


UNCLASSIFIED

ORNI, 107L

This document consists of gyl

pages. No. 3

of 226 copies,

Series A .
Contract No. W-7LOS, eng 26

PHYSICS DIVISION

SOME THEORETICAL PROBLEMS IN NUCLEAR ALIGNMENT

Jo Mo Jauch
A. Simon

Date Issued:

OAK RIDGE NATIONAL LABORATCRY
operated by :
CARBIDE AND CARBON CHEMICALS COMPANY
& Division of Union Carbide and Carbon Corporation
Post Office Box P
Qak Ridge, Tennessee

UNCLASSIFIED

MARTIN MARIETTA ENERGY SYSTEMS LIBRARIES

IERRRER A

3 Y456 03hpass ¢



UNCLASSIFIED

INTERNAL DISTRIBUTION
1. G. T. Felbeck (C&CCC) 21, A. H. Snell 36.
2-3, Chemistry Library 22. F. C. Vonderlage 37.
4. Physics Library 23. R. C. Briant 38.
5. Biology Library 2h. J. A, Swartout 39.
6. Health Physics Library 25. S, C., Lind 4O,
7. Metallurgy Library - 26. F, L. Steahly 41.
8-9. Training School Library 27. A. Hollaender L2,
10-13. Central Files 28. M. T. Kelley L3.
14. C. E. Center 29, G, H, Clewett L.
15. C. E, Larson 30. K. Z. Morgan L5,
16. W, B, Humes (K-=25) 31. J. S. Felton L6-55.
17. W. D, lavers (Y-12) 32, A. S. Householder 56.
18. A. M. Weinberg 33. C. S, Harrill 57-60.
19. E. H, Taylor 34, C. E. Winters 61.
20, E, D, Shipley 35, D. S, Billington 62-63.

EXTERNAL DISTRIBUTION

64=75. Argonne National Laboratory

76.
T7-82.
83.

84.
85-88.
890

90,
91-95.
96-99.
100.
101.
102-106.
107-110.
111-114.
115-116.
117.
118.
119-120.
121-124.
125-127.
128.
129.
130.
131-133.
134.
135.
136.
137-138.
139.

Armed Forces Special Weapons Project
Atomic Energy Commission, Washington
Battelle Memorial Institute
Brush Beryllium Company
Brookhaven National Laboratory
Bureau of Medicine and Surgery

Bureau of Ships

Carbide and Carbon Chemicals Company (K-25 Plant)
Carbide and Carbon Chemicals Company (Y-12 Plant)

Columbia University (J. R. Dunning)

Columbia University (G. Failla)
E. I. du Pont de Nemours and Company
General Electric, Richland
Idaho Operations Office

Iowa State College

Kansas City Operations Branch

Kellex Corporation

Kirtland Air Force Base

Knolls Atomic Power Laboratory
Los Alamos Scientific Laboratory
Mallinckrodt Chemical Works
Massachusetts Institute of Technology (A. Gaudin)

Massachusetts Institute of Technology (A. R. Kaufmann)

Mound Laboratory

National Advisory Committee for Aeronautics
National Bureau of Standards (R. D. Huntoon)
Naval Medical Research Institute
Naval Radiological Defense laboratory
New Brunswick Laboratory

UNCLASSIFIED

ORNL 1074
Page 2

Cardwell
King
Wollan
Ellis
Roberts
Lyon
Koehler
Ergen
Blizard
Rose
Jauch

. Beard

A. Simon

M. J. Skinner
Central Files (0.P.)

s
o

° o Y
e o o

°

o

°
°

e
o

tic-ztmizig:gig*cnuibjtﬁ
w = R c>?:c1u1c>z:i:



140-142,
143,
14k
145.
146,
147,
148,

149-163.

164-165.

166~167.
168.

169-173.

174-=175.
176.
177.

178-181.
182.

183-186.
187.
188.
189.
190,

191-192.
193,
194,
195.

196-197.

198-199.

200-209.
210.
211.

212-216.
217.
218,
219.
220.

221-222,

223-225,

226,

UNCILASSIFIED

ORNL 1074
Page 2a

New York Operations Office

North American Aviation, Incorporated

Patent Branch, Washington

RAND Corporation

Sandia Corporation

Santa Fe Operations Office

Savannah River Operations Office (Wilmington)

Technical Information Service, Oak Ridge

U. S, Geological Survey (T. B. Nolan)

U. S. Public Health Service

University of California at Los Angeles

University of Califormia Radiation Laboratory

University of Rochester

University of Washington

Western Reserve University

Westinghouse Electric Corporation

Yale University

Atomic Energy Project, Chalk River

Chief of Naval Research

H. K. Ferguson Company

Harshaw Chemical Company

Isotopes Division (Mr. McCormick)

Library of Congress, Acquisition Department (J. W. Cormn)

National Bureau of Standards

National Research Council, Ottawa

Naval Research Laboratory

Nevis Cyclotron Laboratories

Oak Ridge Institute of Nuclear Studies

United Kingdom Scientific Mission (M. Greenhill)

USAF, Eglin Air Force Base (Technical Library)

USAF, Wright-Patterson Air Force Base (Rodney Nudenberg)

USAF, Wright-Patterson Air Force Base (CADO)

U. S. Army, Army Field Forces (Captain James Kerr)

U. S, Army, Atomic Energy Branch (Lt. Colonel A. W. Betts)

U. S. Army, Director of Operations Research (Dr. Ellis Johnson)

U. S. Army, Office, Chief of Ordnance (Colonel A. R. Del Campo)

U. S. Army, Office of the Chief Signal Officer (Curtis T. Clayton
through Major George C. Hunt)

U, S. Army, Technical Command (Colonel J. H. Rothschild
Attn: Technical Library)

UT-AEC Agricultural Research Program (Charles S. Hobbs)



SOME THEORETICAL PROBLEMS IN NUCLEAR ALIGNMENT

Je M, Jauch and A, Simon

I. INTRODUCTION

The direct method of nuclear alignment leads to an appreciable effect
only if the magnetic field H and the temperature T are of such magnitude

that
-'—Td' ~ 107 g omss dej-'

