(AR -

e,

CAK RIDGE SCHOOL OF REACTOR TECHNOLOGY ¢7’ L
3 445k 0571587 5 ' ‘ S '
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Notes by P. J. Sykes, Jre.

l. Introduction
The method here presented enables rapid solution of a certain restricted
class of reflected homogeneous reactor problems, withiﬁ reasonable limits
of accuracy, It is particularly useful for preliminary calculations of re-
flected homogeneous reactors, and for estimation of safe dimensions of
tanks, pipes, etc. designed to hold or carry solutions or slurries of fissile
material., The simplicity.obtains only at the expense of some generality,
so that the following limitations holds
| | (1) Core moderator and reflector material are identical.
(2) Atomic ratio of fuel-to-moderator in core is small
-enough so that both core and reflector have essentially
the same transport properties, i.e., diffusion coefficient
and scattering cross section.
(3) A1l fissions are assumed to be induced by thermal neutrons
only.
(4) In the case of a reflected reactor, the reflector thickness
is sufficiently great to be treated as infinite.
We shall assume twogroups° Where necessary, we shall lef subscript 1 refer
to fast group quantitieé and subscript 2 to the thermal group properties.
2. Constgnts Needed

Upon selecting a moderating material and a fuel material we shali
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(1) T = Fermi "Age" of thermal neutrons from fission source.
in the chosen moderator-reflector medium,
(2) L = Thermsl diffusion length in 100% moderator (hence in
: reflector).
(3) D= 1 = Diffusion coefficient for thermal neutron dif-

323, fusion, assumed to be the same in both core and
reflector,

(4) v Average number of fission neutrons emitted per thermal
‘neutron absorption (including capture) by a fuel nucleus.
(5) a= AnTy = At,Wt, moderator times tot, abs. cross sec. fuel
C A0 At.Wt, fuel times abs. cross sec. moderator

In addition, of course, one must choose the geometry and know either the
dimensions of the system or the concentration C of fissile (fuel) material.

In the following treatment we shall assume that the dimensions are known

and shall solve for the concentration C yielding criticality. -

- 3. Derived and Defined Quantities
Let us define the following quantities:

C = fuel concentration = kilograms of fuel atoms or grams fuel '
liter of solution em3 mixture

ZR = D = macroscopic absorption cross-section for thermal
12 neutrons in the reflector (i.e., in 100% moderator)

20 = macroscopic absorption cross-section for thermal neutrons
in the core

2.y = macroscopic absorption (capture plus fission) cross
section for thermal neutrons by fuel

Evidently

2¢ = EU_"‘ER:ZR[I"'%] = ZR[1+C——-O?-“A‘“]= Zp(l+ac

R m Ay

ZU = qC ZR
f=_ Zy = _ gC_ = thermal utilization factor
Xt : l1+aC
2
Lé = D = L z-.lR = 12 = square of thermal diffusion

7; (1+a Cszn l+aC  length in the core

(1)

(2)
(3)

(4)

(5)

(6
("

(8)
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We now proceed with our two-group analysis, assuming the validity of a
one-group description of the hoderation process theory and diffusion theory
for the thermsl neutron. For the sake of definiteness we shall assume
sphericﬁl geometryi howeﬁer, the treatment may be applied to other geometries
without introducing new concepts. |

Consider firét the fast group. Neutrons are Mabsorbed" from the fast
group by slowing down plus moderator capture, in a manner spatially de-~
scribable in terms of the experimental quantity T, the Fermi age. Since
wé are postulating all fissions to occur by absorption from the thermal group
only, the material properties for scattering and absorption of fast group
neutrons are the same for both core and reflector, meaning that T will be the
same in the two regions. From (4 ;e can obtain a fictitious diffusion coef-
ficient and macroscopic "absorption" cross section for fast group neutrons
by defining

D =7, (9)
w - ¢ |

The problem under consideration can be viewed as a diffusion problem
with sources. That is, a distributed source of fast neutrons exists in the
core by virtue of fissions produced by thermals. Likewise, a distributed
source ofvthermal neutrons exists in the core because of slowing down of o
fest neutrons. The procedure to be used makes use of certﬁin~"pé;tia1‘
multiplication constants™ k3 and ko, defined as follows:

k1 = the number of fast neutrons which must be introduced in the
core to give one fast neutron absorbed in the core.

k2 = the number of thermal neutrons which must be introduced in
the core to give one thermal neutron absorbéed ih the core.

