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10 Introduction 

The method here presented enables rapid solution of a certain restricted 

class of reflected homogeneous reactor problems, withtn reasonable limits 

of accuracyo It is particularly ~seful for preliminary calculations of re­

flected homogeneous reactors, and for estimation of safe dimensions of 

tanks, pipes, etc. designed to hold or carry solut~ons or slurries of fissile 

material. The simplicity obtains only at the expense of same generality, 

so that the following limitations holds 

(1) Core moderator and reflector material are.identical. 

(2) Atomic ratio of fUel-to-moderator in core is small 

enoug~ so that both core and reflector have essent~lly 

the same transport properties, i.eo, diffusion coefficient 

and scattering cross sectiono 

(3) All fissions are assumed to be induced by thermal neutrons 

only. 

(4) In the case of a reflected reactor, the reflector thickness 

is suf.ficiently great to be treated as infinite. 

We shall assume two groups. Where necessary, we shall let subscript 1 refer 

to fast group quantities and subscript 2 to the thermal group properties. 

20 Constants Needed 

Upon selecting a moderating material and a fuel material we shall 

need only the ~ollowing constants8 
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(1) 1: = Fermi "Age" of thermal neutrons from fission sour~e, 
in the chosen moderator-reflector medium, 

(2) L = Thermal diffusion length in 100% moderator (hence in 
, reflector).' , 

(J) D = 1 = Diffusion coefficient for thermal neu~on dif­
J E tr fUSion, assumed to be the same in both core and 

refiectoro 

(4) ~ = Average number of fission neutrons emitted per thermal 
neutron absorption (including capture) by a fuel nucleus o 

(5) a.. = Am,cr U 

~crm 
= At,Wt, moderator times tot, abso cross sec. fuel 

AtoWt.' fuel times'abs, cross sec, moderator 

In addition, of course, one must choose the geometry and know either the 

dimensions of the system or the concentration e of fissile (fuel) material, 

In the following treatment we shall assume that ,the dimensions are known 

and shall solve for the concentration e yielding criticality. 

J. Derived and Defined Quantities 

Let us define the following quantities: 

e = fuel concentration = kilograms of fuel atoms or grams fuel (1) 
liter of solution em) miXture 

~R = ~ = macroscopic absorption cross-section for thermal 
12 neutrons in the reflector (io eo, in 100% modera,tor) (2) 

~e = macroscopic absorption cross-section for thermal neutrons 
in the core . (J) 

~u = macroscopic absorption (capture plus fission) cross 
section for thermal neutrons by fuel (4) 

Evidently 

~C • l!u + 2R • l:R ( 1 + ~:] = l!R [1 + ecru Am 1: 
<Tm Au J 

2u = o.eER 

f :: ~U = g e = thermal utilization factor 
'2u+~ 1+0.0 

ER(l ... a. e) 

L2 = D = L2 11 R = L2 
e lie (1 + a e):'fR 170. e 

= square of thermal diffusion 
length in the core 

(5) 

(6) 

(7) 

(8) 
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We nov proceed with our tvo-group analysis, assuming the validity of a 

one-group description of the moderation process theory and diffusion theory 

for the thermal neutrono For the sake of definiteness ve shall assume 

spherical geometry; however, the treatment may be applied to other geometries 

without introducing new concepts~ 

Consider first the fast group~ Neutrons are "absorbed" from the fast 

group by slowing down plus moderator capture, in a manner spatially de­

scribable in terms -of -the experimental quantity 't, the Fermi age. Since 

we are postulating all fissions to occur by absorption from the thermal group 

only, the material properties for scattering and absorption of fast group 

neutrons are the same for both core and reflector, meaning that twill be the 
, 

same in the two regions. From t we can obtain a fictitious diffusion coef-

ficient and macroscopic "absorption" cross section for fast group neutrons 

by defining 

-i-="t . (9) 

The problem under consideration can be viewed as a diffusion problem 

with sourceso That is, a distributed source of fast neutrons exists in the 

core by virtue of fissions produced by thermals. Likewise, a distributed 

source of thermal neutrons exists in the core because O;l' slowing down of 

fast neutrons. The procedure to be used makes use of certain "partial 

multiplication constants" kl and k2' defined as follows8 

kl = the number of fast neutrons which must be introduced in the 
core to give one fast neutron absorbed in the core. 

k2 = the number of thermal neutrons which must be introduced in 
the core to give one thermal neutron absorbed in the core. 

