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SUMMARY

This is the first of a planned series of reports on the analytical treatment
of heat transfer to noncircular ducts with emphasis on liquid metal systems. This
report is concerned only with results for systems with fully developed hydrodynamic
and thermal boundary layers; i.e., away from entrance effects.

Analytical solutions for velocity distributions in the case of laminar or
viscous flow are presented for rectangular, equilateral triangular, right isosceles
triangular, elliptical and cirele sector ducts.

Analytical solutions are given for the temperature distribution in the ease of
slug flow in the type ducts mentioned above for heat transfer at constant wall temper-
ature and at uniform wall heat flux. In addition, the general right triangular duct
problem is solved for the case of uniform wall flux. The applicability of these
results to liguid metal systems for a region of the burbulent regime is indicated.

At uwniform wall flux the average Nussult modulus for slug flow was found to be
6, 4, 3, and 2 for rectangular, equilateral triangular, right isosceles triangular,

and 30 degree right triangular ducts respectively.



INTRODUCTION

The subject of fluid flow and heat transfer in noncireular ducts from a
fundamental viewpoint has been virtually neglected in the literature. This
probably resulted f'rom the industrial practice of gemerally using round pipes in
heat transfer equipment. With the advent of nuclear engineering and the resulting
unconventional heat transfer design problems and the increasing industrial use of
noncircula.r ducts in beat exchangers, the problem becomes more than Just an academic
question.

In compubing heat transfer coefficients based on the momentum transfer theory
or other theories, it 1s necessary to know the velocity distribution. Nikuradse
(ref. 9 and 10) made extensive measurements of the velocity distribution for
turbulent flow in several noncircular ducts, but, unfortunately, these measurements
are confined %0 the turbulent core. In addition, the development of the hydrodynamic
relationships for turbulent flow in noncircular ducts is complicated by the existence
of secondary flow in corners. This was established experimentally by Nikuradse
(ref. 9). As yet no generalized velocity distribution relation has been established
as in the case of flow in pipes.

Average heat transfer coefficients for rectangular duets have been determined
experimentally and correlated on the basis of the conventional equivalent diameter
by Bailey and Cope (ref. 1) and by Washington and Marks (ref. 1h4).

Eckert and Low (ref. 4) developed a numerical method for the determination of
the temperature distributions and the heat transfer characteristics of a heat exchanger

composed of polygonal flow passages with the walls heated uniformly by internal sources.
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The circumferential variation of the loecal heat transfer coefficient was estimated
from Nikuradse's data by postulating similarity between the velocity and temperature
fields; i.e., for fluids whose Pr = 1. Thus, as in the classical Reynolds Analogy,
the influence of the laminar sub-layer is not considered and the results are not
applicable to fluids whose Prandtl modulus differs appreciably from unity.

The general vein of this work is to attempt to arrive at analytical solutions
for the various conditions resulting from the hydrodynamics, method of heat
application and the geometry of the systems considered with particular emphasis on
liquid metal systems. In this particular report, the heat transfer equations are
developed for the case of slug flow in several noneircular duets for conditions far
downstream. It is shown that the slug solutions are applicable to liquid metal
systems in the turbulent regime for relatively low Reynolds moduli.

The author wishes to express his eppreciation to C. L. Perry for his assisténce
in some Of the more difficult methematical points and 4o H. F. Poppendiek for his

eriticisms and suggestions.



NOMERCLATURE

Any consistent set of units may be used.

a, a duect dimension
A, beat transfer area
b, a duet dimension
B, a constant

- heat capacity
c, a constant
equivalent diameter (4 x hydraulie radius)
E, complete elliptic integral of the second kind
E'(p), a constant
£, Punctional notgtion
F (p) R a constant
g, an integer
h, “fraction of a duet wall dimension
heat transfer coefficient
1, V-1
k, molecular thermal conductivity
X, total thermal conductivity (eddy + molecular)
n, an integer
N, ratio of long side to short _side of a rectangular duct
Ru, Nusselt modulus
p, presgure
D, a constant

Pe, Peclet modulus



Pr,

q,

Prandtl modulus

» heat transferred per unit time

heat transferred per unit time per unit length of duct
coordinate line in polar coordinate system

a vector normal to heat transfer surface

Reynolds modulus

an integer

temperature

minimim temperature of system

mixed-mean temperature of the fluid

inside duct wall temperature

mean inside wall temperature

time

fluid velocity at any particular point

average or slug flow fluid velocity

fraction of a duct wall dimension

fraction of a duct wall dimension

coordinate axis in cartesian coordinate system

coordinate axis in cartesian coordinate system

coordinate axis in cartesian coordinate system (coincides with duct axis)
molecular diffusivity of heat, “él;—
eirecle sector angle

a finite increment

eddy diffusivity of heat

coordinate line in elliptic coordinate system
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coordinate in polar coordinate system or an acube angle of a right
triangle
separation constant
viscosity
kinematic viscosity
coordinate line in elliptiec coordinate system
fluid density
functional notation
functional notation

Laplacian operator
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ANALYTICAL VELOCITY DISTRIBUTION SOLUTIONS FOR LAMINAR FLOW IN A DUCT

Equation of Motion

The motion of a fluid is generally represented by the Navier-Stokes equation
(ref. 5). For the case of laminar flow considerable simplification occurs. A
simpler and more direct way of obtaining the laminar flow equation is by a force
balance on an elemental cube of fluid such as was done by Purday (ref. 11).