Note that no unique answer for kg and ko exists from above definition, since
shape of source is of some importance. In what follows, approximate values

for ky and kp are obtained, assuming that each source has a "normal mode" shape.



To obtain ky, write

D1V2¢1 (r) - 21431 + kg 21¢1 = Q, O£ r4<R (core)
D,V 24,1 (r) - 3P, =0 , R%&r«g oo (reflector)

with $1(0) finite and P(e0) = 0,
Defining Bf = (g -1) B3 =1k -1 (12)
N Dl . Q
our equations are ‘
ch_*Bchl"'o (core)
\v/ (pl (Pl = 0 (reflector)

whence
8, sin Byr sy O&reR
¢, = i 3)
| 1

At the core-reflector interface (r=R) we have the usual continuity conditions

for neutron flux and current; applied to the fast group this is

D, [%; on ¢, m] eTh [d_ Ln P, m]

dr r = R0
whence
BjR ctn BjR = = R determines B; (14)
(3
while by (12) |
ky = 1 + B3P determines ky | (15)
Similarly, to obtain k2, write
2 - o
Dy 4)2 (r) - 2c¢2 + ko Zlcq)’? = 0, Oer<4R (qore) (16)

and for the reflector

DY 24)2 (r) - o P,=0, R= r;oo (reflector) | (17)
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Similarly |
BR ctn BR = =R determining B,, (18)
L .
and 5
kp=1+L5 B3, determining k, (19)
where we recall Lé = 12 as given by (8),

l1+a0C
We must now turn our attention to the matter of balancing the gain
and loss _of neutrons in each group for the core at criticality. To describe
this we shall find it convenient to introduce the following quantities: first,
the group absorption rates, (20) | |

A, = rate at which group 1 neutrons are being absorbed in the core, ( )
2)

Ay = rate at which.group 2 neutrons are being absorbed in the core,
and the group source functions, (21), for the core (zero elsewhere):
S(1-»1) = number of fast neutrons produced in the core per fast
neutron absorbed in the core
S(2-%1) = number of fast neutrons produced in the core per slow
neutron absorbed in the core
- 8(1-»2) = number of slow neutrons produced in the core per fast
neutron absorbed in the core
S(2-»2). = pnumber of slow neutrons produced in the core per slow
neutron absorbed in the core. (21)
According to our original assumptions we have
S(1-»1) =0
S(2-»1) = Hf . (22)
S(1-»2) =1 (approximately; actually = pe) -
S(2-»2) =0 |

From the definitions (10) of k; and k, we have

1/k1 = number of neutrons absorbed from the fast group per neutron
entering the fast group, at criticality

1/1:2 = number of neutrons absorbed from the thermal group per neutron
entering the thermal group, at criticality.

Hence the absorption rate in the core for fast group neutrons must satisfy

A = 115_1 { S(1=s1)a; + S(2 -»1)&2] | (23)
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and that for thermal group neutrons must _satisf)vr'
A, = %_ [S(l -»2)a; + 8(2 —92)A2] + (contribution to A, due to reflector)
2 | o (2)
where the second term on the right-hand side of .(24) takes account of the
absorptioﬁ rate in the core of thermal neutrons which are born in the re-
flector from fast neutrons moderated there, and then wander back to the core
and are absorbed. We shall evaluate this term in paragraph 5.
4o The Bare Reactor
If the reactor is bare the second ferm on the right-hand side of ‘(24)
is of course zero. Placing the values (22) of the source functions into (23)
and (24) and collecting terms we then would have the following pair of simul-
taneous equations in Ay and Azs
kA, - Pfbp =0
A

