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Abstract 
 

In this paper, we describe techniques used to determine realistic and 
appropriate uncertainties and correlations (or, equivalently, covariances) for 
multigroup cross sections in the resolved-resonance region, starting from 
fundamental principles.  The entire process is described, with emphasis on the 
propagation of uncertainties through each step of the process.  The key steps are 
data reduction (conversion from measured counts-per-time-channel to 
experimental cross section as a function of energy), data evaluation 
(determining appropriate parameter values to fit theory to experiment), 
generation of point-wise cross sections (reconstruction of theoretical cross 
sections as a function of energy), collapsing into multigroup cross sections 
(averaging the point-wise cross sections to give multigroup cross sections), and 
calculating integral quantities from those multigroup cross sections. 
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1. Introduction 
 

Although the importance of covariances has been recognized by the nuclear community, there 
appears to be limited understanding of the nature of covariances and the manner in which they 
contribute to the solution of physical problems.  This paper is an attempt to provide a systematic 
description of the various sources of uncertainty, their contributions to covariance matrices 
(CMs), and the effect they may have on the calculated values and uncertainties of integral 
quantities such as keff. 

Our intent is to elucidate some important, but often overlooked, properties of CMs.  First, one 
must recognize that the set of quantities (data, parameters, etc.) associated with the CM must be 
specified, in order for the term “covariance matrix” to be meaningful.  For example, the CM 
associated with the energy-differential experimental cross sections provides a measure of the 
uncertainty on each individual data point (cross section at a particular energy) and of the 
relationship (correlation) between those data points.  In this paper, we discuss techniques used to 
determine realistic and appropriate CMs associated with quantities of interest at the many 
different stages of nuclear data processing, starting from measurement of the raw data leading to 
energy-differential neutron cross sections, through the final calculation of integral quantities.  
Uncertainties are propagated through each step of the process. 
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In the resonance region, ENDF/B data are generally stored as R-matrix parameters.  The 
parameter values and the associated covariance matrix (uncertainties plus correlations) are 
frequently obtained using the SAMMY code [1], by fitting all available experimental data via a 
generalized least-squares technique (Bayes’ method) in conjunction with (a) the Reich-Moore 
approximation to R-matrix theory and (b) corrections for experimental conditions.  Hence, the 
evaluation of experimental data (neutron transmissions or total cross sections, capture, fission, or 
reaction cross sections) incorporates uncertainties in the experimental data.  These uncertainties 
arise from a variety of sources, including both statistical uncertainties associated with the 
measurement itself and systematic uncertainties inherent in measurements of normalization, 
background, neutron time of flight, flight-path length, sample thickness, etc.  All these 
uncertainties are included in the evaluation process, in order to properly determine the 
resonance-parameter covariance matrix (RPCM). 

Pointwise cross sections are constructed from the R-matrix cross section formulae (Reich-
Moore approximation) using the evaluated resonance parameters; the cross section covariance 
matrix (CSCM) for the pointwise cross sections is generated by propagating the RPCM through 
the R-matrix formulae.  Group cross sections are obtained by weighting the pointwise cross 
sections with a neutron flux spectrum and integrating; the associated covariance matrix is found 
by propagating the CSCM through that process.  Finally, calculations of keff and other integral 
quantities make use of either the pointwise cross sections or the group cross sections; 
uncertainties in those integral quantities are determined by propagating the covariance matrices 
associated with the cross sections. 

In this paper, we discuss both how the resonance parameter covariance matrix (RPCM) is 
determined prior to inclusion in ENDF, and how it may be used afterward.  Equations are 
presented when required for clarity; emphasis is on description rather than mathematical rigor. 

2. Description of the Processes 

In this section, the reader will note the frequent appearance of brackets containing asterisks 
and numbers {*1}.  These are used to denote approximations whose inexactness will have 
consequences that will be discussed in Sect. 4. 
 

2.1 Data Reduction Process 
Measurement of cross section data is normally accomplished by time-of-flight techniques, in 

which a neutron beam bombards a sample containing the nuclide of interest, and particles exiting 
the sample are counted as a function of the time required for the neutron to traverse the distance 
from the neutron-producing target to the detector.  The raw data are therefore the counts vs. time 
of flight.  The time of flight is divided into bins or channels of equal or varying lengths, so that 
the actual data are “counts per time channel.”  

