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SUMMARY 

This is the first of a planned series of reports on the analy t -ca l  treatment 

of heat transfer t o  noncircular ducts with emphasis on liquid metal systems. 

report is concerned only  w i t h  results f o r  systems with ful ly  developed hydrodynamic 

and thermal boundary layers; i.e., away from entrance effects. 

This 

Analytical solutions f o r  velocity distributions in  the case of laminar or  

viscous flow are presented for  rectangular, equilateral triangular, right isosceles 

triangular, e l l ip t ica l  and circle sector ducts. 

Analytical solutions are given for the temperature distribution i n  the case of 

slug flow i n  the type ducts mentioned above for heat transfer a t  constant w a l l  temper- 

ature and a t  uniform w a l l  heat flux. 

problem is solved fo r  the case of uniform w a l l  flux. 

results t o  liquid metal systems f o r  a region of the turbulent regime is indicated. 

I n  addition, the general right triangular duct 

The applicability of these 

A t  uniform w a l l  flux the average 18.rrssult modulus for  slug flow was found t o  be 

6, 4, 3, and 2 f o r  rectangular, equilateral triangular, right isosceles triangular, 

and 30 degree right triangular ducts respectively. 
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The mbj& of fluid flow a d  heat transfer i n  noncircdLar ducts froaa a 

ftmdaaextta3 viewpoint bas been virtually neglected in the literature. This 

probably resulted Prom the industrial practice of generally using mund pipes i n  

heat transfer equipment. 

unconventional heat transfer design problmw and the increasing industrial use of 

noncircalar duds in heat e-=, the p b l e m  becomes mre than just an scadeadc 

With the advent of nuclear engineering and the resulting 

question. 

In  coarprrtring heat transfer coefficients based on the momenfs~~transfer theory 

o r  othertheories, it is necessarg to how the velocity distribution. Hikuradse 

(ref. 9 and 10) made extensive ms-ts of the velocity distribution for 

turbulent flow i n  several nonciroulw ducts ,  but, unfortunately, these measurements 

are confined tQ trhe tUrbulen% core. In addition, the developnent of the hydrodynatnic 

f relationships for  turbulent flow i n  noncircular ducts is complicated by the existence 

of secondary flow i n  corners. 

(ref. 9) e 

This was established earperimentally by Nikusadse 

As yet no generalized velocity distribution relation has been established 

8s in the case of' flow i n  pipes. 

Average heat transfer coefficients for rectangular duets have been determined 

experfmenta2l.y and correlated on the basis o f t h e  c?onVen.r;iona,l equivalent diameter 

by Bailey and Cope (ref. 1) and by Washington and Marks (ref. 14) 

Eckert and Low (ref 4) developed a numerical method f o r  the determination of 

the teaperature distributions and the heat transfer characteristics of a heat exchanger 

composed of p01ygom.l flow passages with the walls heated uniformly by intenzal sources. 
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The eircrunferential variation of the local heat transfer coefficient was estisated 

from Bika radse ' s  data by poshlating similarity between the velocity and temperature 

fields; i.e. , for  fluids whose Pr = 1. Thus, as i n  the classical Reynolds Analogy, 

the influence of the laminar sub-layer is not considered and the resalts are not 

applicable t o  fluids whose Prandtl m o d ~ U ~  differs appreciably from unity. 

The general vein of this work is t o  attempt to arrive at  analytical solutions 

f o r  the various conditions resulting frorn the hydmdynamics, method of heat 

application and the geometry of the systems eonsidered w i t h  particular emphasis on 

liquid metal systems. 

developed for the case of slug flow in  several noncircular ducts for  conditions far 

downstream. 

systems in  the turbulent regime for relatively low Reynolds moduli. 

In this particular report, the heat transfer equations are 

It is shown that the slug solutions are applicable t o  liquid metal 

The author w i s h e s  t o  express his appreciation t o  C. L. Perry for his assis-ce 

i n  some o f t h e  mre difficult mathematical points and t o  H. F, Poppendiek fo r  his 

criticisms and suggestionso 
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a 

Any consis%ent set  of units may be used. 