For steady state laminar flow of an incompressible fluid, consider an elemental
cube of fluid of dimensions Ax, Ay, Az. Take z in the direction of flow with x and y
perpendicular to z. The difference in force on the 'bwo faces separated by a

distanee Az is

(P+ & Az) px Ay -PAXAY = T Ax Ay e (1)

The difference in viscous shear on the two faces normal to x is

/‘[_%(u+% Ax)] Ay Az - )L%EAyAz—-:/b_%_e;.eAxAyAz (2)
and the difference in viscous shear on the two faces normal to y is
9 ou ou %
)J.[ﬁ(u+—-5—‘_—yl\v):IAXAz-)L-a—?AxAz= —§32 Ox &y &z (3)
Since the difference in total force on the two faces must balance the net shear on
the four sides when no extranecus forces are present and _%_‘7’:* = 0 for incompressible
fluid in laminar flow
P Ax Ay Az = aequ Az + bgqu Az 4
dz }L o x2 &y /‘ W & ()
2 e
Eopd - 5 - Voo

For constant .isothermal flow in a uniform straight duct,

ap = =
= //.L constant = B (6)
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2
Therefore, \/ u = B is the differential equation for the velocity (N

distribution in ducts of any shape. The boundary conditions are given by
u=0all glong +he boundary of the shape in question.

The equation and the boundary conditions for laminar flow in a duct are
the same that occurs in the theory of elasticity when considering the torsion of
beams. A number of these solutions is outlined by Love (ref. 6), by Sokolnikoff
(ref. 12) and by Timoshenko (ref. 13). The complete solutions for laminar flow
velocity distributions are shown in the following sections for several ducts of
different geometry.

Rectangular Duct
2 .
¥ Vu=38 (7
-~ Boundery Conditions: u{ + a/2, y) = 0 I
o2, w( x, + b/2) = 0 (8)
75 Choose u = €y I:W(x,y) - %— (=2 + ye):l (9)

The problem will be solved if a ‘P (x,y) can be found that is an even harmonic in
the region bounded by x = ¢ a/2, ¥y = + b/2 and assumes on the boundaries the values

2
of % (x:2 + 5 ). This follows from the differential equation.

For these conditions,

5 g .2 ® - —l)ncosh (2n+ 1) ny )
a 1 2 2 a a (en+1l) nx
X,¥y) = + =z (¥ -x) - E cog \EBLITX 44
\I’( ¥) I z ¥ e (on+1)3cosh (2n+l)wb & (10)
n=0 Pa
Therefore,
(-1)"cosh(2n+1)xy -
2 2 2 2 2 2 - a
1 a a 1 _8a a (2n+1)wx
u=0; [ =(y - )+ - s o+ ¥y ) == cos
1172 L I 2 -;(3 , (2m+1) 3eosh(2n+1) xb a
n=20 ea -

(11,
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From the differential equation and the assumed solution Cy = - -]25 ; therefore,

(-1)"cosh (2n+1)xy

2 2 ,
u= 2 "2-'211‘*9‘%" 2 cos (ZLE (12)
o (2n+1)>cosh (2n+l)xb a
n=290 2a
Right Isosceles Triangular Duct
v 2
Fa/2 Le/2y \Vu=8 (7
:I/re Boundary Conditions: u(x,a/2) = 0
u(a/2,y) = 0 (13)
*_.X u(x, -x) = 0
2 2
a/2 Choose u = Cy I:\I/ (x,5) - % (=" +5 ):] (1k)
vhere Y (x,y) is a harmonic function that reduces to % (x2 + y2) on the
boundaries.
From the differential equation and the assumed solution, C, = -]é‘- .
From the solution for the rectangular cross section the following harmonie function
that satisfies the boundary conditions can be constructed.
oo
2 -1)8 on+1)nx
= - + 2 (=my)- ka” (-1) sinh (2ot D)y o0g (ont1)xx
Y () T3 ( 23 (2n+1)3sinh (2ml)x a a
n= 0 2
o (22 oy (22 | (15)
Therefore the solution is
&0
(1,2 2 a 4a? (-1)"
u=7 ¢ 5(x + +xy- 5 (¥l =3
5 {2 v ) 2 <3 (2n+1)3sinh (2n+l)x
n=20 2

