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PREFACE .
Rl } !

"Principles of Nuclear Power" is intended when complete to be a
text book suitable for use in their war work by members of the Plutoniun

Project who have had a year of post-gradudte work in physics or in
physical chemistry. It contains three types of material;

1. General backiround raterial on the project such as has been
presented to TNX personnel in Wilmington in introductory lectures.

2. Fundamental principles of nuclear physics, available here and

there for *“he mcst pert in the published literature, but not assembled
so far in a Iorm adapted to projcct purposes.

3. Principles of the chain reactiun and related phencmena. To
develop information of this type is the function of the Metallurgical
Laboratory, and its sucsess to date is shown by the contents of more
than 1700 Chicago reports. . The present Manhual seeks to present in a
clear cut form suitable for purposes of research and design those find-

"in ;s of the laboeratory which are dircctly related to nuclear physics.

' Preraration of & Manual sumzarizing the principles of & nuclear
chain reaction was cormenced in 1341 while the writer was a consultant
to Section §-1.of the National Delense Resecarch Committee at Princeton
university. A survey report was issued from Princeton and later
abridged and reissued by the iictellurgical laborutory as CP-293.

On 1Jl,2 January l;, Dr. A. H. Compton, Dirsctor of the newly con-
stituted Metallurgical laboratory, asked the writer to continue prepara-
tion of the prcposed Manuel as rapidly as possible consistent with those
parts of his work which rated highor priority. During the period of
nmer:bership in the Metallurgical laboratory the following sections of the
text were issued by tne Chicago Information Office as individual reports:

(Prelirmimary Edition) .
Present Chapter

classification Title of report - Chicego numbering

Chapter 1 ""Status of Atomic FPower" : CP-243
Cheo ter 4 "wclear Matler and Lijuid Drop

kcdel” , ‘ : Mamo. 21.
Chapter 5 "Soontunecus Transforuation of

' Nucleus" ' Memo. 22.

Chapter 6 "Introduction to Study of Nuclear

Transformations" J Cc-1:
Chapter 2l "Bxtraction of Preoducts! c-7
Chapter 25 "Sectinn or fission products"” ' cc-1i1l
Chaster 13 in npart, in report of A. H. Compton for & ronth

purlod ending July, 1942.

The writer particinated in design work at Vilmington to an increas-
ing extent bezinning in Kovember,1)L2 and was eventually transferred by
the Netallurzical laboratory to the du Pont Company on 19,3 March 1 for




work on the Hanford project. At the time of transfer it was agreed
that preparation of the Manual should continue in so far as consistent
with more pressing work. Benefits cf this policy to the Hanford project
were expected and have so far been reclized -~ text material hag been
used for reference by men engaged in design work, figures drawn for
"Principles of Nuclear Power" have appeared alsc in the Henford Technical

danual, and the actual preparation of material for writing has provided
& systematic means to check over certain aspects of design.

The present chapter is one of those completed ot Wilmington. Like

other sections of the Manual it is however duplicated and distributed
by the Metallurgical laboratory.

On sections of the Manuul so far completed help has been received
fram A. ?. ¥Konk, M. H. Poss, K. My, and P. P. Gast. Drafting has been
done by H. L. Conyoers, and at various times G. Nissenbaum, M. Anderson,
and R. H. Zipse have given secrotarial assistance.

John A. Wheeler
Wilmington.

9Ll Junc 12.
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FUONCTION CF CONTROL

22.1 FUNCTION OF CONTROL

To expect a chain reacting pile to continue at a constant level of
operation without attention would be gambling on & great scale. A
sudden change in condition of operation such as an alteration of atmos-
pheric pressure or a decrease in the flow of cooling fluid could make
the multiplication factor exceed unity. Then the level of the reaction
might rise to the point where the structure would be damaged beyond the
point of further usefulness. Moreover, construction of a pile for
operation without any control would call for an extraordinary niceness
of adjustment. One carbon block too many or too few would spell the
difference between a divergent or a convergent chain reaction. The
poisoning of the chain reaction by the fission products formed or the
promotion of the chain reaction by the newly synthesized plutonium would
have had to have been automatically compensated with high accuracy in
order that the pile could continue to function at a constant rate as
these changes went on. Far more practical than any such close-cut
design has proved the plan of building a pile oversize and introducing
neutron absorbent materials in controllable amounts into the pile struc-
ture. The excess size allows leewny against the self-poisoning tendency
of the chain reaction and against the generally unfavorable effect on
the multiplication factor of temperature end of deposits from the cool-

ing fluid.

Development to date of the use of controls made of neutron absorb-
ent meterials has led to the recognition of three functions for these
controls, known respectively as shim, fine control and safety. The size
of -the pile is generally so much in excess of that actually required for
operation that a considerable amount of absorbent material must be intro-
duced to bring the pile to the point of steady operation. This material
is known as the shim control. As operetion goes on, swall changes in
temperature, pressure, flow of cooling fluid and other variables take
plece from minute to minute which could be compensated by moving in or
out of the pile structure the whole mass of neutron absorbent material.
It has proved simpler, however, to move in and out from minute to minute
as these changes take place, only a small portion of the whole of the
control material. This portion is known &s the fine control. 1In case
something unexpected should occur during the operation which resulted in
a sudden large increage in the multiplication factor, it would be neces-
sary to insert suddenly into the pile a large additional amount of
absorbing material. This material 1s known as the safety control.

The subject of controls falls under the following major headings:

(1) what signals that the control should be applied? (22.2)

(2) How may absorbent material best be disposed in the
pile to achievse this control? (22.3)

(3) How much absorbent is required to compensate a given
excess multiplication factor? (22.4 and 22.5)

7,3’
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FURCTION OF CONTROL

(L) Bow much heat will be generated in the absgorbent? (22.6)
(5) How quickly does the pile respond to control? (22.7)
(6) How may controls conveniently be operated? (22.8)

We limit the present discussion of control in two respects. First,
we assume that we always compensate the excess multiplication factor by
introducing neutron absorbing material in the pile. Indeed, considera-
tions of mechanical simplicity have so far favored control of the pile
by & number of bars sliding in and out of the structure through relative~

-1y small chennels. In contrast is the early proposale to regulate the

chain reaction by altering the disposition of uranium and moderator.
Construct the pile in two halves. Place each on rollers - separate the
two or move them together according as it is desired to decrease or in-
crease the reactivity. This is a scheme whose chances for adoption
have become less and less as the technical difficulties of designing
even a fixed pile structure have become more apparent. Only if we were
considering the problem of initiating an explosive chain reaction would
we want to go in detail into this type of control.

The other omission from the present discussion is the influence of
controls on the distribution of heat production in the pile. To neglect
such an effect due to the regulating control is reasonable because this
device has a relatively small effect on the multiplication factor. Evean
less important is the influence of the safety controls on the spacial
distribution of power, because these mechanisms act only in casse of
emergency. . In contrast, the shim control will generally be expected to
exert a relatively large effect on the distribution of heat production.
Part of the multiplication factor to be compensated in this way will
change with time and must therefore be balanced by an easily adjustable
device, the true shim control. The remainder of the excess multiplica=

tion factor will however be used to permit changes in the pattern in

which the uranium is loaded and thereby to allow more efficient removal
of heat from the pile. The possibilities in this direction are quite
important and have been described in Chapter 21. One or another of

the methods for adjustment of the loading at periodic intervals will
take up the important part of the excess multiplication factor, accord-
ing to present indications. The true shim control will therefore have
relatively so little to do that it, like the other controls, is expected
to have no significant influence on the distribution of power release.

*H. Halban and L. Kowarski, CPB-28, Technological Aspects of Re-
ectlons Used as a Source of Power (October, 1941)
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OCCASIONS FOR CORTROL

22.2 OCCASIONS FOR CONTROL

- The type of control simplest in its design is the nhnn control. It
has to take care of the following situations;

(1) The pile is too large and contains too much uranium. It is
decided not to bring the multiplication factor down to the operating
value by removing metal from the pile. A shim control must therefore
be inserted in the pile to compensate the excess multiplioation factor
which would otherwise exist. This shim oontrol is left in the pile
throughout its operation. However, its position may be altered slightly

from day to day or from week to week to compensate certain slow ochanges
in reactivity, as follows,

(2) The pile is operated in the beginning at a low level of inten-
sity. As the success of the operation becomes more and more apparont,
the level of intensity is increased and the temperature of the uranium
in the pile rises. 0On this account, the multiplication factor decreasesg
Some of the shim control must therefore be removed from the pile to per-
mit operation at the increased rate. This adjustment is carried out
gradually. Evidently the power output can be calibrated in terms of the
position of the control. The shim control will correspond to the
throttle on an engine.

(3) The poisoning of the chain reaction by the newly formed fission
products and the improvement in the reactivity due to the newly formed
plutonium are slow changes which work against each other. Which domi-
nates can not be seid at present. Reasonable estimates indicate that at
a rate of operation as great as 250 megawatts, the resultant of the two
effects together will probably not change the excess multiplication
factor more than 1y in lymonth. This rate of change has to be compen-

sated by & correspondingly slow adjustment in the position of the shim
control,

(4) Gradual deposit of chemicals from the cooling fluid in the pile
structure will lower tne factor of reproduction. This process should
occcur very slowly. To the extent to which 1t is appreciable, it will be

necessary upon this account also to readjust from time to time the posi-
tion of the shim control.

The rezulating control or fine control of the pile has to take care
of changes in the factor of multipIlcatlon whioh on the one hand are ocon-
siderably smaller than those compensated by the shim control but which on

the other hand take place with much more rapidity. Changes of this type
are the following;

(1) The temperature of the cooling fluid may change from instant to
instant. This change will alter the temperature of the pile and thereby
its reproduction factor. The alteration in reactivity of the pile on

78
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OCCAS I0uS FOR CONTROL

this account depends considerably upon thne design of the pile but is of
tne order of mapnitude ~ L x 1072 loss in multiplication factor per °C.
rise in temperuture.

(2) The pressure level ut which Lhe coolin); fluld is circulated may
fluctunto from moment to moment und thorevy slishtly aflfect the nile
dimonsdons. Or the amount of coolln,; fluld witiin tho structure may
chanpe, cunsoquently affecting tue nultiplication factor.

(5) A graphite~-urenium pile to the pores of which the autmosphere
has sccess autfors a loss in reproduction factor proportional tu the
nitrogen content of the structure. oOn thie account, an Jucroase in tho
barometric pressure by 1 om. of worgury lowors Lhe factor of multiplica~
tion by an amount roughly ~U x 1077, uarowetric clanges of consider=~
able magnitude may ocour in w space us short as an hour. Corpensatlion
of these changes 18 therefore one of the functions of the Line control.

(L) Tho reactivity of a pile is lmproved by placing reflectors
about it. The approuch of an iladividusl to & pile will produce s suv-
stantial increase in ite factor of multiplics.tion unless the pile is
very well shielded. Unexpected changes of this kind nave to be coupen~
sated by the fine control. '

The safety control has to take cure of sudden chenges in the condi-~
tion of operation as does the fine control but clanges of an order of
magnitude 80 much groater that it 1s not safe ur even practical to rely
upon the fino control to componsate them. Primary function of tne
safety control 18 to etop the chain reaction with tne utmost reliebility.
Tao sefoty control must function quickly and must give a large reduction
in the fwotor of reproduction for the followiny reasons;

. (1) The coolins fluid wsy suddenly escape from the pile and thereby
lend to a substantial increase in tne factor of reproduction. In one
doalipn of o wetor coolec pile, for eamnple, removal of all tne water
raises the factor of sultiplication 2.L%.

(2) Budden chanye froam an operuting pile to an inactive pile may be
aosociated with o relatively rupic drop in the temperature of the ura-
nium. This decrease in temperature will, in general, bring about a rise
in the factor of reproduction. Tne rise may, under certain circum-
stances, be as great as l4. 7Tne safety control must be able to over-

compensate this rise.

(3) A oatastrophe may suddenly have ejected the fine control and
the shim ocontrol from the pile structure without damaging the pile
itself. On this account, there will be a sudden inorease in the pile

reactivity.

1o 8
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Taxen altogetiier, the porsibilities for loss in coolin; fluid,
suaden drop in temperature, end for loss oi all other controls, indicate
thet the safety control itsell should be capable of decreasing the
factor of multiplication by a large amount of the order of L% or
possivoly more. The safety control should also be capavle of making this
crnange in multiplication factor with zreat rapidity, for the following
reasons;

(1) #ith an uncowpensated rultiplication factor as great as 2%, the
level of powcr output of the operating; piie will increase ut {irst very
rupidly anc tuen 0y @ ‘actor«~v1d) every second until either the temperss
ture rise compensates the excess multiplication factor or the pile
structure is physically destrcyec.

{2) Quite apart from some unezpected .cnunge in the multiplication
factor which may demand a quick stopping of the chain reaction, some
mechanical failure may call for an equally rapid stopping of the pile.
A stoppage of the flow of coolinz fluid tnroagh 8 4mall portion of the
pile, for example, woulc in the cvepinning have relatively little effect
on tne reactivity of tre pile as a whole. 1If this condition were
allowed to continue for even s few minutes, however, the structure of
the pile mi ht be damaged to such an extent that 1ite further life would
be seriously limited. On this account provision has to be made to
detect the stoppaze of flow or other fallure in the tubes of a water
ccoled pile.

~ (3) Accidental ejection of same of the activated material from the
pile into the working space immediately around it may drive away those
overseseiny tle operation of the plle. 1In this cuse, the future safety
of the pile could not ve puaranteed unloss 1t were quickly cut off.

(L) Juick stoppage of the ctain reaction 1s a proper rosponse to
almost any kind »f sabotapge of tine pile or 1its accossories. The greate
catastrophe wnich can ve visualized (se¢e Lhapter 23) is combustion of
tne activated uranium and reloase of the tission products from it to the
stmosphere with the possinic contamination of many miles of territory.
The f£irst atepy to prevent suc:t cumwustion ls to koep the tempurature of
tae uranium low. Tnis condition reyuires thaut the production of further
heat from fission ve stopped ut unce. Tne heut sursequently given out
oy the radiocactivity formod duria; tile previous operation is small
enough that circulation of coolin: fluid at a reduced rate will sufllice
to prevent overheatiny of the uranium. Even if the catastrophe is so
great that further circulation of tne cooling fluld is entirely
impossiole, tiio rise in temperature of the activated uranium will tuke
place at a rato sufficiently reduced so that there may be time to flood
the pile and thereoy suarantee that the uraniun will not catch on fire.
Nithout a rapid safety control, however, it could well be that the tem-
perature of the uranium might rise to values so high that flooding of
the pIle would not prevent a catastrophe. for all the foregoin; reasons|
the reliability and rapid insertion of safety controls is one of the
most important requirements in the design of the pile.
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SURVEY OF CONTROL THEORY

22.3 SURVEY OF CONTROL THEORY

The theory of controls is & special case of the problem of pile re-
activity - more complicated but in some way more illuminating. The pile
theory , femiliar from Chapters 1, 15, and 16, views the central conoepts
of multiplication factor and buckling of the neutron density as two quite
different aspects of the propagation of a chain reaction. However, the
complementary nature of the two ideas becomes evident on e-mmining ths
mode of actium of various forms of control.

As one extreme case, consider 2 pile - cylindrical for simplicity -
along the axis of which we insert a very large cadmivm rod. The neutron
density extrapolates to zero mt the effective boundary of the pile both
before and after entrnnce of the cadmiwmg ¥hen the rod is in place, the
concentration of neutrons also extrapolates to zero near the surface of th
abgorber. The buckling of the neutros density is evidently greater after
insertion than before. Mcre neutrons leak to the outside. A consider-
able number of neutrons also migrate to the new internal boundary and are
absorbed there. Both effects lower the overall multiplication factor
and cause the power output to fall if it was originally statiomary. The
action of the control appears as a change in boundary conditions without

. any alteration in local multiplication factor.

In the opposite cxtraeme case we control the pile by pumping into its
pores & uniform concentration of boron-containing gas. This procedure
decreases the local multiplication factor and thereby reduces the overall
multiplication factor but does not affect the buckling of the neutran
density at all.

Intermediate between these two extremes is & case where we introduce
into the pile & number of rods, wires, or lumps of absorbing material.
We have two alternative ways of describing the action of such controls.
On the one hand we can say that they introduce internal btoundaries into
the pile. In this sense they do not affect the local multiplication
factor of the medium at all. Their sole action is to increasge the
buckling of the neutron density and thus to produce both an extra leakage
to the ocutside and a migration of neutrons to the ebsorber itself. On
the other hand we can view scattered lumps of cadmium or other highly
absorbent material as giant nuclei whose pross sections are to be measured|
in units of am® rather than in units 10" times smaller. We can deter-
mine the effect of these "nuclei" in the same way in which we estimate
the absorption by the boron gas. The cadmium is considered to alter the
local multiplication factor but not the buckling of the neutron density.
For effective value of the buckling, we take the same wvalue which pre-
vailed before the controls entered. In other words, we look at the gross

cverall variation of the neutron density and look apart f?@q its mjinor
irregularities. This procedure is consistent with that followed 1n

analyzing the effect of boron itself, where we look apart from the de-
crease in neutron density in the immediate vicinity of each absorbent
nucleus. We conclude from this discussion that it is of‘ten purely a

matter of convenience whether we shall describe the effect of controls
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SURVEY OF CONTROL THBORY

in terms of an alteration in boundary conditions, or a change in local
multiplication factor.

The possibility of describing the effect of absorbers in two comple-
mentary ways constitutes a fundamental principle in the development of
the theory of controls. More specifically, we may formulate the follow-
ing "Principle of Bquivalence": "The absorbent, together with the

xaterial dispersed symmetrically around it, is equivalent to a hamogeneou#

multiplying medium of the same volume with & new multiplication factor
and & new migration area"™. This principle is very similar to that used
in analyzing the properties of the plile itself. In determining the
factor of reproduction for the lattice, we have to epply certain con-
ditions to the neutron density and its derivative at the boundary between
the mcderator ard the fissionable material. The results of this
analysis are however summarized in terms of a multiplication factor for

the pile medium as a whole, regarded as equivalent to a homogeneous sub-
stance.

The application of the principle of equivalence may be illustrated
by an example. A rod of cadmium is passed throuzh a pile. We wish to
determine the effect of this rod upon the overall multiplication factor
of the pile. We consider together the control rod and a.circumscribed
cylindricsl portion of the pile structure having, for example, a radius
of 50 cm. We think of this combination as a lattice unit possessing &
definite multiplication factor and migration area. In this way we
translate the original problem into two simpler problems. Qf these ths
first is one of pure lattice theory which may be solved by the mathods
already at our disposal. Procedures for finding the local reactivity
are developed with special reference to control rods in Sections 22.4
and 22.5. Then our problem is to determine the reactivity of a vpile
which contains a core 50 em in radius with slightly different multiplying
properties than the rest of the structure. This question is treated
with the method of statistical weights outlined in the remainder of the
gresent section. Tinis treatment allows us to determine with consider-
able accuracy the effect on the overall reactivity of the pile of &
change in tns local multiplication factor in one portion of the structure.

The division of the control problem into two parts owes its con-
venience to the fact that the two parts are nearly independent of each

other. For example, it does not matter in our example whether the con-

trol rod and the surrounding core pass through the center of the pile or

near its fringe. It does not matter whether the gradient of thencutron

of the rod: In either case, the basis of our analysis is the same; we
determine the local multiplicatlon factor and the migration aree once
and for all for the combinmntion of rod and core. Just at what point .
the division of the control problem into two parts will be made is a
matter of choice. In the example, the core could have been taken to
rave a radius of 100 cm instead of the chosen 50 ecm. In this case the
local rultiplication factor of the combiiation of core and control rod

result of the two methods of anslyzing the control problem will however
be the same within the limits of accuracy of the principle of equivalenceg

/13 A
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SURVEY OF CONTROL THEORY

What has been said here of freedom in choosing the size of the region
of equivalence applies equally well to our liberty in choice of its shape.
Ccnsider, for exurnle, the case in which we are anelyzing the effective-
ness of parallel control rods spaced in rectangular array. in this case
we will naturally take the region associated with one rod to be a square
centered on that rod. on the other hand the region will be taken to be
a hexason when the rods are locsted on a triangular pattern. When we
come to the noint of determining the loss in local multiplication factor
induced by the incerticn of & control rod into a region of one or another
simple geometrical form, we shull treat the region as equivalent to a
cylinder of the same cross sectional area. This is the procedure which
we have already followed in the development of lattice theory in Chapters
15 and 16.

Certain lirmitations apply to the principle of equivnlence just as
thers are certain limits to the accuracy with which a heterogeneous pile
can be described asc a homogeoneous medium. In the exumple of control rod
ané core, 1t is obviously neccssary for the control rod to be surrounded
by several lattice units in order to justify treating the coro as a
uniform multiplying medium. In other words, the radius of the core
should certainly excecd a lattice unit. Difficulty also occurs if the
region associated with one control rod is comparable in size with the
pile itself. Then it is no longer quite accurate to express the equiva-
lence between cylindrical and square regions in terms of area. On this
account we shall generally limit our applications to the principle of
equivalence to cases where the size of the zone associated with one con-

trol rod is intermediate in order of magnitude between the lattice spacing

and the width of the pile itself. A further limitation on the principle
of equivalence will be apparent on considering as means of control an
opaque sheet of cadmium passed through the pile. ¥Wie might be inclined
to consider this sheet, together with a layer of the pile medium on
either side of it, as equivalent to & homogeneous multiplying medium with
a8 new multiplication factor and migration area. If this view were
correct, the variation of neutron density in one portion of the medium
should have an effect on the distribution of neutrons in the other part
of the medium. But the disturbance obviously cannot propagate itself
through the cadmium. Generalizing from this instance, we can say that
the principle of equivalence does not apply when the width of the zone

of control is comperable with the width of the opaque neutron absorbent
contained within it.

A further limitation of the principle of equivalence is apparent
fran the fact that it attempts to describe all the properties of the
rultiplying medium in terms of tlie two quantities, local multiplication
faotor and migration ares. This description overlooks the fact that
two media may have very different thermal migration areas and very dif-
ferent moderation areas and yet have the same total migration areas and
the same local multiplication factor. As a matter of fact however the
difference in the behavior of fast neutrons and slow neutrons individual-
ly is of little consequence to the equivalence principle. Hardly any
two media could be more different in their relative effect on fast and
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SURVEY OF CONTROL THAEORY

slow nsutrons than a typical pile and@the surrounding graphite reflector.
Yet the theory of reflector effectiveness, outlined in Chapter 16, which
takes into account only the migration area and multiplication factor in
tne two media, gzives results wi.ich differ relatively little from those of
a more complete theory which allows lor the differcence in behavior of
fast and slow neutrons.

Apart from the few cases where tne principle of equivalence is
ooviously unsuitable for use, it Iurnisnes a convenient means for dividing
the problem of control into two parts so that one can analyze separately
the effectiveness of control rod as a control rod and the effectiveness
which it derives on account of its location in the pile. The following
table lists the magnituce of the cepressiocn in the local multiplication
factor set up in the typical pile by the insertion of certain simple
forms of control.

Table 22.3.12. EFFECT CN LOCAL MULTIPLICA-
TION FACTOR OF TYPICAL TYPES OF CONTROL

Figures refer only to graphite-uranium piles whose designs resemble
that assumed in calculations. Reference is therefore made here to
Section 22.5 for the precise details of absorber and pile assumed in each
case. Radius of zone of equivalence denoted by R, magnitude of effec-
tive change of local multiplication factor in this zone by aklocal'

- o -~ -
-

-3

—

!~ Effect as calculat-!APPr°Xim“te tranylation

; Nature of ed in Section 22.5 to comuon size of zone
control material ' . of equivalonco !
R 6klocal R aklocul ,
Three boron coated tubes !
which together make black ' f
to neutrons a cross section- !
al area~3 3/8" x 7/B" or o
8-6-0’11! X 202 cm . 81.3 cm 0.031 81.3 cm 0.031 |
Cadmium rod 0.3 cm in radius 30 em 0.051 8l.2 em 0.007
Cadr:ium cylinder 30 cm in : ‘
radius 300 em  0.008% 81.3 om 0.1 i
BP, in pores of graphite at
0.021 0.021

'1/100 atnmosphere pressure

) After this summary of the local effect of various types of absorber,
it remains to analyze the influence on overall reactivity due to the lo-
cation of the control. The effect of location can be treated with high

accuracy only by quite complicated mathematical techniques for many dis-
positions of absorber in the pile which are of practical interest.  Such

is the case of a single control rod passed through a& cylindrical pile

1513
o
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~

parallsl to its axis but located off center. A centrally located rod
or whole group of rods inserted part way into a pile furnish another
example of the same kind. It is helpful in such cases to have as a
guide the following genecral principle of analysis: The value of the
neutron density at a given point is the quantity which governs the
effectiveness of a control located at that point. ‘

It is necessary to be more specific in speaking of neutron density
as determiner of effectiveness of control. The properties of the pile
maey vary from place to place in such a way that point P has a higher
density of fast neutrons and yet a lower density of slow neutrons than
point Q in the structure. The density of neither special variety of
neutron interests us here so much as a quantity which we shall call the
"virtual neutron density"”. This quantity,denoted here by n, is defined

completely except for an arbitrary multiplicative constant by the follow-

ing three conditions: -

(1) n vanishes at the effective boundaries of thc pile.
(2) n is positive throughout the interior of the pile.

(3) n satisfies the fundamental buckling equation:

(2.3.14.a)

Here the buckling, B, is considered to be a known function of position

in the pile. This guantity, when multipliéd by the migration area, is
equal under steady state conditions to the difference between the local
nultiplication factor and unity. Knowing the shape of the pile wund *he
local rmultiplication factor, which is often nearly constant over the pile,
we heve in (22.3.14.a) & relatively simple means to find how the virtual
neutron density varies from point to point. Illustrative examples have
appeared in Chapters 1l and 16.

32n/2x2 + 92n/ay2 + aan/bz2 +Bn=0

Let us now investigate the quantitative relationship between pile
reactivity and the value of the virtual neutron density as Jjust defined.
We use the guantity, B, to represent the buckling of the neutron density
in the pile before the control is introduced. We designate by n the
virtual neutron density in this pile. The corresponding quantities

after insertion of the control are denoted by B* and n*. Here ne»
satisfies the egquation:
azntﬁx2 +‘a2nt/by2 + 82nt/az2 + Bene = 0. (22.3.15.8)

We wish to compare conditions before and after the change. We wultiply
(2.3.15.a) by n, (22.3.1.a) by n¢, and subtract. The difference we
integrate over the entire volume interior to the pile. A term of the
character

(n*2°n/2x° - no°ns/ox) (22.3.15.1)

gives on integration with respect to x an expression of the form:

16 B

PP S
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limit of x
(ne 5n/x - nanebx)| TP 3.15.
w/e x) lower limit of x (2.5.15-0)
This expression vanishes at both limits because the neutron density ex-
trapolates to gero at the effective surfuce of the pile. I1ikewise, the
terms containing derivatives of neutron density with respect to y and g
give szero contribution after integration. Our series of mathematical
operationstherefore finally leaves us with only one term:

fn ne (Be - B) & (volume) =0

In words, the average value of the buckling of the neutron density has
the same value Lofore and after the introduction of the control, provided
that the average is taken with respect to the product of original and
final virtual neutron density as weight factor.

(22.3.15.4)

- Fram the simple principle of averaging just derived follow some use-
ful results. We shall examine the applicatiomsunder one or another of
two heads according as the controls do or do not considerably change the
distribution of neutron density throughout the pile. When the variation
of activity through the pile is little affected by the absorber we are
able to obtain from the averaging principle a simple and fairly complete
acoount of effectiveness of control as influenced by position and degree
of insertion. The situation is ordinarily much more complicated when
the controls produce large changes in local reactivity over extended
portions of the pile. However, we obtain relatively simple results in
this case too, provided that the absorbent or the control rods are to be
disposed go as to have maximum effectiveness.

In the first group of applications of the averaging principle the
alteration in neutron dénsity by the controls is slight. Then the dif-
ference betwsen the buckling before and after the change, B+ - B, is a
small quantity of the first order. The term n ns may be writtenm as the
sun of two contributions of which the first is the square, nz, of the
original neutron density and the second is a correction temm,n (n* - n),
of the first order. The product of two terms of the first order will
give a term of the second order which for our purpose is to be neglected.
In this approximation we find the equation:

fn2 (B# = B) d (volume) =0

let control material be spread at a low density in a small volume, Vi, of
the whole structure. In this region the buckling drops by an amount 531.
In the rest.of the pile the buckling must therefore increase. The
magnitude of this increase &B,, is evidently obtained from Eq. (22.3.17.a)
and is . .

£ sh
6337 —‘/';2 d (volume) 1

178

(22.3.17.8)

n

(22.3.17.b)

2.3.15
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Put in other terms, this equation states that a slight overall increase
in the reactivity of the pile by the amount, §Bgy, may be compensated
through conirols by a larger change in reactivity over a limited portion
of the pile. The effectiveness of this localized change in reactivity
is proportional to (1) the volume of the region of control and (2) the
square of the neutron density, nia, at the point of action.

The proportionality between degree of control and square of the
neutron density can be stated in several equivalent forms, whose relative

22.3.17

22.3.18

Weight factor

usefulness depends upon the circumstances of the problem under considera- |and position
tion. In this connection the relation between buckling and local multi- |factor

plication factor can for most purposes be taken to be straight proportion-
ality, as the migration area usually changes relatively little from one
region of the pile to another. Thus we translate (22.3.17.b)as follows:

4

‘ Integral of square of original
. expression for virtual neutron
Overall loss in k due to a density, multiplied by ohange

control which does not great-
1y distort the genemlzdis- _ \in local multiplication factor
tribution of neutron density Integral of square of
in the pile (virtual neutron density
over whole pile

(22.3.18.a)

Integral of square of
virtual neutron density
over zone of equivalence

equivalence inscribed about con

Reduction in local kx in zone of
trol rod or other absorber

virtual neutron density

( Integral of square of)
C over whols pile /)

This ratio is termed the
"weight factor” of
the zone of equivalence

(22.3.18.b)

( Value of square of virtual )
n r

Voluxe of zone eutron density averaged ove

gone of equivalence

(139d2°:1:: in )(of equivalence

= |loca ‘zone Value of square of virtual

of equivalence (‘x:Szmzifi (neutron density averaged ovor)
« 1% whole pile )

Y —Y
Reduction in k which would re- This ratio is known as "position

sult if an equivaleant amount factor™ and measures the relative
of boron were distributed effectiveness of the control rod

over the whole pile or other absorber due to its
: special location in the pile
(&.}.18.0)

134
: i-i—x.ix ili-e ‘ |
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The position factor as Just defined measures the extra effectiveness to
be gained by putting the control material in & region of high neutron
density. Its value is essentially independent of the size which we
chocse to attribute to the zone of equivalence circumscribed about the
control rod. On the other hand the weight factor depends on the exten-
sion of this zone as well as on its location. The reduction in overall
multiplication factor is of course indspendent of the size of the zone
of equivalence in either case.

Proportionalitjr of control, not to the first power of the neutron
density but to its square, seems at first sight paradoxical. Consgider
for exanple a spherical pile. At its center the square of the neutron
density is zreater by a factor 6.580 than the average value of the
square teken over the whole structure. However, the neutron density
jtsolf at the center of the pile exceeds its average value only by &
factor 3.290. This granted, we undertake two hypothetical experiments.
In the first one we spray uniformly throughout the pile enough boron to
absorb some given small fraction, say 1077, of the thermal neutrons.
Then the overall multiplication fector will be reduced by 102, In the
seccnd experiment we use the same amount of boron but spread it over a
region about the center of the .

pile. In this case we have
to expect & reduction in over- *
all multiplication factor equal /
NEUTRON Outward leakageg
to 6.6 x 10~2, according to Eq. DENSITY neutrons a//er,//'r.re_/r///o/J
(22.3.18.¢c). Yet the boron | %’;o%—g/ é’ofgfl'g’ .:jr/;yﬁ///y

will absord only the fraction
3.3 x 1072 of the neutrons.

How does the paradoxical result
come about that control material
located where it will ebsord
three times as rmany neutrons
gives six times as much control?
A clue to the enswer comes from
a look at the neutron distribu-
tion in a pile containing absord-
ent at its center (see diazram
at right). The neutron density
is buckled more strongly than

i+ was in the absence of the '
absgorber. Jonsequently, the gradient of the neutron density at the

surface of the pile 1is increasged over its normal value. Thus the outward
f£lux of neutrons has been raised above its old level. In other words

the control takes neutrons away from the chain reaction by two mechanisms:
by direct absorption and by stimulating leakage to the outside. The dis-
crepancy between the factor 6.56 for effectiveness in control and the
factor 3.29 for effectiveness in absorbing neutrons has therefore a simple
explanation. For every neutron taken up in the control in the special
example, two neutrons are lost to the chain reaction, the one absorbed
and the other forced out of the surface of the pile by increased leakage.

118
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What has been said of the extra efficiency of a control at the
center of the pile applies just the other way around to a control near
the surface of the reactor. Let the absorbent, for example, be put in
a region where the neutron density is one tenth the average wvalue. It
. will absorb only one tenth as many neutrons as it would if it were
uniformly dispersed through the structure. At this point in a typical
pile the square of t§° neutron density will have fallen to a fraction of
the order of 6 x 1077 of the average squared value. The drop in multi-
plication factor will therefore be only ~6 x 10-3tires as great, mmather
than one tenth as great, as that observed in the case.of uniform distri-
bution. This lower efficiency is to be understood in the following way.
Roughly 9l percent of the neutrons absorbed in the control material would
have leaked out of the pile anyway and only the remaining 6 percent
represent increased loss of neutrons due to the new absorbent. like a
lightning rod, the object concentrates upon itself the already existing '
flux load, without very much increasing the total magnitude of that flux.
To locate controls near the surface of a pile is evidently inefficient
practice.

Following this general picture of the effect of position on control,
we may make & guantitative study of the magnitude of the position factor
in cases of special interest. This quantity is expressed in terms of
the virtual neutron density, n, and volume integration over the pile by

the formula.