It was pointed out by Rese and Gorterl that nuclear alignment could

(1.1)

be obtained for nuclei of paramagnetic ions under much more favorable
conditions if there exists a h.f. coupling between the ion and the nucleus,

A search for alignment in the case of the Mn nucleus has not yet
given any positive results. We shall therefore examine once more the
theoretical foundations of the effect,

In the course of this work we shall pay special attention to an
objection to the theoretical prediction of nuclear alignment with h.f.
coupling raised by Bleaney2° Bleaney believes that the nuclear polarization
(or alignment) requires magnetic fields so-strong that the electronic splitting
is large compared to the h.f. splitting. He also believes that the dilytion
of the salt must be so large as to reduce the line width of the magnetic
levels to an amount less than the h.f, spreads Both these statements are

wrong and lead to much too restrictive conditions on the experiment,

Rose and Simon3 have recently answered these objections. We shall give a
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slightly more rigorous derivation of the same result and develor a general
method to calculate higher order effects in this type of problem . The
general theory is then used to evaluate explicitly the order of magnitude of
the correction Bleaney visualized in his appraisal of the method and it is
found-to be negligible,

A difficulty which will reduce the expected effect results from an
entirely different quarter, however., This is due to the centribution to
absorption(in the thermal neutron region) of the level with the other value
of the resultant spin, The data available at present seems to indicate a
possible reduction of the expected effect in a neutron absorption experiment

(with Mn) by about a factor of two,

II. THE h.f, COUPLING THEORY

1. The Interaction COperator

Abragam and Pryceh give the following general expression for

the h.f., interaction energye.

Wy = 2‘”ﬁﬁ~<?f3)[££ + (ft(r1)-% ) S- L

MW

(2.1)

Fes)LZ)-F5(eT)(L-5) ]

This is correct only for the submatrix of W referring to the (2L 4 1)(2S «f1)

dimensional subspace of total orbital angular momentum L and spin S. L, S
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are the vector operators for these quantities, This is still correct if
there is spin-orbit interaction which splits the multiplets or a strong local
electric field which quenches the orbital motion.

| The various quantities entering in the expression (2.1) are:

}” the nuclear g-factor

eh

nuclear magneton

Pu T 2Me
- '2’;‘7 Bohr magheton
L= Fme
an averaged for the 3d -~ electron shell
r3
§ a numerical factor depending on the configuration and the
term, For the normal states (i.e., the states of maximum
S and L compatible with the exclusion principle) which are
ground terms according to Hund's rule can be given by
2€+) - 48
£ = =4 (£=2) (2.2)
€(2¢8-1)(28+3)(2L~-)) -
W, a numerical -factor arising from the admixture of other
configurations,

For the Mnt™ - ion we have the term 6S for the ground state, For this

term the operator L is zero and consequently th reduces in this case to

(2.3)

Wep = - 2473 p (£ ) &1
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In order to obtain a clearer understanding of the origin of the
terms in (2,1) and especially of the term (2,3) we shall give an elementary
derivation starting from first principles,

The Hamiltonian for an n-electron system in a magnetic field H = /x A

is given by
=L (pW,e oy ) s W)
* Ez”‘ (p™+ & A G™) 128 2 (H ). £%)
+V

Here we have included in V all the terms arising from the Coulomb energy of
the nuclear charge, the Coulomb interaction of the electrons, the spin-orbit
and spin-spin interaction and the potential energy due to the crystalline
electric field. We are only interested in the linear terms in A and H which
arise from the magnetic moment of the nucleus, because these terms lead to
the h.f, coupling tem (2.1). The quadratic temm in A is entirely negligible
as an order of magnitude estimate easily shows., The vector potential A(x)
at the point! due to a magnetic dipole/f = M’V __[ located at the origin

is given by

Blos f(prx)empmolh) e

" n
W“f- = r%c, Z _A_Q.‘.M) ) f(\/l)+ ,?,/AZ‘-'(V,,ﬁQM).é\(V)) (2.6)
V=,
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The first term of (2.6) is easily evaluated. Substituting (2.5) and

using the vector identity

(axby:e = (bxg)-a

we obt:z\in
el N
w 2 (A0 Y =2 T ns (Arxt)
Vai Ve v
e < [
= e Y3 ..M*f)'/f

Vgl

L

= 2 ()

]

We now replace ?' 3 by some average over the d-shell (eonly d-electrons contribute
v

to the sum since all the others are in closed shells), In this way we obtain

"

(20 7)

finally
n
e
%= g Z(aempr) s upp (B) LD
with _L: e Z.A-I:U’

vz

This accounts for the first term in (2.1).
The remaining terms in (2,1) arise all from the second term in (2.6)
which we must examine now more carefully. The evaluation of this temm is

somewhat intricate on account of the singularity of the vector potential at
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Be

the origin. The singularity at the origin gives the singular contribution
for S-electrons discovered by F‘ermi5 and contained in the 4¢€ -term in (2.1).
If we disregard the singularity for a moment we obtain by differentiation
n
| 3 $) (5 T)
- - - - ) ; &J
ks Whp) Z - 2) | s

Ve 2
N

In order to exhibit the singularity we write _I;I(gs) in a Fourier

representation, Since

A SN I e/"’§1 0(,3
r 21.'"‘5_!;‘ k (2.10)
Thus
- Ux (/AY V(‘i’-)):zi,_flf’ (/;:5) lel ATk
J | vk x
own f(/ﬁ*p. Ba)k)e ok -
2,11

Since (2.11) is homogeneous of order zerc in k the singularity at the origin
is of the é\ ~-type. We can thus determine it by evaluating the integral at
X = 0. After the angle integration we obtain for this singular part of the

integrand

2

e (1-3)= 3 M



Thus the singularity

zn-z 3/“ fe’

Bi

oA” oAk = %r/_{ f(_’_') | (2.12)

b= Wty S E)

The further simplification of these two terms which reduces them to
the desired form can be carried through by an application of Eckarts ‘2';heo:z'err16o

We write for (2.9)

R.= P2 0(“) SCV)I (2.1)

[ v, vk,
P- 2rppN <7’z)
die U= du (30 2

Eckarts theorem for this case says then that the matrix elements for

with

vV vl
dg S in the subspace (H Pg) of the term (L, S) are proportional to

) ch Sc’ where

9 .
*'Dik - E(L; L, + Lpl—.) - a:’l\ L(L‘H) (2.15)
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n
;ET j;.(V)

V;l v

and g9

Thus

d,.('v) & .(v)
v

ok c D A\P

v

(2,16)

the proportionality factor C will depend on L,S and the configuration cut of
which the tem L, S arises, In order to determine it, we need only to take
one component say i =k =3 and only cne matrix element %-_— L, hs= 3, 38Y.