[sinh (angl)scy cos (en;l)“x + sinh (Qmi)nx cos (2n+i):ryi\ (16)
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Equilateral Triangular Duct

2

f_, \ Boundary Conditions: u(-a/3,y) = 0
(x 2+ 22y -0 (17)
/ u(x V_3_+
2a
=0

(=5

e_

x
Fé—*—Ea/S u(x’ﬁ_ N3
The problem is the same type as before but the solution is in the form of
polynomials.
Choose Y (x,¥) = Cp (x+ iy)n + Cg vhere n = 3 (18)
The real part of C (x + 1y) + Cg = 02(x -3 xy2) + Cg (19)
Therefore,u=01[:02 (x3-3xy)~—(x +y)+C:| (20)

If C]_:Cz and C3 are evaluated by use of the boundary conditions and the

2} (21)

u=]—§—l}|2'-(x2 + Yg)- ]g'a(x3 -3XY2)- 237

original differential equation,

Expressing in the more convenient form of the product of the three equations

for the sides of the triangle as shown,

B 2 2a a
w=-p-(x- 37y- -3-a)(X+ 3y--3-)(X+~3—-) (22)
Ellipbical Duct
2
Vu-=s3 (7
J o .b2 5
L—— a Boundary Condition: u(x,b"- ] x*) =0 (23)
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As in the preceeding section, chooseW (%,¥)=Co(x + .’Ly)n + C3 where n = 0 (2k)
The real part of Cp (x + iy)2 = Cp (x2 - ya) (25)
2
Therefore, u= Cy E:Q(xg -y ) + Cy - 32'- (xe + ye)] (26)
If Cl’, Co and C3 are evaluated by use of the boundary conditions and the

original differential equation,

B 2 _ p2 22 |
u=1-;—[x2+ ya-im(xz-ye)-%‘gz (27)

Circle Sector Duct

Y72u =B (7)
¥y This problem is easier to solve when
expressed in polar coordinates.
e 2 2
1 S F R PR @
r ’ :
P Boundary Conditions: u(r, + B) = O
u(a, + 6) = 0 (29)
Assume, u = Cq l“l’(r,c) - -]2:1'2] (30)
Therefore, Cq = - ];zr (31)

The harmonic funetion is found to be

5o o (2n+l)
\V(r,g) = % re %g—g—-e-—s- + a2 E Con + 1 (g) 2P cos (an+l) = © (32)
n=2a0

where
c

_ ooyl 1 2 1
ns 1™ 1) [(emlyn-nﬁ T orl) =« ¥ (ZovD)x + & B ] (33)

therefore, ' 0 (2nrl) =

1 cos 2 O a? E -~ r ﬂ
u=2>.8 E r2 (l - cos 2 B ) - 5 ‘ Yonrl (-é-) cos (21}5'1)_%__95 (32")
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HEAT TRANSFER TO LIQUID METALS IN IDUCTS

General Healb Transfer Equation

The general equation for the transfer of heat to a fluid flowing in a duct is

3 (39 S5 (= 33) B (30) o e Bt oy B3 B2 B

where K is the total conductivity (molecular + eddy) and T is the time. For steady

(35)

state conditions the time temm, %E » ie zero, so the equation to be solved reduces to

N DR NS I N RS S IR O

If the heat capacity, ¢ , and the density, 7, can be considered independent of

temperature and consequently independent of the coordinate system,

[:(a+€) gf{] %y[(0+ €) g;]+ gz[(a+€.)%—gjl=c/(ux—%§

+ uy %;le a:) (37)

where g is the molecular diffusivity of heat and € is the eddy diffusivity of heat.

For a fluid flowing in a duct, the only net velocity component is along the axis, z,

of the duct. Therefore,

3 [er 039 ol 38 el 5

Solving the resulting heat transfer equation depends on the complexity of the

c,{e/
Nick

(38)

functions representing € and u. For the case of turbulent flow in pipes it is
possible to obtain analytical solutions 4o the heat transfer equation by using

approximate functions for u and € derived from experimental data. TFor the case of
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+urbulent flow in noneirculsr ducts, insufficient experimental dsta are exbant
Por appmximatipg the necessary functions. In addition, the differential équaticn
is more complex because the velocity, u, is a function of two coordinates instead
of one as for pipes.

Modification of Heat Transfer Equation for Liquid Metals

Postulate that some average value for € and u may be used and that o is in-

dependent of the temperature. With these simplifications equation (38) becomes
t
@+ €) Ve-u 42 (39)

The question now arises as to whether the simplified equation approximates
reality for any system. It is evident that the equation exsetly represents a
system that has Re = 00 and Pr = 0 provided that &s Re approaches infinity, the
vaJ.ue of € does not approach infinity. From a more practical viewpolnt the
equation should represent the liquid metal systems for relatively low values of
Reynold.s modulus in the turbulent tegime since Pr ~~ 0.0l for most liquid mebals.
Actually slug flow cannot exist; however, a square wave representation (slug fl_QW)
for the velocity should be a fair approximation because the temperature gradient
near the wall is not as large for ligquid metals as it is for other fluids.