- nafd (volume)
y/.ne d (volume)
Table 22.3.22 lists expressions for position factor and weight factor in

tne cases of spherical, cylindrical and rectangular pilus. Some ex-
amples will illustrate the use‘'of the tabla. :

position factor (22.3.21.a)

EXAMPLE. A cylindrical pile contains 50,000 uranium slugs. The
32 slugs most ocentrally located have a multiplication factor 1 percent
lower than normal. How much is the multiplication factor of the whole
structure lowsred on this account? From the table we find that the
position factor at the center is 7.,2. Accordingly, the overall re-
duction in multiplication factor is 7.42 x 0.01 (32,/50000) = 4.7 x 10~2.
If the slugs had been distriouted along the whole length of the axis of
the pile, the position factor would have been only 3.71 and the ioss in
k would have been 2., x 10-2.

EXAKPIE. A cylindrical graphite-uranium pile has an' effective
radius, R, of 510 cm. A cadmium rod 0.3 cm in radius is thrust com-
pletely thrcugh the pile parallel to its axis. How much is the loss in
k when the rod lies (a) on the axis? (b) 255 cm away? This rod produces
a drop of 0.051 in local multiplication factor within a zone of equiva-
lence 30 cm in radius, according to the summary in Table 22.3.12 of re-
sults derived in Section 22.5. The position factor for a rod thrust
completely through the pile depends only on distance, r, fram the axis and
according to Table 22.3.22 is 3.710 J°2 (2.40L48 r/R). When the rod lies

2o 3
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688 near
;urface

22.3.21
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Table 22.5.22 POSITION FACTORS AND WEIGHT FACTORS FOR WERAK CONTROLS OR OTHBR ABSORBERS LO-

CATED IN PILES OF SIMPLE GROMETRICAL PORM.

EFFECT OF REPLECTOR MAY BE TAKEN INTO ACCOUN?

BY ADDING TO DIMENSIONS OF ACTIVE ZONE THE EFFECTIVE CONTRIBUTION MADB BY THE REFILECTOR.

Shape of pile

O

Sphere

Cylinder

T ——

Reotangular prism

Bffective dimensions
Coordinates with origin
" at geometric center
Virtual neutron density

This ratio at ocenter

Position factor, square of
neutron density relative
to average square
Position factor at center

Limits of a ooncentrically
- located volume for which
weight factor is readily
“ocaloulated

Weight factor for this -
volume (see Pig.22.3.36
for graphical evaluation)

| Position facotor for abgorber

distributed over the pile
with concentration at
every point proportional

point

Ratio of neutron-sffective

temperature to central
temperature when tempere-
ture rise is proportional

to neutron donsity.

relative to average value

to neutron density at that

redius R

r from O to R!

2/5) (8/7 r)atn(x e/R)
(2/3) = 3.290
(2P /5) (R/rr)Zs102 (uy/R)

2% 2/5) = 6.500

<a-/a)'-(1/:,>sm<am/a)

./kain 1Ju)3 udu times

S u2du

L/ (sin u/u)€ uCdu

0.9705(r%/3) _
(1r/2)

0.6177

f(sin uw/u) u 2qu

2.033

radius R, length h

2.3163 J (2 Lol8 r/R)
(7 /2)008(x z/h)
2.3163 71 /2 = 3.639

3.710 Jo (2.40L8 r/R)"
2 cos2( Tz /h)
7 .420

r from O to R!
g from =h!'/2 to h'/2

R'/R)]

(h' sin7 h'/h)

1.675 (L/3) = 2.234

0.6139

lg(R'Kn )2 2 (2-mlﬁa'/ﬁ) éb'k

dimensions &, b, ©

(1/2)cos (w2/0)

(r/2)° = 3.875

2 cona(ﬂx/t 2 008 (7 y/b)
2.008°(7 8/0)
8

x from -a'/2 to a'/2
y from -b'/2 to b' /2
¢ from -o'/2 to o'

+7°y ginwra?
+w i sin» b'/g;

(ot'/o + " sin7 0'/c)

JiRende ]

sin€ u du
= 2.371

= (b/5)°

8/57)°

= 0.6116

(71 /2)cos (ﬂx/&) (1!/2) cos (ny/b)

May, 1944
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SURVEY OF CONTROL THEORY 22.3.2,

along the axis, the loss in overall multiplication factor is therefore
3.710 (¥ 302/%5102) 0.051 = 0.00066. At & point half way out from the
axis to the surface of the pile the square of the Bessel function has
the value J°2 = 0.449. The loss in overall reactivity is now 0.00066 x
0.44,9 = 0.03029.

EXAMPIE. How effective are the various control rods in the Hanford 22.3.25
pile? This structure with 2004 tubes loaded with metal is approximately |Ranford
equivalent to a bare pile of dimensiorns, a = 1060 em, b = 1060 cm, control rods
c = 760 cnm. The control rods are 9 in number. They move parallel to '
the x-axis and are located on & square lattice at the points y = 0,+ 128
cm, £ =0, + 162 cm. Each rod may be considered to act in the sense of
the principle of equivalence on a gzone of cross section 128 em x 162 om.
The irndividual rods are so constructed that each reduces the local multi-
plication factor within the zone of action by the amount 8k1 a1 = 0.031,
ag indicated in the first entry of Table 22.3.12. We are ingerested in
inowing the effect on the overall multiplication factor of insertion of
the central rod alonse; of pushing in only one of the corner rods; and,
if possible, the control obtained by driving in all rods together. Each
rod may be considered to act in the sense of the principle of equivalence
on a zone of cross section 128 cm x 162 em. This zone is sufficiently
large in comparison with the size of the pile that it does not appear
entirely reasonable to apply the concept of position factor. Instead
we calculate the weight factor of each zone in order to estimate the
effectiveness of the rod contained within that zone.

Effect of Central Rod

e 0.239, integral of c03217y/% fromy = -6, am to y = + & cm relative
‘ ' to value of same integral over whole range, 1060 cm, of y
(y component of weight factor).

0.402,  intogral of c0321rz/b from g = -8l cm to 2 = + 8l om réiative
to value of same intezral over whole range, 760 cm, of z
(z component of weight factor).

0.098, product of factors so far gives weight factor of zone of
equivalence of central rod.

0.031, reduction of local multiplicetion factor in this zone accord- -
ing t°A2-3-120

-0.0030, product, reduction in overall multiplicﬁtion factor of pile
due to complete insertion of central rod.

' ¥ey, 19LL
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Effectiveness of Corner Control Red

0.206, integrel of cos@ from y =6l cn toy =192 cm relative to
integral over whole range of y (y component of weight factor).

0.259, integral of cos® from z = 81 cn to z = 24,3 cm relative to
integral over whole range of z (z component of weight factor).

0.053, préduct of preceding two quantities represents weight factor
of zone of ection of corner control rod.

0.031, total reduction of local multiplication factor within zone
of action. '

0.0016, product, reduction in overall multiplication factor due to
complete insertion of corner control rod.

BEffectiveness of All Rods

Proceeding in the manner just described, we find the effectiveness of
each of the control rods acting individually: :

Jor | ocation  |Slisctivensssof | Totel effect ir
1 ' central 21030 o.o;)so
L : corner 0.0016 0.0066

| 2 | ; - g’ 128 0.0026 0.0053

E‘ _2 : ::2162 0.0019 0.0038

L 9 0.019

When we insert into the pile 9 rods as absorbent as those

we alter so much the distribution of neutron density th:t gzs:rgoggigggeg;
entitled to use the method of analysis Jjust described. The action can§ot
bg taken as proportional to the square of the original value of the
Virtual neutron density. A more complete analysis is necessary and is
presented later in this section. The total loss in k in introducing all
tne rods together is there estimated to be 0.017. The small difference
?etween this figure apd the total effect, 0.019, of the rods taken in-
dividually provides a measure of the so-called "shadowing effect" oxerted
by one rod or another. This effect is discussed in further detail below
Aside from such fine details of control theory we are evidently in a )
satisfactory position to calculate the offectiveness of individual control
rods thrust completely through a pile.

Partial insertion of & control rod into a pile provides the most
practical means yet discovered to obtain fine control of the chain re-
action. The precision of control is especially good when the regulating
rod enters only a small distance, 8, into the effective portion of the

1373

"
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structure. The neutron density vanishes at the effective surface of
the pile and reaches at the tip of the rod a value approxirately pro-

portional to the distance, s. The square of the neutron density goes as
se. The intezral of this quantity uleng lhe inserted length of the rod
is therefore vropertional to s?.  The contrcl can be made arbitrarily

fine by rmaking : sufficicntly small.

For a more precise ectirate of the depgrce of control in the case of
partial insertion, consider the case of a bar of absorbent substance in-
serted to a depth, s, nlonp the dianeter of a cylindrical pile of height,
h. The position factor for each infinitesimal element of the rod is
obtained from the fifth row of Tuble 22.3.22. Here the Bessel function
is to be evaluated at tho point r = |R - s|. We suppose that the zone
of equivalence of the bar has been chosen to be small in comparison with
the size of the pile. Then the weizht factor of this zone is

2 E(ﬂ’ /hy (3.710 s, 2 cross section of 2h Wﬂiée
€ o8 z/hy (3110 Jo .ds)(zone of equivalence)/%R | positen
. ' (22.3.27 .a)

and the loss in overall multiplication factor is
7.1,20 ( crossfsect;onlof ) , ; = 2.40L8
Sk = Aok Sk zone of eguivalence 2 7 J
k 2.40L487 " local Rh cos(#z/h) o (x) dx
= 2.4048(1-s/R)
(22.3.27.b)

Here x is an abbreviation for the argument, 2.L0L8 r/R, of the Bessel
function. The lower limit in the integral applies wnen the rod comes
short of reaching the axis of the pile. When it penetrates beyond this
point, the integral must be changed in an obvious manner. Values of
the integral may be read directly from rig. 2.3.28.

EXAMPIE. The cadnium rod of example (22.3.2l) reduced the overall
multiplication factor by 0.00066 when inserted along the axis of a ]
cylindricel pile 510 cm in redius. We now insert the same rod along & ¢
dianeter lying in the median plane of the pile. The effective neight
of the cylinder, which previously made no difference, is now taken to be
760 cm, corresponding to . the designed loading of the fanford piles. How
cuch is tue loss in overall muliiplication factor due to {a) complete
insertion of the rod? (b) insertion by 100 cm? {c) increase of insertion
from 500 am to 520 am? The rod recuces the local multiplication factor
by 0.051 in a zone of eguivalence %0 cm in radius. Therefore, the

overall loss in k is

| 2
. 7.420 : (30 cn) f 2
= 0.051
k= ZdEr 7 Slom 160 m J° T

x 107 /502 ax (22.3.29.a)

14 4

L
= 3.65

203 026

R.3.27
Partial in-
sertion along
diameter

Sactor +o con vert-
focter 1o

wer jlek Sgeler

2.3.29
Example of
i iametral
insertion

May, 1944




[7aY
S T i
o~ : gk =
o~ T e MC/ m
' 3353 353 Lot :
w Hi m . 5 <
-
o
[V

v

(=)

i o

A R % z
i

Mm“ Ht 1t
- i

8

INTEGRALS
4
BESSEL FUNCTIONS

: i
$8234%s i 1
iRt
{5 Pt b ey Hii mmw HiHIHEE -
i o
hEin -
[T
-~
<
-
f

13
X'=2.4048 (DISTANCE FROM AXIS) /(EFFECTIVE RADIUS)

1.2

158

i

HAEH R i il ? il I -
HiEED i i Bl i
i o
3333325 38311 3 ‘h

i il i i
i ! i
¢ $
i i i H I

i

11

A Y

02 03 04 05 06 0] 058 09

at

a0

SECRET, ,

0.3




ED
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Tiis formula is cvaluated with the aid of F%E' 22.3.28:

T e AL e AL S D I IITII T IS BET CN :.&f&;:m;,:.&.ﬂ.:;.x Ao T ¢ i TIXEZY
Insertion Ran;e of x ”/Boz(x)dx ok
half vay S to 2.4504L0 1.139 L.15 x IO"hi
complete 2.277 8.30 x 1074
100 cm 2.1,0L8(1-100/510) to 2.40LB 1.139-1.129 3.6 =x 10~
500cm to 520em  twico from O to 2.1‘01;5(10/510)| 0.09 | 3.0, x 1072

Two features of the results deserve notice. First, 20 cm of motion of
the rod with tip near the center of the pile are roughly ten times as
effective a3 the initisl 100 cm of travel. Second, the effcct of com-
plete diamctrel insertion, 8.3 x 10™%, is greater than that of camplete
axial insertion, 6.6 x 1073, for a pile of the given shape. A closer
. examination of this point shows thet the relative effectiveness of the
two positions is the other vay arqund for & cylindrical pile when the
‘ratio of heizht to diameter exceeds 2.277,/2.L048 = 0.945.

Partial introduction of & control rod parallel to the axis of &
cylindrical reactor, or parallel to any axis of a rectangular pile,alters
the multiplication factor by an easily calculated amount. The virtual
neutron density varies with distance of insertion, s, in proportion with
the expression sin-is/h. The effectiveness varies in prgportion to the’
integral of the square of this expression. Noting that/ sin€xdx = 2= -5
sin 2x, we have the result:

{effectivenessg of )
‘partial insertion

( ef fectiveness of )
complete ingertion

= (s/h) - (1/2%) sin (27s/h) (22.3.30.8)"

The expression on the right hand side of this equation is plotted in
Pig. 22.3.31 and illustrates in graphic form the variation of control
power over the range of motion of a rod.

In evaluating the effectiveness of control rods we have thus far
continually used the principle of proportionality with the square of
the neutron density. An interesting check on this point is provided by
unpublished work of Murrays. He has computed by the method of infinite
series the effectiveness of an ideal control rod and its dependence upon
distance of insertion. His results are plotted in Pig. 22.3.31 and
show on the whole a good agreement with the eapproximate theory of 22.3.30.

22.%.29

22.3.30
Partial in-
sertion
parallel
to axis

22.3.32
Check on

ppproximate

calculations

sletter from P. H. Murray numbered MUC-JM-3, dated 1943 My 18.
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SURVEY OF CONTROL THEORY

whether the accurate curve for control rod effectiveness will lie
above the approximate curve, as in Fig. 22.3.31, or below it, depends
entirely on the relationship between the size of the control rod and the
radius and height of the pile. In either case the inaccuracy of the
approximate theory is due to the distortion of the originel neutron dis-
tribution by the absorbent. Consider first the case where the length
of the cylinder is great in comparison with its diameter. Insertion of
the rod half way into the pile lowers the neutron density in the first
half of the cylinder relative to its wvalue in the second half. Movement
of the rod the rest of the way into the reactor will therefore lower k
more than the first part of the stroke. This case is opposite to the
one considered by Murray. There the diameter of the cylinder is great
in comparison with the length. The partial entrance of the rod pushes
the maximum of the neutron distribution out to & ring far away from the
axis of the pile. As the rod executes the last half of its motion, it
therefore finds itself in a zone of lowered neutron density. No formula
is available for the general case. . lowever, the results shown in

Fig. 22.3.31 are sufficient to permit an estimate of the order of magnitude

of the effect in cases of interest.

Useful in designing the control system:of a pile, the theory just -
descrived shows also that the actual functioning of the rods will be com-
pllcated by effects such as the shadowing of one absorbent by another
or, as in the preceding paragraph, the interaction between different
portions of the same rod. In addition we have to axpect slight fluctua-
tions in effectiveness due to the lattice structure of the pile itself.
The loading of an operating pile will also ordinarily deviate from an
ideal geonetrical pattern, Precise determination of the relation be-
tveen reactivity and control rod position in an operating pile is there-

fore gsenerally done experizentally along the lines described in Chapter 41

The few ebsolute comparisons so far made between theory and experiment are
in reasonable accord (22.5).

In addition to control rods, certain other neutron absorbing materials
exert a small enough eficct on the neutron distribution so that they can
be studied by the foreroing approximate methods. One instance is the
impurity which makes one brand of graphite better than another. There
are obvious advantages in putting the beticr graphite into parts of the
pile where it will do the most good. The megnitude of the gain can be
calculated in a number of simple cases by the curves of Fig. 22.3.36, due
to Nerrison, Stephenson and vieinbergs. Al illustrative example is given
in the caption.

1

Initiel poisoning or self-promotion of the chain reaction by the
oroducts of neutron capture is another instunce where we can neglect the
distortion in the neutron distribution produced by the change. The
magnitude of the 1vcal cluwnce in reactivity is proportional to the ncutron
density, anc the position factor is sroportional to the square of the
neutron density. Consequently, the overall effect on k is measured by

+P, Morrison, J. Stephenson and A. M. Weinberg, CP-761, Piles of

Varying Materials, 1943 July 6.
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SECRET 2. FIGURE - 22. 3. 36

* WEIGHT FACTOR

FOR ABSORBENT DISTRIBUTED OVER A CORE CONCENTRIC
WITH 'THE PIIR AND GEOMETRICALLY SIMIIAR TO IT.
Applioable when properties of core and pile are sufficilently similar that

distribution of neutron density 1s only slightly modified. Curves adapted fram
Morrison, Stephenson and Weinberg, CP.761.
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' The product of the two expressions in the last line ray be called the

SURVEY OF CONTROL THEORY

the neutron dencity:

fn)d (vol) fd(vol)
ujwhd .vol)y/ﬂa d (vol)

(22.3.37 .2)

the volume inteqral of the third sower of

Effect on overail —ultiplication
factor due to reaction prouucts
as actually distridbuted in pile

Effect on overall multiplication

factor due to sarme w.ount of re-

action products if ttey were dis-
Yributed urniformly through the ‘116/

The position factor on the right hand side of this equation appears in
Table 22.3.22 for piles of simple pgeometrical form. For example, we
find that the fission products produced in a bare rectangular pile are
2.37 times as efiective in lowering the multiplication factor as they
woala ve if distributed uniformly tr.rough the reactor.

Gur last instance of an influence on reactivity distributed through
the pile is the temperature effect. Under most circumstances the rise
in temperature of the metal in an operating pile can be taken as pro-
portional to the power output or neutron density at the point in question.
Then the overall loss in reactivity due to heating of the metal can be
expressed in terms of the temperature coefficient of the multiplication
factor and the temperature of the pile at the point of maximum power out-
put in the following way:

Loss in multiplication factor) ( Change in multiplication )
= Ifi e

due to temperature elevation actor per unit temperatur
‘ of metal rise in metal

d (vol)
22.3.38.
nma,x-/Aa 1) ( 3 3 a)

/ Temperature elevation of metal \
.8t point of maximum power output

"neutron-effective temperature rise” of the metal. The ratio of neutron-
effective temperature to central temperature is given in Table 22.3.22

for piles of simple form. For example, let a rectangular pile run with-
out control to the point where the central metal temperature has risen

by 100°C. This operation will lower the reactivity by the same amount
as uniform heating of the metal through 61°C.

We have so far considered abgorbers which might be located anywhere
in' the pile, and which did not greatly distort the distribution of
neutron density. Then we could treat the effect of the absorbent as
proportional to the square of the original value of the neutron density.
Now we investigate controls which have a large effect on the reactivity
of the pile, and which do not allow that simple principle of caloulation.
An example is a safety system designed to lower the overall multiplioation
factor 2 or 3 percent. We will not go into the difficult gemeral case
where strong controls are disposed through the pile in arbitrary loocations,
Instead wo shall analysze here the case of greatest importance, where the
safoty rods are put in positions of maximm effectiveness. In this

3017

22.3.37

22.3.38
"Neutron -
ef fective

22.3.39

Contrast

weak and

strong
controls
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special case the theory of control egain takes a relatively simple form.

Granted that a definite lowering of the multiplication factor is to
be achieved, how should controls be disposed in the pile so as to accom-
plish this result most economically? A discussion of this question is
most easily opened by considering the neutron absorbing material to be
in the form of a fine powder, such as boron. The effect of a small
amount of boron on the reactivity of the pile will be proportional to the
square of the neutron density at the point where this absorbent is intro-
duced. Therefore, the first dose of neutron absorbing material will
best be put at the center of the pile. If more control is desired, more
boron will be located near this point. Soon the amount of boron will be
sufficient appreciably to lower the neutron density at the center of the
pile. nough boron must, however, not be introduced at the center of
the pile to lower the neutron density there in comparison to its value in
the immediately surrounding region. In fact, the boron must always be
introduced in such a way as to maintain the neutron density constant over
the region which it occupies. If for any reacon the neutron density
should vary over the poisoned portion of the structure, then a more effec-
tive control will result from slight redistribution of boron in which
some of it is taken out of the region or lower neutron density and put
into the rezion of higher neutron density.
evidently applies no matter how great is tho desired degree of control.

We arrive at the following picture of the distribution of neutrons
and neutron absorbing material in a pile whose multiplying properties
were originally everywhere the same. The neutron density vanishes at
the surface of the pile and increases as one goes inward, reaching at a
certain surface a limiting value. Everywhere inside this surface the
neutron density is constant. All the boron lies within this zone to
which we therefore give the name "region of most effective control”. In
this region of control the neutron density is not buckled at all. Con-
sequently, the local multiplication factor there has a constant value.
Before introduction of the boron the local k throughout the major portion
of the pile will generally also have had a constant value. Thus the
change in local multiplication factor will be constant through the region
of control, and the boron will be uniformly distributed in this zone.
Both the concentration of boron and the size of the optimum region of
control will depend upon the umount of reactivity to be compensated.

when a large number of fine wires or rods take the place of the
boron, then for minimum consumption of material they should likewise be
limited to the region of most effective control and should be uniformly
spaced within it. If instead we pierce the whole structure with rods,
we will require a greater amount of neutron absorbent material to get

the same degree of control.

This principle of dispositiq?

k—

22.3.39

22.3.40
Optimum dis-
position of
absorbent

2.5.’.‘1
"Region of
control"

22.3.42
Concept
applies also
to rods

my ’ 19}41#
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The size of the optimum region of control and the proper concen-
tration of absorbent material within it are found along the lines indi-
cated in the following diagram:

Desired loss in overall reactivity.
A question of safety requirements

and of the speed of shutdown which
is desired. Pigs. 22.7.33 and 34.

Loss in local k in Buckling of neutron den-
region of control. ' sity outside region of
Table 22.3.44 .| control. Table 22.3.LL .
Concentration of boron Size of optimum region of
or spacing between rods. control. Table 2.3.49
Section 22.5 ' and Figs. 2.3.54,55,& 56

\L/

Total amount of boron or total
nunber of control rods obtained
by simple multiplication

i

The first two steps in the analysis are determinati
o _ T ion of the lo i
local k within the region of control and the buckling of the neszréz

density outside the region of control, as d i i
e g s escribed in the following

Y 318
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SURVEY OF CONTROL THEORY

Table 22.3.5); SURVBY OF REQUIREMENTS FOR REGION OF CONTROL

Undesired reactivity to be oampensated by absorbers located inside a
certain portion of the pile known as the region of control.

This survey analyzes various situations which may occur into terms of

(1) local k to be compensated within region of control and (2) buckling
which remains outside region of control. ‘ .

From (1) deduce (3) the concentration of boron required within the
region of control (Bq. 22.5.18.d), or the required spacing between control
rods in this portion of the pile (Figures 22.5.23).

From (2) deduce (L) the required size of the region of control with
the aid of Figures 22.3.54, 22.3.55, and 22.3.56.

From (3/ and (4) together determine (5) either the total mass of boron

required, or the total number of control rods.

22.3.,

22.3.0,
Requirements
for region
of control

Notation used in this summary

Pactor of multiplication in one generation | K
Buckling of neutron density before absorbent
enters, a quantity completely determined

by dimensions of pile B,
Buckling within region of control after ab-

sorbent enters 0
Buokling outside region of control after '

absorbent enters By
Area of migration of neutrons in one genera-

tion ' A

CASE I. Pile in steady operation without comntrols.

Fraction of neutrons lost by leakage A B,

Value of overall multiplication factor "1

Therefore value of local multiplication :
factor is 1+4AB,

CASE II. Reactivity changes by same amount in all parts of pile dus to

loss of cooling fluid, decrease of barametric pressure or similar effecy

"Controls do not enter yet. Denote increase in local k by dkj ..,
increase in migration area by &A.

Value of local multiplication factor

after change 1+A By + 6k10ca1
Fraction of neutrons lost by leakage (A + SA) B,
Value of overall k for pile after change 1+ 8klocal - B, SA

338
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Excess k available for continually in- _
creasing power ke = $ky,cn1 = By 64
Growth of power output as function of kg Fig. 22.7.3L

CASE III. Uniform increase in reactivity followed by injection into
whole pile of uniform concentration of absorbing material just suf-
ficient to keep reaction at constant level. Procedure inefficient
because absorbent near fringes of pile has little effect on reactivity.

Required concentration of absorbing
material expressed as number of boron
nuclei per unit volume or number of
control rods per square meter or in
other suitable units c

Change in local multiplication factor '
per unit change in concentration of
absorbent, as obtained from Bq.22.5.18.d
or Pigure 22.5.23. (a nega- dk15eal
tive quarntity) dc

Change in migration area per unit change
in concentration of abscrbent.

o5

Value of local multiplication factor at'ter
uniform change in reactivity and subse- ] + AB, +5kj,0a1 * €© dk1ocal

quent insertion of absorbent c
Fractions of neutrons lost by leakage aA
under same conditions (A + 6A+¢ -a-) B,

Overall excess multiplication factor, to
be adjusted to zero by suitable choice (sklocal -BgA)+ c( kocal -B, dA)
of concentration

Expression for required concentration of
absorbent. In many piles the buckling (5klg al = B SA)
is sufficiently small that the terms L TR
containing B, may be neglected (..5_12221 ogs )

o °

CASE IV. Uniform 1hcrease in reactivity followed by insertion into
region of control of absorbent material just sufficient in amount to
maintain reaction at steady level.

Value of local k in region of control
after loss of coolant or similar change

and subsequent insertion of absorbent 1
Depression in local k required of absorb- -
ent 6kgpg = A By + Skj50al

Concentration of boron or spacing between
control rods in region of control de-~
tormined by‘knb Bg. 2.5.18.4d and Figure
s 22.5.23.

348
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SURVEY OF CONTROL THEORY 22.2.L0L

Table 22.%.L) - Con'd.

Migration area in region of control is
altered but precise value 1s irrelevant
because no leakage occurs from region
of constant buckling

Value of local k outside region of control l1+AB,+ gkl 1
oca
Leakage factor outside region of control - A B, + skl 1
, oca
Buckling of neutron density outside region AB + &k
of control B. = o local
1 A+ SA
Required size of region of control com-
pletely determined by B; and dimensions Figures 22.2.5&
of pile 22.5.55
2.3.56

CASY V. Uniform increase in reactivity followed by insertion into region
of control of absorbent material just sufficient in amount to leave
overall excess multiplication factor equal to k. In the case of
practical importance, k, is to be negative, of the order of -0.5% or
<1.04, to guarantee quick shutdown of pilse. Rate of shutdown given
in terms of k_ by Pig. 22.7.3L. :

Average value of buckling in region of con-
trol for case of optimum disposition of

absorbent 0
Velue of migration area in region of con-

trol : Irrelevant
Leakage of neutrons from region of control 0]

Value of local k desired in regiom of con-
trol after loss of water and subsequent
ingertion of absorbent X,

Depression in local k in region of control
required from absorbing material.
Concentration of boron or spacing between ,
control rods determined by &k Figure 22.5.23
Praction of neutrons available for leakage
in portions of pile outside zone of con-

gkabs =A B, + Sklocal - k

trol A By + 8Ky 0y kg
Migration area outside zone of control A+ &8
Buckling of neutron densgity outside the AB, 4+ &k- -k
zone of control By = 0 iocal - "o
A+ fA
Required size of region of control com- .
plétely deternined by B) and dimensions Figures gggé‘
of pile ! 2.3.56

|

Moy, 1940
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CASE VI. How much overall excess multiplication factor will result
for an arbitrary size and shape of the region of control and an
arbitrary - but constant - concentration of absorbers in thie region?
No ceneral sclution of this problem is available, but the problem it
self can be translated into & purely mathematical form as follows.

local multiplication factor &nd migra-
tion area outside zone of control de-
termined by properties of pile.. k'
Chapters 15 and 16. local’

local multiplication factor and migra-
tion area inside zone of control
determined by properties of pile and
concentration of boron or spacing be-
tween control rods. Eq. 22.5.18.dor
. - k! At
Figures 22.5.23. local’
Overall excess multiplication factor to
be found in terms of above four quanti-
ties, dimensions of pile, and dimen-
sions of region of control k

A

e

Buckling of neutron density outside B = Br= K'{gcal = l - ke
ragion of control o

uckling inside region of control B = pU= k' osal 1-Xx,
A"

Conditions determining variation of

neutron density through pile. These % n S
+ s
conditions can be satisfied all at (a ) M +Ba=0
once only when ky has one particular b
value. Determination of this value (°) @ = O at boundaries of pile
solves the problem (c) n positive throughout in-
terior of pile
Growth of power output jiven as &

function of kg ' Fig. 22.7.3h

368
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SURVEY OF CONTROL THEORY

Having determined as indicated in the preceding table thu required
losgs of local multiplication factor within the zone of control, we are in
a position to deduce the necessary concentration of boron or the proper
spacing between control rods. For a qualitative treatment of this point
it is sufficient to inspect the survey of typical control devices pre-
sented in Table 22.3.12., A more detailed analysis may be carried out
by the methods of Sections 22.; and 22.5.

The optimum size of the region of control is not given
survey Table 22.3.Ll; but follows from the value given there
buckling, By, of the neutron density outside this region.
together with the dimensions of the pile, allows us to find
size for the region of control. Table 22.3.49 and Figures 22.3.55 and 56
give the relationsghip between these two quantities in cases where the
mathematical analysis may be carried through without undue complications.

directly in
for the

This quantity,
the proper

The connection between peripheral buckling, B,, and required sitze
" of the region of control follows in a straight-forward way from these
principles:

(1) The neutron density vanishes at the effective boundaries of
the pile. .

(2) The neutron density is positive everywhere within the plle.

(3) The neutron density has a constant magnitude within the
region of control.

(L) The neutron density and its first derivative are continuous
throughout the pile.

(5) The neutron density satisfies outside the region of control

the equation:

22n/2x2 + 2%1/2y2 + 22n/9 z2 + Byn 0

(22.3.47 .e)

Only for one very particular size and shape of the region of control is
it possible to obtain a representation of the neutron density which will
satisfy these conditions. In other words they determine not only the
neutron density itself but also the size and shape of the region of con-
trol. ‘

The solution of the mathemstical problem just formulated is relative-
ly simple when the pile has & form of a sphere or of a c¢ylinder infinite
. alongz the axis or of a slab infinite in two directions. Symmetry pives
the shape of the region of control in this instance and only the size
rexains to be found by application of the stated principles. The mathe-
matical details are presented in brief form in Table 22.3.49.

378
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Pable 22.3.49. EXACT CALCULATIONS OF SIZE
AND SHAPE OF OPTIMUM REGION OF CONTROL

Size depends on:

B,, buckling of nsutron density throughout pile before control is applied.

B, is fixed by dimensions of pile.

By, buckling outside region of control after sufficient absorbent is
introduced inside to reduce to zero the buckling thera. The circum-
stences of control determine the required wvalue of Bl as indicated in

Table 22.3.44.
Basis of calculations in text, paragraphs 22.3.47 to 22.3.L8.

. Applicaticﬁ of calculations to spherical pile in Pig. 22.3.55, to
cylindrical pile in PFig. 22.3.56.

! ) |
neutron ]
{ density I
l Li I
0 Lo R
distance from center of pile g
Slab infinite Cylinder in-
Shape of pile in two directions| finite in one Sphere
. : direction
Dimension of pile half thickness R radius R radius R
Dimension of region of
control half thickness r,| radius r, radius r,
Neutron density before

absorbent enters cos( = r/2R) Jo(2.LOLB r/Rm) “(R/xr) (sinvr/R)

Buckling B, throughout :
pile before absorbent 2 >
enters (1.5708/R) (2.4048/R)2 (3.1416/R)

Buckling inside region
of control after ab- '
sorbent enters 0 0 o

Neutron density inside
region of control after
absorbent enters 1 ' 1 1

Buckling B; outside '
region of controlafter
absorbent enters de-
termined as indicated
in Table 22.3.4L. Por

eni in lcula- '
$icns,we dorine s new| b2 = B, v =3, v2 =B,
oonstant b in temms of
By i ’

{
{
i

22.3.49

22.3.49
Solution
for size in
simple cases
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Expression for neutron

density outside regmn
of control which has

buckling b and has wbro
zero slope and unit cos b (r - T )( 2 )pl(brc)No(br) (l/f)x')(Sin b(r-r,)
magnitude at r = r, c. 'Nl(brc)Jo(brﬂ + br, s b(r-rc}
Condition that neutroa
density vanish at bounc-
ary of pile gives equa-
tion from which to find
the radius rg of region , br =tan(br -bR
of control in temms of —ctaq é ”g )9
the dimensions of the . i(fa éonx;:nfer:t
pile &Sd tge knowvn quan- Jl(brcz_Jo(bR) parameter in
tity b< = B;. c v ' N, (b te f whicht
1 w, (brg) No(PR) do oaloulations)]

Graphic presentation of

solution Not giien Fig. 22.3.55 Fig. 22.3.56

In cases where the shape of the region of control is not determined
by symmetry considerations, the purely mathematical problem of finding the
size and form of this zone is in general quite complicated. It is there-
fore fortunate that two methods of approximation exist, one of which gives
a relatively accurate determination of the required size of the region
of control without a precise limit of error, wiilst the other gives a
quite certain upper limit to the size. Both methods are studied nost
easily by considering a specific example. A pile having the shape of a
rectangular prism is to be controlled by dropping into it absorbent rods
which will pass completely through the structure from top to bottam. The
vertical variation of the neutron density is represented by a cosine
function with the same argument after the introduction of the control rods
as before. The buckling of the neutron density in the vertical direction
is unaltered. We have therefore only to consider a two dimensional
problem: to describe the shape of the region of control by a curve drawn
in a norizontal plane. When a large szount of control is desired this
curve includes nearly the whole of the pile and has the shape of & rec-
tangle only slightly rounded at the cormners. In the opposite case where
only a slight degree of control is required the region of optimum dispo-
sition is evidently one on which the neutron density has nearly its
paximum value, an ellipse. It igc difficult to find a set of curves
which form the proper transition between the smell ellipse and the large
pseudo—rectangle. we therefore approximate the region of control by a
rectangle. Between it and the boundaries of the pile is a band of con-
stant width. A region of control of this shape is not quite the optimum.
consequently, the area of this rectangle must evidently be somewhat larger
than the surface of the proper zone of control. Within the immer rec-
tangle we reduce the buckling of the neutron density to zero by insertion
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~in difforent regions join together continuously. Only the first
derivative is discontinuous. Here is the important point. The sense

SURVEY OF CONTROL THEORY

of a sufficient concentration of absorbent material. By the line of
reasoning outlined in Teble 22.3.LLy we know the buckling, Bj, outside
this region. Llet us take the width of this band to be ¥/2B1Z. We shall
see that this choice guarantees that the region of control will be big
enough.