Since

Dy8,) = @BL-Lew))d

(2.17)
= kL{(2L-)) 8
We have
1Y
- l ) (v)
- 329 - >
c 2_._',§L(u-u)<( e 1) ., (21%)

Tn order to evaluate this term we must use the expression for the
electronic wave functions. It is sufficient to consider only the part which
belongs %o the unfillesd shell, In our problem there are either 3d-electrons
(transition element) or Lf-electron (rare earths).

Each electronic wave function may be characterized by a set of quantum
mumbers m") mg") (Vvel, « o« o 1) where m is the z comporent of the orbital
angular momentum and mg the spin component. The whole wave function is
written as the anti-symmetrical product (Slater determinant) of one body wave

functions and symbolically written as a collection of the quantum numbers

0.0 (v) ,,, (%) ) (n
’¢= (h ’m:)m md_):ll)m /WJ) (2019)
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(v v
We prove first that the expression <(3601'9' = ,)93( ))L S
&y

is independent of v and the same for the shell less than half filled as
for the shell more than half {illed with the number of holes in the second

case equal to the number of electrons in the first. We shall 1imit owr

discussion to the case of the normal terms.

Ir this case a less than half filled shell, such as jdh would be

given bty
- +, 8,7t +

and it represents the hLﬂ L, Hj = S component of the term SDo For the

matrix element in question we obtain then

(Yo, (3ear0-1)s¥ ¥, )
e
_Jd Z'<3(40"D'—I) =
e (n~) "~
<. 3mle(ln) 24
' vm—
- fn M=ZC_M_'(’[&€-.) e o 2643

For the corresponding matrix element for the more than half filled

shell we cbtain similarly

Y, = (2t1+ o™ r-2? z')

(2,20)
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¢

(%g ,(3@1&“’_. S Y )= —';::’,, Z {3 %L}—')M

‘!\:-24“_'
| L ir’-- eie+1) 22
=T Z (26-1) ¢ 2e+3
m=L-(n-)
(2,21)
In the last relation we have made use of
(4
<36“L‘9"")1n
M=_e
The dencminators n, respectively n' (s number of electrons in
the shell) in (2.20) and (2.21) will just cancel in the summation over v,
Thus the two expressions become equal as stated®,
Tt is then sufficient to evaluate the expression (2.20). The
summation over m can at once be carried out to give
f 3m?- @(l+1) 28
“"'h I Qze 1€ 2443
S [(2¢+)-48] [ (20+1)- 2% )
= (26-1) (244 3)
(2.22)

*NOTE: In h% evaluation of this expression it was essential that we included
the spin ng If instead we had taken only the quantity (3 cos? g (v) . 1)
we would have obtained a reversal in sign for the more than half filled shell,
This error occurred in an earlier report (ORNL 613, page 37) and led to an
erroneous interpretation of the h.f., structure in the Cu¥* -ion,



~13=-
L+ (L= )+ 4+ (-284
e [(2h+1)-29 7

Since L

i

(2422) simplifies to
L A Bl
(26) (2€+3)

eand thus we find for ¢ in (2.18)

2£+1 — 48

C= —f(u.-/)(u’?’i)(L£+3) = ’/24 (2.23)

This gives the expression (2,1) without the ¥ ~-term. The term involwing
?@cam be evaiuated in the following way. It is obviously connected with

the expression (2.13) for 7{,3, Now this expression involves a J\-function
and therefore vanishes for any configuration which has only filled S-shelils.
In order to obtain a non-vanishing contribution for Mn*¥*it is thus necessary
to have configurational mixing.

How such zenfiguraticnal mixing can occur may best be illustrated by
the example of the Mn++ ions. The configuration which is mainly present
is 4’& Bd5 giving rise to the ground term 6S. The nearest configuration
belonging tc the same tarm is obtained by the romotion of a 3s electron to
a Us level leading to +/s 3s 3d° hso,

Now there are two states of this type which in the notation of the

previous section may be written as
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Y

(of 2% 4% 0% 1% 2%, 07 )

Y- (07, 2% Forotar 0*) (2.2L)
3s | s

We must select from these two functions the linear conbination which
belongs to the 6S=-term since the admixture must belong to the same term
system. A closer inspection shows that the only function which has this
property is
) J
¥ = N ( ¥a - q&; })
(2.25)

Thus we may write for the whole state function

V: 1}"*'4/1//,

S

where of is a numeriéal coefficient expressing the amount of admixture.
It seems to be very difficult to calculate K directly, Even the sign of
it is not easily calculated.
Instead of doing this we shall estimate the order of magnitude of
from the amount of h.f, splittingAin the Mn++'ion to which this example

applies. For (2.13) we write again by applying Eckarts theorem

o 3 E I (50-1)

= EC(L,S):E'T (2.26)



where
K=-¢€-= s -_— v)
$¢L,) 3 2 VZ(! f1x) ¥ )
(2.27)
To first order in 0( this is then:
L .- ir Y ()Y, (o) X
f(;;.z) 3 vz 3 4s () (2.28)

In the case of Mn ' the constant A z PC is of order A A 0.01 cm-l
which corresponds to #as 0.60.
In order to obtain from this value of ¥ we need to know '
35 (0) » 1&3 {o)and (—,{3) . We obtain an order of magnitude idea of the
value of these if we take the values of these quantities from the ~- & of

neutral FeB which is not too much different from er‘H'(BdS)° Here

we have

10,7
Q.3

Y, () ’&4: () =
/ .
7‘3 > = 3,3 P% IC‘»Z%M'g
Thus
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for the case of Mn - S < 5/2

A~ 104 o
Thus the amount of admixture needed in order to account for the h.f.-splitting
m*t is .
0,
d = e————— [4 V] ! 70 R
lo 4 /41

The existence of h.f. interaction in the Mn+<P~ion is a brilliant confirmation
of Fermi's interaction Hamiltonian (2.13). It should be emphasized that the
old question as to which type of interaction exists betwesen a neutron and an
electron is thereby experimentally settled since it seems clear that the
magnetic interaction between a neutron and an electron should in principle

be the same as that between a proton or a nucleus and an electron, The
interaction operator (2,13) is indeed equivalent with the operator derived

9

by Schwinger” for the neutron problem with the help of a relativistic

discussion of the magnetic electron, This expression has now also been

confirmed by direct neutron diffraction experimentslo.