Note that no unique answer for kl and k2 exists from above definition, since 

shape of source is of some importance. In what follows, approximate values 

for kl and k2 are obtained, assuming that each source has a "normal mode" shape. 
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To obtain kIt write 

D1 V 2¢>I (r) - l!1 ~ + k1 l:'1<P1 = 0, 06 r ~ R (core) 

Dit:f 24>1 (r) - 21CP 1 = 0 , R to: r.( 00 (reflector) 

with cj>1 (0) finite and ~1 (00) = O. 

Defining Bf • (q -1) ~l =kJ.- 1 (12) 
D1 ~ 

our equations are 

V2¢1. + B12 <PI = ° (core) 

V2cp - _1_ 4>1 = ° (reflector) 
Iff 

whence 

. {Ql sin Blr , Oftr~R 

¢ (r) == r (13) 
, 1 b1 e- r~ 

R'!lrc:. OO , 
r 

At the core-renector interface (r=R) we have the usual continuity conditions 

for neutron nux and current; applied to the fast group this is 

D1 ls..., ...er. <PI (r)] = Dl [!L .£n 4>1 (r)] 
dr r = R-D dr r = R+O 

whence 
B1R ctn B1R = -~ determines B1 

~ 
(14) 

while by (12) 

k1 = 1 + Bft determines k1 (15) 

Simi1arlyt to obtain k
2

, write 

DV2CP2 (r)- ~cct>2 + k2 ~c<P'2 == 0, ° it r ~ R (core) (16) 

and for the reflector 

DV 2~2 (r) - rR 4>2 == 0, R * r c. 00 (reflector) (17) 
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determining B2, 

2 2 k k2 = 1 + It B2 , determining 2 

where we recall ~ = --1t 
1 + a C 

as given by (8). 

We must now turn our attention to the matter of balancing the gain 

(18) 

(19) 

and loss of neutrons in each group for the core at criticalityo To describe 

this we shall find it convenient to introduce the following quantities8 first, 

the group absorption rates, (20) 

Al • rate at which group 1 neutrons are being absorbed in the core t 

A2 = rate at which group 2 neutrons are being absorbed tn the core, 

and the group source functions, (21), for the core (zero elsewhere): 

8(1-.1) = number of fast neutrons produced in the core per fast 
neutron absorbed in the core 

S(2-'1) = number of fast neutrons produced in the core per slow 
neutron absorbed in the core 

S(l-.2) = number of slow neutrons produced in the core per fast 
neutron absorbed in the core 

S(2~2) = number of slow neutrons produced in the core per slow 

(20) 

. neutron absorbed in the core. (21) 

According to our original assumptions we have 

S(l-'l) = 0 
8(2 ..... 1) = ,r 
S(l .... 2) = 1 (approximately, actually = p t) 
S(2 ..... 2) • 0 

From the definitions (10) of kl and k2 we have 

l/kl = number of neutrons absorbed from the fast group per neutron. 
entering the fast group, at criticality 

1/k2 = nUmber of neutrons absorbed from the thermal group per neutron 
entering the thermal group, at cri ticali ty. 

Hence the absorption rate in the core for fast group neutrons must sati-sfy 

(22) 

A1 = ~1 [ 8(1-1)'\1 • 8(2 -.1)":2 ] (23) 
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and that for thermal group neutrons must satisfY 

A2 = i [S(l ..,.2)Al + S(2....,.2)A2J + (contribution to A2 due to reflector) 

2 (24) 

where the second term on the right-hand side of ·(24) takes account of the 

absorption rate in the core of thermal neutrons which are born in the re-

flector !'.rom fast neutrons moderated there, and then wander back to the core 

and are absorbedo We shall evaluate this term in paragraph 50 

40 The Bare Reactor 

If the reactor is bare the second term on the right-hand side of (24) 

is of course zeroo Placing the values (22) of the source functions into (23) 

and (24) and collecting terms we then 'Would have the following pair of simul-

taneous aqua tions in Al and A2 g 

klAl - ,fA2 = 0 

Al - zt2 = 0 

reqUiring, for Al and A2 not identically zero 

kl -7Jt 
= 0 

1 -k2 

or, klk2 =1)f = (1 + B~C) (1 + ~ ~)o 

Since in this case (bare core) the fluxes must vanish at the extrapolated 

core boundary-II (14) and (18) do not apply, but rather Bl = :82 = ...JL II and 'We 
R+d 

have the familiar result for criticality of a bare reactor under the approxi-

mations assumed at the outset, .~~g 

!r = 1 
(1 + B2t)(1 + L6 B2) 