To prove that we have a certain upper limit to the size of the
region of control, we shall show that the pile requires internal sources
of neutrons to keep it operating. We shall locate these sources along
the four diagonal lines which run {rom each corner of the rectangle of
control to the corresponding corner of the pile. Everywhsre within the
pile except on these lines the neutron density will satisfy the conditions
of 22.3.47, provided we write:

(1) n =1 within inner rectangle.

() n

: = ,perpendicular distance fram s -
sin [315 (*"hearest boundary of pile )| within peripheral

band.

BEven at the diagonals themselves the expressions for the neutron density

of the discontinuities in the normal derivative of the neutron density is
such as to indicate a net outward flux of neutrons from these diagonals.
We conclude that sources are required to make the pile function. In the
avsence of such sourccs we therofore nave a certain upper limit for the
size of the region of control required to shut down the pile.

Wigners has gencralized the foregoing method of gueranteeing & safe
size for the region of control. The pile is divided up into regions in
each one of which the neutron density is represented by an expression
that satisfies the conditions of 22.3.47. The expressions must be such
that the boundary conditions at each line of join of two regions can only
be. satisfied by placing there a source of neutrons. Then it is certain
that the pile will not function with a region of control of the selected
size and shape. IT it is impossible to chooso the regions and to set up
the soluticns in such & way as to evade sinks at one or another boundary
line, then the region of control is not big enough to insure safety and
must be enlarged. By following cut in detail this procedure of Vigner's
it is possible in principle to improve to an arbitrary degzree of precision
on the rectangular approximation to the region of control. However, for
present purposes the rectangular approximation will suffice.

When a reasonably accurate idea of the size of the region of control
is preferred to a certain upper limit to its megnitude, then another
rmethod of analycis offers itself. To develop this method we go back to
the fundamental squation for the virtual neutron donsity:

2%n/2x° + 20/ 5y° + 2%/2e% + Bn =0  (22.3.53.a)

+E.P. Wigner, private comrunication of unpublished work.
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Certain upper
limit to size
of region
of control

22.3.52
Possibility
of improved
upper limit

22.3.53
Good approxi-
mation to size
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Here the buokling, B, is zero within the region of control and equal to

B, outside. We multiply the equation through by n and integrate by
parts, obtaining the relation:

B, = fwmm[ﬁﬁ%/a )% + (2n/2 )2 4 (@n/2 z)a]d (vol)

V/an?d (vol)

perip?eral (2.3.53.b)
region

It will be noted that the nurerator on the right hand side does not
explicitly contain any reference to the size of the region of control
while the denominator contains thig magnitude in a quite evident wry.
Imagine therefore that we know the proper expression for the noutron
density or a good approximetion to it. Then Eq. (22.3.53.b) provides a
means to evaluate the required size of a region of control of any select-
ed shape. Naturally, the better choseun the approximate expression for
the neutron density and the more reasonable the assumed shape, the more
accurate will be the size of the region of control celculated from in
this way. To employ the present method of approximation to the greatest
advantage, it is desirable that the assumed expression for the neutron
density should have discontinuities neither in its functional value nor
in its first derivative. Such & function is readily develcped in our
example of a rectangular pile with a rectangular region of control sur-

rounded by a border of constant width, w. The epproximate function, n,
is chosen &s follows: .

(1) n =1 within inner rectangle.
_ — oy Perpendicular distance from.| ... .
(2) n= sin'}n/?w)é)nearest boundary of pile l within poripheral
band, except in cormers.

= s - y oerpendicular distance from
(3) = 81n[ﬁr/2w’( nearest boundary of pile )

in coiner soctions

. T erpendicular distance from.]
Slnlk“/éw)(pnegrest boundary of pile {

of peripheral band.

t is evident that tnis choice for the function, n, satisfies our con-

ditions of continuity. The integral (22.3.53.b) is now easily evaluated
to give a relation between peripheral buckling and size of the region of
control. The size calculated from this relation is generally smaller
than thet deduced by the more conservative method described in th?
previous paragraph., This point is illustrated by reference to Fig.
22.3.54 where there are given in graphical form results of the calcula-
tions just outlined. Accurate calculations for the cases of sphere and
cylinder along the lines of Table 22.3.49 are likewise presented in

Figs. 22.3.55 and 22.3.56. We conclude that we possess adequate means

to determine the size of the region of control in problems of practical
interest.

4lB

22.3.53
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SURVEY OP CONTROL THEORY

It may provide a helpful sumary of the considerations in this
section to outline their application to the problem of quick shutdown of
the Hanford water cooled pile. Experimental results available at the
time of design indicated that loss of water by piping failure or other-
wise would cause an increase in the local multiplication factor about
2.5 percent. It was considered necessary to be able to over-compensate
such an increase in k with enough control material to give an overall
multiplication factor less than unity by about 1.0 percent. Such a
deficit, according to the curve of Fig. 22.7.3l4, will cauge the fission
power output to fall to 5 percent of its original value in 80 seconds.
It was not certain at the time of design whether the pile would contain
1500 tubes or 2004 tubes. The larger number of tubes would call for a
larger region of control but no greater or less concentration of absorbent
within the region of control. The control system was therefore designed
on the basis of 2004 tubes loading. Corrected for the contribution of
ths graphite reflector, the effective dimensions of the pile could be
considered in a certain approximation to be those of a rectangular prism
30 + 700 + 30 = 760 am long and L1 + 978 + L1 = 1060 am square. The
reactivity was assumed to be the same throughout the structure, with no
allowance for central poisoning which might be introduced to give more
nearly uniform power distribution. The control rods campletely penetrateg
the pile. Therefore, the vertical component of the buckling remains

unchanged and we have to consider only the horizontal componénts of the
buckling.

We model our analysis of the Hanford safety control system along the
pattern of Table 22.3.LL, CASE IV, as follows:

. Quantity Mapnitude
Buckling, (7/760)2 + 2(+/1060)2, of neutron 17 1x10°6+ 17.2;:10-6
density before absoruvent enters = 3.7 x 10~ cm™2
Migration area . 587 @

local k before loss of water (product of

last two items pius unity; 1.0204
Assumed gain in local k on loss of water 0.0250
local k assumed after loss of water 1.0454L
Migration area after this loss 607 cm®

Vertical component of buckling
Fraction of neutrons lost by leakage out of
top end bottom of pile, product of last

8.8 x lO"6<:m'2

two quantities 0.0053
Excess cf local iz over this leakeze fector 1.0401
Overall multiplicetion factor for whole pile

to gzive guick shutdown ' 0.9900
‘loecal k o be compensated within region of

control; given by difference 0.0501
Transverse leakage factor required in peri-

pheral zone - 0.0501 2

' Migration area there 607 enm

! ngz of neutron density requir- :
Transverse Duckling of mouele” (austidnt af %
last two items) 82.6 x 10" em <
Transverse buckling before entrance of con- | -6 2
i trols or loss of water : ‘ 25.9 x 107°cm

22.5.57

22.3.57
Safety ocon-
trol of -
Hanford pile
as example

2.3.58
First step
in analysis
of safety
system

Nay, 19LL
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SURVEY OF CONTROL THEORY

The size of the region of control is set by the transverse buckling
in the peripheral portion of the pile. According to the table, this
quantity has the value, By = 82.6 x 10’6, as compgsred to the original
value of the transverse buckling, B, = 25.9 x 107°, For the ratio,
Bo/Bl, we have the number 0.313. This is one of the quantities we re-
juire in order to use Fig. 22.3.54. The other, the ratio 1060/760 = 1.3%
of pile length and width, falls between the values given in the chart
in guestion. We therefore interpolate, and find for dimensgions of the
rezion of control the values listed below:

Dimensions of region
of control, ecm
Probable;Upper limit

Dimension ratios
from Fig.22.3.54
Probable;Upper limit

Pully loaded
danford pile

Dimensions
of pile,cm

Width 760 0.512  0.5L5 389 L
Length 1060 0.650  0.672 689 T
. Area 8.05x105cm2

2.68x1Pcf 2 .96x105<:m2

' The layogt of the safety system as finally designed is illustrated
in the following diagram, drawm to 1/100 of full size. The cutline of

the pattern deviates slightly from a rectengle in the direction to be
e
Peripheral zone
- - T T - T
:I o o o) o o 1
I |
N hy
o o o o o o:|
: I
b Region of control I
ol o o o o o 1| °
g
| % !
lIo //'/6555 o o o o|:
ol 7 k
¥ o ) o o o |4
b /.~ J
L /S s T |
Zone of action
of one rod

LG ET

22.3.59

22.3.5)
Calculated
sigze of
region of
control

2.3.60

Agreement as
to gize with
final design

¥ay, 194
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SURVEY OF CONTROL THBORY

expected from & more accurate calculation of the shape of the region of
control. The 29 rods each have a zone of action 503" x 32" or

127.5 om x 81.3 cm, comprising an area of 1.037 x 10%am©. The area of
the region of control is therefore 29 x 1.037 x 10ﬁ = 3,01 x 105cm2, very
slightly in excess of the maximum requirement listed in the above table,
end 12 percent above the probable needed area.

In addition to an adequate size, the final safety system has more
than enougn local control power. Tiw required reduction in local re-
production fector in the region of control is 0.0501, according to the
analysis of 22.3.58. This js to be accomplished by rods each of which
acts‘on a zone of 1.037 x 10%m“, equivalent in area to a nircle with
radiys R =57.5 ecm. The rods as finally designed arec steel tubes,

2% inches in outside diemeter, with 3/16 inch wall thickness, and contain
1% pércent of boron by weight. A rod of this design, acting in a zone
of the given size, is calculated in 22.5 to lower the local multiplication
factor by 0.0605, 1 percent more than the required amount. We conclude
that the Hanford system of emergency control,under the assumed coaditions
of operation, has & considerable margin of safety.

}
'

Vie have completed the discussion of rods located in an optimum
region of control and may now discuss brielly the much more compliceted
casq of strong absorbers disposed in some other pattemm. Consider as a
simple example the interaction between two control rods. Insertion of
the first one lowers the relative value of the neutron density nearby,
raiges it farther away. The second control rod will therefore exert
less effect than before if it is close to the first rod, more effect if
.at some distance.- The shadowing effect of one rod on a neighbor is
illustrated by experiments of Zinn and Andersons on the first chain re-
acting pile built at Chicago. The controls were two strips of cadmium
8 feet long and 2 inches wide. The effect of either alone was enough
to depress the reactivity below the critical level. Consequently, a
speq1a1 procedure was employed to meagure the effects of the rods in-
dividually and in combination. With both removed, the overall multipli-
catﬂon factor of the pile was adjusted exactly to unity by means of
supplementary controls. Then the desired strip was inserted and a read-~
ing @as obtained from a galvanometer connected to an ionigzation chamber
in the pile. The reading furnished a measure of the neutron density
which in turn was inversely proportional to 1 - k (Chapter 14). The
loss! in reactivity could therefore be measured up to an unknown constant
of p}Oportionality. This constant drops out when the shadowing effect
is evaluated percentage-wise, as in the following table. Here the in-
fluence on the shadowing effect due to separation of the controls is
quit% apparent. ‘

~

f ‘ . ’
 #f. H. Zinn and H. L. Anderson, CP-510, Physics Research for Month
Ending 1943 March 6.

L

| W7/

>

22.3.60

2.3.61
More than
adequate
control power

%03 '062
Shadowing
effect
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First Chicago chain-re- | Second rod L5 inches Second rod 90 inches
acting pile. In critical from first rod from first rod
condition with both ex- | Galvaname- |Reciprocal | Galvanome-|Reciprocal
perimental rods removed -Fer reading pggpggtgﬁn— ter reading pggpggﬁggn-
| :
First rod alone 6.27 cm 0.159 6.27 cn 0.159
. Second rod alone i L.73 0.211 6.28 0.159
" Sum of individual effects 0.370 0.218
* Observed effect of both ‘
together ‘ 2.96 an 0.338 3.30 am 0.303
Decrease due to . shadowing 8.6% L.7%
!

An approximate estimate of the magnitude of the shadowing effect is
of some interest in the case of the Hanford regulating and shim control
system.
ly, amounts to 0.019, according to the analysis of 22.3.25. The actual
effect of all the rods inserted together may in principle be determined
along the lines sketched in Table 22.3.&&, CASE VI. We have to choose
by trial and error such a value of the deficit, - kg, in overall repro-

duction factcr, that we can just satisfy conditions 22.3.47 on the neutron|

density. Specifically, we have to solve the fundamental buckling _
equation 22.3.14.a in a two-dimensional region 760 ecm x 1060 cm. In the
inner portion of this region, a space 487 cm x 383 cm, the buckling is
loss than outside by an amount which is the product of the migration aree
and the less in local k due to the controls.
ratically manageable, we replace the inner region by a cylinder of the
same cross section, and the rectangular pile by & cylindrical reactor of
the same transverse buckling. The radii of the two cylinders are re-
spectively 2y cm and 474 cm. In each the neutron density is represented
by & Bessel function, the argument in which depends on the local buckling.
The two functions must heve the same value and slope at r = 24y cm. This
condition fixes the value of the buckling in each region. Comparing the
value in the outer region with the value before insertion of the 9 con-
trols, we have a measure of their total effect. We multiply the change
in buckling by the migretion area and find for loss in k the figure
0.017 + C.0Cl. llere the uncertainty arises from the imperfect equiva-
lence between cylinders and rectangles. The dif'ference between the
tetal drop in k and the sum, 0.019, or the individual decrements is

0.002 + C.001, a rneesure of the shadowing effect in the Hanford control

system. In magnitude this effect is comparable to that of 1 of the 9
rods.

Winen & number of rods enter a cylindrical pile in a pattern like
that of Fig. 22.3.65, it is again possible to calculate their combined
effect by an epplication of the properties of Bessel functions. However,
we shall do no more with this case than to refer to contour diagram which

shows how the distribution of neutron density is affected by the control
rods.

438

To make this problem mathe-
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22.3.63
gnitude

The sum of the effects on k of the 9 rods,considered individual-for Hanford
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SURVEY OF CONTROL THEORY

We conclude the survey of control theory presented in this section
by considering briefly sheet absorbers, a type of control whioh bhas so
far not found application. Study of the mechanism of action of this
tyve of control will permit us to give & simplified account of the effect
of control rods themselves, and thus prepare the way for the more nearly
complete theory of rods given ir Sections 22., and 22.5.

The effect on the reactivity of a pile due to a sheet of mnterial
opaque to neutrons is most simply considered as an alteration in boundary
ccaditions, with no change et all in local reproduction factor. The
presence of the sheet buckles the neutron demnsity more strongly than
before. Thus more neutrons escape by migration to the outside or to the
new absorber. The product of the increase in buockling and the nigration
area gives ths loss in overall multiplication factor:

ok = ASB (22.3.67 .2)

The actual evaluation of the increase in buckling due to control
sheets of arbitrary form is & oomplicated mathematical problem. For
certain simple types of geometry, however, the solution may be found by
the method of separation of variables. Fig. 2.3.69 illustrates the
cage of a cylindrical pile. In this figure all the examples represent
instances where the neutron density can be expressed in the form of a
product of functions, each of which depends on only one of the three
cylindrical coordinates:

r, distance from the axis.
gz, distance from the median plane.
9, angle of rotation about the axis.
Thus we have
n & ocos g (2 - z,) cos n® Jy(br) (22.3.68.8)
where ‘

n is an integer, 0, 1, 2. . . .
b is a constant so chosen as to make the neutron density
vanish at the proper value of r.

gand g
densi

are constants so chosen as to make ths neutron
vanish at the proper wvalues of s.

The effect of the shest controls is analyzed as follows;

Longitudinal buckling of (22.3.68.a),
Transverse buckling,

&

Buckling before sheets entered, ex-

pressed in terms of height, h, of
ocylinder and its radius, R,

@/h)2 + (24008/R)2

Change in overall multipliocation
factor due to sheets,

(22.5.68.p)

5k = A (R +1° - "a/ﬁz-a-hdﬂzha)

22.3.66

22.3.66
Sheet
abgorbers

22.3.67
Sheets change '
boundary

conditions

22.3.68
Example of -

controls
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SURVBY OF CONTROL THEORY

Evaluation of this formula in Fig. 22.3.69 for the case of a pile 700 om
high and 500 cm in radius gives an impression of the relative effective-
ness of various forms of absorbent sheets. Maximum efficiency of con-
trol evidently results when the pile is subdivided into portions of oom-
parable size. The controlis no safer than its weakest link - the re-
duotion in overall k in the largest subdivision of the pile.

As final and most important example of a sheset control,ws consider
a large cylinder of neutror absorbing material passed through a cylindri-
cal pile along its axis. We simplify in four respects as compared with
the fuller theory of control rods: .

(1) The rod is at the center of the pile.

(2) The pile is cylindrical.

(3) We assume the rod is opaque to both fast and
thermal neutrons.

(4) We agsume that the neutron density falls to zero
at the surface of the rod. -

The longitudinal byckling of the neutron density has the same wvalue,

(# /heigiit of pile), before and after the rod enters. Consequently, we
need only consider the effect of the rod on the transverse variation of
neutron density. This variation was originally described by the Bessel
funotion, J,(2.4048 r/R), where R is the radius of the pile (see Fig.
22.3.71). After the absorbent cylinder enters, the radial variation
of the neutron density is described outside the cylinder by a linear
cambination of the regular and irregular Bessel functions of order zero,
which correspond to the sine and cosine functions of trigonometrical
analysis:

n = £ J,(br) + g Hy(br). (22.3.70.0)

Here f and g are numerical coefficients and the square of the quantity,b,
represents the radial buckling of the neutron density. This quantity
can be considered to be known if we presoribe in advance how much the
rod is to lowsr the overall multiplication factor:

e = (original buckling) + (change in buckling)
= (2.L048/R)% + (sk/A) (22.3.70.b)
We find the size of coylinder required to produce the prescribed
change in k b}y the following ressoning:

(1) The neutron density vanishes at the surface of the pile.
Hence -g/f = J_ (bR)/ N,(bR).

(2) The neutron density vanishes at the surface, r = ro, of .
the cylindrical control. Gonsequently, -g/f = Jo(brg)/N, (brg)
(3) Quantities equal to the same quantity are equal to each other:

Jo(brg) Mo(bry) = J,(bR)/H,(bR) (22.3.72.a)
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A ~ EFFECT OF CONTROL ROD
- - ON NEUTRON DENSITY

Mdial variation of neutron
density in a eylindrieal
pile without smtrol red
1is preportiomal to the
regular Bessel fmetion of
O order of be. The square
of the quantity b represemts
the radial hdungt o: the

(]
oonneoted with the multipli-
eation fustor by the
equation for total buckling,

k-1 * buck
migretion ares ling

IDZO( v = )2

With the same amount of -
radial buockliag, the neutron

density can be equally

well represented by the

irregular Bessel fumotioa
of order O. 1Its relation
to the regular fumotion is

-muech the relation . of the

sine fmotian to-the ocsine
funotion. It represets
the variation of the
neutron demsity in mse a
very large control rod is
ingerted along the axis

of the pile.

For s pile of arbitrary
sise, the neutron demsity
must vanish at the outer
boundary., Neither Jg

nor NO alone will, in
gmeral, satisfy this
ocondition. However, the
aotusl neutron density satis-
‘fies the same second order
differential equation as
Jo and Ng and must there-

fore be a linear oombimation '

of tham. 8Such a linear
oombination, Jg ¢ 0.8 Ng,
is illustirated in this
example.
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SURVEY OF CONTROL THEORY

The last equation gives the unknown radius, r,, in turms of the two
kpown quantities, the radius, R, of the pile and the final value of the
transverse buckling, . The relation is readily applied, either by a
process of trial and error with the aid of a table of Bessel functioms,
or directly by use of the outer nomographic spiral in Fig. 22.5.23.

EXAMPLE. The overall rultiplication factor is to be reduced by
1.5 percent in an operating cylindrical pile 500 cm in radius where the
neutrons have & migration area of 700 am<. How big a cylindrieal con- .
trol should be igserted along gha éxis? The original transverse buckling
was {2.4048/500)< = 23,1 x 10 am” The required gain in buckling is
0.035/790 = 21, x 10, making the total transverse bugkling v = )45 %
10-%cm™©. The quantity,_b, has the value 6.68 x 105! and the
variable, bR = 6.68 x 10=2 x 500 = 3.3L,. We solve (22.3.72.a) for br,
with the aid of the outer spiral in Fig.,22.5.23, finding brg = 0.3.
Dividing this quantity by b = 6.68 x 10-7cm~Z, we obtain for the required
radius of the absorbent cylinder the figure r, = 52 em. In this instance
the radius is sufficiently large in comparison with the square root of
the migration area to make the present approximate theory reasonably re-
liabls. 1t is apparent from the result how difficult it is to obtaln a
large amount of control with a single control rod. A nucber of smaller
rods are wuch more convenient. Their effect on the local multiplication
factor cannot however be estimated reliably with the present simplified
form of control rod theory.

The survey of control theory presented in this section began by
distinguishing two factors in the action of an absorbent. The first of
these, the reduction in local multiplication factor, was briefly dis-
cussed and will be examined in more detail in Section 22.5. The second
factor, the influence of the location of the control on the overall multi-
plication factor, was analyzed in detail both for individual rods in
arbitrary locations and for groups of rods disposed in patterns of
optimum effectiveness. Finally, a discuasion of sheet controls has led
to a simplified mocount of ths action of a large control rod and has pre-
pared the way for the fuller theory of control rods presented in the next
two sections.
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EFFECTIVE RADIUS OF CONTROL BAR

22., EFFECTIVE RADIUS OF CONTROL BAR

The ideal control bar is a perfect absorber of neutrons of all enerj
gies and reduces to zero the density of neutrons of every velocity st i
surface. An actual control bar differs from an ideal control bar in
three respects: 1t does not have equal action on neutrons of all ener-
gies, it is not a perfect absorber of neutrons, and the neutron density
outside the control bar does not extrapolate to zero at the surface of
the bar. Let us consider each of these complications in turn.

The action of the control substance on fast neutrons will in general
be negligible in comparison with its power of ebsorbing thermal neutronsg
A fast neutron reacts with a nucleus with an effective cross-section at
most of the order of magnitude of the geometrical cross~-section of the
nucleus, itself, i.e., roughly~10~< cm€. On this account, one sub-

use as absorbent of fast neutrons. The cross-section of the control bar
material for slow neutrons, however, will normally be very large in order
to allow the bar to take up the least possible space in the pile. The
cross-section for thermal neutron capture in boron and mercury being of
the order of magnitude of 102l ¢ and that in cadmium and gadolinium
being even larger, the countrol bar will ordinarily absorb to an important
extent only those neutrons which have reached thermal energy. We shall
therefore have to define the eifective radius of the control bar only
for neutrons of thermal energy.

The control bars of interest will have cross-sectional dimensions
small in comparison with the size of the pile and even small in compari-
son to the syacing between bars. This circumstance simplifies the
definition of the effective radius of the var for interaction with ther-
mal neutrons. ' With the center line of the bar as axis, describe about
the bar a cylinder whose radius, r, is considerably larger than the
width of the bar. At the same time we require r to be small in compari-
son with the spacing between bars. Thus the volume of pile proper to
one control bar bears to the volume within the cylinder a ratio of the
order ol (spacing between vars/r)2, or (redius of pile/})e, a ratio
which is very large relative to unity. Consequently, we may neglect in
comparison to the total neutron output of the pile the absorption and
production of neutrons in that portion of the struciure which is com-
prised between the surface of the bar and the cylinder. The absorption
of neutrons by the bar will thercfore be measured by the net flux of
neutrons through the surface of the cylinder. The surface of the
cylinder is proportional to 2Tr. The net flow in across unit area of
the cylinder is proportional to @ (neutron density)/br. The fleax depends
on the properties of tne bar but is independent of the radius of the
cylinder. Consequently we have the relation,

(22.4.3.a)

r 9J(neutron density)/dr = constant

}
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. size of the bar and small in comparison with the spacing between bars.

.surtace. At the face of a perfect absorber the neutron population, n,

‘radius, ry, of the rod:

&7

EFFECTIVE RADIUS OF CONTROL BAR

Integrating, we find the general behavior of the neutron density:

neutron density = constant ln (r/}eff), (22.4.3.b)
for values of r which are at the same tlme large in comparison with the

The first constant depends upon the power output of the pile and is of
no concern here. The constant of integration, regrf, however, is com-
pletely determined by the size, shape, and material of the control bar.
It defines the effective radius of the bar. How to determine the effec-
tive radius of a control bar is the subject of the following paragraphs.
The subsequent section, 22.5, then develops the relationship between the
effective radius and the actual degree of control exerted by the bar.

An ideal control rod may be considered to be a cylindrical adsorber
at the surface of which the neutron density vanishes. The neutron popu-
lation in the neighborhood of such a bar of radius, r,, will vary as
In (r/ry). Comparing this expression with (22.4.3.b), we conclude that -
the effective radius of a control bar of any cross~section is equal to
the radius of that ideal control rod which will have the same effect on
the neutron density.

r

No actual control rod‘reduces to zero the density of neutrons at itd
satisfies not the condition n = o, but rather the relationship
n = (W}E)an/a(normai) : (22.4.5.8)
where A is the mean free path of & neutron in the enveloping moderator
(cf. Chap. 11). The neutron density evidently extrapolates to zero only
some distance within the absorber. To find the effective radius of the

rod, we insert the expression, n = constant ln (r/reee), into (22.4.5.a)
and evaluate the normal derivative of the neutron density at the actual

1n (ro/ress) = (A3% 1) » (22.4.5.1)

We solve this equation for the effective radius of the rod and find

rafff = ro exp(-l/Bi‘ ro) l (22.4.5.c)

When the raciue of the rod is large in comzarison with the mean free path
of neutrons in the surrounding moderator, we have the approximate resuit,

reff = Tro “A/3E (22.4.5.d)

This limiting formula conformg-to the observation that theé neutron den-
sity extrapolates to zero)L/}E cm inside the surface of a flat piece of
cadmium. Equation (22.4.5.c) is presented in graphical form in Fig.
22.4.6. ' _
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EFFECTIVE RADIUS OF CONTROL BAR -

EXAMPIE; A cadmium rod 1.’27 cm in redius is passed into a graphite-
uranium pile through & snug hole. The mean free path of thermal neutrons
in the moderator is 2.7 cm. How much is the effeotive radius of the rod?
Prom Fig. 22.44.6 we find rgpp = 0.37 om. .

The surrounding moderator has an influence on the effective radius
of a control rod, as is apparent in the precedinz example. The extent of]
this influence becomes clearer when the moderating material is cut awmay
from the immediate neighborhood of the rod. Thus, let a cadmium rod of
radius, ro, be inserted into a hole of considerably greater radius, rg.
In the moderator the neutron density will be represented by the expres-
sion n = ng 1n (r/reff). In the cavity, as in a hollow space filled with
black-body radiation, the neutron density will be constant except as it
is depressed in the immediate neighborhood of the rod. This depression
will show up when we observe the number of neutrons moving away from the
rod, but will be very little apparent in the flux to the rod. To calcu-
late this flux we shall therefore adopt for the neutron demnsity the same
value, ng ln(rq/reprf), which prevails at the inner surface of the
moderator, and shall multiply this walue with the factor, (velocity of
neutrons/}), whioh gives the neutron flow across a unit of area. Gn
this basis we find that a unit of length of the contrel rod absorbs
neutrons at the rate .

2Wry. (v/4) -no 1n(ry/regs)

per second. These neutrons are supplied by diffusion in through the
moderator. The diffusion coefficient is v4/3 (Chap. 11). The net flow
inward across 1 cm. of length of the cylinder is given by the product

(2'2.1;.8 .a)

(surface) .(diffusion coefficiont) +(density gradient)

= 29r . (VA/3) . (no/r) = 2w (vA/3)ng (22.14.5.1b)
Equating the absorption (22.4.8.a) to the net inward flow (22.4.5.b), we
obtain a relation giving the effective radius of the control rod; ’

rerr = ry exp(-LA/3 ro)

It is apparent from the mathematical form of the relationship that the
effectiveness of a control is increased by a surrounding gap. Neutrons
reach the rod with greater ease when we remove the moderator which blocks
their way. '

(224448 .¢)

A bar of arbitrary cwoss-section passing through a considerably
larger hole in the moderator acts on the same principles as the rod just
discuseed. The fact that the rod was circular affected only the calcula-
tion of the ebsorbinh surface per unit of length of the rod, 2%ro. We
have now only to replace this figure by the corresponding figure, s, for

53R
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This relation appears in graphical form in Fig. 22.4.10. The figure

ciently accurate for a first a.pproximation to neglect the wvariable part

PFECTIVE RADIUS OF CONTROL 2AR

the perimeter of a bar of the cross-section in guestion. In this way we
obtain the result

rerr = rq4 exp(-8wA/3s) ' (22.53.9.0)

illustrates that the perimeter is to be determined by putting a measuring
tape once about the bar. A neutron which once crosses the line of the
tape will be absorbed, whether or not cadmium touches the tape at that
poirt.

EXAMNPLE: Through a graphite-uranium pile passes a hole 17.7 cm
square for the insertion of a control bar. The bar is located nearly
centrally in the hole. It is made by creasing e long strip of cadmium
2.9 cm wide along its center line and banding it into a right angle.
‘.‘z‘nat is the offectiye radius of the control bar? The perireter 1is

= 1.47 # 147 # 22 x 147 = 5 cme The square cavity may be taken with.
sufficient accuracy to ba equivalent to & circular hole of the same
cross-section: 7rq< = (17.7 cm) , from which r4 ® 10 om« The mean free
path of neutrons in the graphito is 2.7 cm. Employing the nomograph of
Fig. 22.4.10, we find from these numbers that the effective radius of thd
bar is 0.l1 cm.

When a control bar is dmall in compariscn to a mean free path, the
population of neutrons in its neighborhood is little affected by its
pregence. The neutron density wvarises as

n = ng ln(r/roff) = Ao[lﬁ(r/N& ln(ﬁ/reff)] (22.4.12.8)

Wo conclude that the constant term in the density, Ln(ﬂ;/roff), is large
in comparison with the variable term, ln(r/A). This conclusion has two

consequences. First the ratio, Nroff ® exp anreff), must be exceed- |

ingly great and therefore the effective radius of the bar must be very
smell in comparison with the mean free path. 3Jecond, it will be suffi-

of the neutron density. Then the flux into & unit length of the control
bar will be given by the product ' :

(neutron density).(velocity/L).(perimeter of bar defined as' in
Figure 22.4.10 ) = n, ln(A/rere) (vs/L) (22.14.12.1:)

Bquating the rate of loss of neutrons to the net diffusion inward through
the moderator, as given by equation 22.,.8.b, we obtain an approximate
relation for the effective radius of a bar whoae vidth is small 1n cam~
parison with a mean free path;

*

rors~ A exp (- BWM!) (22.4.12.0)

Go R
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L CTIVE '1DIUS OF CORTROL BAR

A more detiiled calculation can be made along the same line of reasoning
used in the derivation or Fick's law (Chap. 11). The result involves
Euler's constant, ¥ = 1,731:

Terr = (e2A/27) exp (-8wA/3s)
= 0,462 A exp (-8+w A/3s). (22.4.12.4)

This expression for the effective radius of a fine control bar imbedded
in a moderstor can be evaluated with the aid of Fig. 22.4.10. It is
only necessary 10 replace the velue of the radius of the cavity by the
velue, 0.462(neutron's mean free path), which appears in Eg. (22.4.12.d.)
The discrepancy by a factor more than 2 hetween the approximate formula
(22.4.12.c) and the more nearly accurate Eq. (22.4.12.d) is not a cause

. for concern: the degree of control exerted by a bar is more nearly

proportional to the logearithm.-of its effective radius than to the radius
itself. In other words, the important part of exuressions (22.4.12.c)
and (22.4.12.4) 1is the quantity in the exponent, which agrees in the two
cases. Thie agreement emrhugizes that the effectiveness of a fine con-
trol bar depends only upon its perimeter, as defined in Fig. 22.4.10 and
i8 otherwise independent of its shape.