8, a duct dinm.sion 

A, heat transfer area 
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* 

5 9  

x9 

Y9 

€ 9  

Prandtl modulus 

heat transferred per u n i t  time 

heat transferred per mittink? per unit length of duct 

coordinate l ine in polar coordinate smem 

a vector normal t o  heat transfer surface 

Repolds modulus 

an integer 

temperature 

rnfninnun temperature of s y s t e m  

mixed-mean tenperahre of the fluid 

inside duet wall temperature 

mean inside wall temperature 

time 

fluid velocity at any particular point 

average OP slug flow fluid velocity 

fraction of a d u d  wall dimension 

fraction of a duct w a l l  d-nsion 

coordinate axis i n  cartesian coordiaate system 

coordinate axis i n  cart;esian coordinate system 

coordinate €%xis i n  c d e s i a n  coordinate system (coincides w i t h  duct a i s )  

mleeular difYusialty of heat, cy 

ofrcle sector angle 

a fini-be %asremen% 

eday d f f i s f v i t y  of heat 

cosrdina%e l ine i n  ellipf;ic coordinate s y s t m  

k 
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Q,  

7, 

V2, 

coordinate fn polar coordinate sywtem or an aca&e angle of a right 
triangle 

separation constant 

viscosity 

kinematic viscosity 

coordinate line in elliptic coordinate s*em 

fluid density 

Arncrtional notation 

functional notation 

Laplacian operator 

a 



EQaation of Mation 

The &ion of a fluid is generaUy represented by the Wavier-Stokes equation 

For the case of laminar flow considerable simplification occurs. A (ref. 5 ) .  
simpler and m r e  direct w a y  of obtaining %he laminar flaw equatfon is by a force 

balance on an elemental cube of f luid such as was done by huday (ref. 11). 

For steady s ta te  fatllrnar f l o w  of an incompressible fluid, consider an elemental 

mbe of f l d d  of dinensions &, Ay, Az. Take z i n  the direction of flow w i t h  x and y 

peppendi@uLm to z. 

distance Az is  

Iphe difference in  force on the two faces separated by a 

The difference i n  viscous shear on the two faces no& t o  x is 

and t i e  difference in Biscous shear on the two faces nopmal t o  y is 
n 1 

Since %he difference i n  total foree on the two faces must balance the net shear 011 

%he.four sides when no exkraneous fomes are present and 

flufd in laminar flw 

3 u = o for  incompressible 
-5; 

For constant .ia&hefomdL flow in a unffosm stmi&% duct, 
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dfstPibu%ion i n  duds  of any shape. The boundary conditions are given by 

u = 0 dl %he bom- of the shape in  question. 

The equation and t h e  boundary conditions for  laninax f'low in a duct are 

the same %hat cbccurs in the awry of elast ic i ty  when considering the torsion of 

beams. A nuuiber of these solutions is outlined by Love (ref. 6), by Sokolnikoff 

(ref. 12) and by Timoshenlco (ref. 13). The complete solutions for laminar f l o w  

velocity distributions m e  shown i n  the following sections for several ducts of 

different geonaetPy. 

Rectangula r Duct 

I" 

r The problem wfu be solved if a 

the region bounded by x = +, a/2, y = f b/2 and assumes on the boundaries the values 

09 $ (at + y 

(x,y) can be found tha.t is an even harmonic i n  

2 2  This f o n m  mni the  differential equation, 

For a e s e  condl-bions, 

'-l)ncosh (2n + 1) sy 

( -1) 360sh (-1) atb 

- 
( 10) 

a cos (2Wl)xx 
a 

- ( y 2 - x ) -  2 - 8 a 2  7 
2 3 II 

n = O  2a 

Therefore, 
- ( -1) ncQSh( 2Il-l-1) Icy 

a COS ( m 1 ) a x  
a (21~1) 3eosh( - 2ntl)gb f n =  0 2a - 

* - 8 a 2  2 2 2 - $ ( x  + y )  - 
3 ,  

'I[ 
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Fma the differential eqption and the assumed solwtion C1 = -2' - therefore, 