ITI. NEUTRON ABSORFTION BY ALIGNED NUCLEI

1. Absorption by a single nucleus

When a nucleus of spin i abscrbs a slow neutron the resulting
compound nucleus will have a spin either j= 1 ¥ %, Thus, for instance, the
slow neutron capture in Mn of spin i = 5/2 leads to an intermediate compound
nucleus of spin either j =3 or j = 2, This state then breaks up into a final
nucleus and a f’ -ray. The final state in this case is the /5 -radioactive

Mnsé (2.60 h) which can be detected with standard experimental methods,
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Let us denocte the capture cross section with 6_; for states %J of

tdtal angular momentum j = ikt %. We ask

N levels 0} Hn <C Co’nhw'\';u/ﬁ'ng )
resonante tap fure of new Fromg

Qherjy O".fv '!’\\ Cl‘c‘e,n/t
neubrons

PRIy

ground siafe of S rays emied in o Ophre (e,

HMnSS nmudeus

Nn“ /.3~ (2.64) = F(,Jé-c—d'

for the absorption cross section V(W) when the spin states of neutron and

nucleus is given by a state vector y, We have then

6 (¢) = ZO’J ICJIL (3.1)
‘. i

where
- . J
Af = Z‘ ¢7 (3.2)
J
0f particular interest is the case when the state /}(/;.,3

is the simultaneous eigenstate of I3 and 83, Let these eigenfunctions

be o« Thus
¢, X

3 m

I (V) = ’"Uh n= —0.)“:1-') Y +':)
Ss %5 =

(3.3)

Yo = “m X (3.L)
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Now

!

Amm——ny J
q C :
Hi s 2 Cus Y, 05
where st are the (normalized) Clebsch-Gordon coefficients, Thus we find

o (ms) = 3‘2__6’; [C:’:s I" | (3.6)

2, Absorption by a statistical ensemble

The actual experiment of neutron absorption is carried out with
a large number of neutron-nucleus systemsdistributed in a certain way over
all possible states. Thus the probhm requires‘a statistical treatment for
which the formalism with the density matrix is admirably suited.
We consider thus an assembly of N identical systems distinguished by
an index & (o w1, . o - N) Let 4‘.“) be the spin-state of the « ﬁ
system (consiéting of a neutron and nucleus), For such a state we may always

write

y/(ol)= .;Z—; Q(d) (ms) ,‘PMS

For the cross section of an individual state & we obtain according

(3.7)

to the foregoing

- S I* I \j j
0~(%) = Z 0; aw (ms) C&) (ms') Cms Conigt (3.8)
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and for the average cross section

M m3 (309)
tes !

where we have introduced

(’M'S'H’Ims)

I ST o It (3.10)
- ;2: ‘BtéX)C’"' ) C{x (m's )
N 2
the density matrix of the statistical ensemble7o Since the neutron and
nucleus are in this case statistically independent we may always write
/ s — !
(siplms )= ‘usé;s' Crmlplm) (3.11)
with —
S
the quantity
jF n = P +-P-
(3.12)

is the neutron polarizaticn. The problem is thus reduced essentially to the

calculation of the density matrix for the nucleus,

3s Nuclear snin coupled with an ion

{4
The state function "/ ) of one of the members of. the statistical

assembly may now be written

y®_ JZ‘QM(MM) géM ¥, c)l .

(3.13)
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where ¢M is eigenstate of 33, the spin operator for the ions,
Going through the same arguments which led to equation (3.9) we

obtain

T = Z(T, Ch{s Cm'/f”/m)cn'fs /3J

(3.14)
where now
/
PS ss! ( W\ /.Pn ) /‘V'Z': =) (/7»13) a(d)(ﬂ MISl) (3.15)
or
Cn'llpn‘m) Z /A’){HM) q{q) (’1”19
4G M (3.16)

We see from this result, that the expression of the average absorption
cross section depends only on the submatrix P“ for the nucleus which is
obtained by taking the trace of the total f with respect to the spin

variable of the ion. Thus we shall write

yn = IY@SQ (3.17)

4. Tons coupled by magnetic or exchange interaction

The formulism can be generalized to the case where the ions strongly
interact with each other through magnetic or exchange type of coupling. In
this case it is no longer pemmissible to treat the individual systems of

ions 4 nuclei as independent of each other, Instead the whole spin system
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consisting of all ions together with their nuclei must be regarded as one
individual system of an ensemble of a large number of such identical systems,

The general spin-state of one such system may then be given by

) 5
‘f )= Z_ Q(.‘)(”'Mz‘“) M‘”?—"')¢n. Hy th,mzu.
where

(}ﬂ,n.‘,,, = ¢H, ¢"1 BN

w“‘l“fz-n = CJ“'. quz ty

The cross section for the absorption by the nucleus v is then given by

\ ’

- 5 Ny J ' J
o =2 0, 2 sy (W Lp)m) Sy ps (3.16)
J mys
where ’”vl
' O *
L%w IP’“\,) - IT’I " CL[“) 6’1,'1200'/ “1,”{1 00w )Qd (7,/‘72“,‘1"'1.”1/.“)
MH,
My My ¥ 7/_- d\ ’
il g o Agv A (3.19)
F m,ml

5. Application tc the case of a single ion coupled with a nucleus

by H.F. interaction and in thermal equilibrium

We make the assumption that a hyperfine coupling exists of the

form2 A3 54 I; between nuclear spin I and ionic spin §, in an external
i=1
magnetic field H. The Hamiltonian for the system is then
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3
74=£§A£S“.L +a(1% HeS "d'ﬂ/v Her