The identity of kl and k2 with "partial multiplication constants" is thus 

made clear .. 
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50 The Reflected Reactor 

In order to proceed with the original problem we must derive and include 

the "contribution to A2 due to reflector" ter.m in (24)o This is done as 

follows 0 Since b.Y {lO} kl = number of neutrons entering the fast group per 

neutron "absorbed" from the fast group, its reciprocal, l/kl = number of 

neutrons "absorbed" from the fast group per neutron entering the fast group9 ' 

or which is the same thingp the probability of n~bsorptionn of a group 1 

neutron which was emitted in the coreo Hence 1 - l/kl = the probability that 

a group 1 neutron will not be "absorbed" and hence will be absorbed in the 

(infinite) reflectoro Since kl~ = soUrce of fast neutrons in the core» 

{l - l/kl)klAl = ,{kl - l)Al = sink of fast neutrons in the reflector, 

Now let 

~2 = macroscopic cross section for conversion of a fast neutron 
to a slow ~eutron (same in reflector and core)o 

~ = total macroscopic ~absorptionn cross section for fast neutrons 
in the reflector. 

P12 = probability of eventual absorption in the core of thermal 
neutrons born in the reflector from converted fast neutrons. 

We can therefore write 

(k1 - l)Al l!12 P12 = contribution to A2 due to reflector 
~a 

Ve must derive an expression for P12' which depends on the constants 

of group 2 and on the shape of the space distribution of group 1 neutrons 

in the reflector: 

h,e.-kln 

I n. 
I --R. 0'" ....,. .,.00 

(25) 
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In order to do this we shall consider the following ntwo-group one-velocity" 

problem. with the constants and true absorption of the thermal group, group 2 .. 

Let us· call these groups "x" and "2" and define 

ex = absorption rate of group "x" neutrons in the core 

02 = absorption rate of group "2" neutrons in the core 

~xC = t'o 
l!xR II: ~R" ix2' temporarily considered arbitrary 

l!x2 = macroscopic cross section for conversion ot group "x" 
neutrons into group "2" neutrons, = l:xR - l1R 

Dx = D (same in core and in reflector) 

XX = number of neutrons entering group AX" per neutron absorbed 
from group ax", also temporarUy considered to be arbitrary 0 

In the core one absorption of either ~xn group neutrons or "2" group neutrons 

mUst yield k2 fresh neutrons for cri ticali ty. For convenience these will be 

assumed to enter the. "x" group; no absorptions give rise to group "2" neutrons 

in this problem, all suoh neutrons being presumed to come only fran conversion 

of groupftx" neutrons into group "2ft neutrons in the reflector; P x2 is the 

probabUity of eventual absorption in the core of these group "2ft neutronso 

By analogy with equations (23), (24) and (25) we must have the following 

balanoe: 

c.x = ~l8(X"'X)Cx + 8(2-'X)C21 
C2 = 1-. r S(x ..... 2)Cx + S(2 .... 2)02

1 + (lrx - l)Cx ~ • p x2 
k2 l ~ ~ 

where ,by postulate, 

Sex -I'x) . = 8(2.,...x) ,= k2 
sex .... 2) = S(2 .... 2) = 0 • 

'(23' ) 
. J 
(24') 

Solving (23') and (24') under the oondi tion that Cx and C2 are not zero yields 

(j -k2) '2# 
Px2 = k;kx - l} Zx2 
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So far the quantities ~xR and kx have been purposely left arbitraryo We 

shall now choose them in such a fashion that Px2 becomes identical with P129 

which will be the case if our choice is such that the space distribution in 

the reflector of "x" neutrons becomes iden~cal with that of group 1 neutrons 

there in our original problemo This is achieved by choosing 

~xR = .JL (26) 
. ~ 

and 

Since 

lc = 1 + B2 L2 --x 1 C 

I'xR = ~R + ~x2 and ER = D2 
. L 

~x2 = D rl - ....!...] 
[~ L2 

we now have 

Using (26), (27), (28) and (19) in the expression for P
x2 

yields P12: 