L n =  0 

Rfm Isosceles Triangular Duct 

( -l)ncosh (2P)l)sy 

Conditions: u(x,a/2) = o 
u(a/%d = 0 
u(x, 'X) = 0 

r 

2 2  (x  + y ) on the  

k 
From the differen%ial equation and the assumed soltrtion, Cl = E 

Pram the solution for the rectangular cross section the following hannonic function 

that satisfies the boundary conditions can be constructed. 
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Equilateral .- - T r i a n g u l a r  Duet 

f 

2 
VU=B 

~ a a r y  Conditions: u(-a/3,y) = o I 
-x 2a 

x 2a 

u(x,- + -- ) = 0 
v3m 
- - ) = o  

The problem is  the same type as before but the solution is i n  the form of 

polynomials~ 
n 

Choose 

me r e d  p m ~  of c2(x + iy) + c3 = c2Q - 3 + ~3 
Therefore, u = c1 [e2 (2 - 3 Xy2) - 4 (x2 + y2) + c d  

(x,y) = c2 (x + iy) 
3 

+ c3 where n = 3 

If C1,C2 and C 3  are evaluated by use of the boundary conditions and the 

original differential equation, 

Expressing i n  the more convenient form of the product of the three equations 

for the sides o f t h e  triangle as shown, 

Elliptical  Duct 

X 

2 
V U =  B 

2 
Boundary Condition: u(x,b2- a x2) = 0 (23)  



n preceeding section, choosey ( x , Y ) = C ~ ( X  + iy) + C 3  where n = 0 (24) 

and C3 are evaluated by use of the boundary oonditions and the 

original differential equation, 

Circle Sector Duct 

2 VU= B 

This problem is easier t o  solve when 
expressed i n  polar coordinates. 

2 2 
b u  1 a n +  __ 1 a U - B  

2 +  r 3r r2 3 8 2  3 r  
/ . Boundary Conditions: u(r, +, f3) = 0 

u(a, +, Q )  = 0 

Assume, u = C,[y(r,Q) - $ r2] 

Therefore, c1 = - E- 2 

The harmonic fun&lon is .Pound t o  be 



General Heat  fPFansfer Equation 

The gene- eqaation for the transfer of heat to a f l e d  flowing in a duet is 

where K is the to ta l  Coadtlctivty (nnleculsr + eddy) and 'E is the tim. For steady 

state condftions the time tern, -$$? is zem, so the eqyation t o  be solved d c e s  to 

If the heat capacity, c , and the density, 7, csll be considered independent of 

tempemtare and consequently independent of the coofinate system, 

where a is the mlermlar dif'fusivity of heat and is the eddy d i f f b i v i t y  of heat. 

For a fluid flowing i n  a duct, the only net velocity component is along the axis, z, 

of the duct. Therefore, 

Solving the resulting heat transfer equation aepends on the eonplexity of the 

f'unctions representing E and uI For the case of turbulent f l o w  i n  pipes it is 

possible to obtain axmlytical solutions to the heat transfer equation by wing 

approxfmaze functions for u and E: derived from experimenta,l data. For the case of 
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for approxiaaatbmg %be neeesszqy functions. In addition, the differential equation 

is mre comLex became the velocity, u, is a f'urnction of t w ~  coordinates instead 

of Qne as for pipes. 



appmximatePy represents a liquid &al system when the Peel& modulus is around 

looo 

dff3asion, 

For higher values sf the Peclet laodtrlus, an experimental value forthe eddy 

av, would be needed fop better comelation. 

%e argument presented abQve is  shown graphically by Figure 1. The eddy 

diffbsivdty of heat was considered equal to the diff'usivity of mmentatm which was 

1 f 
Pr 3- computied aecoPdin@;%s the classieal w e r .  me Patio, 1) 

was used instead of (a + E)  to make %he results independent of the  individual 

physfeal pmperHese 

primarily coaposed of CY fop relatively low Reynolds m d a i  and using an average 

value of E would lead to only a s&U. emr. 

case e 

a + €  = - +  

It is Been f m m  the figure that for liquid metals, ( € + a) is  

For other fluids t h e  opposite is  the 
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FIG. I 
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Constant W a l l  Temperature 

In  the theoretical treatment of heat transfer t o  fluids i n  ducts the two 

lfmiting cases - constant w a l l  temperature and constant flux - are usually con- 

sidered. 

temperature is constant along the length of pipe. 

circumference is constant because the f lux is applied unffomly m d  the 

circumference and the heat flm midirectionally along the radii. I n  the case of 

a noncircular dud, application of a uniform heat flux around the periphery cannot 

produce a constant wall temperature around the periphery because the heat flow is  

not unidirectional. 

du&, a nonuniform f lux  would occur a m d  the periphery. 