(3.20)

The last term can be neglected in comparison with the other terms in this
expression. For thermal equilibrium corresponding to a temperature T the
density matrix is given by
| o- /0T
J= z , (3.21)
-~ AT

where

2= hc

(3.22)

is the partition function of the system.
We need cnly the cubmatrix f’ of f which refers to the nuclear
]

spins defined by

/ _PR/lT
§>A = /Vi,(a = Afi' éi <

The density matrix contains all the statistical information of
the ensemble. In particular it is then easy to calculate the amount of

nuclear polarization (first moment of the nuclear spin)

T,= k(L p)

(3.23)
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and similarly for the nuclear alignment (second moment of the nuclear spin)

qem—

I’: = A (Iazfn)

Thus one has the answer to all the problems if one can evaluate f M e

(3.24)

The matrix elements of ja.are in general difficult to evaluate

but it is possible to develope a perturbation technique with respect to

A

the parameter .~

kT °

IV. A PERTURBATION THEORY FOR THE DENSITY MATRIX

1. We wish to calculate the density matrix ‘fpand its submatrix

for the nuclear spins for thermal equilibrium
JD _ L e_:—%/‘vT" C’Z b e- M/(J‘)
2 (k1)

We assume the Hamiltonian to be of the form

"7(: H, + 7(,

(Le2)
#, = 34 H:S
}/ - (L. 3)
#, = F(s)+ @(sI)
(L)

;la“contains the interaction energy of all the ionic spins (F) and the

interaction of the ionic spins with the nuclear spins (G). In order not to
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complicate the theory we assume the latter to be isotropic, thus
—
G- 2 C;\,
) ~tv)
G, = A4 ($¥-1 )

This special choice simplifies the theory a little but will not be essential

(L.5)

in the following,.
We notice that the problem of calculating (L.1) is equivalent to

finding the solution of the time dependent Schrodinger equation

N=H 22

(Lo6)
Let the solution of this equation be
T
Q)= ()2, J(c)=¢© X (LeT)
with S(O) = r (‘ato) = _ﬂo )
(L.8)
Then putting T'= — LLT- we obtain
4 1] | o — R/kT
P= %S(’ur)’g_e (109

Thus the problem is shown to be equivalent to finding the "S-matrix® which
belongs to the Hamiltonian 42,
In order to develor 2 perturbation theory we introdwe the "interaction

representation® by defining a new state vector
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_TH,
wiT) = & 2(v)

Q(T) = e T g, (c)

Thus by differentiation:
TH, S

& (v)= ~H, (T)+ e~ * 2 (T)
= —-Mo e (T) + e’-t“74.., (104- k,)eruo & (T)

(4.10

or

Oty #, (D))

(Le11)
where we have defined the new time-dependent Hamiltonian
- t%o t%
H,(t)= e H, e 1.12)
Let the solution of (l.11) be written as
(T)= T (T) W(o)
(4.13)
Then the connection T(t‘) with the matrix S( ¢) (L.7) is given by (L.10)
T
St Qtey= e ' %0 T(T) & to)
* (Lell)
Sty e ¥ 7/

since (o) = N(O)

We proceed now to solve Eq. (l4.11) by the method of successive
approximations treating 1’1( T) as a small perturbation, This means that we

find for T(¢€ )a series solution in the form



i

(Le15)
where
Tw(T) = & () T, (7)
(L.16)
and
o for hto
Tulo) < (1.17)
T 7097* h=o
This set of operator equations (L.16) with the initial conditions (L.17) is
by (4.13) equivalent to (L.11). The n®® equation (4.16) can be integrated
INAE: fdr. (t)T,, (T)
thus giving the n‘f approximation in terms of the (n - 1) S__f" By iterating
the process we obtain
-
(D)= foh: J‘d fdv,‘ 76,, (5) %, (5,) &, (z,)
(4.18)
In order to progress further with this expression it is neressary tc obtain
an explicit representation of time dependent Hamiltonian %(i\).
We write
¢ 4 v (v’)
R, I7) - Z/’ SY (v) §L (z)
vv/ ¢
e (4.19)

-+ /?Zur) rm)
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where S§v)(1f) is the ith component of the time dependent spin vector of

ion (v), defined by

SCV) ~T7<, SCV) GTMO
R (t)= e ‘

(L.20)
It is possible to evaluate the T —dependence of these operators rather easily
by making use of the property of the spin operators to gemerate the infinitesimal
rotation in the 3-dimensional space, This can be exhibited most concisely

by choosing the direction of H as the 3=-direction and introducing the

components

Stl = \/J; cgci‘.SL)

N

3 (4.21)
(We suppress the index vy for the time being).

These components have the commutation rules

l:sro ) S 1::7 :s;t
@4_, S‘_] = S, (L.22)

We find then with the help of the commutation rules

- 63 68 ~mé
S». (t) = e 3 5‘,“ e ° = € &M (4.23)

8= $AHT  (M=0,2:)

We may now express (L.19) in terms of the components S5n(T)  (L.21) and

obtain then
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T, ()= F ()« @(T)
. Mot = (mew) @ v |
Pm= 2 ¢ 5 e S, 8.5

ve! vy!
el k.2L)
(_V) l') h 6 ( a2
- h
G(lt) = A Z CSn I )e,
V)Yt
Here the I™ are defined in terms of the I, by the rule =1 .