Conversion from raw data to reduced data is necessary to extract meaningful information from 
the measurement.  Counts are converted to experimental cross sections (or to experimental 
transmissions) by correcting for detector dead time, subtracting backgrounds, normalizing with 
respect to the duration of the experiment, and so on.  Time of flight ti is converted to incident 
neutron energy Ei by the usual relationship 

 2 2/ 2 ,i iE mL t=  (1) 
in which m represents the mass of the incident neutron and L the flight-path length.  {*1} 



  

Raw data obey Poisson statistics.  Essentially, this means that, if there are N counts for a given 
channel, the uncertainty on N is the square root of N.  When the number of counts is large (as is 
often the case), it is adequate to treat a Poisson distribution as a normal distribution {*2}.  Each 
raw data point is independent of the other raw data points; that is, the number of counts in one 
channel is not correlated with the number of counts in any other channel {*3}. 

Reduced data, however, are no longer independent.  This is most easily seen by considering 
relatively simple corrections such as normalization and background subtraction [1,2].  
Normalization a and background b are measured by separate experiments; they each have 
uncertainties associated with them, which are expressed as Δa and Δb, respectively.  (For 
simplicity, we shall assume that both a and b are constants rather than functions of time; the 
generalization is straightforward.)  Uncertainties in a and b are propagated to the reduced data 
(the experimental cross sections), which we shall call d.  Hence the reduced data d1 at energy E1 
is related to the reduced data d2 at E2; this relationship is described via the experimental data 
covariance matrix, which we call V. 

If ri is the raw datum at time ti and di is the corresponding experimental cross section at energy 
Ei , the energy is related to the time by Eq. (1) and the cross section to the raw datum by 

( ) / .i id r b a= −   (2) 

Because uncertainties are known for all quantities on the right-hand-side of Eq. (2), it is possible 
to determine the covariance matrix for the experimental cross section.  We begin by taking small 
increments of Eq. (2),  

( ) ( ) 2/ / ./i i i i id r b a r b a a r b d a aδ δ δ δ δ δ δ⎡ ⎤= − − − = − −⎣ ⎦  (3) 

Next, multiply idδ  by jdδ  and take expectation values, 

{ }2 2 2 2 ,/ /i j i i j j i j i jd d r b d a r b d a a r r b d d a aδ δ δ δ δ δ δ δ δ δ δ δ⎡ ⎤ ⎡ ⎤= − − − − = + +⎣ ⎦⎣ ⎦ (4) 

in which we have omitted the cross terms, because of the assumption that all the different 
quantities were measured in separate experiments and are therefore uncorrelated {*4}.  Finally, 
the experimental data covariance matrix can be written as 

{ }2 2 2 2 ./i j i j i i j i jV d d r b d d a aδ δ δ= = Δ + Δ + Δ  (5) 

For a detailed description of the data-reduction process with application to natural Ni, see 
references [3] and [4]. 
 

2.2 Data Analysis or Evaluation 
Neither raw nor reduced data are the appropriate quantities for use in nuclear reactor or 

transport calculations.  Rather, what are needed are the evaluated cross sections, which reflect 
the “best” measured cross section value and also the best theoretical knowledge both of the shape 
of the “true” cross sections (e.g., R-matrix theory) and of the real-world modifications to the true 
cross sections (e.g., resolution or Doppler broadening, finite-size effects in the resolved 
resonance region; different examples apply for higher-energy regions.)  Sophisticated computer 
codes such as SAMMY [1] are used to determine a best-fit set of resonance parameters and the 
associated CM. This CM reflects the statistical experimental uncertainties from the data 
reduction process and also includes systematic uncertainties related to the corrections for real-
world effects {*5}. 