. A parbial experimen‘!;al verification of the postulate is furnished by the Lyon
equation (ref. 7) fer liguid metals in turbulent flow through pipes for uniform wall
heat flux. Examination of the Lyon equation, Nu = 7 + 0.025 (Pe) O°8, reveals
that the Nussgl'b modulus is approximately constant for relatively low values of the
Peclet modulus, For Pe = 100 (say for Re = 10,000, Pr = 0.01), Nu = 8, which is
exactly the value for slug flow (square velocity wave) in round pipes with no eddy
diffusion. When Pe = 1000, the term containing the Peclet modulus, which roughly
may be considered as the eddy diffusion contribution, becomes L7 percent of the total

value of +the Nusselt modulus. Therefore, it appears that a slug flow solution
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approximately represents a liquid metal system when the Peelet modulus is around
100. For higher values of the Peclet modulus, an experimental value for the eddy
diffusion, € gy, would be needed for better correlation.

The argument presented above is shown graphically by Figure 1. The eddy
diffusivity of heat was considered egual to the diffusivity of momentum which was

computed according to the classical manner. The ratio, 95_;__)_@__ = %i: + %—— s

was used instead of (x + €) to make the results independent of the individual
physical properties. It is seen from the fig;s.re that for liquid metals, (€ + ) is
primarily composed of @ for relatively low Reynolds moduli and using an average
value of € would lead to only a small error. For other fluids the opposite is the

case.
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ANALYTICAL SOLUTIONS OF THE HEAT TRANSFER
EQUATION FOR SLUG FLOW IN RONCIRCULAR DUCTS

Constant Wall Temperature

In the theoretical treatment of heat transfer to fluids in ducts the two
limiting cases - constant wall temperature and constant flux - are usually con-
sidered. The case of constant wall temperature in pipes means that the wall
temperature is constant along the length of pipe. The temperature around the
eircumference is constant because the flux is applied uniformly around the
eircumference and the heat flows unidirectionally along the radii. In the case of
a noncircular duct, applieation of a uniform heat flux around the periphery cannot
produce a constant wall temperature around the periphery because the heat flow is
not unidireetional. In maintaining a constant wall temperature around a noneirecular
duet, & nonuniform flux would oceur around the periphery.

In order to solve equation (6) for the case of constant wall temperature, the
customary simplifying assumptions are made. The temperature gradient, Ot/0z, is
not exaetly eonstant for this case; however, when dealing with conditions for
downstream, the change of _%_': with length is very small. Cconsequently the rate
of change of the temperature gradient, %t/ O 22, along the length of the duet is.
negligible compared with the rates of change of the other gradients ( O°t/Ox° and

521; / aye) . Therefore,

2 )
V- %22 ¥~ TX Az

For any shape the temperature around the wall is constant and equal to tw.

D% cyU [At
+
0 ) av. (%0)

Thus the form of the equation and boundary conditions are identical with that for

the laminar veloecity distribution in nonecireular duets and the solutions are

+ -
identical. For this case B= 22V (%; and u is replaced by (% - t.).
av.



Cronsbant Wall Flux

For this case the temperature gradient along the axis, __b?__t , far
z
downstream ic eonstant ind gt/ Oz = dt/dz. Consequently P} t/ O 22 = 0 and

2 2 D
V- _.a__zbf{Jf g;ﬁ AL (% (41)

The ease of solution now depends on t.e boundary conditions. For flux = q/A

o
anywhere along the wall fluid interface, %ﬁ = - —-QK-A—- where R is the normal
to the wall. This follows from the Fourier conduction law.

Reetangular Duct

J

e a/p ~ The total heat transferred per unit
t:?t? time is obviously the sum of the heat
ket
transferred through the four sides. By
a heat balance
. o _ 0t ot
ab U v ¢ & = 2Kkb dz <_B,£ + 2 Ka dz _..6.3; (he
+ a/2,y x, + 2
2
Therefore,
ey U (.d_'_t.)z_. 2(a + D) q (43)

K dz ab KA

and the differential equation (41) becomes
2
YVt = 2(a + b) q
ab KA

Boundary conditions:

(R - ( Dt Y

0X 5 ¥y - KA
t 2,y %, + b/2
2

(% - tc)o,o =0 (44)



-921 -

where tc is the minimm temperature of the system. It is not necessary
to use the minimum temperature of the system, any point of known temperature

would suffice. Selection of any other point would only add a constant to the

equation.
The form of a solution is t - t, = Cy X + Co y2 (%5)
Applying the first condition gives Cl = 3 ]%A and Cp = --b—%—A——