1
requiring, for A and _A2 not identically zero

_k’ezzﬂ

ky -)f
| 1 =Ko
ory kik,=pf= 1+ B:%C) 1+ Bg Lg).
Since in this case (bare core) the fluxes must vanish at the extrapolated
core boundary, (14) and (18) do not apply, but rather By = B, = 1, and we
have the familiar result for criticality of a bare reactor underRt-Fge approxi-
mations assumed at the outset, vizs

ne =1
1+ 822)( + 13 B2)

The identity of k, and ky with "partial multiplication constants™ 1s thus

made clear,



5. The Reflected Reactor

In order to proceed with the original problem we must derivé and include
the "contribution to A2 due to reflector" te#m in‘(24)e This is done as
follows, Since by (lO) kl = nnmber‘ofrneutrons entering the fast group per
neutron "absorbed®™ from the fast group, its reciprocal, l/kl = number of
neutrons Mabsorbed®™ from the fast group fer neutron entering the fast group,7
or which is‘the same thing, the probability of "absorption" of a group 1
neutron which was emittqd in the core. Hence 1 - l/kl = the probability'that
a group 1 neutron will‘not be "absorbed" and hence will be absorbed in the
(infinite) reflector. Since klAl % source of fast neutrons in the'core,

(1- l/kl)klAl =A(kl - 1)A; = sink of fast neutrons in the reflector,
Now let | | ) |

:312 = macroscopic cross section for conversion of a fast neutron
to & slow neutron (same in reflector and core).

ZhR = total macroscopic M"absorption" cross section for fast neutrons
in the reflector.

P;5 = probability of eventual absorption in the core of thermal
neutrons born in the reflec¢tor from converted fast neutrons.

We can therefore write
(k - 1)a; _212 Py, = contribution to A, due to reflector (25)
1R
We must derive an expression for P12, which depends on the constants
of group 2 and on the shape of the space distribution of group 1 neutrons

in the reflector:
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In order to do this we shall consider the following "two-group one-velocity"
problem with the constants and true absorption of thé thermal group, group 2.
Let us call these groups "x" and "2" and define

cx = absorption rate of group "x®" neutrons in the core

Co = absorption rate of group "2" neutrons in the core
26 = I,
ZxR = # , temporarily considered arbitrary
R x2

ZxZ = macroscopic cross section for conversion of group "x"
neutrons into group "2" neutrons, = 2 o - Jp

Dy = D (same in core and in reflector)

- number of neutrons entering g&‘oup "x" per neutron absorbed
from group "x", also temporarily considered to be arbitrary.

In the core one absorption of either _."x" grbup neutrons or "2" group neutrons
must yield ko frésh neutrons for criticalify. For convenience these will be
assumed to enter the "x" group; no ebsorptions give rise to group "2" neutrons
in this problem, all such neutrons being presumed to come only from conversion
of group "x" neutrons into group "2" néutrons in the reflector; P,, is the
probability of eventual absorption in the core of these group "2" neutrons.

By analogy with equations (23), (24) and (25) we must have the following

i

balance: ' |
Cy = _IJE_XLS(X-’X)CX + S(2"x)02] .‘323.3)

=1 |S(x-»2)C_ + + - 2 l

Cy i_z{- (x»2)c, + (2= 2)02] (k, - 1)C, _2_3% P (241)

where, by postulate,

S(x —»x) = S(2-»x

) = kz
S(x —»2) = s(2=»2) =0

Solving (23') and (24') under the condition that Cx and Cy are not zero yields

s - 1) B
P .= "2
* kolky = 1) 200
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So far the quantities 2}1’3 and kx have been purposely left arbitrary. We
shall now choose them in such a fashion that P, becomes identical with Py2s
which will be the case if our choice is such tﬁat the space distribution in
the reflector of "x" neutrons becomes identical with that of group 1 neutrons

there in our original problem, This is achieved by choosing

= _D_ - ‘ (26)
2"3 T
and Kk, =1+ B?L Lg (27)

