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CAN POLARIZATION EFFECTS BE DETECTED IN CAPTURE GAMMA RADIATION?

L. C, Biedenharn, M. E. Rose, G. B. Arfken

I. Introduction

It is well known that the detection of the state of polérization
of radiation emitted in nuclear (cascade) transitions can yield useful information
concerning the parity of the )ﬁ-radiation and is helpful in the determination
of decay schemes.1 It has also been conjectured that the production and subsequent
utilization of polarized particles in nuclear transmutations would perhaps be
equally useful in providing information concerning the qQuantum numbers to be
assigned to nuclear levels, At present experimental techniques for the production
of a beam of polarized particies are very fully developed in the case of neutrons,
Such techniques are, of course, limited at present,to slow (g) neutrons. It is
therefore pertinent to investigate the possibility of utilizing such polarized
neutrons in order to (1) produce other polarized particles and (2) to obtain
information on nuclear levels by detecting the emitted radiation with polarization
sensitive counters., It is clear that a measurement of total intensity would not
be revealing since this intensity would be isotropic.,2

We consider that the compound state formed by neutron capture decays
by photon emission since this is the case of greatest interest. Emission of
other types of particles is briefly discussed at the end of this report. The

experiment envisaged then involves the use of polarization sensitive detectors

1, D. R. Hamilton, Phys. Rev. 7L, 782 (19L8).

2. L. Wolfenstein, Phys. Rev. 75, 166L (19L9).



l=

to measure the intensity and polarization of the emitted photons.3 The result

of this investigation shows that the intensity as measured with any known

(practical) polarizaetion-sensitive detector is isotropic and that therefore no

additional information is forthcoming by virtue of the neutron polarization.

As shown below, this statement is valid for both pure and mixed multipoles,

Specifically, there is no observable anisotropy insofar as the
analyzing process can detect only linear polarization., This is the case with
all known methods for measuring the photon polarization; e.g., (1) pair production,
(2) photoelectric effect or (3) single Compton scattering. The common feature
of these observation methods is that they give information only about the state
of linear polarization of the photon and cannot distinguish between right- and
left~circular polarization, or indeed, distinguish either of these from un-
polarized light, It is clear that right vs. left elliptic polarization are
similarly indistinguishable, In order to obtain information concerning the -
radiation emitted and/or the compound state it would be necessary to devise
some detection method which discriminates between right vs. left circular

polarization; that is, a "nuclear quarter wave plate."

II, Absence of Polarization Effects
Let us consider neutrons having a polarization defined bty the
polarization vector‘§;55<?:>;> ~—incident upon a target nucleus of spin Iy with
the target spins randomly oriented, The relative angular momentum of the system

will be taken as zero (S-neutrons). Following the methods originated by

3. M, Deutsch and F, Metzger, Phys. Rev, 7L, 15h2 (19L8); 76, 187 (4) (19L9).
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Hamiltonh, Goertzels, ard Falkoff and Uhlenbeck6 we shall calculate the relative

cq s = = —_
probability OP(PO, k, e) for the emission of a capture gamma ray in the k
direction with linear polarizationT;.following the capture of an S neutron of

——
polarization Po. The desired probability is:

Bm> .<Bm’ HZ(;’ g)lcnb*\z

- .
A(Po,.ﬁ } denotes the probability amplitude for the initial state of the system

@ (Bys %, ®) =SfZ<A<§2,2)IH

with /g’defining the spin state of the target nucleus; similarly, B, denotes the
intermediate state and C,, the final state, S denotes an averaging process over
the initial states (ﬁ ), including phase averaging, and a summation over final
states (m')., Also Hy amd H, are the Hamiltonians that effect the neutron capture
and gamma ray emission respectively,

The sum over the degenerate intermediate states (By) in (1) is
coherent. It is possible, however, to remove interference terms by a proper

choice of a quantization axis. Then (1) takes the forms

O, ~ >

£ 5™ m!