Considerable practicel interest attaches to & control having the
form of a long thin strip. (1) when such & strip is immersed in the
moderator, end has a width amall in comparison with a mean free path,
its effective radius will depend only on its perimeter and will be given
by Eq. (22.4.12.d). t2) %hen the strip passes through the pile in a
cavity large in comparison with its owvn width, then, whether wide or
narrow, it has an effective radius given by Eq. ZZ2.4.9.a and Fig. 22.4.10
In both these cases an ant crawling around the strip will find himself
bombarded at every point with the ssme neutron flux, and underfoot the
rate of heat production will not vary from place tO0 place oa his circuit.
The situation is different when the strip is imbedded in the moderator
and when its width 1s comparable with or larger than a mean free path.
Under these conditions neutrons arrive at the edges of the strip con-
siderably more frequently than they hit its center. - The problem 1is
closely related to one of electrostatics. A charge given to a long thin|
electrical conductor of width w «ill_distribute itself with a surface
density proportional to 1/(1 - (2x/w)“)% , where x is the distance from
the center line. The concentration of charge at the two edges of the
strip 18 suite-marked. The correspondence between the neutron problem
and the electrostatic problem is further apperent from the following
table:
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!ﬁv'ﬂ
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density, n
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EFFICTIVE RADIUS OF CONTROL BAR

¥hen the mean free path of the neutrons is very suull in compuarison

t0o the dimensions of the control, then the difforence between the
boundary conditions of the two problems can be neglected. Under these
condi tions the effective radius of the strip will be ths same for the
two problems. Referring to line 3 of the preceding tzble, we find the
liriting formula for strips large in comuarison with a mean free path,

_ Teff ——  width /4 (22.4.13.4a)

The error in this limiting formula will be of the order of & meen free
puth and will be appreciadble when the width of the strip itself is of
the sume crder or mugitude. Then a more complete treutment is re-
guired. Such an enalysis has >cen given by K. %ay, P. F. Gast, &nd
John 4. wheeler, vhose results are presented here for the first time.
The method of treatment is outlined briefly in the fcllowing tzbole and
tho conclusions are presented in gr.phical form in Fig. £2.4.15.
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bolution of
btrip problem
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EFFECTIVE RADIUS OF CONTROL BAR

¢3

S -

Integral equation for f (9)
derived from boundary condition|
line 1

3 ( )’- 1 ( l ]
2w cos @ c 4+ L £(Q
LY ( )')

Solve for f (9) by recursion
process

£ (Q)/c = Béw {cos O]
K

-+

’
\

%é;)2}¢os 0L /cosd '

P ‘ :
(?aw)3,coa O L ,cos 6,L ,cos0 ,

+
- - - -
Define average value for an
arbitrary periodic function, ’:7@
g (9) Z.= = (LAr) g (8) d9
-— - 5(/2

Average value cf £ (8) follows
from definition of £ (@), line.- | T (@) = 1.
2
Applying condition in proced- Ty —
ing ‘linc to solution already 1/c 2 2707
obtained for { (8}, line 6 /BiU 2

7\2?\)- cos 6, L

i

Asymptotic fqrm of neutron
density at considerable
distance f{rom control strip

4 -—

Tcos @), —_ - _ . !
|
i
l

In (r/ropr) -n reel part of (¢ - i3)

-real purt of (c-i ar: sin 2 (xr
[ , c
‘In e - 1ln {Lr/W) = tn (L e rf

Value of effective radius of
sirin

Series for value of c used 'in
cornctruction of Fig. 22.04.15

- ' j) \ 2 ; 2 .

/e 5 (Fwf- ) = 3=/, )%= <in2)
’ . v . M

-\3T?:"/) Ln2)P - i1
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EFFECTIVE RADIUS OF OPAQUE

| STRIP OR CROSS CONTROL

IMBEDDED IN MODERATOR

00074 2 w3l
% )"’Q‘MBO(TIk) J:f

EXAMPLE —
EACH STROKE OF CROSS 10 CM "WIDE
IMBEDDED IN GRAPHITE 1 A= 2.7CM
W= 2¢%10 = 14.14 (M. (W/A) = 5.24
FROM CURVE, (T'e¢p /W) = 0.185;
THUS Y. =0.185 X 14,14 = 2,82 CM.

0.0054:

tpisfried

.4 0.'6 PR DD P 1 2 ‘ ~6 i 1i.g 10
WIDTH OF STRIP/NEUTRONIC MEAN FREEPATH= W /&, wits/as
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Drew = pluc sign, +, 2.ch gtroke of which »re o leagth t. From 25.4;&6
» 41a of thls shope will be evtiuded z tLir wriich has concicertile vilue Ezr with "
e < s sho . N
teose eoutrol, It rocuires for its motion tly e sma2ll sTace in the pile. 2“0 sniﬁz ion
. m . - ~ . N -~ <a 1 @ I
we ghell toke the effective 1udiug cf such & ber the velue or the ellec tive sign

~dius for z strin of width w = 22 t. Jr tnis casis we ere ~tie to read |
This apgrorimrte pro:efure

£t +the effective rafius from Fig. z2.4.1t. '
is Ju%t;fiea, not by un zocurate ev.lustion of the effortive radius, which
would be iLsho-ious, htut by its correctness in the Tollowing limjiting cesest
(a) “#hen the dimensions =re emall in com; =oison vith « mean free puth, :
~n¢ the burs arc imbedded fr the moder.tor,the effective »uiivs is de- !
termined solely by the neriméter, as derined ip kig. £r.4.10. The peri~ |
metars will be ecual £or the two shupes :ihen 25t = v, (b) “re stme 18
“1rue fo:r bars of greater dimensione hen they ure pCSbcd in turn tﬁrouﬁh
& cavity vhose opening is severzl timss the size oY the bars. (¢} «*en
the two burs are wide in comparison with a& mesn rree pnth -nd cre imtedded !
jn the mo.gerztor the results of electrosti~tic theory can be epplicd, &S
» (#£.4.13.a). Tee electrical potentiazl of = churged sirlp vuries et
uons-“erable dist-nees as 1n (4 rfw). The notential of the :xtruded bar

Yy

kas the assymptotic form, ln (41'/22 t). The two willi therefore hrve the
scme eflfect when 22 t =

[N

A bar of rectangular cross section has an effoctlve redlus whose 22.L.17

value is readily estimated in the following special cases: \bthe bar is Rectangular
imbedded in the moderator and is small in comparison with a mean free pathdbar

Its effectiveness depends only on its perimeter. #e use Eq. 22.4.12.d)
and Fig. 22.4.10. (b) The bar is passed through & hole whose radius is
considerably larger than the dimensions of the bar. The perimeter is again
deternining. Eq. (22.4.9.8) and Fig. 22.4,.10 apply. (¢} The bar is
imbedded in the moderator and is large in comparison with a mean free pathd
One ccn anply electrostatic theory, as in 22.4.13. Professor B. P. Adams,
of Princeton University, nes kindly investigated this problem and com-
municated his results in the form of a letter. . He finds that the effective
radius of the bar is conuzected with its width and thickness by the para-
metric relations

width = E (sin @) - cos2G K (sin @)
[, effective radius
thickness = E (cos ©) - sin28 K .cos 8}, (22.4.17 .a)
l; effective radius
where E and K are the complete oelliptic integrals These relations are
presented in convenient graohlcal form in Fig. 22. h 18. There an attempt

is made to correct for the finite mean free path of the neutrons by
diminishing the dimensions of the bar on each side and each face by the
distance A /32, This procedure is only reasonable when tlie dimensions are
largc in comparison with the mean free path. For the case when they are -
of the same order of magnitude as the mean free peth, accurate values of ) )
the effective radius are not awvailable.

Aug. 1943.
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EFFECTIVE RADIUS OF CONTROL BAR

In contrast to all the control bars so far considered in this
section is the case of a partially absorbent rod. Llet us first con-
sider rods whose absorbing power is very small, so that a neutron has a
high probability to go through the rod without capture. . Denote by rgy
the value of the distance from the axis to the point where the average
neutron absorbed in the rod may be considered to have started its last
flight. The number of neutrons absorbed in unit length of the control
is then givem by the product,

number, N, of absorption
absorbentnuclei cross section, v n(at rqy) (22.4.18.a)
per am of length a, per nucleus

of control -

The number absorbed will be replaced by an equal number diffusing in
through the moderator, . ‘

2w r. (vaA/3). dn/dr. (22.4.18.b)

Expressing the neutron density in the form n(r) = no ln (r/reﬁ-)ya put
the foregoing equality in the terms:

Na ln (rav/reff) = 214/3. (22.4.18.¢)

Prom this equation follows the offectivo radius of a weakly absorbing ban

reff = rav exp (—EWA/BNB-) . . '.' (22.)4018.d)

The applications of this equation are listed in the follc‘;vﬁng table:

tieakly absorbing con- Expression for ' Reference for
trol bar with absorption effective redius value of ray
cross section Na per of bar " inserted in
unit length , - 22.4.18.4d

Bar of any cross section-
al shape is imbedded in

roderator andé its girth 0.L62 A exp(-27rA/3ke) (22.54.12.4)
is small in comparison
with a mean free path

Bar of any cross section- .
al shape passed through r exp(-ZW'X/}Na) (22.1.8.¢)
the center of a hole of 1 )

redius r

1

678

22.4.17

22.&. 18
[Weakly absorb-
ing bar

Aug. 1943
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KFFECTIVE RADIUS OF AN
OPAQUE RECTANGULAR CONTROL ROD

FIGURE-22.4.18

WHICHE IS LARCE IN COMPARISON WITH THE MEAN FREE PATH, A, OF THE NEUTRONS IN THE SURROUNDING MODERATOR

=

ACTUAL
THICKNESS

I

A boron steel bar 9 cm. by 12 ca. in graphite

EXAMPLE

,/3_,‘~7—-~ BFPECTIVE WIDTH —1

A3 2,5 en., K/3§= 1.48 ca,; thus the effective thickness is 5.04 ¢m. and the effective

width 18 9,04 cm, The ratio is 0,558 (point A on the chart). By means of 1line A-O find

point B and read

effective width/ effective radius = 2,19 ,

The effective radius is 4.13 cm,
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- produce an observable deficit in the reproduction factor of a pile.

54
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EFFECTIVE RADIUS OF CONTROL BAR

Circular bar of radius

Tr';, or nearly circular _
bar of same average radius, ro exp (=27 A/3Na) (22.4.5.¢)

imbedded in moderator

Bxawple: An aluninum rod C.3 cm in radius, of density 2.7 gm/cmz,
pasges through a hole 5 cm square in a graphite uranium pile. What is
the effective radius of the rg%? Aluminum of §E° given density con-
taing (2.7 sm/en?) (6.02 x 10°7/27 gm) = 6 x 10 nuclei per cm’, each
with thermal absorption cross section about 0.22 x 10~ om?. A neutron
which verses & diameter will be captured with e probability
6 x 10x 0.22 x 10°Hx 0.6 = 0.79 x 10™. The rod may therefore be
considered to be weakly absorbing. We apply the second line of the pre-
ceding table. We find the equivalent radius of the hole from the
equation » r12 = (5 cm)2, r; = 2.62 cm. The mead free path of neutrons
in zraphite is 2.7 cn. The absorption cross section pcr unit length of
the rod is 6 x 1 cmf54f {0.3 02}20.22 x 10‘2hcm? = 3.73 x 103 cm. The
effective radius of the cogtrol rod is therefore rgff = 2.82 cm exp
(=27 x 2.7/3 x 3.73 x 1077) & 2.42 cm exp (=1517) ~ 3 x 10~ 58cm. This
numnber appears ridiculously small until one recalls that primary physical
significance attaches to the neutron density, constant times In (r/zeff),
rather than to the elfective radius itself. Thus, we find that the
neutron population varies as 1517 + 1ln (r/2.62 cm). The value increases
by 1 part in 1517 when r goes from 2.82 c¢m to 2.718 x 2.82 cn = 7.66 cm.
Thig variation is perfectly reasonable in view of the small absorbing
power of the aluminum. Moreover, as we shall see in 22.5, the rod will

When the absorption of neutrons in a control rod is neither very
great nor very small, a more detailed treatment is required in order to
obtain the effective radius. The neutron density varies within the rod
as the Bessel function, J, (i9 r) (cf. Chap. 14). Here 3 is the
macroscopic coefficient of absorption of neutrons in the material of the
rod (cf. Chap. 11). The true absorption coefficient is given by the
product of the concentration, .c, and the absorption cross section, a.

From the absorption coefficient we can find the number of neutrons absorb}

ed per cm of length of the rod:

number of neutrons r
"absorbed per cm of LA( °
length per second - Cav Jo(i¥ r) 2ardr
Jdencity of neutrons Jo (12 r.)

at surface of rod

= — 2wrgl J(iX r)) cavA/bf.Jo (i r,) | (22.4.20.8)

The absorption will be balanced by the flux of neutrons diffusing inward
through the moderator;

L ueeT 698

22.4.18

22.4.19
Example of
Weakly absorb-
ing rod ©

22.4.20
Rod of inter-
mediate absorb
ing power

Aug. 1943
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"be circumscribed by the triangle. If the moderator is not in contact

EFFECTIVE RADIUS OF CONTROL BAR

number of noutrons
diffusing in per cm
ol length per second
density of neutrons
at innor face of
wederator

2w r (v X /3). {1/r) (22.4.20.b)
In (r1/rerr)

For thec problems of interest it will generally be a sufficient
approximation to oquate the donsity of neutrons at the surfacc of the rod
to the .ensity at the inner face of the moderator. This will certainly
be the case wien the Liwo are in contact. We therefore equate expres-
sions (a) aund (b) and soclve for the effoctive radius of the control rod,
introducing the quantity N to represent the number of absorbing nuclei poj
unit length of the bar: ‘

. 2N iXryd (i)(r)l
Tef{ = T - ° Yo o 22.4.20.
off = 7y %P { 3 Xa 27 (X T,y (22.L °)

The second fraction in the exponent is plotted as a function of >4 r, in
Chap. 15. It represents the ratio between tihe neutron deénsity at the
surface of thc rod and the average density trrough the intorior of the
rod. Except for this factor, our result agrees with that derived in
(22.44.18.d) for a weakly absorbing bar.

Example: TFor a structural surpose, an aluminum rod 5 en in radius
is passed through a snug hole in a graphite uranium pile. Rezarded as
a control rod, the aluminum has what effective dius? For absorgtion
cross seztion of the alurinum we use .22 x 107 ‘cm2; and for ota%cgoss
section, 1.6 x 10”“*ecm®. The nuclear concentration is 6 x 10/,

For value of tha macrgscopic absorption,cocilicient (Chap. 11) we find

" 6lx 022 x 10724 (3 x 1.6 x 0.22)¥ (1 - 2 x 0.22/5 x 1.6) = 5.8 x
10™=cn™ ", Thus *he product# r, is 0.23. From the proper zraph in
Chep. 15 we find that the ratio of density at the face of the rod to
everege density through its interior is 1.0l1. The absorption cross
section per unit of length is Na = v (5em)< 6 x 10220m'5’0,22 x 10'2h
cgg = 1,03 cm. The erfective radius of the rod is rgep = 5 cin exp
/227 x 2.7 en x 1.011/3 x 1.03 cm) = 0.020 cm.

The foregoing discussion overlooks a2 number of conceivable types of
control var. Bowever, almost any casc to be anticipated can be treated
with sufficient apzroximetion by comparison with a known case. For ex-
arple, there passes through a snug nole in a graphite-uranium pile a long
strin of cadrium bent into the form of an equilateral triangle. It will
ke reasonavble to teve the effective radius of this bar to be equal to the
effective radius of & circular rod having the same cross sectional area.
Upper and lower limits on the correct figure can be obtained by compari-
son with rods whose bounding circles will either just circumscribe or just

with the bar, one can calculate its effective radius on the two extreme
assumptions that (a) the cavity is large in comparison with the size of
the bar or (b) the moderator fills the cavity. It is then possible,with

2 ohoao

22.4.21
Example of rod
of intermediate
absorption

22.4.22
Types of. bar
not considered

a little judgment, to estirate the position of the actual effective radiugd Aug. 1943
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EFFECTIVE RADIUS OF CONTROL BAR 22.4.22
in relation to the two extreme figures.  Finally it is to be recalled
that the deficit in reprcduction factor caused by a cecntrol rod is more
closely related to the logaritlm of the effective radius than to the
effective radius itself, so that an error of small percentage in the
effective radius will not significantly affect the finel conclusions.
Table 22.44.23. Comparison of various control bars having the 22.4.23
same effective radius. Comparative
survey of
shapes of con-
Design of control Approximate dimensicns required to give trol bars
bar
reff = 0.05 cm ' Teff = 5 en
Cadmium rod imbedded |1.12 an radius (22.4.12.d)| 6.3 cm radius(22.L.5.c)
in graphite 0.62 cm radius (22.4.5.¢) 4 ,
Cadmium rod in hols
10 cm square through [0.76 c¢m radius (22.4.9.a)
graphite
Cadmium strip in hole
10 cm square through (2.l cm wide (22.4.9.2) _—
graphite A
Cadrium 8trip inbedded 3.5 om wide (22.4.12.d)
o oerap ’ | 2.2 om wide ° (22.4.15) 23 cm wide (22.4.15)
?admig? e;trudgd i?m maxinum dimension ' maximum dimension
orm of plus 51gn ip=|, £ cp 22.4.16 22.4.16
bedded in graphite (22.4.16) 16 cm (22.4;.16)
Same in hole 10 cm 1.7 em {(22.4.16)
square
Aluninum rod imbedded
in graphite 5.4 cm radius (22.4.20.c¢)
Jole in graphité,filhﬁ : .
with water L.3 cm radius (22.4.20.c) | 1, cm radius(22.4.”0.c]
Hollow iron pipe 5 cm {
in radius, imbedded in ;";_; :: °k"°3‘(‘22'h‘18'd\
graphite ’
*The upper figure is more nearly correct, as is evident on compari-
son with the case diregtly below. The figure 0.62 cm is derived on the
essumption that ( A /3%) (dn/dr) ® n at the boundary. This result of
diffusion theory is not valid for very small control rods. The deriva-
tion of (22.4.12.d) is free of this assumption. AUS' 1943
es 1173
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EFFECTIVENESS OF CONTROL RODS

22.5 EFFECTIVENESS OF CONTROL RODS

The most satisfactory method of evaluating the effectiveness of
control rods is that due to Wigner, Weinberg and wWilliamsons and
surmarized in mathematical form by Bq. (22.5.12.a) below. in this
section we shall outline the derivation of the formula, show that it is
physically reasonable, describe methods for using it, and check it against
some of the available experimental material. This done we shall have
campleted the last step in presenting the theory of control rods in a
useable form along the lines discussed in Section 22 3 and especially in
the program laid down in Table 22.3.44.

It is fortunate that the treatment of Wigner, Weinberg, and William-
son gives fairly accurate results because all other practical known
nethods of approximation tend to over-estimate the action of a control
rod. The only approximations remaining in the present theory are be-
lieved to influence but little the accuracy of the results: the pile,
apart from the control rods themselves, is treated as a homogeneous
medium, and the moderation of neutrons in this medium is described by
sirplif*ed model.  Apart from these deficiencies the theory tukes into

ccount the following factors:; (1) A difference exists between the
actual radius of the rod and tie radius which is effective in the action
of the rod on thermal neutrons. The relationship between the effective
radius and the actual constitution of the rod has been analyzed in detail
in the preceding section. (2) The lowering of the density of thermal
ansutrens in the neignborhood of the ~od is treated by the standard methods
of diffusion tileory. (3) It is taken into account that few fast neutrons
are produced in regions whero the thermal neutron density is low. The rod
is assumed to have no direct nction on the fast neutrons. Finding a -
simple way to take this fact into eccount was the principal advance made
by the thecry of vwéinberg, iligner, and Williamson on previous work.
iurrays= hmd evaluated with high accuracy the effectiveness of control
rods in certain special cases of inverest, but the method of calculation
was too complicated for quick and general application. Plasgs+=* had
applied to the problem of safety control of the Hanford pile the standard
lattice theory described in,Chapter 15, adding however a correction for
the non-uniform distribution of nascent thermal neutrons. Here again
the trectment vas mccocurste but complicated as compared to that wihvich is
now available. '

sE. P. Vigner, A. M. Vieinderg, and R. R. Williamson, CP-1L61 and
Err.t 2i70
1

frv*;, Efflcicncy ol Jontrol Rods which Absord only Tvermal Neutrons,
9.4 Pebruary 24. :

2.5.1
Useable
theory of
effectiveness

22.5.2
Assumptions
underlying
theory -

»sF. H. lurray, CP-742, The Critical Value of the Reproduction Con-

stant z for a Cylindrical Pile with a Control Rod which Abserbs only
Trhermal Neutirons, 13,37 June 22. !

s*«xGilbert Plass, CP-96&, Physics Research Report for Month ending
1343 September 25. «
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EFFECTIVENESS OF CONTROL RODS

When a control rod acts aprreciab

7083 cxn e 2alculated in a stralcht-forward vay by simple 10d:
(o]

ol the thecry tc be presented below.

to be descrinved by two effective radii
viner fer Thermel noutrons. Fowever,
a el LD water or cther nowerful rode

2

In acoordunce with thoe princizle

sivill be interested in the effective roduction in local multiplication

factor- induced by the rod in a region
scribed around it. For present urno

In the analysis of the control problem we consider neutrons to belong
to one or other of two categories: thermal neutrons and fast neutrons.
Each category is deucribed by the mean area of migration of a neutron
during the interval of time while it remains a member of that group. One
of these areas, the moderation area, A o4, Will be identified with the
quantity of the same name familiar from the more detailed account of the

moderetion process given in Chapter 12.

area, Ay, is the quantity which enters into the standard theory of the

22..
ly on fast neutrons, it:; effective- 22.5.3
Iflcation Absorption
In this case the control rod has of fast

, ore for fagt neutrons .nd the neutirons
unless the rod corta'rs o larce assuned

rator, its efflecct on r'ust neitrons a
=S vrdinarily neglizidle. It is therefore more a retter of practical
uliiity than of rathamaticel difficulty when we limit +the following dis-
Cussioa to ruds wihich act only on trermal neutrons.

of eyuivalence of Section 22.3, wo

this zone of equivalence by a cylin-L
der of the sana area. The relation
511D between the radius, R, of this
¢slinder and the snacing between
control rods is illustrated in the
uiagram at the left for two sinple
sertrol rod zattecrns. It is soss-
inle to 3¢ beyond the sroblem of
lecal effectiveness and to chb*ai-
by rethods of anilysis sinilur to
thuse Lelow the overall change in
the reactivity of a zile of cylindrif
val form, alony whose axis a siacle
contrel rod is inserted.  Fowever,
this case possesses such special
s;tnetry that it is of little practi
cal interest. Moreover, the re-
sults thus directly obtainable for
such & specialized ~eometry follow
also from the princinle of 23uiva-
lence as soon as one knows the
equivalent recduction in local multi-
plication factor induced by a control
red of the same cesign in the cir-
cunjacent zone of control. It is
therefore reasonable to limit the
discussion to the fundamental
problem of local ef'fectiveness.

The other, the thermal migration

738

erlizible

2.5.4

Problem is
of the pile symmetrically circum~ one of local
ses, it is sufficient to replace effectiveness

22.5.5

vay, 1940
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BPFECTIVENESS OF CONTROL RODS 22.5.5

pile of Section 15.5. Our approximation is to assume that we can treat
the properties of a fast neutron as being invariable over the whole period
before it is transformed into a thermal neutron. This approximation
allows us to use for fast neutrons the same simple type of diffusion
theory which we are accustomed to epply to thermnl neutrons.

We let the function of position, qy), represent the number of thermal| 22.5.6
neutrons absorbed -sr ver second. This quantity will be independent Moderation
of tize in our present application because we are considering a pile in nd absorption
which the neutron output has attained a steady level. A second function Hensities
of position, qp, will represent the number of neutrons which leave the
fast group by absorption or by becoming thermal in one @’ in the course
of one second. In conformity with pile theory, we denote by p the ratio
between the number of neutrons which become thermal and the number which I
cease to be fast; p represents the probability of escaping resonance ab-
sorption. Just as we are interested in the number, p, of slow neutrons
per fast ncutron so we shall also be concerned with the product, f: '
which represents the net number of new fast neutrons created in one
generction per thermal neutron absorbed in the preceding generation.
This product is directly expressible in terms of the local multiplication
factor, kloc&l’ of the pile medium and the probability, p, of escaping
resonance avsorption:

f/((; = klocal/p ’ (22-5-6.8.)
In o staticnary state we }mve for each group of neutrons an equation | 22.5.7
of the form: Conditions
ifor stationary
nu:ber of neutrens of ! number of neutrons of ' /rnumber of neutrons \istate

one tyne destroyed per.= that type diffusing imtz + of that_type created

per second I that an’ per second ,/ _per cm” per segond /
(22.5.7.a)

Yie note that the rate of diffusion of neutrons is directly proportionul
to the product of the buckling of the neutron density and <the migration
area. Thus we obtain a straight-forward mathematical expression of the
abova equation;

- 2 2 2 , 2. 2 , 2 o -
£ = Aoa(?7ap/2x" + 2%qp/ 9y + 27qp/727)+ 7 Eq, (22.5.7.b)

qth‘At qt/9x + 3 qt/f)y +?qt/,z)+ P ap (22.5.7.c)

Vie can obtuin & sclution of this pair of equations by setting the thermal

neutron cauture density, qth,'equal to an arbitrary function, Z, of con-
stant hucit l-LL '

+ P2%2/72% + (buckling)® z = O,(22;5.7.d)

provided that we take the numerical value of the buckling to be one or
other of the two solutions of the quadratic equation: ey, 19,

T4 3
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EFFECTIVENBSS OF CONTROL RODS

22.5.7
(1 + Ay, - buckling) - -(klocal/b)
: . =0 (22.5.7.e)
-p (l‘+ Amod * buckling .
A solution of this equation may be called & "proper value” of the neutron
buckling.
Table 22.5.8. SOLUTIONS OF THE QUADRATIC EQ.(22.5.7.e) FOR THE PROPER 22.5.8
BUCKLING OF THE LEUTRON DENSITY IN THE NEIGHBORHOOD OF A CONTROL ROD [Solutions

. ) for proper
The local rultiplication factor is close to unity in all our appli- |buckling

cations. Thus, & special degree of accuracy attachss to the approximate
expressions given for the buckling,which we shall therefore use hereafter.

Description Mathematical Expression

Accurate expression for solutions| - % (A -1y Am-l)
) t
of juadratic equation for 1 1.2 1 1 1
') 3 - - -~ - 2‘

buckling i[ﬁ (A7 + A "H)% + 4, A (k- 1ﬂ
Approxirate expressions for the : 1 1

. 3 1~ - - - -
~ two sclutions (k) a1 1) /A (Ag ~ A7)
Abbreviation for this value of ‘

buckling b2
Designation employed for functions
of position having the stated
buckling -
Physical terminology for function
of this form in expression for
neutron density

None used

Z(x,y,2) Z(x,¥,2)

principal term | transient term

|

The zeneral expression for the neutron density is a linear combi - % 22.5.9

+isn of two terms which respectively possess the two proper values cf

xpressions
the buckling:

or modera-
~ " tion and

9, = &2 - hZ (22.5.9.a) hbsorption
qth = pgz + (phAmod/Ath) z (&'5’9'b) denolties

Here - and h ars nuanerical coefficisnts to be chosen to make the solu-

tions satisfy *thsz boundery conditions. The functions, Z and Z, may be

considered o derend only upon the distance, r, from the center of the

control rod in the problems of interest. They will therefore be repre-

sented by linear combinations of regular and irreguler Boscel functions,

the proper combinations also to be determined by the boundary conditions: My, 19,
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EFFECTIVENESS OF CONTRCL RODS

Z is a lirear comiinativn of J (br) and N (br);

Z iz a lire.r camnination cf O (1\/A; o Ar l -

and J (1 V A i/__ _:I

Our -robler is to relate the eflfectiveness of the cortrol rod to ihe
size 0f the zone ¢ the :ile on wnich it zaz o act. sc 3hzll toke t‘ s
zore to YHe 334*va1°n to o c¢cylinder ol radiug, R, at thc gurface of whi

the radial smradlemn*s cf densities ci Ifast and slow nz2iatrons are both zero.

This boundary concition for gp ond gy, Implies the sar.e boundary con-
ditign for o the two cconstituent fancticns, Z end Z:

az/dér = C ot r =R

dz/ar = Oatr =R . (22.5.10.8)

we rec=ll that the derivetive of a Bessel function ~f order of zero is a
Bessel function cof the same type and of the first order. We thus deduce
from (22.5.10.a) the line=r combinations of Ressel [unctions required to
zive zero rrecient at the noundary of the zone of control:

(bR) .
z = -jl—gR—j J {br, - NO {or) o (22.5 .10.b)
L
2= 1B VAT eaTT ) - Sum Jo(i A, + AT

-i Jl(l R)
(22.5.10.c)

A further conditiom on the reutron donsgity follows from our

22.5.9

22.5.10
Lero slope
et surface
cf gzone of
equivalence

22.5.11

assumption that the control rod nas no appreciable action on fast neutrons.Fast neutron

The density, qp, rust therofore beshave in a nerfectly regular way near
the point r = 0, although the functions, 2 and 2, individually both be-
come infinite there.#

constant + (2/%) 1n (1.122/br) (22.5.11.8)

Z (for small r)

Z (for small r) = (2/#) 1n (1. 122/VA_ r) + constant.
(22.5.11.b)

The two functions ovidently have sinjulurities of the same magnitude.

They must therefore bYe subtracted to give an acceptable oxprescion for
the moderation density, qp, e have therefore to set equal to each othen
the.coefficivnts, g and h, in the linear combination of Eq. (22.5.9.a)

sActually the solutions in question are not valid inside the control
rods. The procedure outlined in (2.5.11) represents an incorrect but
nevertheless reasonably accurate means to express the boundary conditions
for fast neutrons at the surface of the rod.

er T8

—_—

density
finite inside
rod

Nay, 194l
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EFFECTIVENESS OF CONTROL RODS

Our last condition requires that the thermal neutron density, Qi Of
Eq. (22.5.9.b) should extrmpolate to zero at the effective radius, h
r = Taff, of the control rod. Into the formuls for ¢y, we insert the
expf3551on (22.5.10.b and 2.5.10.0) for 2 and 2, and we divide through
by .hg cormon factor, pg = ph. In this way we arrive at the fundamental
equation of wigner, Weinberg and Williamson for the effectiveness of a
control rod wien acting on a zone of equivalent radius R.
N; (bR) .

——ﬁ”“’d [1 u(Dava
th . . m

N _{br - =
o'\ Ters) J1 (bR)

o A\t Terr)

Jg (breff)] =

VeV, v it e

- T o1 o (VA
-i Jl(i AL +A TR

. (22-5.12.&)

-1 =1
+ At

reffﬂ

<

In this equation we ray take as knovn quantities the quantity, R, the
effective radius, r , the partial migration areas, Apogq 8nd A.,, and
their gum A. Then we are in a position to solve for tge unknown quantity,
b, and thus to find the effective change in the local multiplication
produced by the action of the control rod:

beA.

local?

2.5.12.b
local ( 5 )
That the effective chango in local multiplication factor due to &
control rcd is properly represented by the last eguation follows from a
corparison of conditions before and ufter insertion. The pile under

22.5.12

22.5.12
Fundamental
control
ecquation

22.5.1%
Interpretation
¢f control

congideration had in the beginning & local multiplication factor, k; ..,. ¢quation

So far as the truly local behavior of the pile is concernmed, the same
value holds after the rod goes in. ' But at the boundaries of the zone
of control, the neutron density now has zero radiel gradient; and the
longitudinal gradient of the neutron density bas also been taken to be
zoero in our treatment. Concequently, the zone of control, from the
point of view of the surrounding portions of the pile, is equivalent to
& homogeneocus medium in which the neutron density is constant. The
apparent buckling is therefore gzero, and the effective local multiplica-
tion factor is 1. We conclude that the rod hag lowered the effective
local multiplication factor by the differgnce between k ocal and 1.
This difference,. is equal to the product b“A by virtue o} our original
definition of be (Table 22.5.8). Consequently, Bq.(22.5.12.a)for b
provides a straight-forward means to evaluate the effectiveness of a
control rod under the conditions assumed in our treatment.

We will obtain from Bq.(22.5.12.a and 22.5.12.b) a proper account

22.5.1

of the effect of a control rod whether or not the overall variation of
neutron density satisfies the conditions of our derivation. There we
considered for sake of convenience & stationary state, gzero longitudinal
buckling, and zero radial gradient -at the boundary of the zone of control.
But according to the principle of equivalence of Section 22.3, the value

=7 | 77,6

General
pplicability
f ocontrol
quation

My, 1944




EFFECTIVENESS OF CONTROL RODS

of the effective change in local rultiplication factor will be sub-
stantially the same whether or not there is an appreciable longitudinal
buckling of the neutron density, whether or not there is a radial gradient
at the boundary of the zone of control after the rod enters and whether
the neutron activity is constant, rising or falling. The nquantity,
“Kjocals 15 determined by thae properties of tie control rod and by the

i Ry z .on but is 3 ; 3 it i } sst
size cof tho zone of control but is independent of conditions in the rcs
of the pile. . i

It is in order to investipate the reascnableness of the complicated
cortrol (Eq. 22.5.12.a) before proceeding to apnly it. e snall, there-
fore, test whether it gives correct results in two simple limiting cases:
(1) a ceontrol red large in comparison with the squaro root of the mirra-
tion ursa; (2) many very smell control rods.

When the control rod and the size of the zone of control ars both
larze, we hwve a slowly varying function of gosition for the density of
thermal neutrons, and therefore also for the density of sources of fast
ncutrons. The micration of fast ncutrons during moderation will not slter
the essential character of the distribution function. Tris, being zero
for thermal neutrons atithe cffective radius of' the control rod, will be
nearly zerc for fast neutronc at the same puint. In this sense the
effective radius of a large control rod can be considered as sroctically

the same for fast and slow neutronsg. We can thereforc class all neutrons|

together and deccribe them Ly a single function, n (r), of the form:

1 L)

n(r) = ¢ Jgylor) + o'y (br). (22.5.16.a;

In order thut such an expression should venish et r = r_pp, it is neces-
sary that

—C'/O’ ' = Hoibreff)/"ro (breff); (22‘5’16'b)

and in order for the noutron density to heve zero gradient at r = R, it
is necessery that

1 L35 ’ .

-c'/e'" = Ny(bR)/J, (bR). (22.5.16.¢c) .
ansequentlg, both reguirements will be -satisfied together only when the
buckling, b© = 'k, . 1/A, meets the condition

N (br ) N, (bR)
Q eff - 1 = 0. (2‘5.]_6“1‘)
I (brepp) J, (bR)

Tris sizzlifiel eguztion for the efrfcctiveness of a large control rod is

a limiting case of the general control rod Eq. (22.5.12.a). To see this,

it is only nocessary to notc that the Hankel functions on the right hand

side of that ejuation become exponentially small for large values of their
A

arguments, m T At‘l rorp and \/ﬁm'l + At'l R. On neglecting the

7?43

22.5.14

22.5.15
Two reason-

lable tests

2.5.16
Limiting
case of
large rods

ray, 1944
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BFFECTIVENESS OF CONTROL RODS

right hand side of the sgquation, we obtain the relation (22.5.16.d) in
which there is no reference to the difference in properties of fast and
slow neutrons. We conclude that we have only to use the one-group
theory of neutrons and simply to treat a large rod as equivalent to an
internal boundary of the pile in order to obtain an adequate account of
the effectiveness of the rod. We have already applied this principle of
analysis in 22.3.72 to the case of a large cylindrical rod on the axis of
& cylindrical pile.