  

Let P0 represent the initial estimates for the R-matrix parameters, and M0 the corresponding 
parameter CM.  Let T represent the theoretical cross section, including corrections for 
experimental conditions, and G the partial derivatives of T with respect to the parameters (i.e., G 
is the sensitivity matrix). Then the generalized least-squares equations used to calculate the 
evaluated set of R-matrix parameters (which we will call P ) and the associated parameter CM 
(which we will call M ) have the form {*6 } 

1 1 1 1
0 0( ) and ( ) ,tP P M GV d T M G V G M− − − −= + − = +  (6) 

where V is the covariance matrix for the reduced data, from Eq. (5). [When 1
0 0M − = , the 

equations in (6) become the usual least-squares equations.]    
All available data of all types (e.g., capture, elastic, total, fission or other reaction, both angle-

integrated and angle-differential) are included in this fitting procedure, and the full off-diagonal 
data CM is used for each data set.  When available, integral constraints such as resonance 
integrals, thermal cross sections, or g-factors are also included here. 

The parameter set P is written into ENDF File 2 and the associated resonance parameter 
covariance matrix M is written into ENDF File 32.  (In higher-energy regions, ENDF formats do 
not exist for comparable parameterization of the cross sections.  Instead, pointwise cross sections 
are written into File 3 and the associated covariance matrix into File 33.) 
 

2.3 Conversion to Pointwise Cross Sections 
Processor codes such as AMPX [5] or NJOY [6] calculate pointwise cross sections (i.e., cross 

sections as a function of energy) directly from the R-matrix parameters, on an energy grid that is 
sufficiently dense to define all structure in the cross section.  The associated CM can also be 
generated, using the sensitivity matrix (the partial derivatives of the cross sections with respect to 
the resonance parameters) to propagate uncertainty information stored in the resonance-
parameter covariance matrix (RPCM).  The resulting pointwise cross section CM will, in 
general, bear little resemblance to the CM for the reduced data discussed in Sect. 2.3, but it 
nevertheless incorporates the same information (plus much more, from the analysis process). 

Let σ  represent the pointwise cross section and U the associated covariance matrix.  To 
propagate the covariance matrix M for P into U, we first take small increments in σ  and use the 
chain rule for partial derivatives, 

( ) ( ) ( ) ,i i i
i i

E
E P G E P

P
σ

δ σ δ δ
∂

= ≡
∂∑ ∑   (7) 

where G is defined as the sensitivity matrix, which can be calculated analytically from the 
R-matrix formula for the cross section.  Multiplying by ( )'Eδ σ and taking expectation values 
gives 

( ) ( ) ( ) ( ) ( ), ' ' ' ,i i j j
i j

U E E E E G E P P G Eδ σ δ σ δ δ= = ∑  (8) 

in which i jP Pδ δ  is the RPCM element i jM .  Equation (8) can therefore be rewritten as  

( ) ( ) ( ), ' ' .i i j j
i j

U E E G E M G E= ∑   (9) 



  

  
2.4 Averaging to Give Multigroup Cross Sections and Covariance Matrix 
The pointwise cross sections and associated CM are averaged using an energy-dependent flux 

to give multigroup cross sections and the associated CM.  Two codes used for this purpose are 
PUFF [7] and ERRORJ [8]. SAMMY [1] can also produce certain types of multigroup results in 
the resolved-resonance region and has been used for comparison studies with the other two 
codes. 

A general equation for calculating the group-average cross section gσ  is  

( ) ( ) ( )
1 1

   with   1 ,
g g

g g

E E

g
E E

E E dE E dEσ σ
+ +

= Φ Φ =∫ ∫  (10) 

in which ( )EΦ  is the normalized energy-dependent flux.  Numerical integration algorithms are 

used to calculate σ  {*7}.  If U  represents the covariance matrix associated with σ , then  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 ' 1

'

1 ' 1 1 ' 1

' '

' ' ' ' '

' ' ' ' ' ( , ') .

g g

g g

g g g g

g g g g

E E

g g g g
E E

E E E E

E E E E

U E E dE E E dE

E dE E dE E E E dE E dE U E E

δσ δσ δσ δσ

δσ δσ

+ +

+ + + +

= = Φ Φ

= Φ Φ ≡ Φ Φ

∫ ∫
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 (11) 

Computations required by this equation can be simplified by inserting Eq. (9), yielding  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 ' 1

