and T a r e  

not  rapidly varying functions of z, then the  relaxat ion length of  the observed 

thermal f lux  w i l l  give a very good estimate of the corresponding quant i ty  f o r  

the f a s t  current .  

Wthermore,  the  concept of a collimated fast-neutron current  probably 

does not introduce serious e r ro r s  since the most penetrating component i s  a l -  

most surely qui te  w e l l  collimated a t  large distances.  
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The source of "removed" neutrons, from which slowing down commences, 

howeverB was assumed by the form of (97)  t o  be i so t ropic .  

l y  not the case,  

angles not over 7r/2* 

t h i s  ca lcu la t iono  

This i s  de f in i t e -  

Col l is ions with hydrogen r e s u l t  i n  sca t te r ing  through 

This means t h a t  the displacement i s  underestimated by 

Another d i f f i c u l t y  arises i n  the choice of neutron energy f o r  the  pur- 

pose of determining r ,  The energy before co l l i s ion  i s  ce r t a in ly  not  appro- 

p r i a t e ,  since the removal co l l i s ion  must introduce some moderation. The 

hydrogen co l l i s ions ,  which are usually the  most frequent, result  i n  energies 

which are a i f o r m l y  d is t r ibu ted  from zero t o  the i n i t i a l  energy. 

the i n i t i a l  energy f o r  determination of 7'' overestimates .- the  displacement, 

p a r t i a l l y  compensating f o r  the e r r o r  discussed i n  the preceding paragraph. 

Choosing 

A t h i r d  d i f f i c u l t y  with the method compounds the  two above. Although 

the penetration of fast  neutrons i s  determined by the very high-energy beam, 

e s sen t i a l ly  mcol l ided,  nevertheless there i s  car r ied  along with t h i s  beam 

a much la rger  flux of intermediate energy neutrons, probably-not more than 

two OF three MeV, f o r  which the displacement i s  small because of t h e i r  lower 

energy and lack of coll imation. These neutrons, representing the buildup i n  

fast-neutron dose, account f o r  near ly  a l l  of the measured dose but  are not in -  

cluded i n  I(z) as calculated,  since no allowance i s  made f o r  the dose due t o  

p a r t i a l l y  slowed-down neutrons. It i s  the f o r t e  of the method tha t  it i s  

quant i ta t ive ly  accurate i n  counting neutrons, so tha t  an adjustment of the  

displacement is adequate t o  make the method appl icable .  

To allow f o r  these lower-energy less-coll imated neutrons, an age cor- 

This choice makes equation responding t o  only about 3 MeV should be used. 

(104)agree with the  observed r a t i o  of fast dose t o  thermal f lux  i n  those 
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regions i n  which i n t e n s i t y  i s  su f f i c i en t  so t h a t  both are measurable." Note 

that while t h i s  adjustment must be made t o  r, no such treatment i s  required 

f o r  A, which comes from the observed flux d i s t r ibu t ion  i n  a straightforward 

manner. 

The method j u s t  described can be considerably refine<, making proper 
(49) 

allowances f o r  energy and d i rec t ion  i n  the co l l i s ions .  One such attempt 

gave a good estimate of  the thermal flux i n  water from a fission-neutron 

source, but  it has not ye t  been car r ied  t o  the point of estimation of fast- 

neutron dose t o  be expected. 

The thermal f lux  i n  the Lid Tank i s  shown i n  Fig. 23. I t  may be of 

i n t e r e s t  t o  compare t h i s  with the data on Fig. 22. 

Problem 7. 

Choose one Lid Tank Curve and from t h i s  f i nd  the point-to-point 

kernel f o r  t h a t  type of rad ia t ion .  P lo t  t h i s  on the same graph. 

Problem 8. 

A cubic reactor ,  of s ides  60 crns, i s  located i n  the middle of 12 f t .  

cube of water. 

d i s t r ibu t ion  i s  given by the following expression: 

It operates a t  1000 watts totalpomr, and the power 

m Try T Z  
1 2a 2d 2a p(x,y,z) = p + p cos- cos- cos- 

0 

where a = 30 cms. 

x,y, z are Cartesian coordinates with or ig in  a t  the center .  

* Inc identa l ly  t h i s  7160 accounts f o r  the s l i g h t l y  greater  displacement due 
t o  diffusion of neutrons after thermalization and before capture. 
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What i s  the dose a t  the outside face center of the water sh ie ld  f o r  

gammas and fast  neutrons? Use the BSR data  and assume uniform power 

d i s t r ibu t ion  i.n the BSR. 

The Biological Dose 

The to le rab le  dose of rad ia t ion  i s  s t i l l  the  subject of considerable re- 

search and not well-founded i n  fa.ct. 

paucity of experience with rad ia t ion  exposure of human beings. 