' The opposite limiting case of a pile controlled by a large number of
narrow cadmium strips presents a straight-forward question of utilization
of thermal neutrons. Consider a 1 am length of the zone of control of

2.5.16

2.5.17
Limiting
page of very

one of these strips. The uranium or moderator nuclei in this volume in Fmall rods

the course of 1 second absorb neutrons to the number

/ number /absorption / density /velocity
of nuclei| | oross . of of
w 32 per unit section per thermal thermal
. volume v nuoleus \neutrons/ . neutrons

where TTH2 is the cross cectional area of the zone of control of the
strip. A 1 uom length of the strip itself absorbs neutrons at the rate

density velocity
of / of

" thermal thermal

\neutrons \ neutrons/

(perimeter) +

the factor + taking account of the distribution in direction of neutron
velocitios ?cm;)ter 11). Comparing the abgorption due to the strip with
the number of neutrons available for absorption, we find the loss in local
multiplication factor:-

( nazinaiﬁ:_nﬂ_atri )

b T / thermal absorption cross section of)
\unit volume of normal pile material

(22.5.17.a)

We can *ranslate this result mto terms of the thermal migration ares,
A and the mean free path, A, of a thermal neutron with respect to

scattering by means of the relationship of Section 15.5:

5¥1ocal

N
S

Ath T J7thermal absorption cross section of
\unit volume of normal pile material)/

(22.5.17.b)

The effectiveness of the strip is therefore:

| (perimeter of control) Ay
' & = -
klcu::a.l L 7 RE

(22.5.17.¢c)

798
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EFFECTIVENESS OF CONTROL RODS

We now test whether the general formula for control rod effective-
ress due to Wigner, lleinberg and Williamson reduces to the above simple
result in the case of narrow closely spaced control strips. Vle take
adventage of two simplifying factors:

{1) The eifective racius oI a small control is given, according to
Eq. /22.4.12.d) by the expression:

Ters = Q-hﬁe A exp {=87A/3 perimeter) (22.5.18.a)

(2) 1In all the Bessel functions in the fundamental control equation
the arguments are small, so that we can use the approximations:

Jo (brepe) 5 1
N, (bR)/J (oR) = -L/7 beR

N, (bry ) 3 -(2/7) 1n (1.222/or_, )

)(iVAm‘l+ p;‘_l roepe 3 (2/7) In (1.122/VA " 4 71

Fors)

olfe
Y

Tors)

Hl(l) (1\/1;:'1\» At-lR)/i Jl(iVAm-l-; At'la) = L/w (Am'l+ At‘l) 2>

(22.5.18.1b)

We enter these expressions ianto the fundamental control Eq.{22.5.12.a),

multiply through by the factor A h/LA rearrange, and find that the
change in multiplication factor is given by tne following equetion?

(Atp/ 8%10cay B )# + (AthAmodz/Ang) = (L7A/S3 per:‘uneter)r
+ (hpog/28) 1n (2.43/VA™h + & 71R) + (&, /20) In (2L3/N).
, (22.5.18.¢c)

When the cadmium strips are quite narrow, then tho terms marked with #'s
becorie vory great in comparigon with the other terms in this equation.
Neglecting the latter terms, we [ind that the gemeral equation reduces

to the spccial ejuation {22.5.17.c) for tha effectiveness of nmarrow
cadmiur strips. We see that the action of a control in this limiting
oage reduces to a zimple matter of utilization of thermal nsutrons,having
nothing to do with the migration which takes place during modoration.
However, the accuracy of our evaluation of the thermal utilization in
this limiting case is obviously limited by our agsumption that the pile
can be treated as homogeneous. In a lattice structure a fine cadmium

B if‘j,ﬁs

22.5.18

22.5.18
heck on
general con
trol equati
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EFFECTIVENESS OF CONTROL RODS

strip will actuelly have a diffcrent control power according as it is
located on the surface of the uranium or in the moderator nidway between
lumps of fiscionable material. Therefore, in estimating the loss in k
in an inhomopgeneous pile due to absorbers fine enough to distort the
neutron dencsity only slightly, we shall replace the limiting form
(2.5.17.¢c) of the general control equation by the following more nearly
accurate formula:

/ meutron
density / 3 of the surface of the absorber, f it is \
of opaque; or, if it consists of scattered nuclei,
. of ir absor ) i

. absorber the sum of their sorption cross scctions

ok =
/ avex-é.ge i su’?i of cri?ssll /| average sum of cross .
ncutron sections ol & neutron “sections of alll

dencity at} urarium nuclei | 4 donsity in moderator nuclei,
. uranium |/ in zone of \moderator in zone of
equivalence ‘' equivalence

(22.5.18.4)

We heve confirmed mathematicelly the reasonableness of the general
control equation in the two limiting casges of very large and very small
rods, and are now in & position to summirige ihe basis ol the check in a
simple physical picture. .Pig. 22.5.21 shows the distribution of fast
and slow neutron transformation densities, q,. and , in the two extrame
cases, together with & similar curve due to geinbegg, Wigner and William-
son for an interrmediate case not much different from that realized in
practice. In the case of the large control rod we see how little dif-
ference it makes whether the rod does or doss not act un fast noutrons.
In the case of the very small rod, however, the situation is quite dif-
ferent. The fast neutron density is practically constant over the whole
of the zone of action when the control absorbs only thermal neutrons, and
the rod is roughly only hmalf as offective in this case as it would be if
it absorbed both fast and slow neutrons. The following table presents
in more detail the chief points of interest in the two limiting casecs.

§/8

22.5.18

22.5.19
Comperison
of large and
small rods

My, 1945
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EFFECTIVENESS OF CONTROL RODS

Table 22.5.20 EFFECTIVENESS OF VERY
SMALL AND VERY LARGE CONTROL RODS

The neutron density in the neighborhood of these rods is indi-
cated in Fig.22.5.21. The following values have been adopted for
the physical quantities entering intg these purely éllustr&tiveex-
ration area, A = 642 an®, Ay, = 331 om°, Apog = 331 @,
Ag~l o+ Ap"' = 0.078 cm”l. The mean free path of a thermal neutron
with respect to scattering in the pile medium is taken to be A= 2.7 cm.
The absorption cross section per unit volume of pile medium isméiven
by the expression, k/BAth= 2.7 em/3 x 331 e = 0.00272 em®/ow’. In-
spection of the values of &k for the small control rod shows that this.
rod absorbs almost as many neutrons as it would if the density of avail-
able neutrons were not affected by its presence. It is almost exactly
half as effective as it would be if it absorbed both fast and slow
neutrons. For the case of the large rod the situation is quite the
reverse. The effectiveness varies little whether the rod absorbs only
thermal neutrons or fast neutrons as well. In either case, however,
the action of the large control rod is much diminished by its effect in
lowering the density of neutrons near it.

Characteristics of

limiting cases Very small rods | Very large rods

Actual radius of rod i 0.30 cm 30 cm
Effective radius of control rod : 1.5 e~ 12cm 28.4 am
Radius of zone of control i 30 om 300 cm

Thermal neutron absorption cross

section of alil the nuclei of

the pile medium contained in a

unit length of the zone of con-

trol : 7.69 omz/cm L 769 cmz/cm
perimeter of control rod, a Lo

neasure of the equivalent cross

section of & unit length of the

rod with respect to thermal

neutrons d 0.471 a?/em L7.1 e /em

o

Ratio of last two quantities gives
loss in k *to be expected fram
control rod on assumption it ab-
sorbs no fast neutrons and that
thermal neutron density is con-
stant over zone of control . 8k
Loss in k calculated by accurate

0.0613 §k = 0.0613

theory (Egq.22.5.12.a) gk = 0.0510 sk = 0.0083
loss in k which would be produced

if rods were black to fast as

well as to, slow neutrons 8§k = 0.1020 Sk = 0.0087

(Eq.22.5.15.4)

tay, 194
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0.01 FIGURE - 22.5.23

CHART EOR DETERMINING |

EFFECTIVENESS
OF CONTROL RODS

s~ TERMINOLOGY ‘—

Toff, offective radius of rod

thermal migration sres

Ap-4, moderstion ares

'Y total migration area

sres of zone of action of one con-

trol rod

531,_-,,1.: bea, effective reductlon of
local multiplioation factor with-
in the tone of action

NORNOOD, MASSACHULELTT

Cage 1 Case 2 - Case )
Given b or &k Given r ., iven B !
Given rore Given R jiven » or £k .
Find B Pind b or #k | Find r ep |

Pollow prccedure of example

See 1}‘1‘“‘"‘“" i inverse order, using method,

exazp of trial and error to find un- |
. ) «

@ COLEY BOON COMPANT,
sy

CHART BASED ON GEOMETRICAL INTERPRETATION

(7) Radius required 1‘05 zone of mction of oze rod fs B3/ =

0.574/9.98 x 10™ 57.5 a. : L2
/8) Area of szone of sction of one rod is 122 e 1.0k x 107a=S,

ejuivalent to rectangle 32" x 523" (spacing of safety rods
in Banford pile).

: N . (OP THE GENERAL EQUATION OF CONTROL : — 1.9
H R 1(bR Apod (1) B ¢

' X (braee) = ~——— J, (b = 22C -1 -1 Lol . .o

i . Bo(bregre (brgpe) 18 1¥a i

-.2 : J,(6R) “o {Prare Ve o (VA " v 81 rops) 5Dt o8 )

. o Outer spirel gives N, and J_as functions of br,pee . ‘ S
H _— Inner spirsl gives Ny ?xlzg J‘; as functions of b S o :
' lo b v""‘i-j_' : & 8;
; o Scalo below gives 1 H, as function of § Anoa + A.u:l r P45 ! o ) safety rod black to neutruus has radius ro = 2.36 m and
H . off AR Ty * - grters hole ¢f redius r, = 5.08 c&@ in graphite-uraniuz plle.
£ 0.4 ! H : : [ R ' : T T - N L - v ™ 1ttt slow neutron meazn free path = 2.7 e find lram Sectlion
: ! - : i BSOSO SO SO0 SV - ?’5 o~ 2.k effective radius ropr = 1.0 az. Given also Agy = 257
: : : A L : : : : : i : ’ /‘,r a?, Apog = 399 cuz, A = 607 cm@. Find spacing betwesn rods
:'. : : : ; ; : : : : R B . 0% req:ired to_reduce effective local multiplication factor 6.05K. -
H ’ e I : : cee 1) Plot YA gt v AT T = 0.0822 x 1.4l = 0.118 as polint S.
£ 0. : - (2) Merk Ay /A = 0.L23 as point T on vertical scale. i
: : - P {3) trrough S end T draw line intersecting horizonul-g:alg at TO: .
: : H ; (L) 3y 2efinitlon o2 = Sk/g = 0.0605/607 = 99.6 x 10 =
N ! ; wheace b = 3.98 x 10°2.
2 | : L (5) Plat trepe = 9.38 x 1072 x 1L = 0.01LL ¢ poiat V.

g ; (8) omnect U and V. Draw lins parallel to UV through C, izter-

uf - sesting immer spiral at W. Tmue 53 = 2.574.
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EFFBCTIVENESS OP CONTROL RODS

Evaluation of the loss in X due to a control rod is relatively
simple when the rod is either very small or very large, so that we can
employ limiting equations (22.5.18.d) or (22.5.16.d). Rowever, it is
usually necessary to apply the general control equation (22.5.12.a),which
contains eight different Bessel functions. Fortunately, the second term
on the right hand side is quite negligible in most practical cases, so
that three Bessel functions drop out. The renaining equation may then
be solved by a process of trial and error for whatever quantity happens
to be the unknown. Alternatively it is possible to express the formula
in nomographioc form, as in Pig. 22.5.23, and solve graphically for the
unknown. The example in the figure illustrates the method of solution.

Raving put the theory of controls in a useable form, we shall apply
it to discuss cases of interest. 1In all of the following examples the
reactor is constructed of grephite and uranium. The mean free path for
diffusion of thermal neutrons in the graphite is taken to be 2.7 cm.
Values of moderation area and thermal migration area vary according to
design cf pile and presence or absence of coolant. Even for identical
conditions the adopted values of the migration areas sometimes differ
from one exarple to another, reflecting the uncertain history of a quanti-
ty which has been unusually difficult to calculate reliably. Comparison
with experiment has been made when possible. Data on the control systems
of the Clinton operating nile and Hanford test pile have not becn included
because of the complication of deducing fram the observed control power
with the irregular loading pattern the absolute effcctiveness of the rods?

Safety rods for Hanford pile. Outside diameter 2% inches, outside
radius 2.86 em. Walls 3/16 inch thick, contain 1% percent of boron by
weight, making rod effectively opaque to thermal neutrons. Rod enters
hole in graphite with diameter of L inches, radius 5.08 an. Effective
redius from Eq. (22.4.8.¢) is rgpp = ry exp =L N3r ) =5.08 oxp
(=l x 2.7/3 x 2.86) = 1.y am.  Zone of action of rod 32 by 50% inches,
equivalent in area to a circle of radiug R=57.5 en.

Thus bR/'bI‘eff =
57.5/1.4L = 39.9. Adopt — 350 em®, =257 am®, A = €07 ‘e,
App/A = 0.1023, (4571 + A,71) T = 0.0822 anl;  this times r pp Gives
0.118. Use underlined fijures in ncmograph of Fig._22.5.23, "finding

bR = 0.574. This divided by R gives b =9.98 x 1077. loss in local
multiplication factor is &k = b“A = 99.6 x 1077 x 607 = 0.0605. See
22.3.57-61 for discussion of overall loss in k due to 29 such rods.

Simulated safety rod. We carry out the
the idea of comparing them with exjzerimental
in CP-1289 and discussed by Wigner, Weinberg and willlamson in CR-1461,
134!, February 2. Tanford lattice &s in preceding example. Tube
covered with cadmium %o zive rod a radius r_, = 2.08 cn, imbedded in
sraphite. Effective radius by Zg. {22.4.5.¢) is r  exp (- l,3*=r°) =
0.99 am. Werk by Flaczek and Seidel rerorted in MT-5 would sugjest a
lower figure, r, exp (=0.710 k/?o) = 0.83 cn, whichk we adopt fur sake of
conservativeness. The comperison with experiment is most conveniently
darried out by asking how small a zone of actionais re%yired to make the
recuction  in _%ocal k equal to 0.191. , Te mave b =8k /A = 0.191/907 =
315 x 10~9cm~2, whence b = 17.8 x 10™2cm 1 and brepe = 17.8 x 10~J x 0.83

following calculations with

sHowever, a letter

2.5.22

22.5.2
thod of
pplication
b control

theory

2.5.2
Examples of
contro. rod
effectiveness

2.5.25
jranford
sa.fety rods

22.5.26

results revortsd by lorrison |simulated
safety rod
- theory
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R = 78 cm, radius of gone of action of each colummn of poison slugs,

EFFECTIVENESS OF CONTROL RODS

1 1
= 0.0147. This quantity, together with A¢n/A = 0.423 and (Am'l+ At'")z
Fgrp = 0.0622 = 0.83 = 0.068 is used in Fig. 22.5.23 to deduce bR = 0.55.
Trer.ce we corclude that the zone of action should tave e radius R = 31 cm.
T.ucver, accordins to the experiments, the rod gives the desired degree
of control w.en it acts on a zone of radius R = 33 cm. Thus the effec-
tiveness of the rod is obsserved to exceed slightly the celculated value,

»035ibly -artly due to absorption of some resonance neutrons by the
cadmium, '

The figure R = 33 cm for radius of zone of action is deduced from
Yorrison's exponential experiment by reasoning quite independent of con-
trol rod theory, &s follows. Square pilg of extrapolated side 272.2 cm;
hes same transverss buckling, 266.5 x 10~Pem~2
radius 1,7.3 cm. Equivalence of square to cylinder demonstrated by
‘7igner, vweinberg and Williamson in CP-1L61. MNeutron density falls off
as ionization chamber moves vertically upward in the exponential pile,
reaching fraction 1/2.71828 of original value in 82.7 cm when rod is
absent, in 71.6 cm ghen rod is gresent. Hence, longitudinal bggkling
changed by (1/71.6) - (1/82.7)¢ = (195 - 147) x 10-0 =18 x 10 an=2,
Total buckling not altergg. Hence tighsverse buckling after rod enters
is b= (266.5 + L8) x 107" = %15 x 10 cm=2, corresponding to a value
b= 17.8 x 107 9em~t. Radial neutron distributign has stated buckling
and vanishes et r = 147.3 cam, or br = 17.8 x 107 x 147.3 = 2.615. It
is therefore proportiomal to J, (br) - N,(br) J°(2.615)/h°(2.615).
Maximum of this function occurs for br = 0.583, or r = R = 32.9 em. This
quantity represents radius of zone of control, within which by the prin-
ciple of equivalence the neutron density can be considered to have been
reduced to ucnstancy: effective transverse buckling in thig zone is
zero; actual transverse buckling in this zone is 315 x 10™°; hence
effectiva reduction in local k is 315 x 10=© x 607 = 0.191.

Poison slugs to flatten neutron distribution over central portion
of Hanford pile. Case where 1500 columns of metal are loaded, giving
pile an effective radius of 510 cm, and resultant overall excess multi-
plication factor is 1 percent. Same migration area as in first example
abo;z. Transverse bucéling to be compensated over regiop of flattening
is = (2.4048/510 22) + (0.01/migration area of 607 cmg) =
(22.28 + 16.6) x 10=° = 38.7 x 10'gc.m'2 Thus b = 6.22 x 10~Jam™1.
Slugs 10 percent cadmium, 90 percent lead, 1.7 am radius, black to
thermal neutrons. Bffective radius calculated as in preceding example,
neglecting effect of surrounding water film: reff = 1.7 an exp (=0.710
x 2.7 a/1.7 om) = 0.55 am. _Thus (A,~1 + A, "1)Z .. = 0.0822 x 0.55 =
0.0452 and brgee = 3.42 x 10™7. These values, togpg r with App/A =

. used in Pig. 22.5.25., Deduce bR = 0.1485. Divide by b and obtain

corresponding to an ares, 7H, equal to 1.91 x 10¥am®. This area spans
L2 lattice units. The whole zone of flattening may be shown to contain
302 tubes. Hence 302/12 or 7 columns of poison slugs are considered
necessary to accampligh the flattening.

Bl s

22.5.26

22.5.27
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EFFECTIVENESS OF CONTROL RODS

Control rods of Hanford pile. Following calculations made with

older figures for migration areal Amod .365 cmz, = 296 cm2
= 660 cn /a =047, A7t AT = o, 783 a1, Rod shown in
Flv. 22.8. 10 o boron coated tubes 7/8 inch in 1ametor, centers

separated by 23 inches. Between ther is a third and larger boron coated
tube which almost completely blocks the intervening snace against passage
of neutrcns. Ccnsequently, treat rod as hav1ng perimeter 2 x 2.5 + ¥

x 7,8 = 7.75 inches or 19. 7 cm. The rod “raverses 2 hole in the graphite
having a cross section 2 x 4 lncnes, equivelent in area to a cylinder of
radius 4.05 cm. From Eq. {22.4.9.a) obtain Topp = L.05 am exp (-8+% x 2.7
cm/3 x 19.7) = 1.25 aa. Zone of control of one rod inches by 50%
inchres, eqalvalent in area to cylinder of radlui = 8¢.§ cme. Thus
BR/brose = 81.3/1.25 = 65.0.  Also (At )< roep = 0.0783 x 1.25
= 0.0373. Use nomograph of Fiz. 22.5.23. By trlui

solution bR = 0.557, whence b = 0.557/81.3 = 6.85 x 10-3 L7.0 x 10
loss in local reactivity is S8k = b2A =47 x 107° x 640 = 0. 031. loss in
overnll reactivity evaluated in 22.3.25 as function of contrcl rog

position.

ect of shave of rods. Joan Marshall has measured and reported
18 the relative effectiveness of rods with thse cross section of the
sizns -, + and 0. All had the same raximum extension, 9.05 cm, and went
throuzh a hole in the Arsonne graphite-uranium pile i inches square
equivalent in area to a cylinder of radius, ry =5 7h em. Ve calculate
the effective radius from the formula: = ry exp (-8-h/3 perireter).
The rmeasurernents of Jerree of control in %f% three cases were essentially
reletive, so we adopt for size of the zone of equivalence the arbitrary
fizure, R = 10C cm, for comzon basis of thg three calculations. Also
adont values Ag T 520 cm2 Ay = 320 cm2 = €&Lo cmF Ath/h = 0.5,
Am'* + A"‘)~ 0.0791 em™ l. Tre culculations are summerized below and
compared with tursinll's cboservatlions. The argreement between the two is

reascnably rood.

n ) 1 -
Effective- nbserved loss

2 r
. . . = 1nes3 o ; -
Shaps lerime- Effective Ratio b from control - in reactivity
of ter in recius JR Fizure relative in inhours
bar cm in cm br,pp 22.5.23 to + bar __gue to 5 foot
¢ Calcu- Gbserv- insertion
1ented ed
g ~ = -6 -2 -
- .1 1.65 6C.7 35.6=10 7™ 0.87  0.90 33.2
rye: [N ,
- 25.6 2.38 2.1 503 1.00 1.00 96.9
0 2C .. 2.58 38.7 L3 1.03 1.06 39.1
A 1oz sutisfectory woreerunt rescltc wnen we  “ive up the picturc ol e
SrELL Too Troa LL” @ nle R tey tre onnccite idealization vhere wo
rylncoe ShL Wee au UTmersea in She reosrator. The rosults of this cul-
S.lacion aré ligtaa below.
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[-%hapo Method of
of caloulation
bar of rm

RBffective
radius

in om

n%tio ;étran

s;fzg Figure

22.5.23
78.4

y.gxm‘ém‘
1.6 Lo.o
31 02 u6 '7

Bffectiveness of con-
trol relative to + bar
Ca loulated Observed

1.28 2

2.2,
3.20

- : Pig.&'ho 15
+  Pig.22.4.15
0 | Bq.(22.4.5.0)

0.82
1.00

1.17

0.90
1.00

1.06

Liquid controls. Weinberg has calculated end reported in CS-1033
the Ioss in k to be expeoted from pipes L inches in diameter and spaced
on a regular lattice, finding 5 percent drop in reproduction fector when
the pipes contain pure water, and 6 percent when the water carries 8
grams of NH; per liter. Experiments related to this point have been
psrformed by Anderson and his associatess. They found that an aluminum
oylinder 12 feet long 3 inches in diameter, with a 1/16 inch wall, when'
filled with a L.57 percent aqueous solution of NH , cut the .reactivity of
the Argonne pile half as much as & cadmium strip 9f the same length,

1 7/8 inches wide. The detailed results follow.

Inhours converted into
excess reactivity here
by factor 2.32 x 10~2

10° times |
change in
overall k!

Critical position
of coatrol rod
in meters

3.782
3.7042

2.705
3.2,

5.17C
Tube and L .5% NH3 solu-

tion ; 3,154 |

reactivity
in inhours

" No absorber
. Aluminum tube |
Al tube and cadnium
strip
Al tube and water
Tube and 3.29% Nilz solu-

tion

115.88 -
113.63 j o

134
9.1

71‘-9
770

56.08
83.83

81.33.
80.L3

will be attempted here.
i

Gaseous control. Example of use of Eq.(22.5.18.d) for an absorbent
wnose locatlon In the lattice unit influences its control power. Graphite
pile so designed that this moderator absorbs 13 percent of the thermal
neutrons. Control obtained by filling pores with BF; at 1/)00 atmospherd
One of graphite contains 1.0 grams of carbon and 3.27 ol voids.
We taxe 40O cm© &s the cross section of all the boron nuclei in one mole
or 22,000 cm’ of BF3. The cross section of 1 gram of graphite for

No theoretical analy:is

2.5.30

22.5.31
Liquid
controls

22.5.32
Coatrol by
BF3

*H. L. Anderson, L. Seren, W. Sturm and W. E. Hoyer, CP-1088,
Physics Research Report for month ending 19,3 November 23.
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BFFECTTTEIESS OF CONTRIL RODS

. : = -4 2 .
neutrons of the sare velocity is taken to be 2.15 x 10 hcm . Ve obtain
inr Loss Lt Yol moltiolloation factor the resalt:

2.01 10.27 @, 22300 )

ok o= 0.
1.6 gm 12.15 x ld:néma/bm)

13 = 0.021 (22.5.32.a)

dith thls survey of typical coatrol devices, we complete the
account of the effoctiveness of individual absorbers. This theory,
together with the treatment of disposition of controls given in Soction
22.3 suffices to annlyze the effect of controls on the reactiviiy of a
pile. We have now to atudy the effect of the pile on the controls.

: | §9 5

22.5.33%
Analysis of
effectiveness
corpleted
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HEATING OF COMTROLS

22.6 HEATIV'G OF CONTROLS

Control rods in a pile of hizh output absorb nuclear radiatiQnS.
cme hsated, and have to be cooled. The cooling requ:rem?nt is a;
ortant in the desipgn of the rod es it is in the construction of the

Estization of the magnitude of the heat produced in the
We shall first relate the neutron

be
irp
pile Zitself.’
rod is *the subject of this section.
flux into the rod with the productior of neutrons in the neighdoring
portions of the pile, then evaluate the heat production per neutron

absorbed, and finally estimate the total heat production in a rod of

simple design. This rod, inserted in & pile of Hanford design, develops
et most about 35-kw of heat.

~
[
-

The absorption of neutrons by a control rod is more directly related
to its effect on the local zultiplication factor than to its influence
on the overall reactivity. This conclusion follows from the discussion
of 22.3.19. There an absorbver loceted at the center of a pile was seen
to take up only half the proportion of neutrons which-mipght have been
expected from its actual effect on k; but when the same control was
located near the fringes of the pile, it absorbed a fraction of all the
neutrons ten times greater in magnitude then the depression it caused
in the overall reproducticn constant. Yet the depression.in local k
is the same in both cases. Tnis quantity furnishes the simplest start-
ing point for an analysis of the heating problem. It gives the number
of neutrons absorbed in the rod relative to the awuber of neutrons
generated in the surrounding zone of control.

Consider for example the central control rod of the Eanford pile,
already discussed in 22.3%.25 and 22.5.29. The rate of generation of
neutrons in the zone of control of the rod is proportional to the heat
output. The concentration of power production in tubes near the center
of the pile is limited to 1 kw/cm by reason of corrosion by hot water.
The tubes are spaced on a square lattice with 21.28 cm between centers.
Thus heat is liberated pgr unit volume of_the pile at & rate not exceed-
ing (1 kw/cm)/(21.28 am)< = 2.21 watts/chB. Bach fission which con-
tributes to this heat output releases about 200 Mev of energy and 2.2
neutrons, - signifying the generation of 1 neutron per_90 Mev of heat.
Consequently, thé nurbe:r of neutrons generated per cmd of pile material
per second is at most ?bout-(2.21/90) wattsMlev cod.  In ebsolute units
this rate is.l.2l, x 1011/cm? sec, but left in its present mixed units
the quantity will be more useable. The zone of control is 128 cm x 162
eam in cross section,and the rod in question absorbs the fraction 0.031
of the neutrons produced in this region. The rate of absorption of
neytrons by the rod is therefore 128 om x 162 cm x 0.031 x (2.21 vatts/

)/90 Mev = 1,20 watts/90 Mev per cm of length of the control. Let E
be the number of Mev of energy released in the rod per neutron absorbed
by the rod. Then the neutronic heating of the central portion of the
control is (B Mev/90 Mev) 1.4,2 kw/cm.  Other parts of the rod receive
less heat by & factor which on the average is not far from 2/ﬁ'. The
length of the rod in the effective portion of the pile is 1060 cm.

708

22.6.1
Heating of
order of 35
kw in Hanford
control rod

22.6.2
jeating re-
lated to
chanze in
local k

2.6.3

te of
ﬁipture of

deutrons by

1tod

June, 194},




HEATING OF CONTROLS 2.6.3

Consequently, we take the total heat generated in the control by neutron
capture to be at most about (E Mev/90 Mev) (2/77) 1060 x 1.2 =

(E Mev/90 Mev) 956 kw. We now require an estimate of the energy release,
E.

Neutrons absorbed in the control will cause the liberation of 22.6.4
energy in the form of kinetic energy of nuclear fragments, beta rays,
garma rays and neutrinos. The first two radiations are of short range.
Their heating effect will therefore ordinarily be localized in the con-
trol substance. 0f the gemma ray energy only a fraction will ordinarily
be dissipated in the rod. And the neutrinos will produce no measurable
heating effect in the pile. The relative contribution of the three
radiations of siznificant heeating power depends upon the design of the
rod. As illustration, we consider an idealized version of the Hanford
control rod of Fig. 22.8.10 . We consider the boron to be distributed
throughout an aluminum rod in the form of a solid solution, to the extent
of 3 percent by weight. We take the rod to have a diameter of 3 inches,
radius of 3.81 cm, and to contain & hole for flow of water 1 inch in
diameter, 1.27 cm in radius. From the following table we deduce an
energy release of E = 2.8 Mev in the rod per neutron absorbed by the rod.
We conclude that neutron absorption procduces hdéat in the rod et the rate
/2.8 HMev,/90 Mev) 956 kw = 30 kw.

Three sources
b heat

Table 22.6.5. HEAT RELEASED PER NEUTRON j
ABSORBED IN SILPLE FORM OF CONTROL ROD

Rod 3 inches in diemeter, with hole 1 inch in diameter inside
it, containirg vater. Composition by weight: 3% B - J74 Al.
This examole illustrates now the heat due to the presence of the
control can be localized within the rod itself. It is only necos-
sary to choose &as absorbent an ela.ent such as boron or lithium
which undergoes fission but has no genma ray emitting fission pro-~
ducts. In contrast, an ele.ont such as cadmiuwm releases the heat .
o condensation of the neutrons in the form of zarma rays. These '
rediations escape in considerwuble reasurs from a control rod. Use
of a cadmium rod might therefore result in local overheating of,
neighboring portions of tine pile.

Constituent Boron Aluninum

Density 0.081 gm/'cm3 2.6 gm/bm5
Cross section per gm for absorption o >

of thermal neutrons 35 cm /gm 0.0051 om”™/gm
Partial linear absorption coefficient 3.2/cm 0.0l}/bm
Total linear absorption cocfficient 3.21/cm
Prection of neutrons absorbed in

Siven element 2.796 0.0Ch

Order ol maznitude estimate of enerzy
of irdividuanl gamia rays given off
cor. neuztron capture none

Jurng, 19,0
Centinued on neat zage

9/8




1/
HEATING OF CONTROLS

nbl’ 206.5 - con'd.

f 4==7
Constituent Boron Aluminum

Linear absorption coefficient for : I -

such gamma rays in Al-B alloy ‘ 0.08/cm
Product of radius of rod by total

absorption coefficient

(1) of gamme rays : 0.30

(2) of neutrons ' 12.2
Fraction of gamma rays absorbed in

rod deduced from last two quantities

with aid of figure in Section 15.2
(neglecting effect of hole through

rod) . ~0.5 ,
- Total gamma ray energy given off as ' :
result of capture of neutron . 9.7 Mev '
- Amount of this energy released in rod : ;
(product of last two rows) S ~ 5. Mev !

Amount of beta ray energy released in
rod per neutron captured by given

element none . ~ 1 Mev
Bnergy of fission 2.8 Mev none '
Energy released within and absorbed !
by rod i
(1) per neutron absorbed in the _ o '
given element 2.8 Yev ~6 Mev '

(2) per neutron absorbed in rod
(product of (1) with figure
above for fractional absorption

due to given element) ) 2.8 Mev 0.02 Mev
Total energy released within and ab- C-
sorbed by rod per neutron absorbe

by rod : A E = 2.8 Mev

To the heat developed in & control rod by neutron capture we have
to add that due to moderation of neutrons and absorption of gamma rays
generated in the surrounding portion of the pile. , These contributions
are proportional in magnitude to the similar heating eflfects which occur
in the moderator itself. Tor example, in a typical graphite-uranium
pile, gamma ray absorption in the carbon accounts for roughly l percent
of the power, and neutron moderation for about 2 percent, according to
the discussion o this question in Chapter 19. At the center of the
Hanford pile the gamma ray heating of_the graphite will amount at most
to about 0.J34 x 2.21 = 0.088 watts/bm3 or (0.088 watts/em?)/(1.6 gm/bm3)=
0.055 %atts/ém, and the heating by neutron moderation will be half as
great.

72.8
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HEATING OF CONTROLS 22.6.7
Ve will obtain a conservative account of the effect of gamma rays 2.6:7
on the control rod if we neglect the shielding of the inner portions of [amma ray
the control by its exterior. Also we shall adopt as a reasonable heating
approximation for photons in the energy range of importance the assumption
that mags absorption coefficient is independent of atomic number. Thus
we estimate for gamma ray heating per unit mass of the central length of
the rod the same figure which appligs fo the mgdeﬁator, 0.055_ watts/gn.
The mass per unit length is 7 (3.81°cm< - 1.27om“) 2.7 @7 +w
(1.27 ma) 1l go/omd = 109 +5 = 11, gn/am. Thus the heat per unit length
is of the order of (0.055 watta/gm) x (1l gm/cm) = 6.3 watts/am.
By a similar procedure of comparison with the graphite we estimate 22.5.8
the heating incident to moderation of neutrons in the rod. Heating
ncident to
==== Foderation
l Moderetor Aluminum Oxygen Hydrogen'
Average fraction of neutron
energy lost in elastio encounter
(a measure of moderating power
| per nucleus) = 21411!2,{!1 + up)2 2 x 27/(2_8)2 2 x 16/(17)2 2 x 1/'22
fthis quantity divided by atomic
weight gives & measure of the 2 >
| moderating power per gm 2/(28) 2/(17) 2/22
500rresponding neasure of moderat- > o 2
" ing power per gm of C L 2/(13) 2/(13) 2/13"
Batio of last two quantities gives ,
' moderating power relative to f ’ !
| graphite on a mass basis . 0.215 0.585 2.2
[mximm heat production in gmphitﬂ: 4
| due to neutron moderation ~0,028 watts ~0.028 ~0.028
; per gm
Maximm heat production in rod
| materials due to moderation, proJ-
| duct of last two rows ~0.006 watts ~0.016 ~1.18
per gm
Amount of given element per unit ;
length of rod ~109 gm/cm ~L.5 ~0.56
Contribution of individual elements
to heating by moderation, per
unit length of rod, produot of
last two rows :~0.65 watts
: i per cm ~0.07 ~0.66
Total heating by moderation in ' .
central section of rod ~1J; watts/am
__ﬁ_—w—i
It 1s apparent in this example that the heating by neutron moderation is
sall on two counts; first, only & relatively small fraction of the
power output of the pile appears as kinetic ensrgy of neutrons; and June, 1941,
. 73 A




HEATING OF CONTROLS

second, the control rod, gram for gram, is less effective tharn the
sraphite in taking up this energy.