-n
Then formulae (L.2Lh) in conjunction with (4.18), (L.1k), and (4.9)

give a general expression for the density matrix which can be used to evaluate

JD to any desired approximation,

2. A general theorem regarding the first order term in A
Rose and Simon stated the general result that the first order
contribution in & to the nuclear aligrment depends only on the total
magnetization of the ions but not explicity on the type of interaction
between the ions,
The proof of this follows immediately from our general formglism.
We have the Hamiltonian
*= }pH )+ Fis)+ A (5™ ™)
- - (Le25)
F(8) denotes the interaction between the ionic spins. We make no further
assumption albout this interaction. If in the expression fn :z-,.‘ﬁ( e_'K/QT'
we retain only the terms independent of A and linear in A we can express
it in the form

g. -

g
e

('P4 A T g"’)

Ny

(L.26)
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~03pns + R /UT
whers (P }V 3/‘

. Lyr (H-3) +Firy] f T

(9 (v
A’2 bk SY (4.27)
The secornd equation of (L.27) is obtained in the following way: Write
“H = 7( + AZ(SWI I'“”) and develope -3 xAT
in powers of Ao The term which multiplies A *(v) for instznce is then
o
tv) "" P w) “pp-1
QY= Lk 2 PSR by
o h—l (L.28)

Now we make use of the invariance of the trace under cyclic permutations and
find that in the surmstion over p all the terms are identical and thus just

produce a factor n. In this way we obiain (L.27)s

o0 - #n
(v) ) — A CV) AT
Q ‘:,. e (S«‘« 2 'E{ )) l'“ S5 (1.29)
n="v

The expression (4.26) can further be simplified by making use of the
fact that for any average value of a Guantity which is symmetric-1 in the
nuclear spins we may replace all the I(‘V) by any particularone of them and
then omit the index v, Thus we obtain now for the density matrix of one

nuclear spin

fu

(:; P+ JfL L. ® ,)

) Uy

(L4.30)
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%,/1. T
. v) ?
- Q.= < b ZV ST e (h.31)

Z,-
e

)

N is the number of ions in the system, Neglecting terms of order A2 we find

- Ho
} e /T Ql:-l-l) }YLef Ko fl = Q@i+1) 2‘

Z has no linear terms in A since the traces of the operators Ii all wvaniszh,
Inspection of (Li.31) shows that

Q.:i IV‘ ‘KO/LT' k'i_\/ _2 "' e~7(a/kr
vN '"J“ NIH, &
LT ‘ (L1o33)
- 5;2 N ?H 2

Since the &average magnetic moment of the electronic spins is given by

/
M: == kT - —
‘ N 2o 9H: =% (h.33)

we may write for Q4

pr (La3h)

and finally for fn

[ (""’”* A4 I-hm (h35)

20+
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A
This formula is wvalid if 7;}-<<’I o« No assumption is made as to the order

A

of magnitude of =— » The quantity
AH
5'1(_; = fo< | (4.36)

is the degree of electronic alignment.

It is worth emphasizing that the validity of (L.35) does not depend on
the strength of the external magnetic field nor on the strength of the
interaction between neighboring ions. Thus the nuclear alignment in first
order in FT' is entirely a function of )[0, the degree of alignment c¢f the
electronic spins. With this we have answer<. both of Bleaney's objections

against this method of producing nuclear alignment,

V. APPLICATIONS AND EXAMPLES

We shall now use the general theory of the last section to calculate
some of the higher order effect in nuclear alignment with h.f. coupling.
As a first example we calculate the second order temm in i%&' disregarding
the interaction of the electron spins, That is, we put F =0 in Eq. (Leb).
Thus we can use Eq. (L4.18) with &(1’) replaced by G(T) (Eq. (4.2h)). The

specialization to this case gives then the basic formulae
= _ 1 -4 J
fo=bep  P=L SC-ir) 2248 (-7;)

SeT) = e The T (T)

N (5.2)
‘_Koz }/} ﬁ_gj T(t)'xl'¢77(r)+72[¢)

2 g “(“‘lﬂl"’"'bﬂp) w
T-(7)= A fdl‘, fdrz < fm S“'LI ' MY

[%4 o)
Q:= JAHT



The last expression may also be written
/’} s L) "
Lo = () Rimme) SS, THIT |
(5.2)

\:z (h‘lm‘l— 9‘) = \r‘”‘
v 0 (5.3)

6
' - (Norm 0, )
do, e

The functions Fz(ml Mo @) may be evaluated and tabulated and are given
below, Since we take afterwards the trace with respect to the electronic
variables we need only the diagonal elements of (5.2) and this means that out
of this term we need to consider only these for which my 4 my= Os In the

table below we have listed these quantities and also the corresponding

m  my | Polmgmys 6) | (M 'sml sm2| M)
F1 -1 | 6+ % /2 [-]
1 o+1 9+e% 1/2 [-rJ
o 0 1/2 42 M fp7= S(S41) - M(MEL)

diagonal matrix elements of 5. S . We obtain thus forf('), the term

in fn which depends only on A%

NCUSTS i 2 ¢ o J(0+e21)3 bovr-ninss]

20402
e n (5.1)
« Delisny=mlms 0]+ (0 +e®=0) 2 [Cs01) = HN+)][C(iwr) = (m-)]

- -'—Z B M wm® _ o } !
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where & is the correction term proportional to A2 in the normalization
factor
@i+1) 2o 1+ 2)
(5.5)
0{ is so¢ determined that
P2 Sk p ) =0 |
(5.0}
as it must if the normalization condition of the density matrix is to come

out correct in the order AQ:

k‘f = | (5.7)

It is now convenient to express this result in terms of the partiticn

function Z,(6) of the electron spins only. Thus we have

s %2

2(6)= e M
M

et ® (5.8)
2z
2'(6)- — Zte-oH
(5,9)
2”/9)= Z ﬁz€_9/7
(5.10)

The final expression we may now express in the operator forms

T L ! ﬁ L( L A
M= 2¢(kr) e+ 6, T3+ %L ) g2
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With

o ] D5t 270y (ent 8 )+ 2 (a0}

&= L20o)(tnte-1)+ L (Sls+1)-2"8))(siuk o~ 0)

(5.12)
Q, ~ $2"(0)(6-vtg)+L[s0s+-2"0)] (1-ent s )
/
(9, ééf’) +368°2" (v)
e
Since )
W p b I’sz= @J-H) L(é;')
We find for & the value
_ ClL+1)
X = G+ 3 A (5.13)

Thus we can express the result entirely in al, a2

)_ 4 Ay bT \ * Cle+r) - ~2
Pn = Qa—) o ) (— — 4ra,Lra, LY

The correction to the nuclear alignment will be contained in the term with

al. It is of order of magnitude

A
OUs™)s s, (Br)* (25v) ~ ()T
for all values of e = w

T

(5.15)
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-1

s + A ,
Thus the contribution for Mn turns out to be at kT AP.1 cm

(2. '«) ~ o” = | ?ﬂ, (5.16)

The correction due to the interaction of the icns to the nuclear aligrment

calculated from the first term above will thus turn out to be
AL 4 £
a— N —
kT kT loo kT~
(5.17)

where d is scme mean of the coefficients in (4.19).