"he case of constant wall temperature i n  pipes means that the w a l l  

The temperature around the 

In maintaining a constant wall temperature-around a noneircnlar 

In order t o  solve equation (6) for the case of constant w a l l  temperature, the 

The temperature gradient, B t /  b z ,  is custo~mry simpliwng assumptions are made. 

not exactly constant f o r  th i s  case; however, when dealing 113th conditions f o r  

downstream, the change of 

of change of the tempera- gradient, &/ 3 z2, along the length of the duct is. 

negligfble compared with the rates of change of the other gradients ( a 2 t / 3 x  and 

with length is very small. Consequently the rate Bz 

2 

2 
h 2 t / 3 y  ) e Therefore, 

* 
For any shape %he tempen"a%ure around the wall is eonstant and equal t o  tw- 

Thus the form ~f the equation and. boundasgr conditions are identical with that f o r  

%he lamfnar velocity distribution in nonefreulm du&s and the solutions are 

identical, FOP this Case B = - 7 (g) av. arnd 'u is repheed by (t - 41) 
K 



The ease si solution now depena on L e  boundary conditions. For flux = %/A 

Q d& 2 = - - 
dR KA anywhere dong the w a l l  f luid interface, *ere R is the normal 

ta the wall. This follovs flmx the Fourier conduction l a w .  

Rectangular Duct 

The total heat transferred per unit 

tfme is  obviouslythe sum of the heat 

transferred through the four sides. 

a heat balance 

By 

(44) 
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where tc is the IslnTmmtenrperature of the s y s t e m .  

to use %he Ildntmm teqperature of the system, any point of known temperature 

would SufYice. 

equation. 

It is not necessary 

Selection of any other point would only add a constant t o  the 

(45) 2 2 The form of a solution is t - t, = C1 x + C2 y 

9 Applying the first conclition gives Cl = a 
Q andc2= b m  

Since the assumed fom produces the correct conditions at the boundary and 

satisfies the differential eqpation, 

2 
t - t , =  (+ + b 

  et v = fraction of 4 2  f r o m  center t o  corner, w = fraction of 

center t0 corner, ana N = a/b, then substituting into equation (46) 

Since A = 2(a+b)Az, equatPon (47) becomes 

(N 92 + x2) t, - t c  
41plK= 8 3  

(46) 

b/2 from 

(49) 

To illustrate the variation of the temerature along the walls, equation (49) 

for VELI~QUS values of N is shown plotted in Figure 2. It is easily seen that 

as the ra t io  of the sides, N, increases, the ratfo of' maxinauntemperature t o  

mfnimm temperature along the w a l l  increases. 

PQP com%fng an average Nusselt mdulus, define 

- De 
%'r - k 

and 
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OR LONG SIDE 
----FOR SHORT SIDE 

FRACTION OF DISTANCE FROM WALL CENTER TO CORNER 

TEMPERATURE DISTRIBUTION ALONG WALLS OF 
RECTANGULAR CONDUIT FOR UNIFORM WALL F L U X .  

FIGURE 2 
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where is the mean uaJ l  temperature anllk is the mixed mean f luid 

b/2 a/2 

ab 

Integrating and collecting terms, 

ab 
% t u - % = &  (53) 

( 54) 
2 ab The equivalent diameter (4  x w u i c  radius), D~ = a+b 

Substituting equations (51), (53) and (54) into equation (5O) ,  

(55) 
k NUav. = 6 

Thus the Nusselt modulus is independent of the rat io  of the twr> sides. 

mote that for slug flow w i t h  no eddy diffusion, K = k. 

system the value of K must be determined experimentally for relatively high 

values of the Peclet modulus. 