The total heating of the simplified control rod by neutron capture,
serme ray absorption and neutron moderation together is evaluated in

the Iollowing summnry:
Source ~ Parcgraph Over central 1 Whole rod
of in which portion of  (preceding column

heat discussed rod time(2/ ) 1060 cm).
Neutron capture (22.6.4) L) vatts/cm 30 kw
Gemrma ray absorption (22.6.7) ~6.3 watts/cm ~L or
Neutron moderation (22.6.8) ~1.L wetts/cm ~1 kw

 Total 52 watts/cm 75 kw s

It is clear from this table that neutron capture is the major source of
heat production in the control. We were therefore justified in ziving
a rather crude account of the contribution from ~am-a ray absorption

and ncutron nodermation. A mere accurate treatment would have required
us to allow for the depression in local neutron density and gamma ray
production »rought about Dy the rod in its immediate neighborhood.
However, this lowering effect har already automatically been taken into
account in our evaluation of the major part of the heat production. The
reduction in local multiplication factor by the rod and the production

of heat in the rod are quantities which are affected in the same way by
alterations in the distribution of neutrons near the rod. It follows
that our estimete of the total heat dcvelopment in the rod is reasonably
reliavle. gur fizure of 75 kw for maximum output fram a simplified
version of the centrml control rod of the ianford pile may be compared
with the designed flow of 10 gallons of water per minute or 750 cc/%econd
through the cooling system of each rod. The temperature rise of the.
water should therefore be relatively small, (35000 watts) x (0.2 cal/sec

vatt) /(750 gn/sec) = 11 C.

Partial insertion of & control rod results always in a smaller total
heating but sometimes in a greater local heating. The tip of the ab-
sorbent acts ‘like a lightning rod and receives & high neutron f{lux. This
phenomenon is illustrated in the curves of Figs. 22.6.11 and 22.6.12.
The local heating at the tip is greatest when roughly half the length of
the rod is in the pile. The bearing on the design of the rod is twofold.
First, the local rate of heat transfer to the coolant must be sufficient
to prevent undue temperature rise. Second, the tip of a cadmium rod
may rebroadcast in the form of gamma rays to the surrounding pile a too
high fraction of the heat of condensation of the neutron stream. Slug
Jackets already near the critical temperature for corrosion by hot water
may become overheated and fail. This possibility is an argument against
use of absorbers which emit gamma rays on neutron capture. This point
and the requirement of high neat transfer rate near the tip were both
taken into account in the design of the Eanford control rods.

22.6.8

22.6.9
Total heat
release by
sumation

22.6.10
Concentration
of heating
pt tip

Jure, 1945
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- FIGURE 22.6.11
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~ « HEATING OF RODS -
ABOVR “—Beutron flux to oontrol rod as oxloulated by F. H. Murray,
MUC-MM-2, for rod inserted along axis of oylindrioal pile to fraction 0.2,
Oudy, 0.6, 0.8, 1.0 of height of pile. Relative dimensions - pile height;
pile radius; rod redius = 17; 15¢ 1/12. Rod treated as opaque to both
slow and fast neutrons. Quantity plotted, hA2wr(?2n/dr ndxdyds,
when multiplied by neutron output of pile, gives fraction of all neutrons
whioch would be absorbed in full length, h, of rod if everywhere it re-
ceived as much flux as it does at the point in question.

PELOW ~—Neutron flux along axis of  control rod as measured in Argonne
Forest pile by lLeo Seren, W. Sturm, W. E. Moyer, CP-1088, 1943 November
23. Bod of 0.020 inch oadmium, 3 inches wide, mounted on board of same
width. Slight asymmetry in distribution observed whem rod is removed is
due to presence, 5 feet away, of another rod used to compensate the excess
reactivity which would otherwise result.
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SPEED OF CONTROL

22.7 SPEED OF CONTROL

The designed speed of control is a balance between what 1s desir-
able and what is practicable. 1In a pile which contains 100 tons of
uranium and operates at 500 megawatts, the average temperature of the
metal will rise about 50°C. a second and the temperature at the center
of the pile will inorease 100°C. a second.
tion at such a level without cooling will result in permanent damage to
the pile. Fram the point of view of heat transfer, therefore, it must
be possible to shut off the chain reaction in a time at most of the
order of a few seconds. From the point of view of nuclear physics,
however, there exists a still more.pressing requirament for speed in
control in a water cooled pile. Sudden loss of all the water in the
pile will result in an inorease of the multiplication factor by an
amount of the order of 2%. The rate of reaction will then rise by many
factors of ten in a single second. Then, not only will the usefulness
of the pile be destroyed, but also the possible vaporisation or combus-
tion of the activated uranium will create a radiocactive hazard of the
greatest magnitude. The safety control. must, therefore, act in a time

short in comparison with the period necessary for loss of water from the

pi lo.

Quite another order of speed is desirable for the fine control of
the pile.
tion factor of the order of 10™ and can at most produce a change in
reproduction faotor in the neighborhood of 10=3. The speed of regula-
ti.ng control may, therefore, be of the order of 10°% k units per second

-é‘lt.d with the speed of the safety rods in the neighborhood of
S x 10 k units per second.

It is in order now to consider in further detail the faotors
relating the rate of growth or decay of the chain reaction with the
excess or deficit of the reproduction factor.
faotor, kg, is defined as the difference between the average local
reproduction fuotor available in a pile structure and that value of the
reproduction factor which would be just suffiocient to keep the ohain
reaction running at a steady level. PFor example, let the pile be of

such a siszse that a looal multiplication factor of 1.03 will just hshnoi

the leakage of nsutrons from the structure and maintain the power out
constant. Let the actual looal reproduction factor be 1.05. Then, the
excess reproduction factor, kg, equals 0.02, and is awvailable for
inoreasing the rate of reaction. '

How the reproduotion of neutrons takes place and how the growth of
the neutron sontent of the pile is commected with the multipliocation
factor has been discussed in a getersl wmy in Chapter lj. There it was
pointed out that the rate of growth is affected in an important way by
the pheasmencn of delayed neutron emission. Of the 2.2 secondary
ngutrens libderated per fission, & fraétion, £, of the order of 0.006

B o,

A very few seconds of opera-

This control comp _ﬁtea momentary changes in the multiplioca-

22.7
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22.7.2
Speed of
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2.7.4
Delayed ,
exmission of.
asutrons
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SPEED OF CONTROL

only becomes free a few seconds after the actual act of fission. Before
we make a detailed study of the effect of these delayed neutrons, let
us examine qualitatively their influence upon the rate of growth or
decay of the chain reaotion,

L&rgg excess k

Consider first the case where there is considerable excess repro-
duction factor and the concentration of neutrons in the pile rises
every second by a faotor large in comparison with unity. Under these
conditions, the delayed neutrons which become free at one instant have
originated from fissions which took place several seconds earlier.

Then the rate of reaction was negligible in comparison with the value
which it has now reached. Consequently, the delayed neutrons may be
considered to mmke no appreciable contribution to the chain reaction.
We have therefore to subtract from the excess multiplication factor,
kg, the contribution, f, of the delayed neutrons, in order to find the
effective excess multiplication faotor, kg - f. If we arbitrarily call
the neutron concentration in the pile unity at the beginning of one
generation, then the effective concentration at the end of that genera-
tion will be 1 ¢ (kg - f). At the end of two generationg, the concen-
tration, in the same terminology, will be [1 + (k¢ -~ £)|<, and at the
end of n generations, [1 + (kg - £)|®. In all the casés in which we
shall be interested, the quantity (ke - f) will be small in comparison
with unity. Consequently, we can write the expression 1 # (kg - f) in
the form exp (kg - f). The neutron concentration at the end of n
generations will have arisen above its original value by the factor

[oxp (ke - £)]" = expn (ke - 1) (22.7.5.8)

. The number of generations will be connected with the time, t, of opera-

tion, end the lifetime, T, of one generation by the relation
n = t/T (22.7.5.b)

We conclude that the rate of reaction rises exponentially with time in
proportion with the expression

exp [Kke - f) t/%] " (2247 +5.¢)

EXAMPLE; In the water cooled pile described in Chapter 21, the
1ife time of one generation of neutrons is 1.2 x 10-3 seconds. A group
of control rods is suddenly removed so that the excess multiplication

factor, kg, increases from 0.000 to 0.016. What is the approximate rat
of rise of the neutron activity? ’ .

Taking for the fraction of delayed neutrons the value £ = 0.006,
we have -

kg - £ = 0.010

Expression (22.7.5.c) takes the form

983

22.75

22.7+5
Case of
rapidly
rising
activity

22.7 06
Example
ke = 0.016

July, 19&3

rlting.




14

5 ' SPEED OF CONTROL

0.010 ¢
exp (75 x10-3) = exp 8.2 ¢

The reaction therefore rises by a factor
3600

in one second. Under these conditions, the rate of rise of the reac-
tion is 8o great that we are entitled to negleot the effect on the reac-
tion at one instant of the delayed neutrons emitted at an earlier
instant, as we have in fact assumed. This approximation will be still
better if the excess multiplication factor is greater.

large deficit in k

In the opposite extreme case, where a pile in steady operation
suddenly experiences a large loss in multiplication factor, the activity
at first fulls off exponentially toward gero. It does not continue to
drop indefinitely at this rate, however. The radioactive nuclei formed
during the steady operation of the pile will continue to give off
neutrons, and these neutrons will be multiplied. Consequently, the
of drop of activity will be limited by the action of the delayed
neutrons. In order to give an approximate discussion of this effect,
let us denote by P the rate of production of neutrons during the steady
operation of the pile.
tion of delayed neutrons will be fP. Since radicactive equilibrium has
" been attained, the same rate of emission will apply for the first few
seconds after the control rod is introduced. The delayed neutrons,
after emission, find themselves in a pile whose reproduction factor,

(1 ¢ kg), 18 less than unity (ke is negative). This expression does
not, however, represent the effective multiplication factor because it
‘agsumes that all fission processes taking place after the insertion of
a control rod result in instantaneous neutrons. Actually, of course,
of the neutrons which result from these later fission processes, the
fraotion, f, is delayed by some seconds and will not contribute to the
reproduction factor. Consequently, the effective mult:lplioation factor

18 1 4 (ke - £), as in 22.7.5.

We can now cumruo the cituation a seoond or so after the inser-
tion of the control rod in the following terms, Radiosctive nuclei
ejeot fP neutrons per second into a medium whose effective reproduction
factor, 1 ¢ (kg - £), is less than unity. BEach of these neutrons,
therefore, produces a convergent family troe, the total number of
neutrons in which is

1 4 (14xe-1) & (1 f ke - D% 4 ceel = I-(1 : ke - £)
! .
- I-’%I‘W (22.7.9.8)

778

rate

Then in the same terminology the rate of produc-

22.7.7

2247 7
Activity
multiplied
by 3600 in
one second

22.7.8

Iarge deficit

in k

2.7.9
Multiplica-
tion of
delayed
neutrons
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SPEED OF CONTROL

By virtue of this multiplicative effect, the source of
second will give rise to a production in the medium e/\(
neutrons per second.

neutrons_per
-ke) ¢ f] P
Consequently, we can say that in . very short

interval after the introduction of the control rod, the neutron uctivity

falls to the fraction f/£ ko) + £] of its origiml value. Subse-
quently the activity falls off very mch more slowly at a rate deter-
mined by the lifetime of the radicactive nuclei responsible for delayed
neutron emission. (See Pigs. 22.7.10, 22.7.33, and 22.7.34)

EXAMPLE; Into & pile are suddenly ingserted control rods which
lower the reproduction factor from its operating wvalue to a figure 2%
lowsr. By what factor does the rate of fission drop? Taking for the
fraction of delayed neutrons the value f = 0.006, we conclude that the
rate of fission quickly drops after the msoﬁion of a control rod to
the fraction 0.006/(0.020 ¢ 0.000), or 23% of its original wvalue, and
then slowly falls off. , o

i

-Small excess k

Contrast with the case of a sudden large change in multiplication
factor, the situation which arises on a sudden small change of reac-
tivity in a steadily operating pile. Under this condition, the rate of
reaction will rise only slowly with tims. Consequently, the neutron
production at one instant of time receives an important contribution
fron the radioactive fission products formed several seconds earlier .
when the reaction differed very little in intensity from its presemt
value. In this way the paat history of the structure plays an importan
role in governing the future development of & chain reaction, in con-
trast to the case where the multiplication factor rises by an amount
large compared to the contribution of the delayed neutroms.

If a small and constant excess in the reproduction factor is main-
tained over a long period of time, then the level of the reaction will
asymptotically approximate an exponential rise, represented by an
expression of the form e The velue of the constent,d , is simply
related to the value, kg, of the excess multiplication factor, the valud
T, of the mean life of a neutron in the pile, and the number and decay
periods of the radioactive nuclei which emit delayed neutrons.s Let theh
decay constant for the redicactive nuclei in question bel represented by
A, so that the half life for emission of the delayed neutrons is
0.693/A. - Let the number of neutrons present in the pile at a given
instant of time arbitrarily be called unity. The number of free
neutrons in the pile at the end of the subsequent small time interwval,
dt, will be given by the sum of the following contributions;

*E. P. Wigner, CP-351, On the variations in tho Power OQutput of a
.Running Pile.

lo/ B

2.7.11

22.7.11
Bxample of
sudden drop

22.7.12
Case of
slowly rising
sotivity

22.7.13
Analysis of
neutron
production
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1+ (ke - £) (at/7) ,

£ (1 -2/a) (at/D) ,

1 #[ke - (A £/1)] (at/0)

It follows from the foregoing analysis that the fructional rate of
rise of the reaction in om gensration is

ko - A t/A.

Bowever, the fractiomal rise in mte of operation during the lifetime of
one gensration follows also from the originally stated exponential -
expression for the astivity, and is A T. The equivalence of these two
alternative expressians for the rise in the reaction gives a condition
from which to find the value of the growth congtant,

k. At/a =T

.earlier period of operation will now

(1 =RA/A).

sscondary neutrons produced instanta-
neously by multiplication of neutrons
present at the beginning of the time
interval. The fraction, f, of the
potential new neutrons formed in the
given tinme interval are "stored" and
thercefore will contribute to the mul-
tiplication proocess only some seconds
later on. They are therefore not
included in the present figure. How-
ever, the neutrons "stored" during an

be making their contribution and must
be taken into ascount.

the number of "stored™ neutrons
emitted during the time interval, dt,
and thereafter kept alive by reproduc-
tion. If the pile were in operation
at a steady rate, this number would
have the value, f dt/T. However, the

rate of formation of radioactive 4

nuclel has been increasing each seocon
by the fractional amount, A, The
average interval between the formation
of a radloactive nucleus and the
liberation of a delayed neutron will
be 1/A. Consequently, the rete of
reaction at the time of formation was
lower approximately by the factor

the total number of free neutrons in
the pile after tho lapse of the time
dt.-

(22.7.14.0)

‘(22.7.1!;.'1:')

22.7.14

2 07 [ m
Evaluation
of growth
constant

July, 1943
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e conclude that the rote of growth of sctivity in the nile increases
exponentinlly in time with the fuctor of prosortionality

A = ke : (22;'/.]14.0)
T ¥ ({7%)
thus,
s kc t e '
Activity ~ exp o (22.7.14.4)
In other words, we can say that the yiiensmenor of delayed neutron emis-

sion effectively incroases the lifetlnc of one generation from T to
T + ({/n), provided that the oxcess or deficit in the reproduction
factor is small in comparison with the fraction, f, of delayed neutrons.

Aveilevle experimental evidencer indicates that there ere probubly
four species of radioactive fission products ¢f uranium which release
neutrons. wo have, therefore, to express tho total fraction ol delayed
particles as the sum, £ = f; 4 f, ¢ i3 ¢ f), the four contributicns,
each of which is described vy its ven characteristic decay constent,

Ay, Ay, Ay, Or A . The generalizelion of Lhe above discussion is siwple
and loads to the result

ke t
e
Activity ~ex : ) 22.7-.15.a
Y P T+ L fi/Ai) ( 5.8)

§

Experiments with the chain reacting piless have verificd the exist-
ence of the predictec slow exponcential rise or faell of sctivity with
time following shortly after s sudden snull increase or decrease in the
multiplication factor. ILater work has shown that tlhe exponential rise
or decay factor is directly proportional to ihe excess reproductiorn

factor when kg is small compared with f. Anderson reports#«s« the result|’

3.0L x 1079 (fractionul rise in mctivity (22.7.16.u)
per hour) = kg '

"

For example, when the excess multiplication factor is ke = 1 x 10’)
then the fructional rise in activity per hour is (1 x lO‘J)/(B.Ou x 107 %
e 0.329. Thus, in 1/10 of an hour the activity rises by 3.3;5. At the

*A. H. Snell, V. A. Nedzel, and H. W. Ibser, C-E1, A Study of the
Delayed Neutrons Associated with Uranium Fission.

=xt. Fermi, CP-b13, Experimental Production of a Divergent Chain
Reaction.

ss=l. L. Anderson in CS-655, Meeting of laboratory Council.

/o34

22.7.15

22.7:15
Generaliza~
tion to
geveral
decay
periods

;‘
|

22.7.16 a
Observation 'j
of slow rise a

E
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" change. Consequently, the delayed neutrons given off as & result of the
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end of one hour, the activity increases to the factor exp 0.329 = 1.39

The observed correlation between the excess multiplication faotor
and rate of growth of activity gives some information about the magni-
tude of the delayed neutron effect. Comparing the theoretical formula

ke = (T + 2 f£3/A4) (fractional rise in activity (22.7.17.a)
per hour) /3600

with the observed result

kg = 3.04 x 107 (fractional rise in activity per hour) (22.7.17.b)

we conclude that for small excess or deficit in the reproduction factor,
the effective lifetime of one generation has the value

T + 2. £3/Ay = 3.04 x 10~2 hours = 0.1095 seconds (22.7 17 o)

In contrast, the actual mean life of a neutron in one form of water
cooled pile, for example, is only 1.22 x 10-3 gseconds. In other words,
we can say that the delayed neutrons effeotively slow down the process
of growth or decay of the chain reaction by a factor of the order of 100
This fact greatly simplifies the problem of control of a chain reacting
pile.

Initial growth of activity

The discussion so far has concerned the rate of growth or decay of-
activity at some time after a sudden change has bes=n made in the repro-
duction factor, a change which may be elither large, as in 22.7.5-11, or
small, as in _ 22.7.11-17. Immediately after the insertion of a control
rod, however, the asymptotic formulae for the rate of change of activity
will not - apply. In contrast, the rate of fission will increase or
decrease by the fractional amount, kg(t/T ), in the first few generatims
immediately after the location of the control rod is altered. In fact,
durin: this short time interval, the level of actlvity will not greatly

earlier steady operation of the plle cuntribute to the development of
the chain reaction in these first few generations just as effectively as
if they had been given off instantaneously. Thus we are entitled over
this short time interwal to disregard the delayed character of some of
the neutrons and use the simple theory of multiplication, according to
which the neutron agtivity will rise with time in proportion with the
expression e e .

From what has Just been sald, we can make a more detailed picture
of the reaction just after the control rod is withdrawn slightly from a

2.7.17

22.7.17
lifetime

small ke

2.7.16
Activity
immediately
after change
in k

22.7.19

Advance warn-

pile operating at a constant level. For example, let the increase be ing of rise

’

log 13 July, 1903

Evaluation of *

effective for
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k¢ =1x 10'-’5, and let the mean life of & neutron in the pile beT=
1.22 x 103 geconds. Then, in the first few generations, the activity
will rise at the fractiomal rate, 8.2 x 10~3/sec. or 29.5/hr. The chain
reaction will quickly adjust itself to the new conditicus, however. ZThe
rate of rise will quickly drop off and approach the asymptotioc walue
0.329 per hour. This sudden increase in neutron activity in the pile
furnishes, it will be seen, & kind of advanoe warning of the slower but
inexorable rise later to take place if the value of the multiplication
factor is not brought domn again. This warning phenomenon, pointed out

by Wigner,e is a second blessing bestowed by the existence of the
delayed neutron effect.

ch:’noterhtios of Delayed Neutron Bmitters

- The observed rate of slow rise or fall of activity when the excess
multiplication factor is very little furnishes a means to estimate the
absolute number of delayed neutrons relative to all néutrons from

22.7.20

22.7.20
Rumber of -
delayed

fission. Snell, Nedzel, and Ibserss bave measured the decay of secon(hrynoutrcne

neutron emission. They have decomposed the observed curve into the form
of four exponentials. The periods of these four decay curves are listed
in the following table, together with the relative values of the abun-
dance fj of each group. However, the difficulty of measuring the total
number of neutrons made it possible to givo only an cppmximte f‘igure
for the absolute value of the sum,

- Z fiN 0.01. » (22.7.20-3)

However, from the experiments on the effect of a control rod on a chain
reacting pile ( 22.7.16), we obtain a considerably more precise value-foz
a quantity oclosely connected with the number of delayed neutrons,

Y. f3/a4 + T = 0.1094 seconds : (22.7.20.b)

The value of the mean life, U , of a neutron in the pile in question is

" estimated to be approximately 0.00114 second. We conclude that the sum

‘is

Z.fy/Ay = 0.108 . _ | (22.7.20.¢)
Possession of this datum makes it possible to readjust the absolute
values of the ratios fj given by Snell, Nedzel, and Ibser, as indicated
in Table 22.7.21. In view of various experimental uncertainties, two

sets of values are given such that the calculated values of Zfi/A1
bracket the experimental wvalue.

*E. P. Wigner, CP-351, On Variations in the Power Output in a
Running Plle.

»sSnell, Nedzel, and Ibser, C-81, A Study of the Delayed Neutrons
Associated with Uranium Fission.

lo5 B
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Table 22.7.21. Number and period of hold-up of delayed neutrons.
The quantities, fj, ;ive the number of delayed neutrons rclative to the
total of all neutroas resulting from fission. Each quantity, Aj, repre-
sents the rate of dacay of the radiocactive fission product responsible
for the given group of delayed neutrons. The absolute values of the Aj
and the relative wvalues of the f3 come from the work of Snell, Nedzel and
Ibser. Two sets of absolute E?lues of the fj are given, such that the
calculated values of the sum § fi/Ai bracket the value, 0.108 sec.,
deduced from the curve of response of the chain reaocting pile to a small
change in multiplication factor.

parent Ay

velues adjusted to values aﬁjus%ﬁ To |
half £ = 0.005 £ = 0,008 ‘

i fission in . life : :
product sec-! 0.693/5.1 fi fi/A} f5 Af| £y fi/h1 f3 Ay
11:10"3 xlO"'j x10‘6 xlO’3 ;10‘5 xlO46

1 unknowm 0.28 2.5 1.69 6.05 U473 2.71 9.67 760
2 unknown 0.099 7 1.69 17.10 167 2.71 27.4 268
)4 unknown 0.012 58 0.19 15.6 205 0030 25.0 506

£ = Lf;. When the value of
ke is large in comparison with
f, the quantity kg - f deter-
ines the asymptotic rate of
growth of activity 0.005 0.008

Z £i/A3. When the absolute
value of kg is small in com-
parison with £, the "effective
lifetime" of one generation :
1s Te X £3/A4 87 .6 x 10-3 sec. o, x 10”3 gec.

Zfi/Aia. Continued steady
operation followed by a sudden
small increase of kg, leads
after the lapse of a long time
to a rate of fission greater
than the original figure by
the faotor

o ?T%a—?} '
+ 2, £3/A4)
kg t 4
oxp (T+ L £3/A3) . 3443 sec. " 5,09 860.°

22.7.21

2f5 Ag. If & sudden burst gt
fission suddenly produces 10
potential secondary neutrons,
then the number 10° £ will be
dehyzg and of these the num-
ber 10°%.£,4,dt will be re-
leased in an imuediately fol-

lowing small time interwal,dt 0.684x10"3 seo=l | 1.10x10-3 geo-1

July, 1943
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' rise at a rupid rate until checked by the sudden entry of the safety .

. events will be equivalent to a short burst of irradiation. -
" teristic feature of a burst is the abnormally’ low parcentage of stored
. neutrons. relative to instantaneous neutrons.

"time is negative, or is positive but very small‘ the activity will

-during the burst will provide a source of neutrons fbr some seconds B
‘afterward. . . .

~ small time interval, dt, just subsequent to the burst.

/66 . |
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Sudden Burst of Activity

In all cases so far considered, the chain resction wes in operation
at a constant level up to the moment when the multiplication factor was
suddenly changed. ' In contrast, let-us ask how the activity will vary
followini a sudden burst of fission.* Such & burst may come about
through short irradiation of @& pile by a cyclotron. Alternmatively, a
water cooled pile may suddenly lose its water.. The multiplication
factor will then increase by a considerable amount, the activity will

controls.
with the original iate of operation, the effect of this sequence of -
The charac-

If the rise in activity is sufficiently great in comparison

This ciroumstance has, as
e consequence, that the effective multiplication factor following the
burst is less than the ‘quantity, ke, by the amount, f. If k¢ at that

rapidly decay after the burst. This rapid decay will not continue
indefinitely, however, because some of the radiocactive nuclei formed

The growth and decay of the neutron-emitting nuclei can be followed
in more detail. Let N potential new neutrons be formed during the burstd
Of these the number Nf will not be emitted at the time of the activation
but only later. Of the Nfj neutrons "stored" in nuclei with a radio-
active decay constant, Aj, the fraction, Ajdt, will be emitted in a
Consequently,
the total rate of" releasa of deélayed neutrons just after the burst will
be N{ ZfiA3) per second. Each of these neutrons will be multiplied into
a convergent chain of noutrons provided that the effective excess mnlti-
plication factor, ko - f, 18 negative. *he total number of neutrons in -
one such -chain will be 1/[2- ko). & f] ‘Taking into account theidelayed
neutrons themselves and the neutrons from the fissions they produce, we
can say that shortly after the end of the burst the total rate of emis-
sion of neutrons will be -

N( ZafiA1) /

(- ke) v T (22070230‘)
The activity will continue slowly to fall off at a rato dotonmined by
the period of the delayed neutrons. Eventually, the radioactive nuclei
formed during this subsequent period of activity will themselves begin
to contribute an appreciable number of delayed neutrons. If the excess
multiplication factor is slightly above unity, these delayed neutrons
will be sufficlient in number gradually to build up the power output at
an ever increasing rate, tending nsymptotionlly to a time dependence
propoftional to the exprossion

4

22.7.22

22.7 22

fter sudden

::burst

2247 .23
Rapid fall
followed by
slow fall or
slow rise

#H. W. Ibser, John H. Manley, and John A. Wheeler, C-65, Burst
Method of Determininy Approach to & Self-Sustaining Reaotion.

I %7
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f
exp ;iet__ -/ ' (22;7.23.1))
T+l £y/a

If, on the other hand, the multiplication factor is slightly less than
one, tho activity will continue to decay after the burst and will be
represented asymptotically by the same formula with ke negative.s

EXANPLE: Sudden loss of water from a 250 megawatt water cooled pile
results in an inocrease 0,02 in the excess multiplication factor. Half a
second later, the safety rods have taken effect and reduced the excess
multiplication factor to ke = -0.0l. To what level 1s the rate ot
fission carried by this sequence of events?

. During the period of rapid rise of netivity, the efrective excess
multiplication factor is approximately

ka - f = 00020 - 00006 = ) .om . (\22.7.2}4-&)
The fractional rate of rise of aotivity per second is-approximately

( e - f) 0.0]14 _1

K
—_—— - ———3 * 11.5 sec
T l.22 x 107 .

The time required for the activity to increase by the factor, e, is
0.087 sec. After the tire, t = 0.5 seconds, the rate of fission has
risen by a factor whose value can be obtained from Fig. 22.7.10. The
factor is : ) '

(22.7.244b)

ke (ke -0y g
Tke - 1) : e -0y - (22.7.2h.0)

1'.1;3 x 310 - 0.3 = LL3

Immediately after the insertion of the safety controls the effective
excess multiplication factor becomes

-.0.01 - 0.006" = 70.016
The activity falls off at the fractional rate
0.016/1.22 x 10~7 sec - 13.1 sec-!
The time required for the activity to decrease by the fhetor,‘e; is 0.07€

second. The mean time during which the activity may be considered to
have the peak value, LL3 fold of the original figure, is

22.7.24

22.7.24L4
Example of
‘'sudden burst

*Curves illustrating these phenomena are given in the preceding

reference, C-65.
A -
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‘Those among these neutrons which are delayed will be liberated in the

1y
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0.087 &% 0.076 = 0.163 sec. .

The number of potential neutrons formed during the burst of activity is

consequently equal to the number formed during operation at the original
level for an interval of '

L3 x 0.163 = T2.2 seconds

period shortly after the burst at the rate (last line of Table 22.7.21)
Zf1 A3 = 0.82 x 10"3/530. (22.7.24.4)

These neutrons are released in a medium whose effective excess multipli-
cation factor is kg - f = 0-0.016. Teking intoc account the multiplica-
tion of the delayed neutrons by the medium, we conclude that the rate of
fisslon shortly after the conclusion of the burst differs from the rate
of fission during the original steady operation by the factor

. ) o1 ,
72.2 sec. x 8{8?61 10 5‘eec . 3.7 (22.7.2u.e)

in accordance with Bq. 22.7.25.a. In a first approximation we can,
therefore, say that the power output rises from 250 megawatts to 110,000
megawatts at the end of the first half second and then suddenly drops off]
as the control rods go in to a level of 920 megawatts and finally slowly
decays. For a more precise determination of the power output at each
instant, one must, of course, take into account the fact that a portion
of the heat is liberated not simultaneously with the act of fission but
only after the lapse of some time due to the radiocactive decay of the
various fission fragments and the breakdown of 92-239 and 95-239. This
effect produces a correction in the foregoing figures only of the order
of magnitude of 10%. '

Thedry of Delayed Neutron Effects

We have seen in a qunlitaiive way the effect of the delayed neutronﬁ

in retarding the response of the chain reacting pile to a sudden altera-
tion in multiplication factor, and the way in which they prolong the
reaction long after it would otherwise have been expected to drop to a
nsgligiole level. In order to consider these effects in more detall, we
may introduce equations describling quantitatively the change with time
of the rate of fission and of the number of "stored™ neutrons:

8y = number of neutrons "stored" in radioactive nuclei with

the decay constant, Aj. Table 22.7.21 indicates the four
radioactive periods involved.

T = mean life of a neutron in the pile after the moment of
emission.

/o?/s

&07 025

22.7 .29
Equations for
storage and
release of
neutrons
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F = number of potentiel new neutrons formed during the mean
life time, T, of one generation.

£: = fraction cf these neutrons "stored” in radiocactive
nuclei with the decay constant, Aj.

ke = excess multiplication factor.

In the small time interval, dt, the fraction, Aj dt, of the delayed
neutrons, sj, will become free. On this account, the number of "stored"
neutrons will decrease by the amount, sjAjdt. New stored neutrons will,
however, be formed durin,; the same time interval. The number of genera-
tions is dt/T . 1In each generation, F potential new neutrons are formed,
of which the fraction, f3j, are delayed. The increment in stored neutron
is, therefore, fj F (dt/T). Balancing this new production against the
loss by decay, we conclude that the number of "stored" neutrons increase

by the amount
ds; = {-Aisi + Iy Eﬁt}dﬁ (22.7.25.a)

In a similar manner, we can calculate the change, dF, in the number, F, J
of potential new neutrons formed per generation. So far as instantaneou
multiplication of neutrons is concerned, the effective reproduction
factor is kg -~ f. In the (dt/T) generations which occur in the time
interval, dt, the rate of production of potential new neutrons increases
on this account by the frectional amount (ke - f) (dt/T). In addition,
the delayed neutrons released during this same time interval produce
fission and thereby form additional potential new neutrons to the number
2:81A1dt. Altogether, we have for the increase in number of potential
new neutrons formed per generation the quantity

{(ke - ) (F/D) 4 ZAisi}dt (22.7.25.b)

The equation (22.7.25.b) and the four equations (22.7.25.a) govern the
change with time of the five quantities F, sj.
We can investigate the equations for neutron storage by the method
of characteristic solutions. We can assume as trial solution
Ig :
sy = s3f el (22.7.26.8)

and

p o= 1 oA (22.7.26.b)

where the constants 51 and A are to be determined by substituting thesl
expressions into the differential equations (22.7.25.a and b). From
equations (22.7.25.a), we find

!

!

BN [

22.7.26

22.7.26
The charac-
teristic
solutions
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£ 1{ _
st = 1 T/t (22.7 .26 .¢)

Aj ¢ A1
Insertin; these values for the quantities 311 and the expression
(22.7.26.b) for F in the other differential equation (22.7.25.b), we find
the following relationship comnecting the fractional rate of growth, RI,

with the decay periods of the delayed neutrons and the excess multiplica-

tion factor: .