< [mladf|lnlay @

7

This reduction has been demonstrated by other authors’ for a similar situation

4. D. R. Hamilton, Phys. Rev, 58, 122 (1940).

5. G. Goertzel, Phys. Rev. 70, 897 (19L6).

6. David L, Falkoff and G. E, Uhlenbeck, Phys. Rev. 79, 323 (1950).
7. Stuart P, Lloyd, Phys. Rev. 80, 118 (L), (1950).

J. A. Spiers, Phys. Rev, 80 "E91 (L), (1950).
B. A. Lippmann, Phys. Rev, 81 161 (L), (1951).
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wherein a propagation vector for one of the emitted (or absorbed) radiations
is specified. Here we are concerned with the case in which the polarization
direction (of the neutrons) is specified while the propagation vector is not
fixed, That this difference is not essential and that the cross terms in (1)
are removed by choosing the axis of quantization along-;o is seen directly in
the following manner, Assume, for the moment; that the incident neutrons are
completely polarized so that P, = 1. The compound state wave function is then
L3 1

x?;—,c: %I} X; X;: ‘ (3)
where the Ci %fé are Clebsch=Gordon or (real) vector addition coefficient58
as definéd by Wigner°9 An index m, on which the C-coefficients depend, has
been suppressed since it is in general given by the sum of the second and third
subscripts: m = Jef'l. If we now consider a given.xfgit is clear that only
one value of m occurs and there are therefore no cross-terms, We can now remove
the restriction of complete pelarization while recognizing that for incomplete

1

polarization the spin state ;( i of the neutron has random phase relative to the
1 2

;Rff state and the reduction of (1) %o (2) still obtains on averaging over this
2

phase,

We can simplify Eq. (3) still further by noting that/<.b./e I Hl‘Bm>/2
Av

8, E. U, Condon and G. H., Shortley, Theory of Atomic Spectra, (Cambridge University
Press, 1935), Chap. III.

9., E. P. Wigner, Gruppenthecrie; (reprint J. W. Edwards, 19Lk). We have altered
the notation_to the extent of replacing s by C.

1Y2
In general CJ3mlm2 corresponds to the vector addition of Jy and Jy to give a

resultant JB’ with z-components mj, mp and my = m; + mp respectively,
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- to within a common proportionality factor - is just the population of the mth
sublevel of the intermediate state, Using Eq.-(3), the population of the mth

sublevel, call it B(m, J), is:

» =l )
T oo+l

B(m, J) =

wij~

The sign is to be taken 4 for J = Jy+ % and - for J = Iy - %, The departure
from uniformity of the populations of the sublevels of the compound state is
linear in the magnetic quantum number of these states, This result, which
obviously is a direc{, consequence of the circumstance that spin % particles
are captured, is of decisive importance for the co;lclusions to be presented below,
Let us now consider the evaluation of the matrix elements <Bm‘ HZlCm'> .
The Hamiltonian H2 is z ;[: . —zf where O_(:_ is the Dirac velocity operator for the
ith nucleon and I is thels vector potential corresponding to a linearly polarized
plane wave with the propagation vector .l? and polarization? in the observer's
coordinates, Since the nuclear transition will correspond to the radiation of
a light quantum of definite multipole order (angular momenta, 1) and definite
parity (electric vs. magnetic radiation depending upon L) it is expedient t;o

expand this plane wave into a sum over all multipoles, Goertzel5 has done this

for vector potential of a circularly polarized plane wave, His result is:

. |
- - = oL (L) N
i m =) > iy 1001«491: @ALY W w1 p a8, (5)

L=l M=-L



.

The notation here is: P = + 1 denotes right circularly polarized while P = - 1
denotes left circularly polarized waves, The vector potentials ?I-M refer to
radiation of 2L pole multipole order, of substate M, and are given explicitly
in reference (5). The superscripts e, m denote electric and magnetic multipoles
respectively,
ﬁ(L) th _th

The M,P (d/? 7)) are the (M™, P"") elements of the rotation matrix
of the LY order. The elements (M; P =% 1) are also given explicitly in
reference (5). The {, ﬁ ;)" are the Euler angles of the coordinate system of
the —XLM relative to the coordinate system of the vectors -l?, -5:

A plane polarized wave - whose polarization vectoer, ?, makes an
angle T with respect to a fixed vector in the plane perpendicular to? - may
be written:

- A
Ak, e)

cos T z I(k, P)+ sinT Z (~1i) P.Z(k, P)
P P

2 TR ) 6)
P

We can now reduce the matrix element <Bm‘ H, ICm'> to a more manageable form,

<Bm|H2| Cp1 ) EL % % i VoL + 1e"iP708 ;ﬂP QL) -
. <ij Zc-t: °(-A?£9M+i P_KE’M} c,, > | (7

i
——
Since the terms d i . transform under retation with the rotation matrix

—
(L) o 10
00 we may apply the result of Eckart  to these matrix elements,

10, C. Eckart, Rev., Mod. Phys., 2, 305 (1930), Also E. P. Wigner;, l.c., p. 26L.