For the liquid m e t a l  



- 24 - 

Equilateral Tr iangular  Duct 

Yr 

'180 heat can flow across the medians; 

therefore, it is only necessary t o  

consider one-sixth of the complete 

section as shown in  the accompanying 

figure . 
A heat balance gives, 

Therefore, 

ana the differential eguation becomes 

6 s  
2 

Vt=-g--j&- 
Boundary conditions: 
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To put the first lmunbry conditfon in usable form, the following 

relationship forthe wFmdL derivative is used. 

Therefore, 

The form of a solution is 

t - tc = c1 (x 2 2  + y ) 4- c3 x +  e4 y +  c5 (62 )  

Applying the boundary conditions and solving for the constants, the following 

solution is obtained which satisfies both the differential equation and the 

boundary conditions. 

(63 )  

Since this is a symetrical case, the temperature distribution for each wall 

is equivalent; so only the wall at y = 0 is considered. Therefore, 

L e t  

F 1 

( 6 6 )  2 Substituting equation (65) into (64) , t, - t, = ( 3  v i 1) 6q& 

Since A = 2  E a A z  (67) 

2 % - t c  - 3 v  + 1  
9f !K 12 y 7  

-- 

Equation (68) is shown plotted in Figure 3. 
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0.20 

0.16 

0.12 

t - t  Al-s 
qf / k 

0.Of 

0.04 

-FOR SLUG FLOW AND MOLECULAR CONDUCTIVITY- 
APPRECIABLY LARGER THAN EDDY CONDUCTIVITY 

Pe < 1000 
k = TOTAL CONDUCTIVITY 

= FLUX PER UNIT LENGTH 
tw= WALL TEMPERATURE 
tc = FLUID TEMPERATURE AT 

CENTER OF CONDUIT 

0.2 0.4 0.6 0.8 I .o 
FRACTION OF DISTANCE FROM WALL CENTER TO CORNER 

FIGURE 3 
TEMPERATURE DISTRIBUTION ALONG WALLS OF 

EQUILATERAL TRIANGULAR DUCT FOR UNIFORM WALL FLUX. 
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. 

Integrating and simplifying, 

2a 
De - 3 - -  

Substituting into equation (5O), 

= 4  k 
K xuav 

Right Triangular Duct 

I Y  For the  general right triangle as 

shown in  the accompanying figure, a heat 

balance gives 
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3ouna&ry conditions: 

= - Q or  applying equation (60) g a 7  
x, x tan 0 

(3 

9 cos 8 = - - KA 
x,x tan 8 

sin 8 - 
x, xtane 

9 (39 = - -  KA 

Q (%) = - KA 

(t - tc) = 0 where at = 
3x 

The form of a solution is 

t - tc = c 1  (x2 + 3) + c2 x + c3 g + c4 

(75) 

Usingthe boundary conditions t o  eva la t e  -the constants the following solution 

that satisfies all conditions is obtained. 

L 

Let v, w, h equal %he fraction of the distance between corners along ths 

side adjacent t o  0, along the side opposite 0,  and along the hypotenuse 

respectively. 
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Then, x = v, a, y = wa tan 8, and along the hypotenuse x = ha 

A = a (1 + sec Q + tan 0 )  Az 

(78) 

(79) 

The following equation giving the wall temperatures along the sAte ad,,a.cent t o  

0 when w = 0 and along the side opposite 0 when v = 1 is obtained by 

substituting equations (78) and (79) into (77). 

(c tn  8 + csc 0 )  v + w tcuZ Q - h - t c  c t n 0  2 2 2 1 
1 + t a n  Q + see 0 -7--=2 (v + w t m 0 )  - 

qf 

2(1  + ctn Q + csc Q 
1 + ( e n  8 + csc Q) 

S i d l a r l y t h e  temperature distribution along the hypotenuse is found t o  be 

n t- 

( c t n 8 +  e s c Q +  t a n 8 )  h -  L 1 tw -, t c  - hC - 
9f /K  s in  2 0 1 + tan 8 + sec 0 

2 (1 + ctn 0 + csc 
1 + (ctn 8 + csc 0 )  

Equations (80) and (81) are shown plotted i n  Figure 4 for  several values of 8. 