Alt, 2 At farv - K, (22.7+26.4)

i A; ¢

From this so-called "characteristic equation” follow the results we
have already found in the extreme cases of very large and very small
change in reproduction factor. For example, when the rate of zrowth of
activity is very small compared to the decay periods of the delayed
neutrons, we {ind

R(T+ 2 ri/ag) = kg | ‘ .(‘22.7.27.3)

in agreement with the con$iderations of 22.7.15. On the other hand, when
the rate of growth,ﬂ, is large in comparison with the decay constants,
A;, we obtain the opposite limiting formula

ATsr = ke (22.7 .27 .b)

Certain accurate and simple relations between the growth constants follow]|

from the thecry of algebraic equations. When equation (22.7.26.d) is
expressed in polynomial form,  the coefficlients of the various powers of
A are syrmetric functions of the five roots, Al..ceeee AV, Thus we find

I 11 ‘
A"+ A7 e d RV = (ke - f)/t-l;:Ai (22.7.27.c)
1 1, . P T+ 2 £1/A1 DA (22.7.27.4)
T TR im
1 11 JIII IV .V :
Aj Ao Az A; Kk
A aaa L Az A3 A Ke/T (22.7.27.¢)

. . ~
These relations are of service below.

In the zeneral case of an arbitrary value of excess multiplication
factor, kg, the characteristic equation (22.7.26.d) can only be solved by
numerical or graphical methods. Figure 22.7.29 presents a graph of the

- JB

22.7.27

22.7.27
Relations
for growth
constant

22,7.28
Five characer
istic solutions
: i
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the relationship of "orthobonality which exists between the characterisd

Differential equations (22.7.25.a and b) Bultiply

as applied to characteristic solutions equation by
2(s) F(S) = (kg - 1) F(S)/E + ZAi 51 (s) TF(R):

A(8) g4(8) = £y FS) o ay sy (S) CfeAi/fi)si(R)
R(R) F(R) = (ke - f) F(R)/L‘ Iy ZAi si(R) - '[:‘p(s)
ABg (R = o p(R)r - ag s4(R) (Tay/11)8(5)

v,}‘f\

SPESD OF SONTROL

left-hand side of this equation as a function of d. It will be noted
that for any given value of kg, we have not one solution but five solu-
tions for A ; Al AII  AIII ,zf‘f &Y. In other words, the differentia
equations (22 7 25 a and b) are satisfied by any one of five independent
solutions. Of these solutions the fifth, for example, has the form

: \/
F = flelt (22.7.28.8)
avy A"y Vi .
83 = s;' e = £ % e A (22.7.28.1)

where FV is an arbitrary numerical constant. It is quite reasonable that
we should have five independent solutions, each with one arbitrary con-
stant, for we have five differential equat1ons which govern the change
with time of the number of free neutrons and the number of neutrons
"stored" with each of the four decay periods. In general, the problem
which we are considering can be stated in these terms: Given the values
of F and the four quantities sy at the time t =0, to find the values of
these five quantities at any later moment. We evidently require all fivJ
ad justable constants in order to satisfy the given flve initial condi-
tions.

In order to solve the problem just outlined, we shall make use of

tic solutions correspondin to two different growth constants (R) ana
A(8); | - ,
(1) vanishes
when R = §
( )\\9(2) equals
(P(R)Y24 1 g/ak(R)

when R = §

(22.7.30.a)

T #(®) §(s) ,,Z_f_;

This orthogo:nality relation follows on (1) substitution of the two char-
acteristic solutions af the form (22.7.26.a and b) in the basic differen-
tial equations (22.7.25.a and b) and (2) doing the algebra outlined in
the following table;:

22.7.30

22.7 .30
Orthogonality
of character-
istic solutions

/1373
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- Multiplication of the equations as indicated and surmations lead to the
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reat_alt

(al® R(n)){f,(a) p(s)‘{_t::_a.,(n) .1(3)}, o (22.7.30.b)

When the two ocharmcteristio growth constants are different, the expres-
sion in brackets must evidently vanish. Thus the first part o{ the
orthogonality relation is proved. (m the other hand, when A(R) « R(s).

then the left-hand side of the O‘rth?ﬁgmnty relation reduces by virtue
of (22.7.26.0) to the product of (r )2 by the sum

' 2
T » Z;ff:_i { ::/t } (22.7.30.0)

This expression may be obtained by differentiating the lefﬁjlnnd side of

the characteristic equation (22.7.26.d) with regpect to AR}, Conse-
quently it represents the derivative d ke/d 3.'(‘37-

orthogonality relation is thereby proved.

We wish to find the state of the pPile at any time when the value of
the roproduction fastor is fixed and when we are given at the initial
instant, ¢t = 0, (1) the number of stored neutrons, sy, of each decay
period and (2) the total number, F, of potential new neutrons formed per

generation. The solution of this general problems will be obtained by a
sSuperposition of the five cMaracteristic solutions;

v
F(t) = REI F(R) e R(_R)t (2247 .31.a)

v (R)
£ PNV ST

a8 = Z o® qa(Mye ¥ AR (22.7.51

18 = BRI A3 +R(R) ° (22.7.31.2)
We have only to find the five unknown constants, F(R), in order to com-
plete the solution of the problem. For this purpose we set t = 0 in the
five equations and apply the ortho pality relationship as follows. We
muétiply the (Srst e?}sa?tion by TF(S) and the other four equations by
(T AJ/fJ)SJ = F Tﬂj/(Aj + R(s)). We add the results of the &

multiplication, use the orthogonality condition, and find

T
.F(é){TF‘(O) + ZBJ(O)'A;) :JIT?)}= (P(9)2 4 o /a R (S) (22.7.51.¢)

sH. W. Ibser, John H. Manley, and John A. Wheeler, C-65, Burst
Method of Determiningz Approach to a Self-Sustaining Reaction. The more
general case where the power level is low and the contribution of the
spontaneous neutrons has to be taken into account is treated by E. P.
Wigner, CP-351, On Variations of the Power Output in a Running Pile.

The second part of the

22.7.31

22.7.31
General

- |expression

for state
of pile

. - July, I9L3
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This equation tells the value of the typical unimovm constant, F(s).

Thus we are able to find from the state of the pile at the moment t = 0

the conditions obtaining at any later time. Explicitly, we have the
result

- ) . A’ ‘ . i
F(t) RZ::I =(0) + % SJ(Q)AJ- . S “. 0 (22.7.31.9)
® . . .
T(A® /akg) o 1 a

v | ' ' |
t) = Z: A .
81(t) RZ=,1{1='(o) + : Sj(O)Aj—*jW} - (22.7.31.e)£

- a(R)

<

22.7.32

In the case of greatest interest, the pile has been in steady opera4q 22.7.32

Case where
ctivity has
been constant

tion at a constant level up to the moment t = 0O, when & sudden change is
made in the reproduction factor. Up until the moment of change, the

"delayed neutrons are in equilibrium with the instantaneous neutrons.
_ Quantitatively, this condition means that the number, sj, of neutrons
‘stored with the decay constant, Aj, is

83(0) = F(0) fy/a3 T, . (22.7.32.a).

as follows from (22.7.26.0) or as is apparent on a little consideration.
The expression

which appears in (22.7.31.d) will therefore reduce to the form

T 3
(F(O)/C){ +Zq_dm).} . | (22.7.52.0)-‘

The bracketed quantity has the value ke/A(R), according to the charao-
teristin equation (22.7.26.d). We make use of these reductions to
simplify the general equation (22.7.31.d) for the rate of production of
neutrons. We find a simple result in the present case, where the pile
has been in operation at a constant level and where a sudden change hag
been made in kg3 '

- | . 1158
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FISSION AFTER SUDDEN WITHDRAWAL OF CONTROL

0.5 PERCENT DELAYED NEUTRONS
0.8 PERCENT DELAYED NEUTRONS

kes+0.02

kg=+0.01

ke=+0.005

ke®10.005

FIGURE 22.7.33
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FIGURE 22.7.34
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. in advance; moreover, this position.will change from time to time as

* ing shows 1% below the preassigned value, a relay is activated and the

“the lower limit relay again functions. Thus the output of the pile

" power output will fluctuate with a period, depending upon the closeness

‘The anticipatory control, however, is governed by the rate of rise. It

ny
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Auvtomatic Control

How to keep a pile running at a nearly constant output is one of
the most important problems of control theory. The precise position of
the ‘control rod which is required for steady operation will not be known

alterations in temperature, barametric pressure, and content of cooling
fluid affect the multiplication factor. There is, therefore, a need for
an ‘automatic mechanism to keep the output constant within certain pre-
assigned limits. It will be the fine control whose motion will have to
be governed in such a way as to acoomplish this end.

The simplest form of automatic operation is provided by the so- .
called limit control. An ionization chamber or proportional counter in
the pile is connected to an amplifying circuit. When the current flow-

control rod is pulled out-a small distance. The multiplication factor,
therefore, rises slightly. The pile continues to function with the new
value of the multiplication factor. If the activity again falls off
(see Pigure 22.7.38), the same relay will soon be called to function
agein and the control rod will be pulled out still further. By a series
of such operations the fine control will eventually be brought to a posi-
tion corresponding to an effective reproduction factor slightly greater
than unity. The activity will begin to rise. When it reaches a value
10 greater than the preassigned figure, a second relay is activated.
Thereby, the fine control is pushed into the pile a small distance. The
activity begins to fall. Wwhen it gets to 99 of the preassigned level,

osclllates to and fro-as the control rod is moved back and forth between:
two positions relatively close to each other. The time for one cycle of
this process of rise and fall depends upon the magnitude of the displace-
ment given to the control rod by the operation of the relay. Figure
22.7.36 illustrates the situation.in the case where the activation of thg
relay brings about a change in k of 7.5 x 1015. It is seen that the

of upper and lower limits. The period is in the neighborhood of several
minutes in the example illustrated. The limiting type ol control evi-
dently provides an effective means to keep the output of the pile within
preassigned limits. '

trial applications has shown in recent years an increasing tendency to

22. %36

. 22'7 '56
Function of
automatioc
control.

22.7.57

1imit control
4

nticipatory

" The deveiopment of automatic control mechanisms for various indus- 22.7.59
C

make use of the principle of anticipation, in contrast to the simpler
scheme of the limiting control. The regulating device is governed not
only by the magnitude of the quantity which is to be controlled but also
by the rate of change of this quantlty. Consider a case where the quan-
tity is rising rapidly but has not yet reached the preassigned upper
limit. 1In this case the limiting coantrol does nothing to stop the rise.

already starts to retard the reaction before the upper limit has been

120
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rate of fission) [
{aft:r ::hanzelo } F(t) = & kg AR A(R)¢ 4

rate of fisslon F(O) e
= ZR;
{beforo change } R=1 R d k¢

- (2247.32.d)
A(R) ¢

v
T (a1 AR /4 1n ke) o
R=1

All the quantities used in this equation can be read off the curves in
Figure 22.7.2%. An illustrative example set forth in the figure shows
the use of this equation to determine the rate of fission. Typical
curves for the activity as a function of time after the sudden insertion
or removal of the control rod are presented in Figures 22.7.55 and
22.7.34. Similar curves showing the variation of activity with time.
after a sudden burst of irradiation have been calculated and are avail-
able in C=-6Y.

The total number of fissions occurring after the control rods enter

- the pile is a quantity of some importance. It is determined by inte-

grating the rate of fission as given by (22.7.32.d). The result of the

integration is evidently

Vo ox,ad® 1 ked v .
Rz'-'-I, ‘R(Rjd ke - R(R) B d ke REI 'm (2247 .35.a)

The last sum is evaluated in equation (22.7.27.d). We differentiate it

as indicated and find the result,

total number of '
neutrons liberated {total number of) .
after kg drops after-fissions [ _
{ﬁumber of potential - {original number} =

neutrons formed per of fissions per
second during operation second

f F(t) dt T+ I 0i/AL 0.11 sec .
F(o)  -ke = T (22.7.35.b)

For example, let the insertion of the control make a deficit, - kg =
0.01, in the reproduction factor. Then the total number of subsequent
fissions is the same as the number which would have occurred in ll more
seconds of normal operation. '

j

22.7.35

22.7.35
Total number
of after-
"fissions

July, 19L3
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reached. EBlectronic cirouits have been developed by the group working on

controls at the Chicago Metallurgical laboratory under the leadership of
V. C. Wilson and W. P. Overbeck, cirocuits which give the control rod a
motion depending not only upon the level of neutron activity but also
upon the rate at which this activity is changing with time. The theory
governing the choice of constants in the electronic circuits has been

developed by Christy.* This type of control proves to function satis-
factorily.=s

Two features of the operating pile stand out from the foregoing dis=
cussion of the time dependence of activity. First, the delayed neutrons
give the period of response to control a quite reasonable magnitude.
Although the process of fission occurs in a time of the order of magni-
tude of 10721 seconds, every other step in the chain reaction tends to

" lengthen the effective time iﬁterval of multiplication: the proocess of

moderation extends it to~10"% seconds, the process of thermal diffusion
brings the time up to~10-2 seconds, and the delayed neutrons stretch it
to~0.1 second. Secondly, the control mechaniam operates most conven-
iently not on the temperature of the cooling fluid itself, but on the
neutron activity, i.e., essentially the rate of rise of temperature. In
other words, it is possible to correct a sudden rise in neutron activity
long before the temperature of the emergent water has had an opportunity

to respond. This feature of a chain reacting plle increases greatly the
stabllity of operation.

Subsequent to the writing of the main part of this section, five
developments have occurred which are connected with the subject of speed
of control and which may be summarized briefly here: (1) further study
of delayved neutron emission, (2) more accurate experimental measurement
of the relation between period and excess reactivity, (3) more complete
treatment of decay of activity after shutdovn when finite time is re-

quired for entrance of control rods, () treatment of self-stabilization

of horogenecus heavy water pile by reason of negative temperature co-
efficient, (5) treatment of seme problem for graphite piles.

Decay of delaysd neutron activity following a one second cyclotron
irradiation has been studied with improved precision by Snell, Sampson,
and Levinger#s* The counting rate drops sharply in the initial second
after stoppage of bombardment, thus indicating that one emitter has e
period less than a second. Inability to follow precisely this initial
decay fortunately does not much affect the eccuracy of estirates of the

total number of delayed neutrons or the precision of calculations of their
effect on the reactivity of e pile. Snell and his associates extrapolate

the activity back to zero time in & reasonable way end find that it falls

22.7.40

22.7.40
Pile well
suited to
control

_ - .

22.7.41
New develop-
ments -

22.7.4k2
Further study
of decay of
delayed
neutrons

*R. F. Christy, CP-349, Slow Control of a Chain Reaction.
*#+¥. P. Overbeck, CT-669, Control System for the Argonne Pile.
. sxsArthur H. Snell, Milo B. Sampson, and J. S. Levinger, CP-101l,

Further Work on the P0831ble Use of the Delayed Neutrons for Detection
of Coating Fmilures in the W Pile.
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off in reiativelmagnitude in proportion with the following expression;

0.57 exp (-1.38t) + 0.LO exp (-0.154t)

+ 0.02l, exp (-0.030t) + 0.002 exp (-0.01Lt) (22.7.12.2)

The corresponding mean lives are 0.7 second 6. 5 seconds, 33 seconds, and
72 seconds, and the half lives, also in seconds are 0.5, ;.5, 23 and 50.

"In other experiments* Snell and his co-workers have identified the
50 second delayed neutron emitter as a radioactive bromine nucleus and
the 23 second source as &an iodine activity. The activities were
generated by brief irradietion of uranium at the Chicago cyclotron.  The
lifetime of the two groups in question was sufficient to carry out one
chemical operation. The reaction chosen could be made sufficiently
characteristic to make the identificatiun fairly certcin. Beta ray
activities with periods similar to these have been observed by other

" workers. However, it is necessary to be cautious about concluding the

identity of a lknown beta ray emitter with a delayed neutron sourcs. The
latter will lie at or near the head of a fission chain. On the other
hand a bete ray activity of short period is only isolated chemically and
studied satisfectorily when it is descended from an earlier flssion pro-
duct of reasonable lifetime. .

! Combining the new results on decay of sources of delayed neutrons
with observations on the rate of growth of power output of the Argonne
pile, Fermisshas been able to describe the connection between period and
excess reactivity with improved precision. He applies relation
(22.7.26.d) between growth constant and excess k (1) taking the periods
and relative strengths of the delayed neutron groups from the work of
Snell's group, (2) adjusting the relative strength of delayed and in-
stantaneous neutrons to fit the Argonne data, and (3) eliminating refer-
ence to the absolute value of the multiplication factor because thet

- quantity cannot at present be measured with a precision at all approach-

ing the accuracy of determinations.of period and of relative changes in
reactlvity. On this last account the experimental results have been
put into e form which involves only relative velues of the excess multi-

plication factor, kg: '

(for period of T seconds) = [|oxcess reactivity expressed
limiting value observed in case in "inhours" (definitian)
of veri' lon ﬁgriods for product|
of per urs and excess k

= b 33 1139 1793 585
- T + T + 0.7 M T +T T +3E T + 83 (22.7.LL-a)

sA. Snell, CP-961, Report for Month ending 1943,September 25.

ssPorsoml communication by P. Morrison of results transmitted by E.
FPermi on 194}, March 29.
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" has fallen at the end of half a second to a level about half way between

.80 far developed assume that the multiplication factor is determined
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The first term in this formula is a measure of the effect of the instan-
taneous neutrons. The relative magnitude of this term will change by an
amount of the order of magnitude of 30 percent between graphite piles of
different composition. Such a change will evidently have only little
effect on the overall value of the right hand side of the equation. On
this account Fermi's relationship betwsen period and relative reactivity
should apply to all graphite piles with an accuracy of the order of magni-
tude of 1 percent for periods of 20 seconds or more. For shorter perio
on the other hand the difference between one pile and another will increa
ingly manifest itself because the first termm .in 22 7.’.})4.8. eventually
dominates.

How the shutdown of a pile is influenced by the speed of insertion
of the control rod is a question of same practical interest whioh has )
been treated by Schwinger.® When the rods enter instantly the activity
falls off with time as illustrated in Figs. 22.7.33 and :34. Actually
the safety rods of the Hanford pile require a period of the order of. 2 to
21 seconds to fall into position. The events during this time can be
analyzed by neglecting as in the case of instantaneous insertion (22.7.8)
the production or decay in the number of neutron emitters which takes
place in so short an intervel. Ve are then dealing with a constant
source of neutrons undergoing multiplication in a medium whose reproduo-nl
tion factor changes with time. All other aspects of the delayed neutro
are overlooked. . Schwinger has treated this straight-forward problem of’
transient equilibrium. He has given the solution in graphiocal form for
the particular case where the control rod crosses the active zone of the
pile in a time of 0.9% seconds. His curves show that the power output

its original figure and the final value for transient equilibrium with
rods all the way in; 4i.e., half way to the fraction 0.006/(-k, + 0.006)
of the original power. Fram this result it is epparent that gha speed
of shutdown of the Hanford pile during the entrance of the safety rods
is limited more by the rate at which the controls enter than it is by
neutronic characteristics of the chain reaction. _

The considerations on stability of operation and speed of shutdown

entirely by extermal conditions such as rod movement and water supply.
The intermal temperature of the pile is however an important additional
factor in stabilizing its operation. The coefficient of the reactivity
with respect to temperature change has already been disocussed in Chapter
16 for piles of various types. The application of these results has so
far been explored in any detail only for the homogeneous heavy water pile
and for graphite piles. .

Schwinger has l.nalyzed the belnvior to be expected fram a 30 tun

pile constituted of a homogeneous mixture of heavy water and uranium. Self-stabili-

22.74&

2 0701‘5
Effect of
finite time
of insertion
of rods

22.7.46
Stabiliging
effect of
temperature
coefficient

2.7.47

The pile material is conceived to be a slurry and is circulated by means |sation of
of speoial pumps to heat exchangers and baock to the reactor. Scohwinger [heavy water

sJulian Schwinger, CP-88l, 1943 August 16, The Bffeot of the In-
sortion of a Safety Control Rod on the Power Output of the Pile.
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considers the case where the pile is operating at 800 megawmtts and malf
the pump equipment suddenly fails. In this oase the temperature of the
slurry rises and thereby decreases the reactivity of the struoture.e
Heee takes into account the effect of the change in reactivity on the
power cutput, assuming that 2/3 percent of the neutrons given off in eaol;
generationarise from radicactive fisalon products and that 1/3 percent o
the neutrons originmate fram the dissoociation of deuterium by gamma rays.

'He concludes that subsequent to the pump failure the temperature of the

slurry will rise at most by 14°C ard that this rise will osour in a
period of the order of L7 seconds. Subsequently the power output of the
pile will stabilige at a new and lower level. In other words the ‘
negative temperature coefficient of the ohain reaction is an important
factor in the stability of the proposed slurry plle.

The vimpor‘hht position of graphite-uranium piles in the plutonium

22.7.47

2.7.48

project gives special interest to the discussion of their stability during Self-stabili-

operation. In this connection we may note the similarity betwaen the
Clinton and Hanford structures es regards temperature coefficient. Fog
both piles the daminating effect is a loss in the reactivity of 2 x 10

per °C rise in the effective average temperature of the metal. In neiths

of the two rather different piles does the temperature of the graphite
exert any important influence on the reactivity. oOn this account we can
say that the temperature of the graphite will follow the power output of
the pile but will not affect it. This circumstance reduces the analysis
of the thermal stabilization of these piles to 8 two-fold problem:

(1) the effect upon the temperature of the metal of unbalance between heat
production and cooling and (2) the effect of the temperature of the metal
by way of the temperature coefficient upon the rate of change of the power
output. A simple mathematical analysis of the interaction of these two’
effects shows that the temperature and power output of the Clinton pile
when displaced fram & state of equilibrium oscillate about that state
with a period of the order of 17 minutes while a gimilar disturbance in .
the Hanford pile will be followed by e gradual drift back to equilibrium.

We use the following notation to describe the conditions in the pile:

T, the value of the effective average temperature of the metal in the
pile, taken with respect to the inlet temperature of the coolant as
point of reference. The uranium acts &s a thermostat and ultimately
stabilizes its power output at a level which will just maintain this
temperature elevation at the value T = Toe  The numerical magnitude
of T, depends upon the position at which the control rodes are locked.

P, power output. In a steady state at the temperature T = T, the pile
gives off the power P = P,.

»The effect of temperature on the reactivity of a homogeneous
uranium-heavy water pile has been treated by Gale Young in CP-807,
1943 August 6. : :

ssThese results of Sclwinger are briefly sumarized in the Chicago
report for Nuclear Physics Research for the month ending 1943 October 23,
CP-1016. i .
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" pile will came smoothly to equilibrium after a disturbance. Pimlly, .
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H, heat capacity of the uranium. We neglect the transfer of heat
from uranium to graphite and via graphite to the coolant as baving
only a small effect on the self-stabilization of the pile.

t, elapsed time.

8¢, difference between instantaneous temperature elsvation and equi-
1librium temperature elevation, T,. ' :

5P, difference between instantaneocus power output and equilibrium power
output. ‘ .

The flow of heat fram the metal to the coolant is proportiomal to the
temperature difference between the two. When the temperature elevatian
is T,, the rate of flow is P,. Consequently, when the temperature dif-
ference increases by the amount &T the rate of heat trengfer will in-
crease by the amount (P,/T.) 5T. On the other hand it will tend to werm
up due to the increase, 6P, in the power output of the metal. The dif-
ference between the two opposing tendencies is measured dy the quantity,
6P - (Po(‘ro) 8T. This expression represents ths excess of heat produoc-
tion in. the metal over escape of heat fram the metal and therefore de-
termines, togethsr with the heat capacity of the metal, the rate of
warming of ths uranium, : ‘

a 51/t = (6P - (Ro/1o) &) /& - (22.7.19.a)

Having thus evaluated the effect on temperature of changes in power outpu
we have to find the effect on power output dus to temperature. TWhen thoﬁ
metal wa up by the amount, &7, the reactivity drops by the amount

-2 x 1077 57. VWe divide this change in k by the effective lifetime, 0.1
second, of one generation of neutrons (22.7.17.0) in order to obtain the
fractiomal decrease in power output which occurs in the course of one
sooond. Thus we arrive at the second fundaxental equation of the problem
of self-stabilization; ' N

A

d 8P/t = -2 x 10"" P, 5T | (22.749.b)

In order to investigate the rate of approach to equilidbrium after a
disturbance in the operat oonditions of the pile, we try whother we
oan satisfy equations 22.7.,9.a and 22.7.49.b by a solution of the form;

sp= \ o en
S? = ::: :; g}‘:g (22.7.50.a)

In order to make such & solution satisfy the equations in question, we
say have to give A & positive value. In this oase we will conolnde
that the pile is unstable when the control rods are locked into position
as wo Iave assumed. Then same control meoclanismm will have to be provided
in order to prevent a catastrophs. On the other hand, if A must be
negative in order to permit a solutiom of the form in question, them the

22.7.L9

2.7.50

haracteristio

lutions
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if X is complex we will conclude that the temperature and power output
of the pile will oscillate periodically after a disturbance. We sub-
stitute the trial solution (22.7.50.a) into the differential equations
and discover that it will give a proper account of a disturbance only if
the characteristic exponent A 15 a solution of the quadratic equation:

A 2 x 1078 P,
= 0 (22.7.50.b)
By A+ (Po/roR) |

The two characteristic roots are therefore:

A= -(po/z ToH) + [(PQ/Z TOH) -(2 x 10'1* Pe,/tqﬂ§
(2.7.50.0)

From the nature of the chearacteristic exponents, we conclude that
the pile is never unstable and can at most be osoillatory. Cscillations
will take place after a disturbance if the quantity within the square
brackets in 22.7.50.0 is negative. The {first term in those brackets
involves the ratio between the equilibrium power output and the equi-
1ibriur temperature. This ratio is independent of the power output it-
self and depends only on the type of cooling system in use. The second

term, however, is directly proportional to the power output. (Consequent-

ly, for a pile with any fixed rate of circulation of coolent the response
to a thermal disturbance will never be oscillatory if the power output is
sufficiently low and will elways be oscillatory if the power output is
sufficiently high. The critical power output at which the transition

occurs between the one type of response and the other is given by the
-equation:

Poritical = (1250°C seo) H (Po/'foﬂ)2 (22.7.51.a)

Adopting the numerical values shown in Table 22.7.52, we find that the
oritical output of the Clinton pile for oscillation is (1/40) megawatt
and for the Hanford pile is LOO megawatts. The first figure is far
below normal operating conditions at Clinton and the second is consider-
ably above the output initially expected at Hanford. Consequently,
oscillations of temperature and power are to be antiocipated in the one
pile following a disturbance and & simple relapse to normal conditions
to be expected.in the other case. The quantitative and qualitative
features of the response are presented in further detail in Table 22.7.52
and in Pig. 22.7.55. Qualitative experimental information on the be-
havior of the Clinton pile confirms in a general way the conclusions ob-
tained by this simplified mathaematical analysis.* This confirmation of
our general method of approach gives same agsurance that the Hanford piles
will show tke very smooth and rapid self-stabilization properties pre-
dicted for them above and illustrated in Fig. 22.7.53.

sA more detailed analysis has since been ocarried out for the Clinton

pile by L. W. Nordheim, l-gP-léll 1 Mey 15. He finds satisfactory

agreament with obsemtion. A discussmn with him of the corresgondinﬁ

Banford problem indicates that allowance for the finer details o o-

laged neutron decay and for finite heat conductivity of the uranium should
markedly ohange the conclusions reported in Pig. 22.7.53.

5 / .166’

2 07 .50

22.7.51
Oscillations
when power
exceeds
critical valu
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Table 22.7.52.

THERMAL SELF-STABILIZATION OF COOLED PIIES

Full flow of coolant maintained and position of control rods kept con-
stant while temperature and power output of pile approach or oscillat. about

a steady state value.

Multiplication factor assumed to drop 2 x 107

per

%¢ rise in effective average temperature of metal and to be practically un-

affected by graphite temperature.

its power output at a level whioch will j

to compensate the available excess k.
power output but not to affect it.
(1/8) megawatt sec/metric ton °C.

values depend upon loading pattern.

- Uranium acts s thermostat and stabilizes

ust maintain the temperature required
Graphite temperature assumed to follow

- 22.7.52

Heat capacity of metal 0.030 cal/mm°C or
Figures below conventionalized;
Conclusions illustrated in Pig. 22.7.53.

accurate

Quantity Symbol Clinton Hanford Hanford
Normal power output P, 1 Mw 1 Mw 250 W
Metric tons of uranium Lo 160 160
Heat capacity of metal H. S5uw sec/°C| 20Mw sec/°C | 20w sec/°C
Ratio of normal power to heat .
capacity gives initial rate | o
of cooling on shutdown P,/M 1 0.2 °¢c/sec|0.05 °C/sec | 12.5 C/sec
Order of maznitude of mean ! o o : o
temperature elevation of metall T, ‘ 100”c o.4°¢ 100%
Fractiomal decrease per secand ‘
in case of shutdown or rise
per second in case cooling ,
fails while pile is runmning Poﬁ-n‘o | &10-3/360 0.125/ecec 0.125/s00
Reciprocal of last row defines ; .
cooling period in seconds BT,/P, | 500 sec 8 sec 8 seo
Cooling medium air water water
Critical power output 250 P2A K| 1/L0 Hw | LoO M LoO tw

' 5 5

Temperature coefficient of k _2x169/°¢ |-2x167/°¢ | -2x1077/°C
Temperature coefficient of growth oon- : L
stant, allowing O.1 sec effective - - ° - o
mean 1ife per neutron generation —2:10)%9000 '2"10)7390 Cc | -2x10 /sec”C
Rate of fali of gxi"cvthloonstant with c 5 » 5, 2
time in absence of coo o 2 - -
(preoeding row times Po% Lx10 7/secS [10~°/s00 2.5x107/sec
Continued on next page

May, 194,
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Table 207052 - Con‘'d. 1
Quantity Clinton Hanford Hanford
Charecteristic exponents in solu-
tion (22.7.50.0) of stabil uti?
problem -( o) 2 [(Po/2E2,
= preoceding row
Bigger exponent represents - -
osountially the rate at which 0.125 seo”!  |-0.10 sec™!
uraniun tempersture adjusts (reoiprocal (reciprooal ‘
itself to a wvalue whioh will no is 8 seconds) | is 10 seconds) :
Ca80 arry to coolant the heat as 1 ' |
of |4t is produced rea
two expon~
real Smaller exponent represents ents 5 1 1
mn;nontutlytt‘h;dut: at :bioh =8 x 10 “seo =25 x 152300'
ower ou rature
! onts |5y bsequen 1{ lnnd-in-pl.nnd ad- (?gig:::i% is KK;“E”::)“
. just themselves to value at d | WU 8600
‘ hich excess k is just com- !
anaated. - 3
: -1 x 1077ge0
Real part represents rate of
c::,' deoaypgr osoillations ! ("°él;3'°i:;t18’
o m o8 no no
Camplex part gives ocircular
m freguency of gsoilhtionl r&?h::}os;oond camplex complex
plex exponents exponents
Iatter quantity divided into
‘e [27 gives period of one osoil- 16.7l minutes
ents |lation '
Factor by whioh amplitude of rxp(16-724/16-67)
oscillation is decreased in = 2,73
one period :
Gongxl-al solution of stabilization 'ST”COZP -IXI(fOt | 8T=Cexp(-0.125t )ST=Cexp (-0 025 ¢
problem contains two arbitrary con-{¢08 6.25 x 1074 4pexp(-8x1{’t) |+2Dexp(-0.100t 1
stants, C and D, (or C and t, (t -ty -26) | op 165::10 ' |
6P in Mw, 6T in 9¢, t in seconds PP P('k1q5t) exp(-0.125‘.?' !‘5
008 0-25x107 | +Dexp(-6x1077t) !
(t - te) . f
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22.8 MRCHANISM OF CONTROL

The evolution of the control mechanism in the hands of the Chioago
Metallurgical laboratory and the du Pont Company has paralleled the
transition of the pile from.an experimental tool to a production umit.
Control rods of adequate mechanical strength and neutron absorbing power
have been developed. Mechanisms to drive the rods have been designed,
built and found to operate satisfactorily. . The freedom of operation of
these mechanisms has been limited by automatioc circuits designed to re-
spond immediately to changes in the conditions within the pile, and to
guarantee that the operation of the pile will meet all agreed-upon
standards of safety and good practice.

In this section we ehall first summarize the oconsiderations of re-
liability and health hazard which have influenced the choice of means of
control, not only in the Argonne Forest pile and the Clinton semi-works
pile but also in the full scale production unit at Hanford. Then we
shall describe the Hanford control system as illustration of these prin-
ciples. Next comes a brief account how the philosophy of control cir-
cuits has come to depend largely on the pile itself for self-stabilizatio
in contrast to the earlier reasaning in favor of completely automatic
regulation of rod positions. Pinally a description of the Hanford con-
trol room, the start-up of the production pile, its normal operation, and
its shutdown will complete our discussion of the mechanism of control.

Induced radioactivity is the first of the factors which influence
the choice between gageous, liquid and solid types of control. A sub-
stance which reduces the multiplication factor of a 250 megawatt pile by
1 percent undergoes neutron induced transformations at & rate equal ‘to
the product of the following factors:

0.01 transmutation pér neutron

2.2 neutrons per fission

1/200x1,6x10" " fissions per erg

250:10 3 ergs per seoond - .

1.7x10 17 nuolear changes per second, or 0.7l grams

atoms per month,

2 rate of transformation
equal to 4.6 x 10

curie's

Prangformation at this rate will induce an intense radioaotivity .'m all
but a few elements. To search for & control material which will not
have a health hagard on this score we inspeoct the possible reactions of
neutrons under four heads: .
f
(1) Neutron capture by a stable isotope to form an active isotope
with mass number one unit higher. High radiocactivity will
result unless the radiations from the new nucleus have low
.energy or its life time 1s very long in comparison with the
proposed time of use of the control material. Among instances
of thia typo none is known where the initial nuocleus lms a high

= /30 /5
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enough capture oross section to make a satisfactory absorbent.

(2) Neutron capture by a stable isotope to form another stable
isotope would be the perfect reaction if it alone could be
guaranteed. However, isotope separation at this time is
neither cheap enough nor complete enough to allow isolation of
igotopes for control purposes. And amongst the stable 1sotopes
will always be one which, if it captures neutrons at all, gives
rige to an active nucleus. We therefore exclude reactions of
type (2) for the same reasons which applied to group (1).