Since z.xR = ZR + 3o and ZR: D we now have

12
N, = D(':;L_ - L , (28)
A K 2l
Using (26), (27), (28) and (19) in the expression for P, yields Py ,:
‘ 2 2
§ I (B] - B) (29)
2
(1 + B3L3) Blr[l_ -1
T 12
Returning now to the absorption rate balance for the core for our original
problem,
Al =1 [ S(l-al)Al + 8(2 -’l)A2] | (25)
i - _
1
A, = k;_ [s(l—>2)Al + s(z—»z)mz] + (~k1 - 1)4,Py, 212 (26) -
2 1R

The S's are given by (22). 2‘12 is the resonance escape probability p, here

Zir

taken to be practically unity, Using the condition that Al and A5 are not

both zero we have therefore

iy oy |
=0 (31)
1 + ko(ky - 1)P1o -k,
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whence
pe-__ ki . +Boa+5B1d) (32)

T+ (kg - 1)P, [Bg Bg ]
T2

Applying (7) and (8) and solving for C gives

¢=1 ((1+B3T)a+B 19 | (33)
a

2 2

By - B

A

A
T 12

- (1 + B20)

Letting BjR = x) and BR = x, we rewrite (14) and (18) es

tan x = - 7;5 (141)
Xl :

tan X2 _ _ 1L _ ’
2 T (18')

vhere R is either known or a value is assumed. Using the table of values of
tanx/x from Jahnke and Emde, "Tables of Functions," we find xj and x5 and then
substitute x3/R for B; and xz/B. for By in (33), Recalling the definition of

a from Paragraph 2, we write the final solution as

¢ = 80T (R + xA)(R2 + xz 2 12) kg fuel atoms | (34)
—Amq-u- ’,? [R?_ R ( x% _ x2 L z] (R2 +xy 2 ) liter sol'n
_ 12 - ,

If C were given and it were required to find R for criticality, solution can
be effected quite readily by assuming various values of R and finding the
corresponding concentrations C(R) required for criticality, then plotting

C(R) versus R and reading the required R from the graph.
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6, Numerical Example
‘Let it be required to find the concentration of 0?35 in a water-moderated,

water-reflected homogeneous thermal reactor of core radius 9 inches = 22,8 cm,

'We have L = 2,88 cmo; L2 = 8,3 cr®; U= 33 an’;-2ulm = 235 x 0,64 = 0,013

n =21 | "R o, 18 x 645
tanxy = - !gis = =0,252; find xy = 2,567
x] o

ten X5 = _ 2,88 = -0,126; find x
x2 2208

5 = 2,8022

Substituting these values in (34) gives C ¥ 0,0276 kg, U235 . (1.37 kg. total
U235) Allowing for the approximations and inherent ii::itainties we would
then expect criticality for a concentration of, say, 27.6 + 2 grams/liter.
7o E;génsioniof the Method |

By making the appropriate changes in equations (14) and (18) and else-
where as required, the restriction of equality of D for the core and the
reflector may be relaxed and the method applied to cases of reflecfors which
differ from the core moderator. The method may also be applied to a multi-
group analysis, but then becomes mach more complex since quantities such as

3, P23,_ 123° etc. must be calculated.

In applying the method to other than spherical geometries the appropriate
buckling equations must be used in place of (14) and (18) or (14') and (18').
For example, with an infinitely long cylin&er of radius R, (14') and (28')

would become

x3 J1(x1) - r ., KEa(R/T) and. X 3y(%) = g . Ki(R/L)

EREN) Yz EERAT) J(x5) L K,@®A)