The plot clearly shows that temperature variation along a wall becomes greater 

as the angle Q decreases. 

For evaluating the average Nusselt mdulus, the mean temperatures are 

coqutea  as follows: 
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\ 
HYPOTENUSE 

------- SIDE ADJACENT TO 8 
-.e-- SIDE OPPOSITE TO 8 

I I 
FOR SLUG FLOW AND MOLECULAR 
CONDUCTIVITY APPRECIABLY 
LARGER THAN EDDY CONDUCTIVITY 

Pe <IO00 
k = TOTAL CONDUCTIVITY 
q f =  FLUX PER UNIT LENGTH 
t, = WALL TEMPERATURE 
t, = MINIMUM FLUID TEMPERATURE 

0 

ACTION OF DISTANCE FROM CORNER TO CORNER ALONG WALLS 

FIGURE 4 
T E M P E R A T U R E  DISTRIBUTION ALONG W A L L S  O F  

R I G H T  T R I A N G U L A R  D U C T  FOR UNIFORM W A L L  F L U X  
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tan8 8 * (ctn Q + csc Q + 7 + ”, m = 9% :a E (1 + ctn 0 + csc 0)(l+ 3 - 3  

1 + (ctn 0 + csc Q) 
2 (1 + ctn Q + csc 

a 

a tan 0 

2 2  
2 

h + h ( c t n Q + c s c Q )  ] dx + a tc + 
2(1+ ctn 8 + csc 0 )  [ia(l. + ctn 0 + csc Q)(h +y )- 

0 

d y + a t a n Q t c  + a + a (ctn Q + csc 0 )  ( d n  Q + csc Q )  h - Y + 2 (1 + dn Q + csc Q )  

Integrating and combining terms, 

( 84) 

(csc 0 1 - sec 0 2 

2a tan Q 
1 + tan e + s e e 8  

For this duct, De = 
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Substituting e q u a f f ~ ~  (&), (82) ma (83) i & ~  emation (50)~ which defines 

where 

1 1 
2 
- see e ( C S C  0 + tan 8 + 2) 

2 tan 0 
f(e) (1 + tan e + sec 9) 

2 tan2 8 + 

tan 3 e )+T @] - [s 2 + csc 8 + 1 + 2 

2 l+tm 0)+ - - [1 + ctn Q + csc 1 
(1 + tan Q + sec Q )  4 

1 2 tan 8 
3 

- ( c t n e + c s c Q +  

The following table shows how the avera.ge Nusselt m>dxzlus varies w i t h  the  

angle 0.  

30° 

15O 

lQ 

2 

0 0 3353 
0.000386 

The 1engt;h of the primeter of the ellipse . 
- - 4a E(!*) where E(!-) is  a 

complete elbifl lc fntegTal of the second kina. 

As shown i n  the figure, R i s  a vector always 

orbhogsnal t o  the periphery of the el l ipt ical  

duct. The rate of heat transfer is given by 
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Therefore, 

2 

vt = p J  (2)= - 
ab R 

TQ simplify the boundary mnditions the Cartesian coordinates are 

transformed to e l l ip t ic  coordinates, 

by substituting the following equations into equation (86). 

The transformation (ref. 8) is made 

2 

Bound.ary conditions : 

The secmd boundary condition is  transfomed by dfffePentia5ing equations (91) 

and (92) and substi%&ing %he result k t o  the followin@; equation whfch is 

alwap true f o r  cafiesian coordimtes. 

2 2 2 2 2 2 (a) = ( a X )  + (dy) = (a - b2)(eash2Q - cos2T) (d& + dT ) ( 9 5 )  
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On a coordinate l ine where?= constant, dr( = 0 and 

i 

2 - dR= - b2 - cos d e  

A t  the  boundary 

Substituting th i s  relation into equation (go), 

the second boundary cond3tion expressed in  e l l ip t ic  coordinates. 

Le t  the solution be represented in  the following fom: 

par%ieular solution %ha% satisfies %he di f fe ren t id  equation. 

2 (a - b2) E ( i q )  

( 100) 
One may take $( 6 ,? ) = (cash e f cos*T ) 

bll 

&ere t he  cons%ants, en are determined by .the boundmy conditions, 
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The l e f i  side of equation (102) must be expanded into a Fourier series 

of cosines i n  order to evaluate C,. !Therefore, . 