'

1 ' 1

'

'

'

' ' '

' ' ' ,

g g

g g

g g

g g

E E

g g i i j j
i jE E

E E

i i j j gi i j g j
i j i jE E

U E dE E dE G E M G E

G E E dE M G E E dE G M G

+ +

+ +

= Φ Φ

= Φ Φ ≡

∑∫ ∫

∑ ∑∫ ∫
 (12) 

in which we have defined the group-averaged partial derivative as 

( ) ( )
1

.
g

g

E

g i i
E

G G E E dE
+

= Φ∫   (13) 

 
2.5  Calculating Integral Quantities 

The multigroup cross sections and associated CM found in the previous section are then used 
to calculate keff (or other integral quantities).  The mathematics is well understood for 
propagating the multigroup cross section CM, yielding a reasonable estimate for the nuclear data 
component of the uncertainty on keff.  When Monte Carlo methods are used to compute keff, the 
statistical uncertainty associated with the Monte Carlo computation is also well understood. {*8}  
 

3. A Simple Example 

To better understand the processes described in the previous section, raw data have been 
simulated for two “measurements,” one being neutron capture and the other neutron 



  

transmission.  Each data set has 61 data points.  (In a real evaluation, there will be several 
independent data sets and thousands, or even hundreds of thousands, of data points for each data 
set.)  These data used only two resonances; the first has orbital angular momentum l = 2 and the 
second has l = 1.  Values for the resonance parameters are given in Table 1.  Resolution and 
Doppler broadening, normalization, background, and noise were added to the artificially 
generated raw data to simulate real-world conditions.  The statistical uncertainty on each raw 
datum was then set to the square root of N, where N is the number of counts (the value of the raw 
datum).  

 
3.1  Data Reduction Process 
The raw data were then reduced to capture cross sections and transmissions, using “measured” 

values for the normalizations and backgrounds and for the corresponding uncertainties.  To 
illustrate how use of the correct data covariance matrix can compensate for inaccuracies that may 
be found especially in older data sets, the assumed measured value of the background for the 
capture experiment was taken to be quite a bit larger than the value used to generate the data.  
Nevertheless, as will be seen below, correct resonance parameter values were obtained. 
 

3.2  Data Analysis or Evaluation 
The reduced data were analyzed simultaneously via least-squares, using initial values for the 

resonance parameters that were different from the values used to create the simulated data.  Four 
techniques were used for the uncertainties:  (1) SAMMY’s “propagated uncertainty parameter” 
(PUP) method, which correctly incorporates the measurement-related uncertainties into the data 
CMs; (2) using the explicit data CMs for both data sets, as described in Sect. 2.2; (3) keeping 
only the diagonal portion of the data CMs; (4) keeping only the systematic portion of the data 
CMs.  Results for the six resonance parameters are shown in Table 1.  Clearly the PUP method 
gives superior results, with each of the six parameter values agreeing within the errors with the 
“true” values (the values used to create the simulated data).  The explicit method disagrees only 
for Γ2n, while the two diagonal methods disagree in both Γ1n and Γ2n. 

 
Table 1:  Resonance parameter values for the data analysis step. 

 “True” 
values 

Initial 
values 

PUP 
method 

Explicit 
data CM 

Diagonal 
DCM 

Statistical 
only 

1E  (keV) 181.055 181.060 181.055 
± 0.001 

181.060 
± 0.001

181.055 
± 0.002 

181.055 
± 0.002

1γΓ  (eV) 0.642 0.640 0.636 
± 0.105

0.684 
± 0.107

0.632 
± 0.104 

0.629 
± 0.061

1nΓ  (eV) 21.691 17.922 23.064 
± 1.511

20.239 
± 1.613

24.471 
± 1.387 

24.574 
± 1.034

2E  (keV) 181.300 181.300 181.300 
± 0.001

181.300 
± 0.001

181.300 
± 0.002 

181.300 
± 0.001

2γΓ  (eV) 0.708 0.710 0.716 
± 0.085

0.752 
± 0.080

0.712 
± 0.071 

0.706 
± 0.043

2nΓ  (eV) 20.249 21.988 21.646 
± 1.319

24.226 
± 1.208

23.825 
± 0.990 

23.692 
± 0.750



  