The Bleaney Alignmént

In a recent letter Bleaney11 proposed a method of nuclear

alignment making use of the asymmetrical h.f. coupling which is known to

exist in many crystals, The first order contribution to this effect, which

is probably the only significant one, can be easily calculated.

The Hamiltonian may be taken as
#H o= A8 1,+ B(r,S +1I_9,) | ot

The density matrix is then given by

| — KT
\?W = z L{Q..e' Z:kfn (5.19)

We write it in the form

(5.20)
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We obtain then for the successive approximations

(o) _ £
f) - 2+ |

£ o=

C'L) i d r
jO QS’T) 2, CI-H)(.?J-Q-A)/. [A‘S\Io'* B(f I +-9[' )] }

This leads to the following expression for Va (2)

(5.21)

(2) ! l : 20m 2 2
AR s Nervs yro ries e @by nr by 5)

Now -
8 2= £ $Cs+01(28+) J

S8 s 08 = {3¢wm) (2841)

Thus f (2) becomes

() 1 S(3+1) {A 727 al/y )
5 20 T3 (2t S Rl - 27 - V}

The constant « is determined from the trace condition

Ivf(?"to

or

&y = f(l;#-l/ (QBZ_'_ 42)

Thus finally
(7_) - | S\(J\-H) ,3 2\ ~
Jo ZLUI 3(2.7:“) ( A ) (5.22)

/=~
x (g T (T+) — IOZ}
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2

From this we see that the an) vanishes if BZ — & , that is if the h.f,

coupling is isotropic. We see furthermore that all the odd powers of I,

have average values zero, Thus in particular

h‘I‘,f = ro = O (5’23)

Thus in this case there is no polarization of the nuclear spin. For the

second power, on the other hand, we obtain

2 = hLip- Z0+w) 4

3 (5.24)

is the difference of I(;L from the value for the isotropic case

1 I(I+4 1) and represents thus a measure of the degree of nuclear alignment.

3
We obtain for A

A - k Jofl) Io"

Making use of the relations

[ e .'3 T (T+1) (2D +:1)
H — Y - 4 T’L T b X __’_ ~
T* = £ T+ [i- 32Cres, JCT+1) (5.25)

We obtain finally

2o
A(kr;;L S‘[.f-l-/;fffﬂ) {:;."I(_Z—Hj -1
o

-~
e

(5.26)
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The Pound Alignment

In Pound’s method of nuclear alignment the quadrupole interaction
of the nucleus with the crystal field is used to produwce an uneven population

of the states of the nucleus.

AIn case of cylindrical symmetry the relevant part of the Hamiltonian

is then

A= F CéICI’H)\ %)

(5.27)
where "
- Jeq A%V
4I (2I- 22*
(2I-1) 0 (5.28)
ere is the electric quadrupole moment of the nucleus and .. 2:‘/
were e N
the gradient of the electric field in the direction of the symmetry axis,
Since H,is quadratic in the nuclear spin the density matrix has a term
linear in L which is
T
() ! F ( l
= = T AT+ )= T
f ZI*. kr 3 -*' ) - D (5029)

This is of the same form as (5.22) and will thus lead to the same result for
the second moment with suitable change of constants.
The two effects become equal at a temperature T such that

IE| = II.:T S‘C.l‘:v) "42'32l

(5.30)
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£ Al >> R |

G (5.31)

Since

Faoto w” An w0 2%"

k'T ~ SCS+1)
bo

The two effects become thus comparable in the neighborhood of about 1° K.
It should be noted that the two contributions add algebraically and may

L
add as well as s:{zbtract, depending on the sign of F, We have thus a method

of rﬁeasuring the sign of F by measuring nuclear alignment,

VI, METHODS OF DETECTION OF NUCLEAR POLARIZATION AND ALIGNMENT

In order to detect and measure the nuclear polarization and aligrment
it is necessary to study physical effects which depend on the orientation
of the nuclear spins, Possible effects of this sort are the absorption of
slow polarized neutrons and the emission of ¢¥-rays, We shall discuss
these effec'ts for the special case of the Mn nucleus since this seems to be
so far the most suitable nucleus for @ oducing polarization.

Detection with Neutron Absorption

The most recent data on the Mn nucleus were obtained by Harris,

Hibdon and Muehlhausl3 s« According to.these authors the lowest resonance

levels of Mn are situated at
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E; 2 345 ev E, = 2400 ev
They assign to them the following widths for n=- and¢rqﬁmﬁssion
d
= ot e M= 210 =¥
(6.1)
r;a’*v Gvden | N r:hL?: 304 e

The lower level corresponds to the resultant spin J = 3 and the upper to
J 22, Each of these two levels contributes a certain amount to the neutron
absorption at low energy which can be calculated from the Breit-Wigner

formula for non-interfering levels

= 4 X X, 9,
G Cntny ™+ (e-e.)
(6.2)

where gy are the statistical weight factors for the two levels

' /
£= - # ———— - /
J 2 (/ ST ) ﬁ" J=T+ 4 (6.3)

In case of Mn we have

A J =3
[
g»u 9'2 J-2 (6.4)

For thermal neutrons we may develop (6.2) and write
Py Py,
z
E

(6.5)

ol 4#%%}}“.
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The ratio for the two levels thus twrns out to be independent of the neutron

energy
< y 5
Y= 2 = —::—éz' AP"'L P"'» d> 5 (6.6)
I [] P‘h r-’”’ é’ E’v
sinee I < t'lr. ~ BTN
[
- Ly
v (EL )A LY Ll 74 107" del
E — = 7dxw0 = (6.7)
'-'"‘ J" r“" F"‘