- - S ' J(1,L)
<Bm)zi o, .,(A;'r:‘Mﬁ P AEM] C n> = a%) ch,‘mM (i P) (8)

The term a(JJ'f; L) depends upon the total angular momenta (J,J') of the two
states involved, upon the multipolarity ( QL) of the emitted quantum and upon
the relative parity change (77' = = 1 denotes a change in parity; 7T = +1,

no change,) For {% :32:1:5,:; } we have electric radiation, and oppositely
for magnetic radiation, Since parity is a good quantum number, this means
that for a given value of L either electric or magnetic 2L pole radiation may
occur, but not both., The factor i P occurs if we have electric radiation., We
have introduced the function i PJ'(WS L) where J (77, L) = X1+ 7 (-l)L)

which automatically introduces the factor i P for electric multipoles and is
unity for magnetic multipoles, The factor )/ 2L + 1 is introduced for convenience
only, The Clebsch-Gordon coefficients, Gj]i' M

summation over M in Eg. (7) therefore reduces to a single term.

, are zero unless m+ M = m'; the

Introducing these results into Eq. (2) yields the following equation:

W(Pskse)ﬂz(% mIP'

L <iP7 L
i t 3 )
gi-’ a(JJ'TrsL) e oﬁnpp(d/fa»)

2JN1“ 1
S(w,ry g |2
. (1 P) " C oy (9)

We can simplify this if we note (1) that the Euler angle X" corresponds to a
different choice of origin for measuring the polarization angle T’ and con-
L
sequently we may put 2’ = 0 and (2) that the elements gﬁ M P(dﬂ 0) all have the
3

dependence elMd s multiplied by a real function of /d s independently of L. As
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we want only the absolute value we may discard this factor;, or what is equivalent,

set 6(8 0., The Euler anglelg? corresponds to the polar angle that~§ makes with
—

respect to P,, and to agree with the customary usage we now call this angle V o

The absolute square in Eq. (9) may be written explicitly as:

J ! 9 o (L) 2
a(JJim; L) e ,6 (o 0) c -
L-L'+d - 1 '
= Z E_ i a(dJvyr,L) a*(JJ’Tr,,I;’) ei(P .p)q:;_ c.c.} *
L«L' P,P! :

7’9 l [ t
() J(ﬂ'L)o@(L)ﬁ(L LGy gl

where <S§f is the Kronecker symbol and c.c. means complex conjugate,

For practical reasons, one generally considers the case for “pure"
multipoles and confines one's attention to a single value of I, = L' in the
above equation, Since, however, we shall get a null effect for this case,
the case of mixed multipoles becomes the important one, We shall forthwith
consider mixed multipoles, and obtain the results for a pure multipole by
specializing the general case.

The typical terms in Eq. (10) for a mixture of multipoles have the

form:



wlle

) o &1 g oL L' jy gH(L) o F(T,LY)
%vﬁn‘s 'QMP" J 'mM J"mM 1- J /2) P (P')

{«b [a(JJ'Tr §L) a*(JJ'ﬂgL'z‘]ﬁb [iLQL'-I‘J» =J' ei(P!_P)’Z’]
_,,ﬂ-.u[a(JJuw ,L) a*(JJR'r{,L“)]"QﬂM[iL°L'+$ -4 ei(P'-P)'r] (11)

We note now that the function L +d (T,L) = L+ #(1+ 7 (-l)L) is always an
even integer if 7 = = 1 and always an odd integer if T = +1, independent

of the value of L. Consequently L +d - (L' #+ 1) is always an even integer
for all values of L and L', and 1L’L'+J d! is therefore £ 1 in all cases,

This sign is of no importance in what follows ard will be dropped (it is + 1

if L = L', however), Also

i(pt= Pt -Pt P!
(P P)T‘JP +3F cos QT-iPJPP sin 2% (12)

Introducing these results into Eq. (10) we get the final form for the absolute

2
square matrix element I ( Bm ) H2 , Cm '> I .

|<Bm(H2/Cm'>/2’V Z 1-3J7 )C JF .