(3) Neutron taken up by fission reaction; fission products radio-
active. The radioaoctivity is too great in the case of the
- splitting of U-235 and Pu-239, quite apart from the absurdity
of using a neutron multiplier as a control. The other slow
neutron fission reactions which result in active products,
N-1; (n, p) C-l and 0-17 (n,o<) C-1, have too low cross
sections to supply effective absorption mechanisms.

(4L) Neutron taken up by fission reaction; fission products stable.
Only two known elements, lithium and boron, lead to this type
of tmnsfa‘ﬁ::%tion, but both ve big enough cross sections,

90 x 10~ and 700 x 10~ to be very effective absorbers;
Absence of induced mdioactivity gives them an edge over all
other elaments for use in controls.

Boron and lithium being the only strong absorbers free of induced
radioactivity, and neither of these substances being capable of use in
gaseous form except in combination with some other element, it follows
that a gaseous control will became radioactive. Granted that leaks in
the pile are inevitable, the active gas will create a problem in whatever

same extent all the time and in case of mechanical failure will rush out.
The evident danger to personnel has so far excluded this type of system.
The other possibility, operation below atmospheric pressure, will draw
in all the time & certain amount of contaminating air. Arrangement has
to be made to separate the control gas from the air. Both these gases
are active and they may carry with them radiocactive contaminants from
the pile. Difficulty under these conditions of servicing the separation
equipment has proved a convincing argument against this altermative
scheme for using an absorbent gas. And any form of gaseous control pre-
sents not only a radioactive hazard but also a general menace to safety,
because it may fail to halt the chain reaction if for any reason the
mambrane of the pile is ruptured. Both considerations have limited
attention to liquid and solid absorbers.

Liquid controls bave the same disadvantages as gasecus controls.

&0803
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Any pump used to adjust the level of the liquid and the loss in multi- E.lquid rejeot-
d

plication factor mey become difficult to service owing to deposited

except for

radioactivity. The more important objection is the chance of failure final safety
of the piping. Whether it corrodes through or fails by shock, there levice
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' results s two-edged danger. The absorbent fluid may drain away to the

exterior of the pile or to a point in the reflector. Then the power
output of the pile will rise out of control. Or the break may occur in
the center of the structure and allow the poison to be soanked up in the
graphite. In this cage it may not be possible to clean out the pile.
Its usefulness is destroyed. Only if all other emergency control de-
vices have failed and the pile is on the way to possible self-destruction
has it been considered reasomable in designing the Hanford pile to make
provision for injecting neutron absorbent fluid. On this account the
liquid control is kmown as "a final safety device". Such &n emergency
control obviously may have to function in an overheated pile. A liquid
alone might be boiled away. The fluid in the Hanford final safety con-
trol therefore contains dissolved boron. This absorber will be deposit-
ed out on the walls of the tube under boiling conditions. In this re-
spect the liquid control is reliable only to the extent that it is
equivalent to & golid control.

Piles built to dete are controlled by solid absorbers. Rigid
objects are reliable in action and they confine radioactive hazard to a
definite region of space. The principal possibilities for solid control
are sheets, rods, wires and shot. Choice between these forms hasg been
based on & compromise between requirements of control theory, protection
against radioactivity, und mechanical simplicity. A single control rod.
S feet in diameter has no more effect on the reactivity of the pile than
9 control rods 4 inches in diameter. A hole 5 feet in diameter leading
out from a pile would obviously create very difficult problems of shield-
ing and persomnel protection quite apart from the mechanical difficulties
of operation of a rod of this size. The rcds of smaller size are
evidently much the more practical. Whether the control systems of the
future will go still further in this direction and cperete by means of
wires drawn in and out of the pile is an open question. The lanford
design did not go to this extreme partly because cxperience at the
Argonne and at Clinton imd so far proven only the reliability of large
control rods and partly also because it was desired not to have too many
individual units passing through the pile. The L-3/8 inch space between
graphite stringers set a natural upper limit to the size of control rods.
It was fortunate that with this upper limit on diameter, the required
number of rods was sufficiently great to guarantee satisfactory perform-

. ance in case of accidental fallure of a single absorber, yet small enough

not umuly to complicate the design of the machinery for operation of the
controls.

One solution of the control problem along the lines just discussed
is illustrated by the Haaford system. It consists of two regulating
rods, 7 shim rods, an additional shim through replacement of uranium
slugs by poison cylinders, 29 safety rods, and a final safety device
which injects into the pile & boron-contalning solution. The principal
features of these controls are summarized in Table 22.8.8,and Pig.1.4.8
shows the léyout of the rods relative to the pile. A more complete
doscription of the method of insertion is best combined with an account

of the intermal structure of the rods.
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The shim and regulating rods are exactly alike and are built as
shown in Pig. 22.8.10. The neutron-absorbing element is & film of boron
flame-gprayed in the form of an aluminum-borom mixture onto the outside
of three long parallel aluminum tubes bound together as a single unit.
Transmutation of the boron by neutrons is caloulated to weaken the ab-

sorbing power of the films by only a few percent in the course of a year's

operation. The advantages of boron from the point of view of heat
generation have already been reviewed in Section 22.6. Boron does not
rebroadcast the heat of oondensation of the neutrons in the form of
gamme rays. In this respect this element is to be preferred to cadmium.
It is much easier to remove power liberated in the oontrol rod than it
is to take ocare of surplus heat produced in the center of the pile where
the normal cooling means are already loaded to the limit. Furthermore,
boron remains a solid at temperatures where ocadmium bhas melted and per-
haps permanently damaged the surrounding reactor. FPinally, the thermal

.output of one boron coated rod of Hanford design is at most of the order

of magnitude of 35 kw.

Heat generation in the control is kept small and removal of this
heat is simplified by the chosen design. Aluminum is used for the
framework of the rod because of its low neutron absorbing power, which
prevents gignificant generation of nuclear energy, and its low density,
which reduces the production of heat via absorption of gamme rays from
the pile. From both sources together the heat is only a fraction of

is promoted by the intimate contact between the boron and the underlying
aluninum tube. The rod is cooled by water. Ten gallons flow per
minute down the central aluminum tube and return through the two outer
tubes.  This arrangement minimizes the danger of warping the rod through
thermal expansion. BEach aluminum tube is about 7l feet long; .34 feet
of its course is in the control rod proper and the remainder through a
LO foot extension on the rod. This extension carries a rack which
meshes with a driving pinion. The aluminum tubes are connected at the
end of the combined rod to flexible hoses which roll up or unroll fram
reels according as the rod is moving out of or into the pile.

Other features of the control rod design are intended to reduce
exposure of personnel to sources of radiocactivity. The rod moves in an
aluminum thimble. It prevents the esoape from the pile of helium or any
admixed radiocactive gases. This construction makes it unnecessary to
have gag-tight sliding fits. However, air present in the thimble will
be displaced by the entrance of a control rod and create a health hagard.
For this reason provisions are made by which carbon dioxide can be intro-
duced into the thimble in a continuous stream. This gas develops an
activity about one hundred times less than that of air.

Escape of radiations from the pile is minimized by providing for
each rod a special passageway through the shield, similar to the arrange-
ment by which the 20Ql; water tubes enter the front face of the pile.
However, nearly 1/8 inch clearance is allowed to insure freedom of motion.
So much radiation escapes through this crack during the operation of the

“El—— /3583
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Outeide dimensions of Al
guides

8paoing of rods or tubes

Bffeotive length in pile
Direotion of introduction

relative to uranium columns

Method of operation

Speed of 'tmval

| 1060 om:

10.20cm x 7.8am

128om vertical,
162an horizontal

horizontal,
perpendicular

differential
ocoupled on one
end to fast
eleotrio drive,
on other to glow
olectric drive

low speed adjustd
able o 0 01 ,0.02
inch sec'.h:l
upee/ adjusté%lo
to 0.5

or 3.0 ino

chdsao.

10.20m x 708 anm

126om vertical,
162em horizontal

1060 om

horizontal,
perpendicular

hydraulio motor
driven normally
by pump,in emerg-
ency by accumu-
lator

3 inches/seoond
normal in or out
Imotion;30 inchesfuran

second for emerg-
enoy i.mo:'t:.'ton8

2.2an radius

down to 106
cn by 106 em

760 am
horizontal,
parallel

same proced-
ure used for
ocharging

uranium slugs

lhalf hour to
k‘emptz tube of
slugs
and reload
poison slugs

h.l.;Bom radius

!.0600m

|vertical,
|perpendicular

gravity,when
deactivation
of magnetic

latoh releases
cable winoh

1.7 seconds
for nearly
oom7p ote antry

sec, more
for last 5 ft
of travel

128am perpendicular to flow,
8lam parallel to flow

' opened
B3

Table 22.8.8 CHARACTERISTICS OP CONTROL
SYSTEM OF BANFORD WATER-COOLED PILE
— — —————

Purposé of control device | = Pine control | Day-to-day shim Ipn%h%riod 53?3%5 3%!; °r€y
Neutron absorbent matar:u.l boron boron cadmium boron boron
Carried as coating on 3 coating on 3 10% ¢d-90% 1.54 B in aqueous

Al tubes Al tubes Pb alloy steel solution
Structural element hollow Al bar hollow Al bar formed into | hollow rod thin walled

. : slugs Al tube
6k for ome rod or tube 0.0016 up to 0.0030 up to 0.0025 [up to 0.0031 [up to~0.0034
Humber of rods or rubes 1 normal, 7 rods up to 30 of |29 rods 29 rod wells
: ' 1 standby 200 tubes | .

8k for all rods or tubes 0.003 0.0, ~0.035 ~0.040 ~0.045 |
Outside dimensions of mov- - -
able element or solution 9.2am x L.Seam (9.2em x L.45 am [1.80m radius |2.86em radius(l.29em radius

h>.b5cm radius

1060 om

vertical,
perpendicular

solution

driven in by
compressed eir
when valve is

seconds

enter &goug 10
sec. to become
effective

22.8.8
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reasonable amount may be seen from the following tabulation of the type
of ohanges in k which these rods must be able to compensate:

loss in multipliocation faotor due to heating

of pile operating at 500 megamtts ~0.004
Order of magnitude of ohange in multipliocation

factor due to poisoning or self-promotion

in 100 days' operstion at 250 megawatts ~0.010
Deficit in multiplication factor required for 4
rapid shutdown of ohain reaction ~0.005

Over and above the shim control due to the 9 control rods an ample
margin of adjustment for long period ohanges in k is provided by the
possibility of replacing uranium slugs by polson slugs. The possibili-
ties thus to improve the power distribution in the pile and to gain
increased yield are discussed more fully in Chapter 18. The poison
slugs for use in the Hanford pile are made of an alloy of 10% cd, 90% Fb
by weight, placed in alumimm cans aimilar to those which protect the
uranium itself from the corrosive action of water. The high cadmium
content makes the rods effectively opaque to thermal neutrons. A higher
cadmium content would be of little advantage. On the other hand, a
lower proportion of this absorbent would weaken the control power per
slug, require more slugs, and therefore cut down the number of uranium
slugs available for plutonium production..

In contrast to the Hanford controls so far discussed, the 29 safety
rods enter the pile vertically. They are calculated to reduce the
overall multiplication factor about L percent, accounted for as follows;

Possible increase in multiplication factor

dus to complete loss of water 0.02
Deficit in k required for quick shutdowm 0.01
Extra margin of safety in design .0.01

The margin of safety guarantees shutdown of the pile even in case of
failure of several of the rods.

The safety controls are hollow steel rods containing 1.5 percent of
boron by weight. The wall thickness is 3/16 inch and the outside
diameter is 2% inches. Each rod is L0} feet long and weighs 250 1lbs.
The hollow structure reduces the shock to the overhead framing on suddem
stoppage of the rods.

Means have been provided to drop the safety rods into the pile
quickly and surely. Bach safety rod is supported by a steel cable,
(Fig. 1.4.8). This cable passes over a pulley and around a drum.

The magnetically operated latch normally prevents rotation of this winch
under the pull of the rod. When the current fails, either through
electrical breakdown or because a safety relay has been tripped, them
the magnetic solenoid releases the latch. The drum starts to turn and

the safety rod falls into the pile through an aluminum guide tube insert-
ed in the graphite. The safety rods can be removed from the pile by

| — /374
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winches. Free fall carries the tip well past the center of the pile

in the first 1.7 seconds. The last 7 feet of fall require 0.7 seconds.
During this period, the rotation of the winch is decelerated by a device
which closes the exit part of a hydraulic pump connected to the same
shaft. A buffer located on the pile itself (see Fig. 1.4,.8) supplies
another means to stop the rod in case the cable or winch fail.

Positions of the safety rods intermediato between complete removal
and complete insertion have been provided for use in certain tests. An
electrio motor is connected to each winch. The motors are normally used
in withdrawing the safety rods fram the pile and may also be used to
lower them. Any rod can be stopped at any point in its motion in or
out by an automatic brake in the motor. But whether the rods are all
the way out or only part way cut, they are all releaged in case of
emergency and drop to the aafe position.

The arrangements for adjusting the position of the safety rods

22.8.20

22.8.21
Partial
removal
possible

&.8 .&

during certain tests in no sense makes these rods equivalent to snim rods{ Ko cooling

No special cooling provision is made. During the normal operation of
the pile every rod must for this reason be in its up position. Then
the tip is retracted into the thermal shield on top of the reactor to a
point only slightly above the graphite reflector.

Three measures protect personnel from health hagards associated
with the safety rods: Pirst, like the ocontrol rods, they enter gas
tight thimbles. A continuocus circulation of carbon dioxide is main-
tained in these wells to prevent air from entering and becoming activated
Second, personnel is restriocted from coming into direot line with the
beam of rediation which escapes through the annulus around the drop
safety rods where they pierce the shield. Pimally, the bottoms and tops
of the hollow safety rods are plugged with steel to prevent escape of
pile radiations through the controls themselves when they occupy either
the in or the out position. Omly when & rod is partially ingerted into
the reactor doss radiation have a free oourse through its interior.

' Then the ionization level about the pile greatly exceeds the tolerable

value. Howevor, the period of excess dosage will normally be limited
to ths 2.4 seconds while the rods are dropping.

In case of failure of the safety rods, tbs thimbles provided for
them are filled with an aquecus solution contalning about 1.5 percent
by weight of '?:B“SZ' The solution is driven out of storage tanks
by compressed a d makes its way into the plle through spiral passages
out in the shield plug - a hollow fitting which guides the safety rods
through the biologioal shield, and which itself snugly fills a stepped
hole in this shield. The solution hms an effeot on k comparable to
that of the safety rods thamselves. With this brief account of the

final safety device we complete cur survey of the construction of the
Hanford control system.

> /3353
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pile that individuals are oxcluded from the control side of the pile at
these times. When the reaction is cut off, the radiation through this
crack is not sufficient to give a tolerance dose. An additional reason
for excluding workers from the rod erea is the activity of the bars them-
selves as they come out of an active portion of the pile. The induced
radioactivity is sufficient under certain conditions to produce one foot
_away from the rod an ionization level in the neighborhood of 10,000
f) v roentgen units per hour. The aluminum activity decays very rapidly.
- 'l After about a week the rod is calculated to be safe for approach to a
‘foot distance. Access to the rod driving machinery is guaranteed in
spite of the activity of the rods thamselves and notwithstanding the
radiations which escape from the pile. The protecting element 1is a
wall, constructed as shown in Pig. 22.8.10. Through it the rods pass
in small holes which may be closed by remotely operated lead shields.
This wall, together with the specimi ports through the shield and the
thimble in the pile, reduce the radioactive hazard to the point where
it does not interfere with the operation of the rods.

The shim and regulating rods, alike in construction, heat production| 2?-8-1h
and induced radioactivity, differ only in drive and speed of operation. |Electric.
Only one regulating rod is used at a time, the other being maintained as |regulating
a spare. The acting fine control is comnected by rack and pinion to @ rod drive
differential gear. An electric motor geared to one side of the differen: ,
tial drives the rod in or out at one inch per second. The other side
of the differential meshes with a second motor which moves the rod in or
out at 1/100 inch per second. As experience is gained, it will be easy
to change the gear ratio and to alter the speeds for either slower or
faster drive. The operation of the motors is remotely controlled by
switches on the control panel. The two speed drive makes it possible
to adjust the position of the regulating rod quickly end with consider-
able accuracy. ’

BE S LS

In contrast to the regulating rod, shim rod racks and pinions are 22.8.15
driven in or out by hydraulic motors at a speed of 3 inches per second. |Hydraulio
The hydraulic motor gets its power from oil at a pressure about 1000 lbs [shim rod
per square inch. A selector switch controls the rate of flow of the drive
oil and the direction of rotation of the motor. Interlocking mechanisms
guarantee that only one shim rod can be withdrawn fram the pile at a time;
This provision minimiges the chance that the power ocutput of the pile
will increase at a dangerously high rate. In case of emergency, however,
all 7 shim rods are pushed into the pile simultaneously at a speed of 30
inches per second. For this purpose a weighted hydraulic accumulator
is provided. It stores under high pressure sufficient oil to drive all
7 hydraulio motors. Considered as a safety device, the shim rods
function even in case of failure of electric power. This certainty of
operation is the reason for adopting hydraulic drive.

R P

J
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The regulating snd shim rods together total 9 in number. They are | 22.8.16
disposed in a reotangular lattioce to make 3 rows of 3 bars each. The Control power

. upper corner rods are chosen for fine control because of their relativelybf shim and
low effect on k. Introduction of all 9 rods is calculated to lower rogulating
the reproduction factor about 1.7 percent (2.3.63). That this is a ro&g .
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4 — COMMIAUDUS RECORD OF TWE IRLET AND EXIT
TEMPERATURES OF THE COOLING FLUID.

1 — CONTINUOUS RECORD OF SELECTED TEMPERATURES
™ THE METAL AND GRAPHITE.

3= CONTINUOUS RECORD OM MOVING GRAPH PAPER
0F TnE FLOW OF CDOLING FLUID .

4 —.CONTINUOUS RECORD OF THE PRESSURE DIFFERENTIAL
M IHE COOLING FLUID ACROSS THE PHE.

o> "LEGEND - .

5 — CONTIRUGUS RECORD OF THE POSITION OF 10— (LOCK GIVES TIME OF DAY,

WHICMEVER fINE CONTROL IN USE.

& — LEVEL CONTROL; USED TO ADVUST THE
POWER LEVEL DURING AUTOMATIC
OQPERATION.

T — CONTINUOUS RECORD 0N MOVING GRAPH
PAPER OF THE POSITION 0F EACH Suivt
ROD.

8 — THIS SWITCH 15 10 BE USED N AN
EMERGENCY TO PUT SHIM AND FINE
CONTROL RODS ALL THE WAY INTO TuE
PILE,

9 — DtAt SHOWS POSITION OF HYDRAULIC
FINE CONTROL ROD.

11— DIAL SHOWS POSITION OF ELECTRICAL
FINE CONTROL ROD.

12 — (OARSE ADJUSTMENT OF ZERQ FOR
GALVANOMETER * 16

13 = THIS SWITCH 15 USED 1M AN EMERGEK-
€Y T0PUT ALL SHIM RODS ALL THE
WAY {NTQ THE PILE

18 = CONTINUOUS RECORD ON MOVING
CHART OF THE LEVEL OF QPERATION

15 — GALVANOMETER, INDICATES THE
LEVEL AT WHICH THE PILE IS OPERAT-
NG

16 — GALVANOMETER,INDICATES SMALL

CHANGES IN THE LEVEL OF THE DPERA-
TION WHEN ZERO IS PROPERLY
ADJUSTED !

17 = SUIDE WIRE COARSE CONTROL OF ZERD
FOR GALVANOMETER “ 18

18 — SHUNT FOR GALVANOMETER “15

19— INTERVAL TIMER FOR USE IN PILE
CALIBRATION.

170 — SHUNT FOR GALVANOMETER * 16

2t —SLIDE WIRE FINE CONTROL OF ZERD FOR
GALVANOMETER % 15.

22 =SWITCH FOR™ 19

25 —MARUAL ADJUSTMENT FOR HYDRAULIC
DRIVE FINE CONTROL ROD.

o — > >
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FIGURE, 22.8.27 °
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24— GREEN INDICATOR LIGHTS; WHEN LIGKTED
CURRENT 15 ON 1N EACH OF THE FOLLOWING
CIRCUITS - SAFETY, SHIM RODS, 0C., AND
INSTRUMENT PANEL.

TT— HYDRAULIC ACCUMULATOR CONTROL SWITCHES
AND MDICATOR LIGHTS ~——

GREEN — HYDRAULIC ACCUMULATOR
CYLINDER 15 FULL.
BLUE - MYDRAULIC ACCUMULATOR
CYLINDER 13 LESS THAN # FuLL.
AMBER ~ HYDRAULIC ACCIMULATOR
CYLINDER 15 LESS THAN § FULL
,28— A MULTI-PEN RECORDER INDICATES THE
POSITION OF EACM SAFETY ROD,
79— SWITCH FOR SAFETY ROD LATCHING SOLENOIO.
30— SHIM ROD MAIN POWER SWITCH.
3t = FINE CONTROL MAIN POWER SWITCH
37— SWITCHES FOR SHIM ROD OPERATING PUMPS
33— DC. MAIN POWER SWITCH,
34 — INSTRUMENT MAIN POWER CONTROL SWITCH

24 = MANULL FINE ADJUSTMENT FOR
ELECTRIC ORIVE FINE CONTHOL AOD

25=MANUAL COARSE ADJUSTMENT FOR
ELECTRIC DRIVE FINE CONTROL ROD.

35 = SWITCHES AND INDICATOR LIGHTS FOR FINE CONTROL RODS
GREEN — ALL THE WAY IN
AMBER - INTERMEDIATE
LIGHTS { WHITE = NORMAL OPERATING RANGE
BLUE - INTERMEDIATE
RED  — ALL THE WAY OUT
36 —SAFETY ROD POSITION INDICATORS.
- ALL THE WAY OUT
LIGHTS {bwz - INTERMEDIATE
GREEN-  ALL THE WAY IN
37 —CONTROLS AND INDICATOR LIGHTS FOR A SHIMROD
RIGHT HAND SWITCH 15 A LOARSE CONTROL
LEFT HAND SWITCH IS A FINE CONTROL
BLUE = SHIM ROD CAN BE MOVED
LIGHTS 4 GREEN —  5HIM ROD IS ALL THE WAY IN
WHITE = $IX WHITE LIGHTS INDICATE HOW FAR ROD IS WITHORAWN
AED  — SHIMROD IS ALL THE WAY OVt
38—CONTROLS AND INDICATOR LIGHTS FOR ANOTHER SHIM ROD;-
SIMILAR T0 % 37.
39— CONTAOLY AND INDICATOR LIGHTS FOR ANOTHER SHIM ROD;
SIMILAR TO* 37,
40— CONTROLS AND INDICATOR LIGHTS FOR ANOTHER $HIM ROD,*
SIMILAR 10737,
41— SHiM ROD SELECTOR SWITCH, PERMITS MOTION OF ONE
SHIM ROD AT ATIME , A
42 —MAINTENANCE CONTROL PANEL HAS —
SWITCHES T0 PERMIT OPERATION OF SKiM RODS WHEN FINE
COMTAROL 13 NOT ON AUTOMATIC OPZRATION.
SWITCHES T0 PERMIT MOTION OF SHIM RODS PAST
LOCKED STOPS.
SWITCHES TO SYNCHRONIZE THE INDICATORS WiTH
. ROD POSITIONS,
43— SUPEAVISORS LOCKED PANEL HAS —
SWITCHES, WHEN UNLOCKED, PERMITS THE REMOVAL
OF SHIM RODS PAST THE CORRESPONDING STOPS, THUS
THE SHIM RODS CANNOT BE MOVED OUTWARD WITHOUT
CONSENT OF THE SUPERVISOR.

+ PILE CONTROL PANEL -

AS DEVELOPED FOR CLINTON SEMI~WORKS PLANT
= JULY,1943 -

: R ” HLC,1943-7-8
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MECHANISM OF CONTROL

The philosophy of operation of the controls, especially the
regulating rod, has changed in the period betweon the start-up of the
first experimental pile and the design of the Hanford production units.
In the beginning no one could exclude the possibility that the multi-
plication factor would inorease with rising temperature. The reacotion
might be intrinsically unstable, aund & major catastrophe was not out of
the question. In this state of uncertainty it was obviously necessary
to place a heavy burden of responsibility on the control system. It
should be able automatiocally to keep the power level within preassigned
tolerances and to prevent the temperature from approaching the critical
point for instability. Corsequently, much effort went into the design
of ingenious circuits and mechanisms which would so far as possible take
out of the hands of the opsrator the routine job of pile regulation.
Concurrently experiments were in progress to determine the temperature
coefficient of the reactivity (Chap. 16). When mcasurements nade it
clear that the multiplication factor of toth the Clinton semi-works unit
and the Hanford water cooled piles viculd decrease on heating, a change
tock place in the principle of design. The limitations so far imposed
by electronic relays on the freedom of the operator were much lightened,
and the electrical circuits were simplified. fThe operator now has no
greater possibility than before to cause & catastrophe; on'y today
safety is assured more by the self-stabilizing property of the neutron
reaction than by the design of the regulating rod cirouits.

The nature of’ the operator's job is apparent fram a brief acoount
of the operation of the Hanford control system. The management of the
regulating, shim and safety rods is concentrated in the control roam
seen in Fig. 1l.4.8. For this purpose the room is provided not only
with switches to regulate the motion of the rods but also with indicators
to record their positions and with instruments to keep track of operating
conditions within the pile and in the water system.
for remvte control of the rods are locatsd on a control panel. The
panel illustrated in Fig. 22.8.27 was developed for the one mepawatt air
cooled pile at Clinton and is somewhat simpler than the corresponding
Hanford panel. The Hanford control roaom contains in addition & panel
board which gives readings on the pressure of the water to each tube of
the pile and another panel which indicates the temperature of the water
emerging from each tube. (ther instruments record the temperature of
the graphite at various points in the pile, the temperature risc of the
whole water supply on passage through the pile, and the power output of
the reactor. '

On the control panel itself are concentrated the key indicators. -
A galvanameter scale in the center of the board registers a spot of
light which moves markedly to right or left when the activity in the
pile rises or falls slightly with respect to & preassigned level.
Pointers indicate the position of the regulating rod and shim rods.
These pointers are driven by so-called "Selsyn™ motors which rotate in
synchronism with generators of the same construotion whioh are coupled
directly to the corresponding rods. Position can be read to 0.1 inch

" 4n [OO inches with the aid of the two pointers on each dial. In additiag‘

. Il#o B
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MECHANISM OF CONTROL

We now have the pile operating at the desired power level. Here
it remains so long as the multiplication factor is constant and the flow
and inlet temperature of cooling are unvaried. A smail change in any
one of these three quantities will produce a temporary disturbance in
the temperature of the metal and the power output of the pile. First
the temperature of the uranium will adjust itself to & new value in a timg
of the order of 12 seconds. Then the power output and temperature will
hand in hand shift to the new equ:.librn.um figures in a period of the
order of magnitude of L0 seconds, as illustrated in Fig. 22.7.55. So
long as initial equilibrium condition and final equilibrium condition

are satisfactory from an operating point of view, the smooth thermal selft

stabilization of the pile itself guarantees that the conditions during
the intermediate period of transition will also be satisfactory. The
problem of fluctuations in output therefore reduces itself to the ques-
tion of possible fluctuations in the temperature or supply of cooling
water. Taking 100°C as the order of magnitude of the elevation of the
effective average temperature of the metal above the level of the inlet
water, we conclude that a change of 1°C in the temperature of the water
coming from the river will result in an. alteration of the order of 1 per-
cent in the power output of the pile. A comparable change in heat
generation will be induced by & 1 percent alteration in water flow.
Neither type of variation should occur quickly and neither should be the
source of any concern. It is not even necessary to change the position
of the regulating rod. 1f one chooses to do so, however, he can hold
the power output constant to better than 1 percent. The operating
ocharacteristicas of the pile are evidently thoroughly satisfaotory.

After a long period of normal operation the level of product con-

22.8.31

22.8.31
Steady
operation

22.8.32

centration will reach the point where some of the uranium is due for [lornl
discharge. At such a time, and also on occasions when repairs or other [shutd

ohanges are necessary, the pile is shut down by rumnning into it the
regulating rod and the shim rods. The operator can also cut off power
production by manually tripping one of the safety devices provided for
emergency stoppage of the reastion. Bxcept in cages of danger, such
emsrgency shutdown will normally be avoided. Thermal shook to pile and
equipment should be kept at a minimum to avoid damage to the reactor.
On this account the operator at the control rod should extinguish the
reaction by introducing the control rods and by moving them sufficiently
slowly so that the power output drops approximately 1 megawatt per minute
Thus equipment will have & period of the order of [ hours to adjust it-

!

Bmergency stoppage of the chain reaction is accomplished in the
Banford pile by any one of three aaparate and quite distinct safety
devices:

(1) Rapid insertion of the shim rods driven by the hydrauli.o
fluid stored in the acoumulators.

(2) Dropping the safety rods.

(3) Disoharging borax solution into the thimble wells of the
drop safety rods.

L 1425

2.8.33

Boergency
shutdown




~are the following:

149/
oy

MECHANISM OF CONTROL

These amergency devices are aotivated by abnormality in certain pile
operating conditions. Information on these and other oconditions is
also transmitted through an annunciator system to the operator himself.
He is then in a position to take further measures if he considers this
action desirable. However, he is not at liberty to. prevent the opera-
tion of the safety devices when conditions arise which have been previous-
ly agreed upon as dangerous. The following list of these oonditions is
adapted from Chapter VI of the Hanford Engineer Works Technioal Manual,s

(1) The shim rods are driven into the pile under any ome of the
following circumstances,

High or low water pressure on any one of the 1500 (or 200L)
tubes in the pile. . _

High exit water temperature. ‘

.High power output signalled fram the ion chamber whioch
normally controls the regulating rod.

Low level of hydraulic fluid in any one of the three
‘accunulators provided for emergency drive of shim rods.

Low flow of cooling water through control rods. :

Operator presses release button.

(2) Automatic circuits drive in the shim rods and also drop the
safety rods in any one of the following events:

low pressure on chilled or unchilled water headers.

High power output as signalled from any one of three
ion chambers.

Power failure. :

Operator presses release button.

(3) Borex solution is forved into the safety rod wells in any
one of the following ciroumstances: .

Failure of the safety rods to operate.

Extremely low pressure on inlet water headers.

Manual sigmal by operatour.

Rone of the three ssfety devices just mentioned is opom’ced in ocase

certain abnormal conditions develop which are not. immediately dangerous.
However, ths operator is notified by the sounding of an alamm and he ocan
then exeroise his judgment whether or not to set off one of the emergency
controls. Among the conditions about which he thul receives mulupnc

Low pressure on cooling water to thermal ghield.
Approach to high or low level of hydraulic fluid in
accumulators which connect with shim rods. i

' Low level in regerve oil supply for accumulators.
Low level of water stored in high tank for uorgcnoy
cooling of pile.

———— 437
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MECHANISN OF CONTROL

to this means of indicating rod position there are rows of colored
lightsv which accomplish the same end in a less accurate mammer. Lights
flash red when the safety rods are in the out position and shine green
when they have been dropped into the pile. Switches are at the hand of
the operator by means of which he can move in or out the regulating rod
or any chogsen shim rod. Most critical element on the control panel is
the release button. It is only to be touched in an emergency to cause
the safety rods to fall.

_The control room is the nerve center of the pile building. Stand-
ing there we can watch the whole sequence of normal operation, including
start-up, maintenance of power at constant level, and shutdown.

Preliminary to start-up the full water supply is sent through the

' pile and all instruments and controls are checked. Measurements have

been made to determine the local inultip'l_ication factor; sufficient
surplus metal has been loaded in the pile to compensate the loss in re-

‘activity which will occur when the pile is heated. Additional excess

multiplication factor may be provided on the first run to compensate
possible poisoning by fission products. After the magnitude of this

offect shall have been determined the loading will be made in such a way

ag to take this effect into aocount more exactly. Now the pile is ready
to go. The following description of the next steps in the start-up are
taken from Chapter VI of the Hanford Tochnical Manual, pp. 619~621.

"fthe drop safety rods are withdrawn. This should produce essentially
no change in the power output of the pile since k is still below 1.000
(actually about 0.990). After withdrawing the regulating rod the shim
rods are withdrawn successively until the k of the pile, as determined
from previous experiments, is about 1.002. | The pile power then starts
to rise from the shutdown value of about IO'h watts and should reach

100 xw in about 10 minutes, doubling intensity every 20 seconds. During
this period, the rate of rise is checked from time to time to see if it
is too large or too small. If the power output is rising too fast, the’
regulating rod is inserted into the pile by an amount to check the power
output rise back to the desired level. If the rise is too slow, the
shim rod is pulled out further. After a power outp:t of about 100 kw
is reached, it uay be desirable to reduce the rate of rise to two-thirds
or a half that used in bringing the power output up to this level. This
is done by making & suitable adjustment with cither the control rod or
with a shim rod. As soon as the power level has reached several thous-
and kw, the various temperatures of the pile and of the exit water Mave
risen by an observable amount. Due %tc the nezative temperature co- .
efficient of k, the raising of the pile tamperature reduces the rate of
rise of the power output so that the shim rod, or rods, must be pulled
out additional amounts to maintain the desired rate rise. The magnitude
of this effect is such thet k 1s reduced by about 0.003 between zero
power level and a power level of 250,000 kw. This requires the remowal
of about one and a half shim rods. As the desired power level is
approached, the rate of rise in power must be further decreased by
shoving in the regulating rod. The power output is then controlled at
250,000 kw by moving the regulating rod in or out, depending on whether
the power level is above or below the control point®.

Sy /418
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With this desoription of normal and emergency shutdown we have
completed our survey of the control system of the Hanford pile.

survey illustrates the mechanism and operation of control devices.

This
It

complements the analysis earlier in this chapter of the principles of

‘control.
reaction susceptible to close and reliable regulation.

[y B

Both theory and practice reveal the neutronic chain as a
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