This i s  not surpr is ing i n  view of the 

Nevertheless, 

i n  so far as the sh ie ld  designer or  the laboratory supervisor i s  concerned, 

the information i s  " leg is la ted"  where the research i s  ye t  undone. 

quently i n  the design of shields  we accept ce r t a in  tolerable  doses which are 

Conse- 

specif ied o r  agreed upon. Much of t h i s  dogma comes from the "Permissible 

Doses Conference " of September 29-30, 1949, a t  Chalk River, Canada, This 

was attended by representat ives  of the United Kingdom, United States ,  and 

Canada, The minutes (5') are a valuable record of the decisions which were 

reached 

Relative Biological Effectiveness 

The d i f f e ren t  types of rad ia t ion  deposit t h e i r  energy i n  the t i s sues  i n  

d i f f e ren t  wayss varying pa r t i cu la r ly  i n  the energy density.  

the number of c e l l s  k i l l ed ,  %or example, per e r g  deposited, it is necessary 

A s  t h i s  affects 

t o  determine some re la t ionship  between the doses t o  be expected from the dif- 

fe ren t  rad ia t ion  types, The Conference minutes record an agreement t o  define 

the Relative Biological Effectiveness as the " r a t i o  between the quant i t ies  of 

d i f f e ren t  types of rad ia t ion  (measured i n  ergs  per gram)required t o  produce 

the same bio logica l  effect: '  

gamma rays should be used as a standard and therefore considered unity.  

no RBE is given f o r  other  gamma rays (except 200-kv X rays),  all are assigned 

It was fur ther  agreed t h a t  the €BE of radium 

Since 



a RBE of one i n  shielding work. The complete tab le  from the Conference 
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minutes i s  as follows: 

1 

1.5 

Table 9 Relative Biological Effectiveness 

Type of  Radiation 

Alpha 

Beta 

Gamma (radium) 

X rays (200-kv) 

Fast  neutrons of c 2 0  MeV 

Slow neutrons 

Protons 

The RBEI however, does not y i e ld  a t  once the equivalence of  fluxes of 

the various rad ia t ion  types, since the energy deposited var ies  considerably 

wi th  many f ac to r sp  such as neutron energy, angle of a r r iva l ,  size of body 

irradiated, e t c .  A s  a consequence the tolerance specif icat ion i s  the result 

of much calculat ion and i s  based on many a r b i t r a r y  assumptions. 

The conference agreed t o  specify dosage i n  terms of "roentgens equiva- 

l e n t  physical, I' which has subEquntly been dubbed the rep " and which represents  

tha t  amount of rad ia t ion  depositing 93 ergs p e r  gram of tissue. 

very close t o  the roentgen, which i s  defined i n  terms of energy deposited i n  

The rep i s  

dry a i r .  No d is t inc t ion  between the two need be made i n  shielding work a t  

present 

The most important specif icat ion i s  the amount of gamma (standard) radia- 

t ion  t o  be to le ra ted .  For c i v i l i a n  occupation t h i s  was chosen t o  be 0.3 rep 

108 



per  40-hr week, with no specif icat ion on how the dose I s  t o  be d is t r ibu ted  

during the week. 

oratory i s  never allowed t o  exceed .0075 rep/&, and usually the l i m i t  i s  

kept lower than t h i s  by about a factor  of 10 t o  insure negl igible  instrument 

background. 

photon flux. 

i s  most intensely i r r ad ia t ed  except t h a t  doses l imited t o  the hands and fore-  

am can exceed the normal dose by a fac tor  of  f i ve .  

For purposes cf  sh ie ld  design the rad ia t ion  rate i n  a lab- 

Figure 6, page 45, can be used t o  convert t h i s  dose rate t o  

The allowed dose rate appl ies  t o  t h a t  p a r t  of the body which 

The neutron s i tua t ion  i s  not qu i te  so simple, since there are many ways 

D r .  Walter S. Snyder, of i n  which the energy can be deposited in the  f l e sh .  

O m B  has calculated the tolerance dose both f o r  thermal 

neutrons. The calculat ion f o r  thermal neutrons i s  probably f a i r l y  accurate 

and w i l l  not be expected t o  be changed by subsequent work. The data avai l  - 

(51) and fast ( 5 2 )  

t o  Snyder on d i f f e r e n t i a l  cross sect ions f o r  the fast-neutron ealcula-  

t fons may indicate  somewhat d i f f e ren t  values FuPthermore, Snyder' s calcu- 

l a t i o n  appl ies  t o  a collimated beam of neutrons incident  normally on a 30- 

cm-thick s,lab of meat. Inclusion of rad ia t ion  from other angles may a l t e r  

the r e s u l t .  

s ide an airplane crew compartment where the neutrons a r r ive  from a l l  direc-  

t ions.  The dose f o r  t h i s  case i s  much more d i f f i c u l t  to  specify. 

This pa r t i cu la r  point i s  of i n t e r e s t  i n  specifying the dose in -  

For shielding work, Snyder' s ( 5 3 )  r e s u l t s  w i l l  serve admirably and are 

reported i n  the following table:  



. 

A t  the  

Table 10 Neutron F l u e 6  B%ologfcally Equivalent 

t o  0.3 rep of Gaitma Rays per 40-hr Week 

perma- 

nent in jury  is t o  be expected from a s ingle  expasur42 of the whole body t o  25 r 

or  less, with the  possible exception lof pregnant women." The Lexington Pro- 

j e ~ t ' ~ ~ )  used 25 r a6 the dose t o  be given t o  the crew of the  nuclear-powered 

airplane.  

acquired venerabi l i ty ,  i f  not au thent ic i ty .  Recently it has been questioned 

This dose ha8 been used 80 consiatent ly  since then tha t  it has 

by a number of organizations in te res ted  in nuelear-powered flight and a gragrm 

t o  determine the  proper tolerance iseqxced b~ be mdertakere S Q O ~ ~  It i s  in- 

t e r e s t ing  t o  note that while 1 r/hr  ( the  aircraft  misslog is ammed t o  b a s t  

25 hr )  i s  taken as the "mil i tary dose," nevertheless %he U.S. %v-y plans t o  

expose i t s  crew t o  l i t t l e  more than the usual laboratory tolerance dose. 
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