L4 JmM J'mM

{0?1—- [a(JJvﬁgL) a*(JJ“ﬂ’,L'Z]' (FE,L‘ (V) + cos 21'1‘%’1.' ('lﬂ )))

+ J,W[a(JJ'TT sL) a*(JJ“ﬂ‘pL‘)] e (sin 27~ giv (’U))} (13)
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We have introduced the definitions:

FML. W) = Z (L’ (ov’ow <0U0) (1)

f.iL. V) Ezp ’Laﬁm (oWO)o@(I' ) (0Y0) (15)

gL =28 e 6 ey as)
s P

The relative sign of the three angular functions in the curley bracket in

Eq. (13) is an unwieldy function of L, L' and 77 , which, in view of the result
obtained below, has been dropped as unimportant. The functions defined in

Egs. (1L), (15) and (16) are well known in the literature, at least for small

L, L', (but the notation is not yet common). When L = L' we get from (1)

the F% (L9) given by Falkoff and Uhlenbeck.6 For L # L' the function F%,L' (¥)
has been given by Ling and Falkoffll, and by Zinneslz. Zinneslz also gives

the function fﬁ,L' (Lﬂ). We are finally in a position to give the desired
function (P (B, K, ). Substituting Eq. (13) into Eq. (9) we get the required

result,

11. D. S. Ling, Jr. and D. L. Falkoff, Phys. Rev. 76, 1639 (19L9).

12. 1Irving Zinnes, Phys. Rev. 80, 386 (1950).
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6’(1:0, K, e)"’Z X X(l 1JL)(1+ _'_f}’_l_) JL QL' .

L/<L| N+l J'mM J'mM

. {o?» [aaar 1) a*(er,L')]' [ , () 4 cos 2T £, (U’)]

+ =ﬁ¢m,l—a(JJ'ﬂ“,L) a*(JJ'fr,L'i] . [;in 27 gg Lt (192] (17)
2
We can simplify this by using a relation originally due to CasimirlB.
JL‘ - 2J'+ 1
5 Cva Cormy = € ) > o'

Yr(2L.+-1)(2LI.+ 1) Im M-m L'm M-m
1!

- J . gg_!._t_}_

T UL A+ 1 (18)

In order to simplify further we must obtain some of the properties

M . .
of the Fg,L' V), fL,L' (¥) and gE’L' (Y¥). The desired properties are:

FIL{’L: (V) = ("l)LnL' F;Ile (U) (19)

L 1! (V) = (-l)L-L I:ML,(LO) (20)
L-L'+1 -

B (V) = (T () (21)

gL (¥) =0 (22)

13, H. B. G, Casimir, Archives de Musee Teyler, Series III, VIII, 27k (1936).
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These properties all follow immediately from the definitions and the relationsg

b ¢ (L) (0Y0) = (-1)"'T (I‘) » (000) (23)

For example, consider the function Fg Lt vJ).
H

M _ L-L' (L) (L' 2(M+1) L-L' () (L")
F v) = -
o >_§PP ) b §< 1) B o8

’ZP (QI)Z(M+1)+ L-L! PL-L'ﬁ,ggP ﬁfﬁ:

SLY =M
. (<) p

e ) (2L)

The other relations are as easily shown.
We need one further relation, the symmetry in M of the sum:
i JL JL!
HLE%"J')E% ch'mM O ot (25)

We shall prove the result:

ﬁM - L-L'+1 -M
L T (-1) H o1 (26)
+ IV
To do this we note that CJ = (—1)J Jit L L (This relation has

J 'mM J'y=my-M’

been shown by Racahlh.) Thus:

1, Giulio Racah, Phys. Rev. 62, L38 (1942).
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=y
]
N
=]
2
5

- (_1)2(J+J')+L+L'§:m . oL JL!