It is seen that the ratio of the two absorption cross section depends only
on the ratio of the J*-widths, Unfortunately the width of the upper level
is not very well known, If we assume it to be the same as that of the lower

level, then we obtain for
-2 [w r. -
X =7 90 r, r}; (6.8)

With X we can calculate the effective absorption cross section for slow

polarized neutrons by polarized nuclei

E-;"= o—;(""[_f:/ fn.f;v).*(l (/‘ O(»JCN)
- o—.[é., Iéof"’c")-}k (/“‘fuf’/v)]

r I-(r
T +1)X
q'[l* -+ ) - %h 7(’,\/]

I~ x

(6.9)

"
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where To= Ti+ey = &t (1+x)

is the total absorption cross section for themal neatrons, The pelarization
effect is thus always reduced by the contribution of the upper level to the
slow neutron absorption, 1In order to obtain an estimate of this contribution
we compare the total measured absorption cross section for thermal neutrons, 'y

rq, = {;-* rl = 'z,| b (6,10)
with the value obtained from the one level formula

T, = lo,2 b
(6011)

The difference is then presumably due to the upper level which gives

0’«_ I-‘-x 2\‘
= = = o, ¥~N02

corresponding to a a' =width /ﬁ Y As 1,52 ev, In the following table we

give the polarization effect for three valuwes of ¥ .

% Polarization

y 2 A(x) Effect r r
0 0,71 100 0
0,08 0659 83 0.6
002 Olk3 62 1,52
eV
I - (1‘-& 1)

A{x) = @')‘/+y) fw T=34



We see thus that a reduction of the polarization effect by 10 to 20% is
very probable and perhaps as much as 4O% is not impossible,

petection with J“~emission

In order to make any statements regarding the angular
distribution of the ¢*-rays emitted upon slow neutron capture by the Mn
nucleus it is necessary to know something about the type of electromagnetic
radiation (multipole order) to be expected from the intermediate compound
nucleus, This is possible if we have some information on the spin and parity
of the excited state and the ground state of Mhsb.

The spin of Mn55 is known to be T = 5/2. It is one of the few
exceptions of the spin predictions of the shell model, The latter would
have given I = 7/2 arising out of the configuration f7/25 o The actual
spin and magnetic moment values indicate that the configuration is very
likely f7/2h d5/2 leading to i = 5/2 and parity even. |

The compound nucleus of the lower level (El) is formed by S-capture
Tesulting thus in the excited state with spin J = 3 and parity even,

We have no direct information about the ground state of Mhsé. The
shell model would predict parity odd since there are three p3/2 neutrons
to be filled in over the closed neutron shell of 28. As to the spin the
shell model makes no definite prediction since‘Mn56 is an odd nucleus, The

5 known examples of odd odd nuclei with known spins show that the resultant
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spin is obtained:LS by combining the spin of the neutron core to a value
which usually is neither the maximum nor the minimum but is perhaps closer
to the maximum., In our case the resultant spins of the two cores are 5/2
for the protons ad 3/2 for the neutrons thus the Mnsé ground state can
have spins 1, 2, 3, L and parity odd with perhaps spin 3 most probable.
In order to fix the spin value of Mn56 with some degree of certainty

we have to look for other evidence, This is obtained from the subsequent

~decay Mnsé_a Fe56+ /,3 (2.6 h)., The investigations of Elliott and
Deutsch16 and of Siegbahnl7 have shown that the ﬁ =spectrum is complex

and is accompanied by several r =rays according to the following scheme:
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- It is notable that there is no direct transition to Feséo The

various energies and lifetimes are given as

_@ -ray E t £t
0,75 .65 965

1

o 1,04 3.10 4o

3 2.81 1.80 1320
Mev X th sec X 10)"

This makes the transition /&1 allowed and (3,, probably (3 3 alnost
certainly first forbidden., This allows us to assign parity to the two
middle levels of Fe56 since the parity change for first forbidden transitions
is "yest®, Since we have previously found the parity of Mn56 to be odd we
must assign to these two levels even parity.

We know also that the spin of the ground level of I«‘e56 is 0 and
parity even since it is an even even nucleus. Furthermore the first
excited states of even-even nuclei have almost always spin two and even
parity,

We are now in a position to rule out some of the spin values of the
Mr156 nucleus, We have previously seen that possible values are 1, 2, 3, L.
Since there is no direct /3 =transition to the ground state Fe56 we must
assume this transition to be at least second forbidden which (for Gamow-Teller
selection rules) corresponds to a spin change A I> 3. Thus the spin of

Mn56 is either 3 or L.
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We look for further information on the Mnsé ground level by studying

the radiation which can be emitted from its two excited states

2+

Possible multipole radiation:
34 .

E ol 23 5 ...

PANN"r M 22 2b

The two typesof radiation E3 and M2 are the ones which have the right
probability and which come into Question. E1 is usually much less probable
than E3 and may be excluded, Of the two possibilities E3 and M, we would
expect the former to be more probable for the energy inwilved here, Thus
we conclude the capture - & radiation is likely an electric 23 =pole radiation,
Of the two possible spin values L, 3 for the ground state both are
compatible with this radiation, It is, therefare, not possible on the basis
of existing evidence to make any definite assignment of the ground level

spin.
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Assuming now that the capture occurs primarily through the lower
level and that the radiation is electric 23 pole we obtain for the angular
distribution of the d’” -rays emitted from an assembly of nuclei with a

probability distribution p for the M jeye1l8

—_— JJPJ' 2
Flo= 2 Ic |” Ty, (®) (6.12)

M-m | m

are the Clebsch Gordon coefficients for the composition

where Q/g Jed

M-wm, m
of angular momenta '\'})':)P to a resultant j and Ijm(y) are the angular

distribution of the electromagnetic spherical wave of angular momentum Jm

T, (0= & (d=me)(j+m) [P, (0 ™

Am? I ’ij 19)’ =~ _2{ (J"”"‘H YCi-m) | P)'MH /6) ’1’ (6+13)
For the special case of the Mn-nucleus we obtain the result for J = 3,

J,F = 3 or i, and according to the foregoing j = 3 (electric 23-pole
radiation). In case electric dipole radiation is important we had instead

to take J = 3, :ZE =3orland j=1,
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