P _ (R? - B22) 
. 12------~~~~------

(1 + B~) Bit' [1... -...l...] 
"C'L2 

Returning now to the absorption rate balance for the core for our original 

problem, 

Al = L [ S(I-:.I)AI + S(2 .... 1)A2] 
kl ' 

~ = ~2 [5(1-2)A1 + 5(2 -2~ ] + (~ - 1)AI P12 1J.2 

ElR 

(27) 

(28) . 

(29) 

(25) 

(26) 

The SIS are given by (22)0 ~12 is the resonance escape probability p, here 

taken to be practically unity~~ Using the condition that Al and A2 are not 

both zero we have therefore 

~ -,f 
= 0 (31) 

1 + k2(kl - I)PI2 -~ 
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whence 

£ - klk2 
, - 1 + k

2
(kl - 1)P

12 

= (1 + Bit)(l + B~ ~) 

[ Bf - Hi ] 
1 + +_~ 

Applying (7) and (8) and solving for 0 gives 

o = ..Jr... 
a 

(1 + Bf ~ )(1 + B~ 

~ +Bi_B~ ] 
, l-...J-

t. L2 

~) 

- (1 + 13ft') 

Letting ~R = xl and Bii = x2 we rewrite (14) and (18) as 

tan X], 

xl 

tan x2 

x2 

II: _..:& 
R 

=-l 
R 

(32) 

(33 ) 

(14 9 ) 

(18 1 ) 

where R is either known or a value is assumed. Using the table o£ values of 

tanx/x from Jahnke and Emde, -"Tables of Functions, n we find xl and x2 and then 

substitute xl/R for ~ and x/R for B2 in (33). Recalling the definition of 

a from Paragraph 2, we write the final solution as 

o II: Au(Tm [(R
2 

+ xi~) (R2 
+ x~ L2) _] 

Au<:ru '? r2 +(~~ = ~) L2~_(l~2 + xl t ) J 
kg,fuel atoms 
liter soltn 

(34) 

If C were given and it were required to find R for criticality, solution can 

be effected quite readily by assuming various values of R and finding the 

corresponding concentrations OCR) required for criticality, then plotting 

O(a) versus R and reading the required R from the grapho ' 
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60 Numerical Example 

'Let it be required to find the concentration of U235 in a water-moderated, 

water-reflected homogeneous thermal reactor of core radius 9 inches = 2208 CIll. 

, 'We have L.= 2.88 CIllo; L2 = 803 cm,2, t= 33 CJi12;-AuO""m :: 235 x 0,64 = 00013 
'Y/:: 2.11 Ama-u 18 x 645 

tan Xl 
xJ. 

tan x2 

x2 

= -

= -

iiI. = -00252, find Xl == 2.5672 
22,8 

2088 I: -ool~6; find x2 = 2.8022 
22,8 

Substituting these values in (34) gives C ~ 0.0276 kg,U235, (1.37 kg, total 
liter 

U235). Allowing for the approximations and inherent uncertainties we would 

then expect criticality for a concentration of, say, 2706 ± 2 grams/liter, 

70' Extension of the Method; 

By- making the appropriate changes in equations (14) and (18) and else-

Where as required, the restriction of equality of D for the core and the 

reflector may be relaxed and the method applied to cases of rer;t.ectors which 

differ from the core moderator. The method may also be applied to a multi-

group analysis, but then becomes much more complex since quantities such as 

PJ.3' P23,P123' etc .. must be calculated, 

In applying the method to other than spherical geometries the appropriate 

buckling equations must be used in place of (14) and (18) or (14') and (18')0 

For example, with an infinitely long cylinder of radius R, (14') and (18') 

would become 

Xl Jl (xl), = R 0 KJ.(R/i't) 
J 0 (xl) "fE Ko (R/lt ) 

and X2 J1(x2) :: B • Kl~R>t~ 0 

Jo(X2) L Xo R 