J1-m-M CJ'=-xn-M
m

= (bl 2 oJL!
J'm M J'm-M

L-L'+1 -M
= (-1) L. (27)
H

Now consider again the various terms in Eq. (17), using the relations just

shown,

=2 =2 Z 271+ 1
P (Po: k, e) N'L m ( 2L +1)
’

2
a@a 0| (M (W) reos 22 £ (V)

2(P
+ ( -—‘o—,-) 2 “'L“'[a(JJ"ﬁ',L) a*(JJ'Tr,L'ﬂ' (sin 27)*
2JN+ 1 ¢l

M M
{; 1 8 L (U)} (28)

All the other terms vanish because of the summation over M. For example, take

he t M VY)Y,
the terms in LL'( )

o () Mo = () Fop Bope (V) (29)

Consequently the sum over M of these terms vanishes identically,
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From physical considerations it is clear that the first group of
terms in Eq. (28) (independent of neutron polarization) must be independent of

VY and T . It is easy to show this analytically, using the fact that

L
0(915[ D)i' (0Yo) = 31' "M (0-Y0), which follows from the unitary property of the

IGI(.If‘I){I (d/ef%
%Fg,l. W= 2 Z MP(O 0) J9 (0290)

z S A ¥ B0 o)
M

a Ea&g“; (000) = 2 (30)
P S

Similarly we can show that the corresponding sum over the fgL (?f)
>

vanishes identically.

> S8E w0 8P, 0w
P M

:g ;E-A9(L)(O-Wo)d9() (00)

| (L) - -P
; D, p(00) -ZPJP =0 (31)

Finally then we have the result:



-17-

.
G’(PO,U 'Z‘)fvz (2J""1)/a(JJ'77’,L)/ + EEQI___(sin 2T ) .
oL + 1 20y + 1

z o (a(gg 111 JIvrL
= ) &*arrL)) B, e
M

A CORN €

From (32) it is evident that if the radiation is observed with
polarization insensitive detectors the intensity is isotropic and independent
of neutron polarization for pure or mixed multipoles. This merely confirms a
well-known result as does the fact that in the case of mixture radiation
there are no interference contributions to the unpolarized intensity.ll The
only possible effect which might be expected(a priori) to arise from capture
of polarized neutrons is an asymmetry which would presumably be observed with
polarization-sensitive detectors and this only if the radiation consists of
mixed multipoles. However, this possibility is illusory because all the terms

J;,m_{a(JJ"n’L) a*(JJ'Tr'L')] vanish, That they do indeed all vanish as has
recently been shown by Lloydls.

This eliminates the last possibility of any detectable )”2ray
anisotropy resulting from the neutron polarization, for Eq, (32) now has the

simple form, (f (Pos V5T ) ~ constant independent of Pys Y and T,

15. Stuwart P. Lloyd, Phys. Rev. 81, 161 (L) (1951).

16, This result is consistent with a theorem of Wolfenstein (reference 2)
according to which the maximum anisotropy for the case here considered
would be cos? 19 , 1In the present case the maximum anisotropy is not
realized.
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It is also clear from the foregoing that the practical restriction
to S-neutrons was essential in establishing this result. However, even if fast
polarized neutrons were available the capture experiment would not seem to be
highly practical for intensity reasons. The S-neutron capture )*nradiation is
to all intents and purposes unpolarized amd no observable effects arise by
virtue of the neutron polarization.l7

We emphasize again that the foregoing results depend critically on
the fact that available polarization detectors can measure only linear polarization,

The question as to alternatives to the n-)* reaction arises in
connection with the present problem. The elastic scattering of the neutron by
non-zero spin nuclei gives rise; in general; to a partial depolarization to
which nothing new can be added here. The emission of /{ -particles or other
spinless particles will give no deviation from isotropy. Proton emission is
not probable in view of the limited energy available. Other electromagnetic
processes leading to internal pair emission or internal conversion electrons
are again not practical - the former because of considerable experimental
difficulties to be expected and the latter because the internal conversion
coefficients would compete weakly with the high energy and/or low multipole

transitions which are to be expected after formation of the compound state,

17. The possibility of observing polarization effects by selecting the radiation
emitted in a special direction is also seen to lead to a negative result.
The only special direction at our disposal is the direction P,, For gamma-
rays emitted at U = O only the components M = £ 1 of the radiation appear
(see references L, 11). However, this gives right and left circularly
polarized light which, for the detectors available, is equivalent to un-
polarized light,