3.3.  Conversion to Pointwise Cross Sections 

The resonance parameter values found in the previous section using the PUP method were 
used to construct capture and total pointwise cross sections and the associated CMs.  Figure 1 
shows the CM for the reduced capture data; Fig. 2 shows the very different CM for the pointwise 
capture data, using the same energy scale.  Figure 3 shows the CM that would be found for the 
pointwise capture data if the off-diagonal elements of the RPCM were not used; note the marked 
absence of the secondary peaks seen in Fig. 2. 
 

Figure 1:  Covariance matrix for the 
simulated experimental capture cross section. 
 

 

Figure 2:  Covariance matrix for the 
pointwise capture cross section. 

 
 

 
 

Figure 3:  Covariance matrix for pointwise 
capture cross section, when off-diagonal 
components of the resonance parameter 

covariance matrix are neglected. 

 

3.4 Averaging to Give Multigroup 
Cross Sections and Covariance 
Matrix 

For this simple example, we somewhat 
arbitrarily choose two energy groups for 
averaging; the flux ( )EΦ  is taken to be 
independent of energy. Table 2 shows the 
multigroup averages, uncertainties, and 
correlation coefficients between the two 
groups when the full RPCM is used (as 
shown for the pointwise capture cross 
section in Fig. 2), and when off-diagonal 
components of the RPCM are neglected (as 
shown for the pointwise capture cross 
section in Fig. 3).  While the values and 
uncertainties for the multigroup averaged 
cross sections do not differ too much for the 
two cases, the correlations are extremely 
different. 

 



  

Table 2:  Multigroup averages 

 Using full RPCM Using diagonal portion of RPCM 
Energy range (keV) captureσ  (barns) totalσ  (barns) captureσ  (barns) totalσ  (barns) 
180.85 – 181.20 0.0803 ± 0.0104 7.514 ± 0.164 0.0803 ± 0.0103 7.514 ± 0.161 
181.20 – 181.45 0.0628 ± 0.0088 6.535 ± 0.131 0.0628 ± 0.0086 6.535 ± 0.126 
correlation 0.72 0.65 0.05 0.09 

 

3.5 Calculating Integral Quantities 
With this simple example, it is of course not possible to calculate keff or other integral values 

corresponding to physically meaningful quantities.  It is possible, however, to study the effect of 
improper treatments of covariance matrices by calculating integrals of the type 

( ) ( ) ( ) ,/F E f E dE f E dEσ= ∫ ∫   (14) 
where f ( E) assumes a variety of functional forms as shown in Table 3, and σ(E) represents the 
pointwise cross sections of Sect. 3.3. The uncertainty on F is found by analogy with Eqs. (10) 
through (13).  Table 4 shows results of these calculations; note that uncertainties are 
unrealistically high because of the artificial nature of this example. 
 

Table 3:  Functional forms used in 
calculations of pseudo integral quantities 

i ( )if E  

1 1 
2 E − Emin 
3 (E − Emin)3 
4 E Emin−  

5 ( ) 10.01keVE Emin −− −  

6 ( ) ( ){ }2
exp E Emid Emax Emin− − −⎡ ⎤⎣ ⎦  

In all cases, omitting the off-diagonal 
portion of a covariance matrix [either the 
RPCM or the cross section covariance 
matrix (CSCM)] results in uncertainties on 
the pseudo integral quantity that are 
significantly smaller than the more rigorous 
value.  In our experience, a rigorously 
calculated uncertainty will be different from 
a more crude calculation, but sometimes 
larger and sometimes smaller.  The only 
generalization that can be drawn is that the 
uncertainty on an integral quantity will not 
be calculated accurately when components 
of the covariance matrix are neglected. 

 
 

Table 4:  Calculations of pseudo-integral quantities and associated uncertainties, using various 
treatments of the cross section covariance matrix.  Units are millibarns. 