Since the assumed form produces the correct conditions at the boundary and

satisfies the differential equation,

t - %, = (xz + ye)—g—— (46)

a b KA

Let v = fraction of a/2 from center to corner, w = fraction of b/2 from

center to corner, and N = a/b, then substituting into equation (L46)

R f'n%a("e* ﬁf) (47)

Since A = 2(a+b)Az, equation (47) becomes (48)
£ -

w-obe_ 1 (N v2 + w°) (49)

9p / K 3(N+1)

To illustrate the variation of the temperature along the walls, equation (49)
for various values of N is shown plotted in Figure 2. It is easily seen that
as the ratio of the sides, N, increases, the ratio of maximum temperature to
nminimim temperature along the wall inereases.

For computing an average Nussell mpdulus, define

N = .S & (50)

and h, = (51)
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vhere t_, is the mean wall temperature and 'l:m is the mixed mean fluid

temperature.

a/2 b/2

S_%_(x2+b)+tc]dx+ S&E2+f)+tc‘ldy

Ka L KAl 4 &

Ja/2 lo N

tum = tn =
a+b
b/2 a/2

-b/2 /2 (52)

Integrating and collecting terms,

q ab
twm—tm= ﬁ 3la+ 'b; (53)
The equivalent diameter (4 x hydraulic radius), D, = —i—;@b (54)

Substituting equations (51), (53) and (54) into equation (50),

& May. = 6 (55)
Thus the Nusselt modulus is independent of the ratio of the two sides.
Note that for slug flow with no eddy diffusion, K = k. For the liquid metal
system the value of K must be determined experimentally for relatively high

values of the Peclet modulus.
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Equilateral Triangular Duct

A heat balance gives,

6y > 2 ye dt = - 6
6 13
Therefore,
K dz a
and the differential equation becomes
2
6
Vt==3
Boundary conditions:
%)
x, 43
t)
(vi =0
a/ﬁ: y
2t q
ay XA~
x,0
(t

No heat can flow across the medians;
therefore, it is only necessary to
consider one-sixth of the complete
section as shown in the accompanying

figure.

t
X %‘ dz ('%—y> %0 (56)
< (57)
'I%A— (58)
(59)
0
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To put the first boundary condition in usable form, the following

relationship for the normal derivative is used.

it _ 9t dx dt dy
® - ox @™ ' 5y : (60)
Therefore,
Gt _ [D%t ot .1 /ot 1B(Ot _
Do) (3 3 RG) oe@
X:X//f?; X:X/V_B_ X,X;/ﬁ X;X,N—3— X,X,/Y?

The form of a solution is

t-tc=cl(x2+y2)+C3X+Chy+c5 (62)

Applying the boundary conditions and solving for the constants, the following
solution is obtained which satisfies both the differential equation and the
boundary conditions.
_ 13 2 2y _ _ 2
t -t = [gé (x=+y) -V3x-y+ 3a] a/kKa  (63)
Since this is a symetrical case, the temperature distribution for each wall

is equivalent:; so only the wall at y = O is considered. Therefore,

- ta = |3 x2 - 2 /
ty - te [an B ox+ g_a] /%8 (6)
Let X = —— (1-v) (65)

3

Substituting equation (65) imto (6L), b, - te = (3 v° + 1) 5 (66)
Since A=2 Y3adAz (67)
by -t 3 v+ 1 €8
@K 12V3 (68)

Equation (68) is shown plotted in Figure 3.
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28
13
o~ ta = 2 %A (3 -1+ o) *-"{I"""'
0
a &
3 0B
2
éajg S{%—A-[%a(x2+y)-ﬁx-y+§a:|+tc}dxdy (69)
o Wy
Integrating and simplifying,
b -tm= Pt teT T ot F R (70)
D, = 2§ (71)
Substituting into equation (50),
_I%_Nuav = (72)

Right Triangular Duct

For the general right triangle as

Yy
R shown in the accompanying figure, a heat
balance gives
° %

A

2
U 2° tan © yc dt = -Ka sec 6 dz .g_’E) Ka dz (Q% (Dt

5 7 ( R Ka dz 57 + Ka dz OF:

X,Xx tan © X,0 a,y

(73)



- 28 -

Therefore , Vt— °7U(z) csc9+c!;n9+1) (74)

Boundary conditions:

(%R?') = - —;(li , or applying equation (60)
X, x tan @

(‘%‘;‘) sin @ - —%%) cos @ = - %KK

x, x tan © X,x tan @

G -k

(t - t,) = O where %; = _gg‘.r=o

The form of a solution is

t-tc=cl(x2+y2)+02x+03y+ch (76)

Using the boundary conditions to evaluate the constants the following solution

that satisfies all conditions is obtained.