&n = 0 wben n is odd, 



. 

t && 43  
E (p) = 7 E($-@) sinh 6 0 

Theref ore , 

x - 
2 

COS x dx + a0 
psr a2 = - 

8 

~ ' ( p )  is a constant. comparing coefficients, 

1 '* .. b2 [(l + p2) E'(p) - (1 - p2) F ' ( p ) l +  ao] (112) 
3P3, 

(113) 4 
Since cos kx = 8 COB x - 4 cos 2X - 3, 

32 j 2 - b 2  8. 

5 a4 = 
P ,  

Compari~ng coefficients, Ch 
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Therefore (ref. 2) ,  

6a4 - 15% + loao 

Comparing coefficients, 

This pmcess can be continued for as many constants as desired. Thus, the 

solution becomes 
* 

2 a 2 cosh 2 @  COS 2 9  (a2 - b2)E 1 - t - tc = Ecosh2t 3 + COS2? b.lc a 

a4 cosh 4 e  cos 4y cosh 6 5  cos 67+ 
6 Q o  

i 4 si& 45 
0 

The constant F'(p)  is contained within the am's. A method of evaluation 

of F' (p) is given in reference (3) Since F ' (p) is a function of the duot 

dimensions, F' (p) mast be evaluated for each particular case. After F' (p)  is 

obtained eo is evaLwted by the application of the first boundary eondftion. 
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C i r c l e  Setztor Du& 

This solution is a simplified version of the =re elegant solution by 

Whitcornbe (ref. 15) for  a 60 degree sector. Whitemibe also demonstrated haw 

the solabion for  the 60 degree seetor approxinrates thaf for  the equilatersl 

triangle. 

Since the cm8s sectional area of' 

the seetor is  a29 and the 'length of the 

arc subtended by 28 is  2&, the heat 

transferred in  a smsll  length of the 

duet is 

1Cherefore, 

K a 

Substituting into equation (50) and trsnsforming t o  polar coordinates, the 

differential equation becomes 

where Q and s are integers, 

The boundary conditions i n  polar coordinates ape: 
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A form of the solatfan is 

P 1 

b o  rA cosAe 
(r,e) = B r cos e + .- 

Il;pplging the first boundary condition, 

- g ;  

Since h i s  an arbit- sepazation constant, take 

Therefore, from e p t i o n  (129) 

Applying the seoond baundary condition, 



SA - 

- & -  

S i s p l m  and eonsidering tbe infini%e series from n = 1 since 

the first term is zero vhen n = 0 (C, is arbi-). 

n =  1 S 

P e r f ~ ~ W ~ t g  a Fourier expansion, 

- 
1 

-Sl? 
Q 
- J 

-8% 
Q 
- 

Simplifying and solving for C i  , 
n +  1 

- 1 0 
.. - 
rut sin - d 

!€%emfore, Q 

(135) 

The arbitram oonsfarrt, Go, is deterrained by a p p w  the third boundary 

amd%tbn to equation (136) Firs t  solving for r where 8 = 0 and l?)l 3% = 0, 
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Equation (137) canturk be solved explicitly for r; it l(lll8t be solved 

by apprOXiarate mrefkhods for fihe Part;icular d u e s  of a, s ana g in order 

to m u a t e  c0 ~ R I  equation (1.36). 
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l?mJRE WORK 

# 

The analy-&ical study of heat transfer t o  noncircular duct is a long rang;e 

program that will be continued 88 time permits. 

under considemtion i n  the order l i s ted  axe: 

Other =re difficult problems 

Solution of the heat transfer equation for  ftllly developed viscous 

flow. 

En%rance solutions fo r  slug flow.- 

Some solutions of the heat transfer equation for  irregular annuli 

such as for flow pmaJlel t o  tube bctnks. 

Solution of the heat transfer equation for  fully developed turbulent 

flow using approximte relations fo r  velocity distribution. 

Heat transfer thmugh noneircular ducts w i t h  thick walls. 

Approximate entrance solutions for turbulent and viscous flow. 
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