 ( )1f E ( )2f E ( )3f E ( )4f E ( )5f E ( )6f E

Value of F 73.04 71.28 53.18 71.29 42.36 83.17
FΔ  with full RPCM 9.07 8.98 7.17 8.98 5.35 10.32
FΔ  with diagonal portion of RPCM 7.13 6.94 6.38 6.94 4.56 8.23
FΔ  with diagonal portion of CSCM 1.00 1.02 0.97 1.02 0.59 1.16



  

4. Neglected Components of Covariance Matrices 

In the previous section, we saw that neglect of any component of a covariance matrix can lead 
to erroneous results when that covariance matrix is used in further calculations.  It is therefore of 
interest to consider what components might still be missing, even when great care is taken to 
properly include all known contributors.  In Section 2, eight possibilities were indicated with a 
curly bracket containing an asterisk and a number.  Here we provide information about the 
missing components alluded to there. 

{*1} Often, the neutron is sufficiently energetic that relativistic effects are noticeable.  While 
the conversion from time-of-flight to energy is usually done with relativistic equations, R-matrix 
analyses usually do not take relativistic kinematics into account. 

{*2} The least-squares equations used for data fitting implicitly assume that all relevant 
quantities (experimental data, R-matrix parameters, etc.) obey Gaussian distributions (sometimes 
called “normal” distributions).  The raw data, however, actually obey Poisson distributions.  At 
high count rate, the Poisson distribution is indeed very similar to the normal distribution, so the 
approximation is good for the measurement of the resonance peaks in capture experiments and of 
the region between peaks in transmission experiments.  At low count rate, however, the 
distribution is highly skewed from normal, which may cause difficulty in fitting the low cross 
sections between resonances for capture experiments, and very near the peaks of large 
resonances in transmission experiments.  

{*3} While each raw data measurement is essentially independent of all other such 
measurements, there are certain interrelationships whose effect is usually neglected.  For 
example, there is a dead time for the detector after measuring each event.  The dead-time 
correction is universally taken to be absolute, with zero uncertainty; however, fluctuations in 
beam strength from one pulse to the next will produce small correlations between neighboring 
data points.  To our knowledge, systematic uncertainties such as these are not yet incorporated 
into analysis codes. 

{*4}  Additional systematic uncertainties may occur due to the particular facility at which the 
experiments are performed. Uncertainties pertaining to data-processing hardware or software 
have not been studied. 

{*5}  The uncertainty in the model itself (R-matrix theory plus corrections for experimental 
conditions) has not yet been adequately explored.  Mis-assigned quantum numbers, missed small 
resonances, and omitted noncompound processes (e.g., direct capture) contribute to the 
uncertainty in the calculation, as do approximations in resolution broadening, Doppler 
broadening, or other corrections for experimental effects.  One immeasurable uncertainty 
involves the computer program itself; methods have not been developed for assigning 
uncertainty to undiscovered programming bugs. 

{*6}  The least-squares equations shown in (6) inherently assume that the theory is linear with 
respect to the parameters, an assumption which is clearly invalid for R-matrix parameters.  In 
practice, the least-squares equations are generalized to include iteration for nonlinearity.  
Nevertheless, the use of an essentially linear treatment for an essentially nonlinear system may 
have implications for the uncertainty calculations. 

{*7}  The integrations described in Eqs. (10) through (13) are evaluated using numerical 
integration schemes.  Any such scheme has an uncertainty associated with it. 

{*8}  Two components of uncertainty are generally omitted or ignored in integral calculations:  
the uncertainty associated with the model used to calculate the integral quantity and the 



  

uncertainty associated with the use of multigroup cross sections rather than pointwise cross 
sections.  Undiscovered programming bugs play a factor here just as they do in the analysis 
programs. 

5.  Summary  

A description has been given of the various processes involved in measuring, reducing, 
analyzing, averaging, and using cross section data in the resolved-resonance region, with 
particular attention to the uncertainties at each step of the process.  The ideas expressed in that 
description were illustrated with a simple example.  Neglected components of uncertainty were 
discussed. 

While this paper serves to illustrate the current status of the treatment of covariances, further 
work is clearly indicated.  More realistic examples should be studied, and extensions into the 
higher-energy regions included.  Methodologies should be developed to describe the neglected 
components. 
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