2
.= 9 |1 - wv. & 1l+(ctn 6 + csc 0)
t-t, = Iiéa(hctn 0 + csc 0)(x%y°)-(ctn G+ese ©) x Y+5 Ti(cto o+ csc0) (77)

Let v, w, h equal the fraction of the distance between cormers along ths
side adjacent to @, along the side opposite 0, and along the hypotenuse

respectively.
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Then, X = Vv, a, ¥ = wa tan 0, and along the hypotenuse x = ha (78)
A=2a (1+ sec &+ tan @) Az (79)
The following equation giving the wall temperatures along the side adjacent to
6 when w = 0 and along the side opposite © when v = 1 is obtained by
substituting equations (78) and (79) into (77).
Yw -t _otno

Y = =3 (v2+ W tan29) -

1
1+ tan 6 + sec @

Ectn9+ csc ) v+ wtan @ -

2
1+ (ctn 0 + csc O)
2(1 + ctn 6 + cse O] (80)

Similarly the temperature distribution along the hypotenuse is found to be

2
Ty - te _ h - 1
ag/K ~ sin 26 1+ tan © + sec ©

Ectn9+ esec O + tan 0) h -

1+ (ctn @ + ese 9)2 (81)
2 (1+ ctn © + csc )

Equations (80) and (81) are shown plotted in Figure 4 for several values of 6.
The plot clearly shows that temperature variation along a wall becomes greater
as the angle 6 decreases.
For evaluating the average Nusselt modulus, the mean temperatures are
computed as follows:
x tan ©

=)
ty = ..__2_.2___._ S 'f&" [%g(l + ctn 6 + csc @) (x2+y2)-(ctn Q + esc 9)x-y +
0

0O

2
a 1+ (ctn © + esc @)
2 14+ ctno + csc O +t°]dXdy (82)
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Integrating,

2
3 = 38 |1 tan"e, 2, tan ©
7 7a E(l+etn9+csc9)(l+——-—~—3 ) 3(ctn9+csc79+ 5 ) +

2
1+ (ctn 0 + csc Q) \
2 (1 + ctn o+ esc Q)I+ te (83)

, q Xa
e

1 2 -
m = {1+ tan 6 + b sec 0) Eéﬁ(l*‘dmg’f ese 8)x” - (etn © + csc 6) x -

a tan @

2
h+ h (ctn @ + esc Q) 1 2 2y
5(1+ otn 6 7 csc 0) :ld.x+atc+ [-2-&(1+ctn0+csc9)(h+y)

o

a+ a (ctn @ + esc 9)2

(eth @+ esc ©) h - y + 2(l+ctn9+csc97:ldy+atangtc +

1

a
S [56‘(1 + ctn @ + esc 9)(1 + tanze)xe-(ctn 0 + cse 9)x-x tan 6 +
o

2
a + a(ctn 6 + esc @) o
2(1 + ctn © + ¢ac a):l dx + a sec 0 t, (8h)

Integrating and combining terms,

; l 2 3 I I 2
- 9a | 1,1 tan™ © sec~” O _Jetn o tan~ ©
tym = == {ctn @ 6+§tan9(l+ 3 )+ z 5+ ©sc 0+ 1+ 5 +

1 1 l+ctnoO cse 0, . 8
§sec0(cscg+tan9+2)] (T+ tan 6 + sec 6) © 1+ otn 6 csa €[ “c (65)

For this duct, Dg = 1 f;ﬁ%f sec © >
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Substituting equations (81), (82) and (83) into equation (50), which defines

the Nusselt modulus,

k _ 2 tan ©
* My = F(6) (1 + tan 6 + sec 0) (87)
where
1 1 tan2 e sec3 o ctn © ta.r12 2
£(0) = ctn @ 6+§tan9(l+ 3 ) # == |- |T5—+ cse 0+ 1425

2
1 1 1 1+tan"Q)
Eseco(csc0+tan9+ 2):, (l+tan0+sec9)'E|}+ ctn 6 + csc%—-——j——+

-%-(ctn9+csco+tagg) | (88)

The following table shows how the average Nusselt modulus varies with the

angle ©.
o) Nugy
45° 3
30° 2
O
15 0.3353
1° 0.000386

Elliptical Duct

The length of the perimeter of the ellipse

& = ba E(W) where E( 1 -(3) ) is a

complete elliptie integral of the second kind.

f B As shown in the figure, R is a vector always
b
| orthogonal to the periphery of the elliptieal
duct. The rate of heat transfer is given by
Q=8bxU7y db =k aKdz bt) E rl - (E)2 (89)
OR a

x, £(x)
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Therefore,
Vet - Zvu (%): - haE(a\/lT)) (b’f-) - AE(WKE (90)

x,P(x)

To simplify the boundary conditions the cartesian coordinates are
transformed to elliptie coordinates. The transformation (ref. 8) is made

by substituting the following equations into equation (86).

X = Vaz - b7 eoshé cos (91)
¥y = Vaz - b° sinh§ sin M (92)

Thus,
pE 2
05, 2t
0§ ‘)7(2 yENR - _‘2)‘;)
(a2 . = - L (93)
(a2 bg)(COShaé - cos 11) bt KA
Boundary conditions:
(t = tc) 7 = 0
é = 0, n =3
(9h)
(d’%) ey
x,f(x)

The second boundary condition is transformed by differentiating equations (91)
and (92) and substitubing the result irto the following equation which is

always true for cartesian coordinates.

(53)2 = (d_x)2 + (d;y)2 = («:—J.2 - bz)(cosheé - c:c»s?‘rl)(dé2 + d'ﬂg) (95)
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On a coordinate line where'rl: constant, aM = 0 and

- 4R = ‘Vag - b2 'u:osheg - coszn dé (96)
At the boundary
- dR = Va2 - b° Vcosh2 éo - cose'fl (97)

Substituting this relation into equation (90),

Vag - b2 Vtoshe éo - cosen which is (98)

i

5),,

0,y

the second boundary condition expressed in elliptic coordinates.

Let the solution be represented in the following form:

t-t, = I:\P(é;rl)a,(b(ém):lﬁxz (99)
where \P(gi'rl) is a harmonic function even in é,'yl and ¢ (ém) is a

prarticular solution that satisfies the differential equation.

(a2 - b%) E( 1 -(-2)2)

One may take ¢(§,’n) = (GOShgé + cosar() = (100)
ao

and MP( é)'rl) = Z C, cosh né cos nY( (101)
n=0

where the constants, C, , are determined by the boundary conditions.
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Applying the second boundary cordition given by equation (98),

‘La - b2 Vcoshe éo - cose'rl = (E_e..%_ﬁl’.a.‘_)_ E( 1 —(2)2 ) ginh 2 éo +
(o v}

:>: n C, sinh n éo cos nn (102)

n=0

The left side of equation (102) must be expanded into a Fourier series

of cosines in order to evaluate C,. Therefore,

Va2 - b2 \LoshQ éo - cosf?n: ag + a, cos*r( + ap cos 21l + eee (103)

n/2

"‘ 2 .2 ‘
vhere a = E-———-’-(:—E-— S VCosh2 éo - cose'rl cos 1M dM (104)
°

From the orthogonality of the trigonometrie functions, it follows that

a, = O vhen n is odd.

Now let p = -‘;555‘];—-———-, 1?=—-g;—-»x, and n = 2n, then
€,
x
n"’e 2 2
a h(-1) pﬂa -0 S ‘VG. - p2 5in® x cos 2nx dx (105)
[»}

2 .2 ,
From reference (2), a = @ E'(p) where E (p) is a constant. (106)

©

Comparing the coefficients of equations (102) and (103),
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5 .3 _t 2 .2 l! 2
2 Va -b E(p) _ (ab;b)E( 1-(2))8111112@0- (107)

) %
Therefore, . ]’32 - 'b2 b
E(p) = '=—s— E\|1 '(E) sinh éo (108)
2

Sinece ecos 2x = 2 cos x - 1, (109)

4

2

2 2

a, = - 8 - b S'ﬁ-pesingxcoszxdx+ao (110)

)

Therefore, (ref. 2),

2 2 ! 1
a, = -§—§££ |:(1+ ¥°) E (p) - (1-p2)F(p):| + ag (111)
3p7x

F'(p) is a constant. Comparing coefficients,

1 8 a° --'b2 [ 2y ot 2y »'
Co = - (1+p)E(p)—(1-p)F(p)]+a} (112)
2 sinh 250 { 3P31t 5}
Since cos kx = 8 cosh £ -4 cos 2x - 3, (113)
\] 2 _ 2 H 2 X
8, = 32 ?'__;it_:'l_ S '\/1 - p° sin“x cos x dx + ha, - 3a, (11k)
°

Therefore (ref. 2),

‘! 2 2 p ' |
32 Ja 5 b |:2(.1 - 30?)F(p) -(2-ToP-30")E (P):l + hap-3a,  (115)
P

") (116)
L ginh & éo

ah =

Comparing coefficients, Cj =
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6

Since cos 6x = 32 cos x - 6 cos 4x - 15 cos 2x - 10 (117)

a6—

- - 128|a g'ﬁ-p sinxcos6xdx+6a.h-l5a2+10a (118)

Therefore (ref. 2),

2 2 ' 1
a; = - 128 a° - b [(8 - 33p° + 58p)+ + 15p6)E (p) -(8 - 29p° + U5p°)(1-p2)F (pzl

+
105 p Ix
6a,+ - 15a, + 10a, (119)
Comparing coefficients,
%
C6 = & sim 5§ (120)

This process can be continued for as many constants as desired. Thus s the

solution becomes

2 -l 2 8, cosh 2B cos 2
t -t = I:(cosh2§J + cosQ'rl ) (?'_.E.;__IZ_)E 1- .g + C, + 2231m Qé ° n
2y cosh b€ cos kM =g cosh 68 cos 67( q
- lz-sinhhg + 6sinh6§ oo | %R (121)
o

The constant F'( p) is contained within the a. 's. A method of evaluation

2n
of F'(p) is given in reference (3). Since F'(p) is a function of the duet
dimensions, F (p) mist be evaluated for each particular case. After F'(p) is

obtained Co is evaluated by the application of the first boundary condition.
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Circle Seebor Duct

This solution is a simplified version of the more elegant solution by
Whitcombe (ref. 15) for a 60 degree sector. Whiteombe also demonstrated how
the solujbion for the 60 degree sector approximates that for the equilateral
triangle.

Since the cross sectional area of

the sector 1s a0 and the \lengkh of the

arc subtended by 20 is 2ap, the heat

transferred in a small length of the

duet is

q=Ua2_s__:t7cdt=-2Kadz .‘?‘.'[3) +2Ka§ndz(.‘-1.§) (122)
dR/ y, s g a,0

g 5 g dr,
g
Therefore,
C7rU aty _ 2
() - (&) & 23)

Substituting into equation (50) and transforming to polar coordinates s the

differential equation becones

%t . 1 dt L 1 3% o
St o S iGE)R e

‘vwhere g and s are integers.

The boundary conditions in polar coordinates are:

at - .9 t =4
(—1—3-) = - %2 which becomes —%5) _ KA r
: r, 8 x r, 8%
’ e -
) - & (125)
(7)—1— 8,0 K&

£ -%,) =0at®=0and at v wvhere Ot =0

(8 - %) >
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A form of the solution is

t-t,= [\{l(r, o)+ ¢ (r):l L (126)

vhere Y (r, ) is an even harmomic function and ¢(r) is a particular
integral that satisfies the differential equation.

Based on the boundary conditions, select

o - (5+1) & (227)

\I’ (r,0) =B rcos @+ - ;:; C) rA Cos 1\é (128)
= 0

Applying the first boundary condition,

oD
(.g%) - %{_ =EBr sin_s_z_- E_OCA = sin sg)‘“]% (129)

it

Since A is an arbitrary separation constant, take

A': gnwheren—'z 1, 2, 3’ co

Therefore, from equation (129)

1

sin

B=- % (130)
g
Applying the second boundary condition,

Q0
t - Cos © (Esl_'])
3 g - [ e > e & ke va o
a,0 g B
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Simplifying and considering the infinite series from n = 1 since
the first term is zero when n = 0 (C, is arbitrary).

% - 1)
£ 8008 °) i &n (:;A a %_0_ (132)

1- & +1+

Performing a Fourier expansion,

-S_E
g

g[-(_ﬁ_*]) Sos 9 c°sﬂd°=§‘ij‘c o  Cos”® E®ap  (133)
sin_s.“_ 8 s A

Evaluating the integrals,

a(;g_;t 1 sin [:Z'Ee* ;g)l sin[ﬂé ('ée")] (134)

sin 8z & & .
z s+1 S 1

Simplifying and solving for C) ,

n +
¢, = 1 A (135)
A - en |
" nx sin 3% ( 1) (ﬁ
Therefore, g

co
r  r Cos @ a E o+l gnO
- [co * (-E’%_ * l) Za sin §.E+ x sin 8% (-1) (E Cos 5~ a/ka
g € n=1 (136)

The e.x_"bitrary constant, GO, is determined by applying the third boundary

conditden to equation (136)., First solving for r where 6 = 0 and -%—: = 0,
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(2-4

o= [-& + 1) T - 1 * ag_ (;1)n * (;) (137)
(5‘ sin _zz sx sin %E (E) 2 1
n=1 8 -

Equation (137) cannot be solved explicitly for r; it must be solved
by approximate methods for the particular values of a, s and g in order

to evaluate C, from equation (136).
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FUTURE WORK

The analytical study of heat transfer to noncircular duct is a long range
program that will be continued as time permits. Other more difficult problems

under consideration in the order listed are:

1. Solution of the heat transfer equation for fully developed visecous
flow.

é. Entrance solutions for slug flow..

3. Some so_lutions of the heat transfer equation for irregular annuli
such as for flow parallel to tube banks.

4. Solution of the heat transfer equation for fully developed turbulent
flow using approximate relations for velocity distribution.

5. Heat transfer through noncircular ducts with thick walls.

6. Approximate entrance solutions for turbulent and viscous flow.

HCC:gd



1.

2,

3.

9.
10.

12,

13.
1k,
15.

5
\
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